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ABSTRACT

Teleost fishes typically first encounter the environment as free-
swimming embryos or larvae. Larvae are morphologically
distinct from adults, and major anatomical structures are un-
formed. Thus, larvae undergo a series of dramatic morpho-
logical changes until they reach adult morphology (but are
reproductively immature) and are considered juveniles. Free-
swimming embryos and larvae are able to perform a C-start,
an effective escape response that is used evade predators. How-
ever, escape response performance improves during early de-
velopment: as young fish grow, they swim faster (length-specific
maximum velocity increases) and perform the escape more
rapidly (time to complete the behavior decreases). These im-
provements cease when fish become juveniles, although ab-
solute swimming velocity (m s™') continues to increase. We use
studies of escape behavior and ontogeny in California halibut
(Paralichthys californicus), rainbow trout (Oncorhynchus my-
kiss), and razorback suckers (Xyrauchen texanus) to test the
hypothesis that specific morphological changes improve escape
performance. We suggest that formation of the caudal fin im-
proves energy transfer to the water and therefore increases
thrust production and swimming velocity. In addition, changes
to the axial skeleton during the larval period produce increased
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axial stiffness, which in turn allows the production of a more
rapid and effective escape response. Because escape perfor-
mance improves as adult morphology develops, fish that enter
the environment in an advanced stage of development (i.e.,
those with direct development) should have a greater ability to
evade predators than do fish that enter the environment at
an early stage of development (i.e., those with indirect
development).

Introduction

Teleost fishes typically emerge from their chorions and en-
counter the environment as free-swimming embryos, which
rely on yolk for nutrition, or larvae, which obtain nutrition
from the environment (see Balon 1999). These early stages are
morphologically distinct from juveniles and adults, and many
structures are incompletely formed. For example, fins and jaws
exist only as rudimentary structures in young larvae, if at all.
These structures form and mature across larval development
until they reach adult morphology, at which point the fish are
considered juveniles. Interestingly, early life-history stages are
characterized by extreme mortality, and mortality decreases ex-
ponentially as fish grow older (for a review, see Houde 1997).

Development is composed of two interrelated processes:
growth, typically an increase in both length and mass, and
ontogenetic changes, the formation of new structures or the
modification of existing ones (Fuiman and Higgs 1997). Both
of these processes likely contribute to a decreased vulnerability
to predation across development and an increased ability to
procure food from the environment (Werner and Gilliam 1984;
Houde 1997). An increase in absolute size may be beneficial
because it allows fish to reach a “size refuge,” where they simply
become too big to be handled by potential predators (Miller
et al. 1988). Ontogenetic changes, such as the formation of the
jaws and eyes, improve a fish’s ability to capture prey and to
detect and evade predators (Fuiman and Higgs 1997). However,
size and shape transformations occur concomitantly. Conse-
quently, it is difficult to determine precisely which develop-
mental changes improve the performance of ecologically rel-
evant tasks and thus contribute to decreased mortality in older
fishes.

The ability to evade predators may be particularly important
during early life-history stages (Houde 1997). The most com-
mon escape response behavior exhibited by teleost fishes across
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all life-history stages is a rapid acceleration involving bending
about the center of mass followed by a single propulsive tail
stroke and burst swimming (Fig. 1). These escape responses
(or C-starts) are employed by fishes to escape attacks by in-
vertebrate (e.g., Seale and Binkowski 1988; Horn et al. 1994)
and vertebrate predators (e.g., Webb 1976; Katzir and Camhi
1993). Correlations between escape performance and survival
have been demonstrated by several studies (Swain 19924, 1992b;
O’Steen et al. 2002), making studies of escape performance
relevant for evaluating the potential effects of predation on early
life-history stages of fish.

Studies of scaling in the escape responses of adult fish suggest
that individuals become slower as they grow larger because of
body allometry. Typically, larger fish take longer to complete a
behavior, and they swim more slowly in body lengths per sec-
ond (e.g., Webb 1976; Domenici and Blake 1993; James and
Johnston 1998). This pattern is apparently a result of the al-
lometric relationship between the mass of fish that must be
moved during an escape response and the cross-sectional area
of the axial musculature used to generate the force necessary
to move. Assuming isometric growth, as a fish grows larger,
cross-sectional area increases with the square of length (A=
I?), whereas mass increases with the cube of body length
(M= L’). Thus, our a priori expectation is that maximum
length-specific swimming speed during an escape behavior will
decrease as fish grow larger. Additionally, it may take longer to
produce the behavior, because the absolute distance covered by
body elements will increase as fish grow larger.

However, several species of salmonids (i.e., trout, salmon,
and their relatives) are known to improve their escape perfor-
mance as they mature from larvae into juveniles (Hale 1999).
This improvement is likely a function of ontogenetic changes;
during this time period, fish undergo a change in overall body
shape and development of structures (e.g., true fins) that should
improve swimming performance. However, precisely which on-

togenetic changes account for improvement is not known. Here
we consider five developmental changes that have potential
ramifications for escape performance.

1. Absorption of the yolk and associated changes in body
shape. Many young teleosts possess a large yolk sac that con-
tributes to body inertia but does not contribute to thrust pro-
duction (Hale 1999). Thus, as yolk is converted to body tissue,
it may improve the ability of a fish to perform the escape
response.

2. Changes in hydrodynamic regime. The hydrodynamic en-
vironment experienced by a fish depends on the physical prop-
erties of water (i.e., viscosity and density), the size of the fish,
and the velocity at which the fish moves through the water
(Webb and Weihs 1986). During ontogeny, the hydrodynamic
regime experienced by a fish must change because it will be-
come both larger and faster. In particular, the ratio of inertial
to viscous forces acting on the fish will change, and this can
be estimated by calculating the Reynolds number (Weihs 1980).
This shift in hydrodynamic regime contributes to changes in
routine swimming behavior as fish develop (Weihs 1980; Webb
and Weihs 1986; Fuiman and Webb 1988; Osse and van den
Boogaart 2000) and could also affect escape performance (Hale
1996).

3. Formation of true fins. Free-swimming embryos and
young larvae possess shallow fin folds that are not stiffened by
cartilaginous or bony elements. It has been suggested that es-
cape performance improves as true fins form (Hale 1999) pre-
sumably because true fins stiffened by bony rays create a deeper,
thinner, low-mass fin that will improve the transfer of mo-
mentum between the body and the surrounding fluid (Weihs
1973).

4. Formation and coordination of the nervous system. Stud-
ies on escape responses of young fishes have shown that free-
swimming embryos of some species produce uncoordinated
escape responses shortly after hatching (Kimmel et al. 1974;

Figure 1. These images depict a razorback sucker performing an escape response. A 0.5-cm grid is shown in the background; time from the
beginning of the response is shown in seconds. The first four panels depict the preparatory phase (the “C”), the next two depict the propulsive
phase, and the final two depict free swimming. This figure is modified from Wesp and Gibb (2003).
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Wesp and Gibb 2003). Escape performance may improve across
early life-history stages because the ability to integrate sensory
input and motor output improves as organisms develop (Car-
rier 1996).

5. Formation of the vertebral column. In free-swimming
embryos and young larvae, the notochord stiffens the body.
Formation of the vertebral column has been hypothesized to
improve escape response performance (Hale 1999) presumably
by increasing the ability of the axial skeleton to transmit pro-
pulsive forces from the axial musculature to the caudal fin
(Long et al. 2002; Long and Nipper 1996).

In this study, we use the comparative method to evaluate
these five predictions about the ramifications of ontogenetic
change on escape performance. To this end, we examine escape
response performance data from three species of teleost fish:
California halibut (Paralichthys californicus), rainbow trout
(Oncorhynchus mykiss), and razorback suckers (Xyrauchen tex-
anus). Data were originally collected for these three species for
other purposes (Gibb and Dickson 2002; Wesp and Gibb 2003).
However, these three species represent distinct phylogenetic
lineages with varied life-history strategies; this allows us to ad-
dress the hypotheses outlined above and describe patterns in
the ontogeny of escape performance across teleost fishes.

Material and Methods
Study Species

California halibut (Pleuronectiformes) are marine fish that pro-
duce many very small eggs. In this species, embryos hatch when
they are approximately 2.1 mm in standard length and possess
a small, round yolk mass. The free-swimming embryos quickly
absorb the yolk (it is depleted by 3 d after hatching in embryos
held at 18°-20°), and acquisition of adult morphology occurs
during the larval period (Gisbert et al. 2002). This pattern of
development is considered indirect development by Balon
(1999).

Razorback suckers (Cypriniformes) are freshwater fish that
produce small eggs. These eggs hatch when embryos are ap-
proximately 7.3 mm in standard length, and the free-swimming
embryos have a small but elongate yolk sac. This yolk sac is
rapidly absorbed (it is depleted by 7 d after hatching in embryos
held at 13°-17°), and acquisition of adult morphology occurs
during the larval period (Minckley and Gustafson 1982). This
pattern of development is also considered indirect development
by Balon (1999).

Rainbow trout (Salmoniformes) are freshwater fish that have
relatively large eggs. Rainbow trout eggs hatch when trout are
approximately 10.2 mm in standard length with a very large,
oval yolk sac. This yolk sac is absorbed over a fairly long period
of time (it is depleted by 20 d after hatching in embryos held
at 18°), and many adult structures are formed during this ex-
tended free-swimming embryo, or eleutheroembryo, period
(Hale 1999). Thus, rainbow trout become juveniles very soon

after absorbing the yolk and consequently have a very short
larval period. This pattern of development is considered in-
termediate development by Balon (1999). These three species
represent divergent teleost lineages that share a common an-
cestor near the origin of the teleosts (Nelson 1994).

Performance Data

All of the data used in this study come from two previously
published and/or ongoing studies by A. C. Gibb and coworkers.
We refer the reader to the published studies for additional
details of the data collection methods (Gibb and Dickson 2002;
Wesp and Gibb 2003); only a brief summary of the methods
is provided here. Because the studies were originally conducted
to address two different questions, slightly different methods
were used for each study. However, several comparable kine-
matic variables were collected in the two studies.

California halibut Paralichthys californicus were obtained as
larvae or juveniles from a local hatchery (Redondo Beach Cal-
ifornia Halibut Hatchery Program), held at 18°C in 1-L con-
tainers of filtered seawater, and fed daily on Atermia nauplii
or squid pieces. Individual larvae were transferred to a small
glass petri dish and videotaped with a Peak Performance Tech-
nologies high-speed video camera mounted over the dish, with
the lens perpendicular to the base of the dish. Individual ju-
veniles were transferred to small rectangular aquaria and vid-
eotaped from a lateral view (with the lens perpendicular to the
side of the tank). This view is anatomically a dorsal view of
the fish, since by the juvenile stage, California halibut have
settled onto their right side (now the “blind” side), with their
left side (or “eyed” side) oriented upward and toward the water
column. Both videotaping arenas contained a calibrated grid
in the field of view.

Escape responses were triggered by gently placing a blunt
probe against the side of the fish. Escape movements for all
three fish species always outpaced the movement of ripples
produced in the water’s surface by the probe; thus, there was
no distortion present in images used to calculate kinematic
parameters (e.g., see Fig. 1). California halibut escape responses
were recorded to VHS tape at 120 Hz, the maximum frame
rate for the Peak Performance Technologies system. Although
this recording rate is low relative to the digital imaging system
used for the other two species reported here, it represents an
adequate sampling rate for determining maximum velocity dur-
ing an escape response (Walker 1998a). This video imaging
process was repeated for 38 California halibut larvae and ju-
veniles, and multiple escapes were recorded for each individual.

Sequential video images of each escape response were
uploaded field by field to a Macintosh personal computer and
saved as image files. Image files were transferred to a personal
computer and analyzed using Didge custom image analysis
software (Cullum 1999). This program uses the total length of
the fish (obtained from postexperiment morphological mea-
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surements) and 11 points along the midline of the fish to divide
the fish into 10 equal-length segments mathematically. The 11
points anchoring these segments were tracked over time, and
movements of the point closest to the center of mass were used
to calculate displacement and velocity for each of three escape
responses per individual. The mean value of these three re-
sponses was used for further analyses.

Razorback sucker Xyrauchen texanus eggs were obtained
from the Willow Beach Fish Hatchery, Arizona. Rainbow trout
Oncorhynchus mykiss eggs were obtained from the Lost River
Trout Hatchery, Idaho. For each species, eggs were divided
among eight tanks (43 cm long x 26 cm wide x 15 cm deep)
with a 14L : 10D photoperiod. Each tank contained recirculated
and filtered fresh water. Four tanks were maintained at 12°C and
four at 18°C, and fish were fed daily on Artemia nauplii or a
protein-rich dried food (razorback suckers were given a custom-
formulated dried food containing plankton flakes, brine shrimp
flakes, krill flakes, Sprirulina flakes, and microencapsulated pro-
tein that was provided by the fish hatchery; rainbow trout were
given a commercially available aquaculture feed). Fish were
reared for the duration of embryonic and larval development
and into early juvenile stages (approximately 2 mo). Individual
fish were placed in a circular glass testing chamber (6 cm in
diameter x 2 cm deep or 10 cm in diameter x 6 cm deep) and
allowed to acclimate for at least 5 min. A 0.5-cm grid was placed
below the testing chamber for scale, the chamber was illuminated
with a fiber optic light, and a camera was mounted above the
testing chamber with the lens perpendicular to the base of the
dish. Escape sequences were recorded at 500 frames per second
using a high-speed digital imaging system (Redlake Motionscope
1000). Escape responses were triggered by gently placing a blunt
probe against the side of the fish. This process was repeated for
24 razorback suckers at 12°C and 39 at 18°C (e.g., see Fig. 1).
Similarly, 28 rainbow trout were tested at 12°C and 30 at 18°C.
Multiple escapes were recorded for each individual. Individuals
included in these samples were selected from the rearing tanks
at 2-3-d intervals over a 70-d rearing period to represent an
ontogenetic series.

For razorback suckers and rainbow trout, the single best
escape response for each individual, determined by the fastest
maximum velocity and/or shortest response duration, was use
for quantitative analysis. As above, Didge custom image analysis
software (Cullum 1999) was used to determine the coordinates
of 11 points along the midline of the fish. These points were
tracked over time, and the point closest to the center of mass
was used to determine the movement of the fish during the
escape response. In this analysis, data from the consecutive
frames were uploaded into QuickSAND software (Walker
1997), and a cubic-spline algorithm with an estimated error
variance (based on the pixel to centimeter ratio) was used to
reduce mathematically the effects of digitizing error, effectively
smoothing the data. The program was also used to determine

velocity and acceleration by taking the first and second deriv-
atives of the smoothed displacement data (Walker 1998a).

We also quantified bending produced during the preparatory
phase for razorback suckers and rainbow trout by determining
body curvature at nine positions along the body (using the 11
points to create 10% intervals along the entire body for the
nine positions, with the tip of the snout representing 0% total
length and the tip of the tail representing 100% total length,
respectively). Length-specific curvature was calculated using the
program QuicKurve (Walker 1998b). This program determines
the radius of curvature at preassigned increments along the
body and divides them by total fish length to produce length-
specific curvature (or K) for each location on the body.

Data for razorback suckers and rainbow trout were originally
collected as part of a temperature acclimation study. However,
a two-way MANCOVA on performance variables (using species
and temperature as potential effects and size as the covariate)
indicated that there was no significant temperature effect after
acclimation (F = 1.1, P> 0.05). Because there was no signifi-
cant temperature effect, data for both temperatures have been
combined for a given species (rainbow trout or razorback
sucker) in this analysis (for details of the temperature accli-
mation study, see Wesp and Gibb 2003).

Developmental Changes and Performance Variables

Morphological observations were made using previously pub-
lished descriptions of posthatching development (Minckley and
Gustafson 1982; Gisbert et al. 2002) and using razorback sucker
and rainbow trout individuals from our studies that we cleared
and stained (Taylor 1967) to reveal the presence of cartilaginous
and bony skeletal elements. Images of these specimens (with a
calibrated grid in the background) were taken using a high-
resolution digital camera mounted to a dissecting microscope
and uploaded to a personal computer. Observations made from
these images included both presence and degree of development
of adult structures (e.g., formation of the caudal fin) and size
of anatomical structures (e.g., notochord radius). All measure-
ments of anatomical structures were taken from the digital
images using Image-J (version 1.32) for Macintosh.

Plots were constructed of relevant performance data (e.g.,
maximum velocity, maximum length-specific velocity, time to
maximum velocity) versus a metric of individual size (total
length or mass), which served as a proxy for ontogenetic stage
(Hale 1999). Morphological “milestones” (e.g., absorption of
the yolk) were overlaid on performance plots to test hypotheses
about correlations between performance and ontogenetic
changes. To evaluate the relationships between performance and
size statistically, data were log transformed and simple linear
regressions were fitted to the data using Microsoft Excel (ver-
sion 10 for Macintosh). For the analysis of maximum length-
specific velocity, statistics were performed on data that were
first arcsine transformed (to ensure the data were normally
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distributed), and then log transformed to allow the use of a
linear model to describe the data. The correlation coefficients
(Pearson r values) from these regressions were then evaluated
to determine whether the correlations were significant using a
P value of 0.05.

Additional calculations for variables assessing fluid dynamics
and biomechanical properties of the skeleton were made using
morphological and performance variables measured for these
fishes. Reynolds number (Re) was used to estimate the ratio
of inertial to viscous forces experienced by free-swimming em-
bryos, larvae, and juveniles at their maximum escape velocity
and was calculated using the formula

Re = pVIu ™,

where p is the fluid density at a given temperature, V is the
maximum swimming velocity of the fish, L is the total length
of the fish, and p is the dynamic viscosity of the fluid at a given
temperature.

Similarly, estimates of flexural stiffness (EI) of the axial skel-
eton of free-swimming embryos or larval fish were made using
Young’s modulus (E) values determined for the notochord of
sturgeon and the intervetebral discs of marlin (both are ap-
proximately 1 MPa) made by Long (1992, 1995) to estimate E
for a larval fish notochord. We multiplied E by the second
moment of area (I), as calculated from a subset of our rainbow
trout specimens. (We did not have enough preserved razorback
sucker specimens to determine I for this species.) To determine
I for the rainbow trout, we used the radius (r) of the notochord
and the formula for the second moment of area for a cylinder:

Both Re and EI were plotted versus fish size (total length) to
test hypotheses about the effects of hydrodynamic regime and
changes to the axial skeleton on escape response performance.

Results

All three species of teleost fish increased their relative escape
response performance across embryonic and larval develop-
ment (Fig. 2; Table 1). For all species, newly hatched individuals
were able to swim at no more than 10 total lengths per second.
However, escape ability rapidly improved as fish grew older and

Figure 2. Plots depicting length-specific velocity (total lengths per sec-
ond) for (top) California halibut (circles), (middle) razorback suckers
(triangles), and (bottom) rainbow trout (squares). Stippled line rep-
resents the size at which the yolk sac has been completely absorbed;
dashed line represents the size at which the caudal fin has reached
adult morphology.
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Table 1: Linear regressions describing the relationship between total length (cm) and performance variables in log

transformed data

California Halibut

Razorback Sucker

Rainbow Trout

(n = 38) (n = 63) (n=57)
Variable Regression r’ Regression r Regression r
Relative velocity (total lengths s™') y = .23x+1.34 .29* y=.08x+1.23 06%  y=1.12x+ .89 52%
Maximum acceleration (cm s72) NA NA y=121x+243 .11* y=447x+133  45*
Time to complete stage 1 (s) NA NA y=-47x—151 .15% y=—90x—130 .33*
Time to maximum velocity (s) NA NA y=-77x—131 17%* y=—51x—128 .04

Note. Data for California halibut (Paralichthys californicus), rainbow trout (Oncorhynchus mykiss), and razorback suckers (Xyrauchen texanus).

Statistics were performed on data that were first arcsine transformed to ensure the data were normally distributed, and then log transformed to

allow the use of a linear model to describe the data. However, for ease of interpretation of scaling relationships, the equations given here describe

data that have not been arcsine transformed. NA = not applicable.
* Correlations that are significant at P < 0.05.

larger and typically peaked at about 25 total lengths per second
(although suckers showed variability in maximum perfor-
mance; Fig. 2).

Razorback suckers and rainbow trout also improved their
escape performance in terms of the time it took to complete
the preparatory phase of the escape response (stage 1), the time
it took to reach maximum swimming velocity, and their max-
imum acceleration during the response (Fig. 3; Table 1). The
improvement in timing variables was particularly extreme; for
example, razorback suckers decreased the time it took to com-
plete the preparatory phase by almost an order of magnitude
(Fig. 3, top). Similar trends were observed for California halibut,
but the relatively low sampling rate made it difficult to deter-
mine accurate values for timing variables.

Both razorback suckers and rainbow trout produced de-
creased axial bending across ontogeny, although there were
differences between the two species in the degree of bending
produced for some body regions. In general, the two species
differed in length-specific curvature for the anterior 40% of the
body but not for the posterior 60% of the body. Differences
in anterior bending across species are likely caused by differ-
ences in the shape of the yolk sac and the way it attaches to
the abdomen (A. C. Gibb, personal observation); these results
will be explored in greater detail elsewhere. Length-specific cur-
vature in the posterior 60% of the body declined as the fish
grew, but the two species were indistinguishable from one an-
other at any given size (e.g., Fig. 4). As above, a qualitative
assessment of developmental changes in California halibut sug-
gests that this species also produced decreased axial bending
across development, but a low sampling rate made quantitative
analysis impractical.

Major ontogenetic changes for structures proposed to have
consequences for escape response performance are given in
Table 2 and indicated in Figures 2 and 4. As would be expected
on the basis of previous developmental studies, California hal-
ibut and razorback sucker undergo dramatic morphological
changes after the yolk has been depleted. In contrast, rainbow

trout demonstrate a near-adult morphology by the time the
yolk is depleted. We also noted, on the basis of published studies
of larval allometry, that the caudal fin undergoes a dramatic
change in shape and depth in the California halibut (Fig. 5;
Gisbert et al. 2002).

Calculations of Reynolds number for all three species across
ontogeny suggest that only California halibut experience a wide
range of hydrodynamic regimes at maximum swimming ve-
locity. The smallest halibut in the study appear to experience
a hydrodynamic regime dominated by the effects of viscosity,
even when they are swimming at peak velocity; as they grow
larger, halibut move through an “intermediate” flow regime,
and as large larvae and juveniles they experience a hydrody-
namic regime dominated by inertial effects (Fig. 6). Razorback
suckers and rainbow trout are substantially larger than Cali-
fornia halibut at hatching. Although a few of the smallest ra-
zorback suckers experience intermediate flow regimes at max-
imum swimming velocity, the majority of the razorback suckers
and all of the rainbow trout experience a hydrodynamic regime
dominated by inertial effects (Fig. 6).

We observed that the vertebral column forms near the end
of the larval stage for razorback suckers and rainbow trout
(Table 2; Fig. 4). Thus, the formation of this structure appar-
ently could not account for changes in escape performance.
However, radius of the notochord increased across early de-
velopment. In fact, notochord radius increased faster than
would be expected because of simple scaling effects (r~ L) and
scaled with length to the second power (r= L*). Any increase
in radius, even one due to simple isometry, will have clear
consequences for flexural stiffness of the axial skeleton. On the
basis of our estimates of EI, rainbow trout flexural stiffness due
to the notochord increased by four orders of magnitude during
the free-swimming embryo and larval developmental periods
(Fig. 7).

Finally, some razorback sucker individuals performed an O-
start behavior (Westneat et al. 1998; Wesp and Gibb 2003). In
these instances, fish would perform the initial C-bend and then
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continue bending to form an O or Q shape (Fig. 8). The O-
start appears to occur as a consequence of an extreme C-bend
in fish with an elongate body shape and was more likely to
occur in young razorback suckers than in older ones (Wesp
and Gibb 2003). In contrast, the O-start was never observed
in rainbow trout (Wesp and Gibb 2003). California halibut
sometimes produced uncoordinated responses early in devel-
opment, but they never appeared to produce an O-start (A. C.
Gibb, personal observation). However, it is possible halibut are
too short to form an O-shape, even when bending is extreme.

Discussion

Previous work on development of the escape response in sal-
monid species emphasized the effect of the yolk sac on escape
performance. Hale (1999) demonstrated that escape perfor-
mance in three salmonids peaked around the time the yolk was
absorbed; we found a similar pattern with a fourth species of
salmonid, the rainbow trout. Razorback suckers also demon-
strate a performance peak near the time of absorption of the
yolk sac. However, California halibut do not follow this pattern.
In California halibut, the yolk is completely absorbed when the
larvae are still quite small, and length-specific maximum ve-
locity is still low. In fact, maximum length-specific velocity
increases in California halibut throughout the larval period and
peaks near the larval-juvenile transition. Thus, although trans-
formation of the “dead weight” of the yolk mass into mor-
phological structures may contribute to improved performance
in rainbow trout and razorback suckers, it certainly does not
contribute to an identical pattern of improvement observed in
California halibut.

Previous research analyzing the effect of the hydrodynamic
regime on the escape response during ontogeny has been equiv-
ocal. Some researchers have proposed that even small larvae
experience high Reynolds number environments, and thus hy-
drodynamic regimes dominated by inertial forces, when they
are swimming at maximum velocity during the escape response
(Webb and Weihs 1986). Others have suggested that even large
larvae may experience hydrodynamic regimes dominated by
viscous forces during the early stages of the escape response,
when larvae must accelerate their bodies from a standstill (Hale
1996). We note that there are at least two nonexclusive mech-
anisms by which changes in fluid regime could potentially result
in improved escape response performance. First, it is possible
that as larvae experience higher Reynolds numbers during on-
togeny, they move into a hydrodynamic regime that allows them
to attain greater swimming velocities while employing the same

Figure 3. Plots depicting (fop) time to complete the preparatory phase,
(middle) time to maximum velocity, and (bottorn) maximum accel-
eration during the escape response for razorback suckers (triangles)
and rainbow trout (squares).
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Figure 4. Plot depicting length specific curvature (K) at 50% of the
total length of the body during the preparatory phase of the escape
response for razorback suckers (triangles) and rainbow trout (squares).
Power functions describing the relationship between total length and
length-specific curvature are as follows: for razorback sucker, y =
5.2x~ " for rainbow trout, y = 5.6x '*'. A single dashed line indicates
the size at which the vertebral column forms for both razorback suckers
and rainbow trout.

behavior, thereby improving length-specific performance. For
example, as inertial forces become dominant at higher Reynolds
numbers, the acceleration reaction (Daniel 1984) may play a
greater role in producing thrust during the escape response,
and this could contribute to increased maximum swimming
velocity. Second, it is also possible that a change in the relative
contribution of viscous forces allows fish to improve their abil-
ity to accelerate from a standstill during ontogeny. This hy-
drodynamic change might enable larvae to complete the escape
behavior more rapidly as they grow larger.

Although we acknowledge a change in hydrodynamic regime
likely contributes to improved escape performance during on-
togeny (see McHenry 2004), we suspect this change is not the
primary factor underlying improved performance for several
reasons. First, when all three species are compared, there is no

apparent correlation between the observed changes in length-
specific swimming performance and Reynolds number. For ex-
ample, California halibut reach their maximum length-specific
performance (~30 L s™') at a total length of approximately 1
cm (Fig. 2). For halibut, this length corresponds with when
young fish experience an inertia-dominated hydrodynamic re-
gime. However, although rainbow trout also experience an
inertia-dominated hydrodynamic regime when they are 1 cm
in total length, these individuals still demonstrate poor length-
specific swimming performance (<10 L s™') at this size (Fig.
2). Changes in length-specific performance are more closely as-
sociated with morphological changes (i.e., caudal fin formation;
see below) than they are with hydrodynamic transitions.

Second, the change in timing variables also appears to be
correlated with ontogenetic transitions and not with hydro-
dynamic transitions. Hale (1999) compared escape perfor-
mance in several species of salmonid across a range of sizes
and developmental stages. Improvement in the duration of the
escape response showed a clear correlation with ontogenetic
state and not with absolute size (Figs. 5, 6 in Hale 1999). If
timing improvements were due to hydrodynamic transitions,
fish size should play a large role in determining performance.
Additionally, our calculations of instantaneous Reynolds num-
ber from moment to moment during an individual escape re-
sponse suggest that even relatively slow 1-d-old rainbow trout
larvae experience high Reynolds numbers (>1,000) within 4 ms
of beginning the escape response. Thus, we concur with Webb
and Weihs (1986), who suggested that rapid body movements
allow even small fish to function in an inertia-dominated hy-
drodynamic regime during the escape response.

We do expect that hydrodynamic regime would have a clear
effect on one variable not measured here: distance traveled
within a given time period after initiation of the escape re-
sponse. Fish often produce an escape response that consists of
the preparatory phase followed by a single propulsive stroke.
Thus, a measure of distance traveled at a particular time after
the initiation of the escape response would likely reflect the
ability of the fish to “coast” through the fluid after the pro-
pulsive stroke. We anticipate that this parameter would be
heavily influenced by the relative dominance of inertial forces

Table 2: Approximate total length (cm) at which morphological changes occur
during the development of California halibut, razorback sucker, and rainbow
trout

Species Yolk Assimilated Caudal Fin Ossified Vertebrae Formed
California halibut 3 1.0 Unknown
Razorback sucker 1.1 1.6 2.5
Rainbow trout 2.3 2.3 2.5

Note. Data given here were obtained from previous studies of development (Minckley and Gustafson
1982; Gisbert et al. 2002) and observations made from preserved specimens.
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Figure 5. Plot depicting absolute swimming speed (circles) and tail
depth (dashed line) versus total length for California halibut. Tail depth
is given here from power functions reported in a published study of
larval allometry (Gisbert et al. 2002).

and thus would show a correlation with changes in the hy-
drodynamic regime.

It has previously been proposed that formation of true fins
affects escape performance (Hale 1999). Our data provide sup-
port for this hypothesis: all three species show an improvement
in length-specific swimming velocity that corresponds with for-
mation of the caudal fin. In all three species, peak performance
occurs at, or shortly before, the caudal fin reaches adult mor-
phology. Additionally, California halibut, which have the most
dramatic change in caudal fin morphology, show a pattern of
change in absolute swimming speed (cm s™') that closely fol-
lows ontogenetic changes in caudal fin depth (Gisbert et al.
2002). We suggest that this performance improvement is due
to the increased stiffness caused by the formation of the bony
rays within the caudal fin and to the increased surface area of
the adult-morphology caudal fin, which together create a deep,
thin, low-mass fin that increases the efficiency of transfer of
momentum from the body to the surrounding water (Weihs
1973). Such correlations between tail fin area and escape re-
sponse performance are expected on the basis of hydrodynamic
theory (Weihs 1973; Webb 1978), and reductions in swimming
performance when the tail fin area is surgically reduced have
been demonstrated for adult rainbow trout (Webb 1977) and
frog tadpoles (Hoff and Wassersug 2000; Van Buskirk and
McCollum 2000).

We also note that axial depth increases during larval devel-
opment and that the dorsal and anal fins form at approximately
the same time as the caudal fin (Wakeling et al. 1999; Gisbert
et al. 2002); both of these factors will serve to increase the
lateral body profile during ontogeny. This increase in lateral

profile will create a large virtual mass when the posterior region
of the body is rapidly moved through the water during the
escape response and should maximize thrust production (Weihs
1973). In fact, teleost fish are known to erect the bony rays of
their median fins during the escape response to maximize their
lateral profile (Webb 1977). Thus, during teleost ontogeny, the
median fins (dorsal, anal, and caudal) form and axial depth
increases; all of these changes should combine to maximize
lateral profile and enhance thrust during the escape response.

The mechanism underlying improvements in timing of the
escape response across development has been particularly
opaque. Previous research has emphasized the role of neuro-
muscular coordination in improving the time it takes to pro-
duce the preparatory phase of the escape response (Hale 1996,
1999). We find some evidence to support this hypothesis: ra-
zorback suckers and California halibut often produce uncoor-
dinated responses shortly after hatching. In some cases, these
behaviors clearly contribute to poor escape performance (Wesp
and Gibb 2003). However, these timing variables also improved
in rainbow trout, which demonstrated no apparent change in
coordination across development.

Formation of the vertebral column is thought to contribute
to improved escape performance across development, but it
has generally been implied that the underlying mechanism is
improved force transmission (from the axial musculature to
the caudal fin), and an improvement of this nature would likely
manifest as increased maximum velocity. We note that for-
mation of the vertebral column occurs late in development for
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Figure 6. Plot depicting Reynolds number (Re) as calculated for three
species swimming at maximum escape velocity: California halibut (cir-
cles), razorback suckers (triangles), and rainbow trout (squares). The
transitional, or “intermediate,” fluid regime is enclosed within the
boxed area.



the fish because bending moment (muscle force [a result of
muscle cross-sectional area= I?] x distance [L] = moment
[=L’]) cannot increase as rapidly as flexural stiffness (=L*), even
if the notochord scales isometrically. In fact, our measurements
of the radius of the notochord across early development in
rainbow trout suggest that it increases twice as rapidly as would
be expected because of isometry. Thus, ontogenetic changes to
axial morphology in young fish will generate greatly increased
flexural stiffness across development. We suggest that the low
flexural stiffness of very young fish is disadvantageous for two
reasons: (1) fish tend to “overbend” during the preparatory
phase, which increases the time it takes to complete this step;
(2) an axial skeleton with low flexural stiffness cannot transfer
energy effectively or store significant amounts of elastic energy
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Figure 7. Plot depicting estimated axial skeleton flexural stiffness (EI)
for individual free-swimming embryos and larval rainbow trout versus
size. Flexural stiffness increases with total length according to the fol-
lowing formula: y = 2.8 x 10" x ¥, r = 0.68.

two of the species examined here (and we suspect it also occurs
late in development for California halibut). Thus, formation
of the vertebral column cannot account for improvements in
length-specific velocity that occur early in development. How-
ever, improvements in timing do occur concomitantly with
developmental changes in length-specific curvature. Therefore,
we propose an alternate model of the ramifications of axial
development on escape performance.

Very young fish have small notochords (i.e., small in radius)
that grow larger as the fish grow longer. Any increase in no-
tochord radius should result in increased flexural stiffness of

to be recovered during the propulsive stroke (this idea will be
expanded on elsewhere; Swanson and Gibb 2004).

There is one additional suite of ontogenetic changes we have
not considered here that has obvious potential ramifications
for escape performance: changes to the fiber type and mor-
phology of the axial musculature. Young fishes undergo a
change in fiber types of the axial musculature; typically, slow
oxidative fibers represent a greater proportion of the axial mus-
culature in larvae than in juveniles (e.g., Nag and Nursall 1972).
Thus, increased speed of the escape behavior across ontogeny
may be due, in part, to the increased representation of fast
fibers in the axial musculature. Additionally, myomeres change
in overall shape during free embryo and larval development.
Myomeres in young fish are more vertical in orientation, and
any one myomere spans a very small proportion of the axial
skeleton. Myomeres in older fish, on the other hand, have a
more pronounced “W” morphology consisting of pronounced
anterior and posterior pointing “cones” of muscle and span a
greater proportion of the axial skeleton (e.g., Gisbert et al.
2002). A thorough analysis of the ramifications of these changes

Figure 8. These images depict a razorback sucker performing an O-start in response to stimulation. A 0.5-cm grid is shown in the background;
time from the beginning of the response is shown in seconds. Note that the center of the mass of the fish moves very little from the first panel

to the last panel. This figure is modified from Wesp and Gibb (2003).
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Figure 9. Model explaining performance changes across life-history
stages in teleost fishes: performance increases during early develop-
ment, peaks at the larva-juvenile transition, and declines in juveniles
and adults.

is beyond the scope of this study (but will be considered else-
where; Swanson and Gibb 2004). However, previous research
suggests that one function of fish myomeres is to increase axial
stiffness and promote elastic recoil during the escape response
(Westneat et al. 1998). Thus, the formation of true myomeres
during development should also serve to improve axial stiffness
and allow a more rapid and effective escape response to be
produced.

Conclusions

We propose that a suite of developmental changes contributes
to improved escape response performance across teleost early
life-history stages. We suggest that reduction in the mass of the
yolk and changes in hydrodynamic regime are not the major
contributors to observed improvements in performance.
Rather, formation of the caudal fin and increased stiffness of
the axial body are the major mechanisms that underlie im-
provements in escape response velocity and the time it takes
to complete the escape response, respectively. The benefits
gained by these developmental changes peak near the larval to
juvenile transformation (Fig. 9). At this stage, the fish have
achieved near-adult morphology and use this morphology to
move a mass that is proportionally quite small. As juveniles
become larger, performance decreases because the axial muscle

cross-sectional area cannot increase rapidly enough to match
the concomitant increase in body mass (Fig. 9).

We note that this finding implies that a performance peak
occurs at the beginning of juvenile life not as the result of any
explicit modifications to improve performance but instead as
a biomechanical consequence of interrelated developmental
changes in size and shape of fish as they metamorphose from
larvae into juveniles. We also note that species with intermediate
or direct development will tend to encounter the environment
at a larger size and an advanced state of development. Thus,
individuals of species with intermediate and direct develop-
mental strategies should have a performance advantage relative
to individuals of species with an indirect developmental strategy
when trying to evade predators.
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