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Abstract

Aquatic vertebrates that emerge onto land to spawn, feed, or evade aquatic predators must return to the water to avoid
dehydration or asphyxiation. How do such aquatic organisms determine their location on land? Do particular behaviors
facilitate a safe return to the aquatic realm? In this study, we asked: will fully-aquatic mosquitofish (Gambusia affinis)
stranded on a slope modulate locomotor behavior according to body position to facilitate movement back into the water?
To address this question, mosquitofish (n = 53) were placed in four positions relative to an artificial slope (30u inclination)
and their responses to stranding were recorded, categorized, and quantified. We found that mosquitofish may remain
immobile for up to three minutes after being stranded and then initiate either a ‘‘roll’’ or a ‘‘leap’’. During a roll, mass is
destabilized to trigger a downslope tumble; during a leap, the fish jumps up, above the substrate. When mosquitofish are
oriented with the long axis of the body at 90u to the slope, they almost always (97%) initiate a roll. A roll is an energetically
inexpensive way to move back into the water from a cross-slope body orientation because potential energy is converted
back into kinetic energy. When placed with their heads toward the apex of the slope, most mosquitofish (.50%) produce a
tail-flip jump to leap into ballistic flight. Because a tail-flip generates a caudually-oriented flight trajectory, this locomotor
movement will effectively propel a fish downhill when the head is oriented up-slope. However, because the mass of the
body is elevated against gravity, leaps require more mechanical work than rolls. We suggest that mosquitofish use the
otolith-vestibular system to sense body position and generate a behavior that is ‘‘matched’’ to their orientation on a slope,
thereby increasing the probability of a safe return to the water, relative to the energy expended.
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Introduction

Some fully-aquatic fishes routinely leap out of the water [1] and

strand themselves on land to avoid aquatic predators [2] or other

inhospitable conditions [3]. However, a stranded fish faces a series

of challenges when attempting to return to the water. First, the fish

must determine its position on land, relative to the aquatic

environment. Second, the fish must produce an effective

locomotor behavior – that is, it must produce body movements

that generate a net displacement of the fish away from its starting

position. Third, these locomotor movements must ultimately

propel the fish back into the water. If non-airbreathing fishes

cannot return to the water, they risk dying from asphyxiation,

desiccation, or both [4].

Individuals of Gambusia affinis, the mosquitofish (a member of

the Teleostei: Cyprinodontiformes, the toothed ‘‘carps’’), are

considered fully-aquatic fishes. However, individuals are known to

voluntarily strand themselves on banks and emergent vegetation in

an effort to evade predatory fishes [2]. Stranded mosquitofish will

quickly return to the water, but the behavior that they use to move

over land and return to the aquatic realm has yet to be described.

In the laboratory environment, mosquitofish will produce a ‘‘tail-

flip’’ jump when manually stranded on a flat surface, i.e.

experimental arena with 0% grade [5]. However, in the wild,

fish leaving the water are likely to land on a slope – such as a creek

bank or beach – where a variety of factors could influence the

behavioral response to stranding and the ultimate outcome of a

fish’s attempt to return to the water. Such factors include: the

initial orientation of the body of the fish relative to the slope, how

quickly the fish responds to being stranded, and the nature of the

movements produced by the fish in response to stranding.

In this study, individual mosquitofish were involuntarily

stranded in the laboratory on an artificial slope designed to

simulate a stream bank and the behavioral response to stranding

was recorded with a digital camcorder. By systematically varying

the orientation of the fish’s body relative to the slope, we asked: is

the behavioral response to stranding related to initial body

position, and does body position affect the ability of a fish to move

downslope? The behavioral responses to stranding were catego-

rized based on the appearance of stereotyped movement patterns

and then compared by quantifying performance variables,
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including success in reaching the water. We used these findings to

address the overarching question: can stranded fish recognize their

body orientation relative to a slope and ‘tune’ their locomotor

behavior to that orientation to move back into the water effectively

and efficiently?

Materials and Methods

Ethics statement
All care/handling procedures and experiments for this study

were approved under NAU IACUC Protocol #09-009. Mosquito-

fish, Gambusia affinis (Baird and Girard 1853), were obtained by

Arizona Game and Fish employees from ponds in Arizona (USA)

and held in the laboratory at Northern Arizona University in two

75-liter tanks; each tank was provided with filtration, aeration, and

a 12:12 light:dark cycle. At the end of the experiments, all fish

were euthanized with an overdose of buffered tricaine methane-

sulfonate (following AVMA Guidelines on Euthanasia) so that

each individual could be used for anatomical studies.

Experimental trials
The artificial slope apparatus used in the experimental trials

consisted of a photography armature (three arms attached to a

fixed base), a 24630 cm plastic box filled with damp sand, a

consumer-grade digital camcorder (HD 720p with an SD flash

card), and two LED-array commercial photography lights

(Figure 1). The slope apparatus was assembled with the camcorder

and photography lights were mounted on the armature and

oriented over the box. The plastic box was positioned at an angle

to create a slope and individual mosquitofish were manually

placed in a target area at the apex of the slope during the

experimental trials.

Wet sand was used in the experiments because it emulated a

natural substrate and was neither too adherent (‘‘sticky’’) nor too

lubricous (‘‘slippery’’). Using two dead fish weighing 0.73 g and

1.76 g (the approximate size range of the individuals used in the

experimental trials) the angle of repose (the angle at which an inert

fish would remain in place without slipping or rolling off) for a

mosquitofish resting on wetted sand was determined to be between

40u and 45u. Based on this finding, we used an experimental slope

of 30u, with the objective of providing mosquitofish with both a

strong sensory stimulus and a grade that required active

movement by the fish to move downhill. Because preliminary

trials indicated that the physical position of the slope apparatus

with in our laboratory had no effect on behavior, all experimental

trials were carried out with the experimental apparatus in a single

compass orientation and physical location.

During the experimental trials, mosquitofish individuals (total

n = 53, with 42 females and 11 males; see Appendix S1) were

artificially stranded by manually placing fish within in a

7.567.5 cm ‘‘target’’ area located at the apex of the slope and

the response to stranding was recorded using the digital camcorder

(see Video S1, Video S2, Video S3 and Video S4). For all of these

experiments, a single trial was recorded for an individual and the

mosquitofish was euthanized immediately after the trial. The first

set of experimental trials was conducted by placing female

mosquitofish (n = 42) in one of four body positions: cranial end

up-slope, caudal end up-slope, dorsal aspect up-slope, or ventral

aspect upslope (Figure 1). During these trials, initial body position

for each female mosquitofish was determined using a random

number generator, until we reached a minimum of nine trials for a

given body position. In a second set of trials all male fish (n = 11)

were placed in the dorsal-aspect up-slope position and then

compared with female fish placed in the same body position. The

four body positions used for the stranding trials could also be

considered as two body orientations. Cranial-end and caudal-end

up-slope were considered parallel to the slope because the long

axis of the fish’s body followed the slope. Dorsal-aspect and

ventral-aspect up-slope were considered perpendicular because the

long axis of the fish’s body was at 90u to the slope.

Video sequences were deconstructed into individual image files

and fish movements quantified with digitizing software, specifically

ImageJ, developed by W.S. Rasband at the National Institute of

Health and Didge, developed by A. J. Cullum at Creighton

University. Using the deconstructed image sequences, the behav-

ioral response to stranding was categorized and quantified to

produce a series of response variables (data for all 53 individuals

are given in Appendix 1). Latency time (s) is the time a fish

remained motionless after being positioned on the sand within the

target area. Landing time (s) is the total duration of the behavior,

and was measured as the time from the onset of the response until

the time the fish stopped moving. Response trajectory, or overall

angle of travel, was determined by the landing position of the fish

relative to the starting position, with 0u indicating the fish moved

directly down-slope. To evaluate the effectiveness of a particular

behavioral response to stranding, the outcome of the initial (first)

movement of an individual fish was categorized as either a success

or a failure. The outcome of a trial was deemed a ‘‘success’’ if the

fish reached the bottom of the experimental arena as a result of its

initial movement in response to stranding. The outcome was

deemed a ‘‘failure’’ if the fish did not reach the bottom of the

arena. The data supporting the results of this article are included

as Appendix 1 and in Videos S1, S2, S3, and S4.

Analyses
Two timing variables (latency and landing time) were examined

for potential monotonic associations with body mass and standard

length. For this analysis we used Spearman rank correlation, a

one-tailed a priori hypothesis that small fish are faster than large

fish, and a null hypothesis of no change in timing variables with

body size. All Spearman rank correlations of size vs. timing were

performed with SPSS (v. 21 for OSX).

To assess potential differences in the behavioral response to

stranding between the two sexes, males were compared to females

in the dorsal aspect up-slope starting position, as described

previously. In this analysis, we considered the possibility that males

and females could differ in the movement class they produced in

response to stranding (leaps vs. rolls), and/or in movement

outcome (success vs. failure). Fisher’s Exact tests were used to

ascertain if there are nonrandom associations between sex and

either of these two categorical variables (sex vs. movement class

and sex vs. movement outcome), with the null hypothesis that the

distribution of responses for the response variables is the same for

males as it is for females. All Fisher’s Exact tests were performed

using Graphpad QuickCals. Once male responses were deter-

mined to be statistically indistinguishable from female responses

(see Results), the data were pooled for subsequent analyses.

Using the pooled male and female datasets, a series of Fisher’s

Exact tests was used to evaluate potential nonrandom associations

between three categorical variables: body orientation (indepen-

dent), movement class (dependent), and movement outcome

(dependent). To test the hypothesis that fish vary behavior

according to initial body orientation, we used a Fisher’s Exact

test to examine which movement class (leap vs. roll) was produced

in response to different body orientations (parallel vs. perpendic-

ular); the null hypothesis was that leaps and rolls are equally likely

to occur in either body orientation. A second Fisher’s Exact test

was used to determine if initial body orientation (parallel vs.
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perpendicular) affected movement outcome (success vs. failure),

with the null hypothesis that successes and failures are equally

likely to occur in either body orientation. A third Fisher’s Exact

test was used to determine if the movement class produced in

response to stranding (leap vs. roll) affected movement outcome

(success vs. failure), with the null hypothesis that successes and

failures are equally likely to occur in both movement classes.

Subsequently, we pooled all the behavioral responses to stranding

and used a G-test to examine the a posteriori hypothesis that, when

all responses are considered together, successes occur more often

than failures.

We also sought to determine if response trajectory (the angle of

movement downslope) varied according to either initial body

orientation (parallel vs. perpendicular) or movement class (leaps vs.

rolls). For this analysis, we employed Welch’s tests to accommo-

date unequal sample sizes and heterogeneous variances within the

data. All tests of normality, homogeneity of variances (Levene’s

test), and Welch’s tests were conducted using SPSS (v. 21 for

OSX). In these analyses, two Welch’s tests were used consider if

either body orientation or movement class affected response

trajectory. The null hypothesis for the Welch’s tests was that there

is no effect of either categorical variable on the direction of

downslope movement.

Results

Behavioral response to stranding
After being manually stranded on an artificial slope in one of

four body positions (Figure 1), mosquitofish often remained

motionless for 40+ seconds (mean 6 SEM of 4264 s) before they

began to move (Figure 2; see also Video S1, Video S2, Video S3

and Video S4). This extended response latency suggests that the

movement produced by mosquitofish in response to stranding is a

deliberate movement, and not merely reflexive thrashing produced

in reaction to exposure to air. When mosquitofish did finally move,

the resulting behavior generated rapid progress downslope, and

fish typically stopped moving within a second (0.860.05 s) of

initiating movement (Figure 2).

Of the 53 experimental stranding trials conducted (n = 53

individual mosquitofish, with one trial per individual; see

Appendix S1), two individuals exhibited behaviors that could not

be categorized based on stereotypical movement patterns.

However, the other 51 responses could be readily categorized as

one of four locomotor behaviors (Figure 3). Two of these

behaviors have been described in previous studies, but basic

descriptions are included here to facilitate comparison with the

two newly described behaviors. During a tail-flip jump [5], a

mosquitofish leaps from the ground via a two-stage propulsive

Figure 1. An artificial slope apparatus was used to examine the response of individual mosquitofish (Gambusia affinis) to being
stranded on land. (A) A photography armature held a digital camcorder and commercial-grade LED lights directly over a plastic box that was filled
with damp sand and positioned at 30u inclination. Fish were placed on the damp sand and the response to stranding was recorded with the digital
camera to a flash memory card. (B) Four initial body positions were used in the slope trials; for two of these positions, the long axis of the body was
oriented perpendicular (at 90u) to the slope (dorsal-aspect up-slope and ventral-aspect up-slope); for the other two positions, the long axis of the
body was oriented parallel to the slope (cranial-aspect up-slope and caudal-aspect up-slope). One trial at a randomly assigned body position was
conducted for each individual included in the study, with a minimum of n = 9 for a given position and a total n = 53; see text for details.
doi:10.1371/journal.pone.0104569.g001
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movement. During the first stage, the fish curls its anterior region

away from the substrate to accelerate the anterior body and center

of mass first vertically, and then caudally (Figure 3; Video S1).

During the second stage, the fish straightens the body and pushes

off the substrate using the caudal peduncle (posterior body and tail

fin); through this extension of the body the fish leaps from the

substrate and into a caudally-directed, ballistic flight path [5].

During a C-leap, a fish typically lifts the cranial and caudal body

regions up away from the substrate (although initial bending

toward the substrate can also occur [6]); as a result of this

movement, momentum is transferred to the center of mass and the

body of the fish is propelled vertically, up above the substrate

(Figure 3; Video S2). After landing, some fish generated additional

side-to-side bending movements that appeared to aid in producing

prolonged downslope movement.

Two previously undescribed behaviors were also observed

during the study. A C-roll appears to be similar to, but less forceful

than, a C-leap. During a C-roll (Figure 3; Video S3), the

combined movements of the cranial and caudal regions are not

forceful enough to propel the fish into the air, but instead

destabilize the center of mass to initiate a downhill tumble in

which the fish’s body remains in contact with the substrate

throughout the roll. During a J-roll, the fish bends the caudal

region of the body (posterior body plus tail fin) up toward the

cranial (head) end of the body (Figure 3; Video S4); this motion

also triggers a down-slope tumble where the fish’s body remains in

contact with the substrate.

After these four responses to stranding were identified, they

were then assigned to two movement classes based on similar

physical demands of the behaviors. Behaviors where the center of

mass is vaulted up above the substrate (tail-flip jumps and C-leaps)

were categorized as leaps. Behaviors where the body remains in

contact with the ground (C-rolls and J-rolls) were categorized as

rolls. During the experiments, mosquitofish produced more rolls

than leaps, and C-rolls were the most commonly produced

behavior overall (30 out of 51 responses; Figure 4).

Body Size
We initially expected that small fish would be faster than large

fish (a one-tailed hypothesis) due to well-established allometric

(scaling) effects on the duration of locomotor behaviors [7].

However, for mosquitofish stranded in the laboratory (Figure 2),

there was no effect of size on response latency and little effect on

duration of the behavior (measured here as landing time). There

was no monotonic relationship between mass and latency time

(Spearman’s rho = 20.141, n = 53, p = 0.313), and only a weak

relationship between mass and landing time (Spearman’s

rho = 0.264, n = 53, p = 0.057). Similarly, there was no monotonic

relationship between standard length and latency time (Spear-

man’s rho = 20.096, n = 53, p = 0.492), and only a weak

Figure 2. There is little effect of body size on latency and landing times for mosquitofish (Gambusia affinis) stranded on a slope.
There was no monotonic relationship between body size and the time to respond to stranding as measured by latency time: (A) body mass vs.
latency time and (B) standard length vs. latency time. There was a weak monotonic relationship between body size and the total duration of the
movement produced in response to stranding as measured by landing time: (C) body mass vs. landing time and (D) standard length vs. landing time.
Relationships between size and timing were assessed using Spearman’s rank correlation analysis under the a priori hypothesis that larger fish are
slower and the null hypothesis of no change in timing with size; see text for additional details.
doi:10.1371/journal.pone.0104569.g002
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association between standard length and landing time (Spearman’s

rho = 0.287, n = 53, p = 0.037). Small fish tended to come to a halt

more quickly than larger fish, presumably because they have less

inertia and proportionally greater contact between skin and

substrate, which will generate frictional forces that decelerate the

fish. However, there is considerable variability in landing time

across all body sizes (Figure 2).

Sex
Because there was only a small sample size available for male

mosquitofish in our experimental population (male n = 11, female

n = 42, see Methods), all male individuals were placed in one initial

body position and compared with females placed in the same

position (dorsal-aspect up-upslope, see Figure 1). In terms of both

the movement class produced in response to stranding (leaps vs.

rolls) and in overall movement outcome (i.e., ability to reach the

bottom of the slope, considered here as success, or inability to

reach the bottom of the slope, or failure), there was no difference

in the male and female response to stranding (Figure 5A). Both

males and females only produced rolls (and never leaps) in

response to being stranded with their dorsal aspect of the body

oriented toward the top of the slope (Fisher’s Exact test df = 1,

n = 21, p = 1): however, male fish produced both types of rolls,

whereas females only produced C-rolls. Although females tended

to fail to reach the bottom of the arena more often than males,

males and females were not statistically different in their ability to

successfully reach the bottom (Fisher’s Exact test df = 1, n = 22,

p = 0.395; Figure 5B). Because there were no statistically signifi-

cant differences in the male and female responses to stranding, the

data sets were subsequently pooled to create a composite dataset

that contained the responses of both sexes.

Body Orientation, Movement Class, and Movement
Outcome

When placed with the body’s long axis perpendicular (at 90u) to

the slope, mosquitofish are much more likely to produce a roll than

a leap (Fisher’s Exact test, df = 1, n = 51, p = 0.00002; Figure 6A).

In contrast, when mosquitofish are placed with the body’s long

axis parallel to the slope, rolls and leaps occur at approximately the

same frequency (Figure 6A). The probability of successfully

moving downslope (Figure 6B) is similar from either body

orientation (Fisher’s Exact test, df = 1, n = 53, p = 0.779) and is

also similar (Figure 6C) for both movement classes (Fisher’s Exact

test, df = 1, n = 51, p = 0.497). However, when all responses are

considered together, fish were more likely to reach the bottom of

the arena than not (33 successes vs. 20 failures); this pattern is

significantly different from the null hypothesis of equal numbers of

success and failures under a one-tailed G-test (G = 3.22, df = 1,

n = 53, p = 0.073).

When mosquitofish were stranded with the long axis of their

body parallel to the slope they appeared to be less likely to deploy a

particular class of movement, relative to fish stranded with their

bodies at 90u to the slope (Figure 6A). However, when the

subcategories of body position (Figure 1) and movement type

(Figure 3) are considered, additional patterns emerge (Figure 7).

Tail-flip jumps appear to be favored by fish placed with their

Figure 3. Mosquitofish (Gambusia affinis) produced four distinct behavioral responses to being stranded on a slope: tail-flip jumps
(a type of leap), C-leaps, J-rolls, and C-rolls. During leaps (tail-flip jumps and C-leaps), mosquitofish produced sufficient momentum to elevate
the body above the substrate. During rolls (C-rolls and J-rolls), axial body movements destabilized the fish’s mass, enabling the fish to tumble
downslope.
doi:10.1371/journal.pone.0104569.g003
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heads near the apex of the slope: mosquitofish placed in a cranial-

end up-slope position produced tail-flip jumps five out of nine

times (.50% of the time). A tail-flip jump will accelerate the head

and anterior body over the tail and ultimately launch the fish into

a caudually-oriented ballistic flight path [5]. Thus, a tail-flip jump

enables a fish to move rapidly down-slope when it is positioned

with its head toward the apex of the slope (see Video S1). In

contrast, mosquitofish individuals stranded with the caudal

peduncle (tail fin) at the top of the slope were equally likely to

produce any one of the four possible behavioral responses (i.e.,

each of the four possible behaviors was produced approximately

25% of the time; Figure 7); individual mosquitofish appeared to

arbitrarily select from among four behavioral options in response

to this particular environmental challenge. Caudal-end up-slope

appears to be a very difficult position for a fish to dislodge itself

from, perhaps because a fish cannot readily induce a tumbling

behavior about the long axis of the body and a tail-flip jump would

initially move the fish upslope, rather than downslope. Thus, for a

fish that finds itself in the caudal-end up-slope position, there may

be no obvious behavioral solution for returning to the water.

Downslope Trajectory
For both initial body orientations (parallel vs. perpendicular)

and both movement classes (leaps vs. rolls), the mean trajectory of

Figure 4. During the experimental trials, most (39 out of 51) mosquitofish (Gambusia affinis) rolled downslope in response to
stranding. Columns represent the number of responses recorded for a given behavior: tail-flip jumps (a type of leap, n = 9), C-leaps (n = 3), J-rolls
(n = 9), and C-rolls (n = 30).
doi:10.1371/journal.pone.0104569.g004
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movement downslope (measured here as response trajectory) was

approximately 0u (Figure 8). When perpendicular (trajectory mean

6 SEM of +464u) and parallel (2162u) body orientations were

compared, the data were normally distributed (for perpendicular

orientation, Shapiro-Wilk statistic = 0.971, n = 33, p = 0.498; for

parallel orientation, Shapiro-Wilk statistic = 0.963, n = 18,

p = 0.663), variances were homogenous (Levene statistic = 3.9,

p = 0.54), and there was no significant difference in movement

trajectory between the two body orientations (Welch statis-

tic = 1.378, p = 0.251). When leaps (response trajectory mean 6

SEM of +566u) were compared to rolls (2162u), data were

normally distributed (for leaps, Shapiro-Wilk statistic = 0.959,

n = 11, p = 0.764; for rolls, Shapiro-Wilk statistic = 0.961, n = 38,

p = 0.201) and, although the variances were heterogenous (Levene

statistic = 9.55, p = 0.003), there was no difference in mean

response between movement classes (Welch statistic = 1.491,

Figure 5. Male (n = 11) and female (n = 11) mosquitofish (Gambusia affinis) produced only rolls (and never leaps) in response to being
stranded with the dorsal aspect of the body oriented toward the top of the slope (Fisher’s Exact test df = 1, n = 21, p = 1); however,
male fish produced two types of rolls, whereas females only produced C-rolls. Although females tended to fail to reach the bottom of the
arena more often than males (B), males and females were not statistically different in this ability (Fisher’s Exact test df = 1, n = 22, p = 0.395).
doi:10.1371/journal.pone.0104569.g005

Figure 6. Initial body orientation was associated with the production of certain behaviors (leaps vs. rolls) when mosquitofish
(Gambusia affinis) were stranded on a slope, but movement outcome (success vs. failure) was independent of body orientation and
movement class. (A) When placed with the body’s long axis perpendicular (at 90u) to the slope (n = 32), mosquitofish were more likely to produce a
roll than a leap (Fisher’s Exact test, df = 1, n = 51, p = 0.00002); in contrast, when mosquitofish were placed with the body’s long axis parallel to the
slope (n = 19), rolls and leaps occurred at approximately the same frequency. (B) The probability of successfully moving downslope was similar from
either initial body orientation (Fisher’s Exact test, df = 1, n = 53, p = 0.779). (C) The probability of successfully moving downslope was also similar for
both leap and roll behaviors (Fisher’s Exact test, df = 1, n = 51, p = 0.497). See text for additional details.
doi:10.1371/journal.pone.0104569.g006
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p = 0.246). However, rolls tended to move fish directly down the

experimental arena (the response trajectories clustered around 0u),
whereas leaps generated trajectories distributed across possible

outcomes and more often produced laterally oriented trajectories

(Figure 8).

Discussion

When mosquitofish are stranded such that their long-axis is

perpendicular (90u) to the slope they consistently favor a roll-type

behavior. The prevalence of roll-type behaviors in response to

stranding was initially somewhat surprising because cyprinodonti-

form fishes have been observed performing tail-flip jumps (a type

of leap) in the wild for a century or more [2,3]. Yet, to the best of

our knowledge, stranded fish in the wild have never been reported

to produce roll-type behaviors. However, we suggest that rolls are

favored over tail-flip jumps and other types of leaping in this

situation for two reasons.

First, rolls are more likely than leaps to generate direct

downslope movement. Evidence for this is provided by data

clustered around 0u (directly downslope) for response trajectories

that result from rolling. Leaps, in contrast, produce variable

trajectories that are more likely to result in laterally-oriented

movement. In the wild, response trajectories that displace a fish

laterally might be less likely to facilitate a safe return to the water.

Second, because a fish’s body remains in contact with the substrate

throughout the behavior, rolls are energetically less expensive than

leaps. We can infer an increased energetic cost of leaping relative

to rolling because the mechanical work performed by a fish (or any

organism) is a function of mass multiplied by the force of gravity

and the height reached during the behavior. Thus, during a leap,

the fish performs mechanical work to launch its mass into the air to

Figure 7. Mosquitofish (Gambusia affinis) responded similarly to being stranded in ventral-aspect up-slope (n = 11) and dorsal-
aspect up-slope (n = 21) body positions, but produced different behaviors in response to being stranded in cranial-end up-slope vs.
caudal-end up-slope body positions. When stranded cranial-end up-slope (n = 9), mosquitofish most often produced tail-flip jumps. When
mosquitofish were stranded caudal-end up-slope (n = 10), all four behaviors were equally likely to occur (that is, each behavior occurred ,25% of the
time).
doi:10.1371/journal.pone.0104569.g007
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increase its height above the substrate. During a roll, however, the

fish never rises above the substrate; instead, stored potential energy

is converted back into kinetic energy, enabling the fish to tumble

downhill. Thus, at least for a steeply pitched, relatively smooth

slope, rolling may be both more accurate and less energetically

expensive than leaping.

The distribution of locomotor behaviors relative to body

orientation displayed by mosquitofish stranded on a slope is

clearly nonrandom. This ‘‘matching’’ of behavior to body

orientation suggests that mosquitofish have the capacity to

determine their body position relative to a slope and ascertain

which direction is ‘downslope’ – which in most natural situations

would be the location of the nearest body of water. This raises the

question: how do stranded fish determine their position on a slope?

Visual cues could potentially assist a stranded fish in locating the

water. However, visual cues (such as the water or the horizon)

could be difficult for a stranded fish to interpret, given the

evolutionary modifications to the aquatic vertebrate eye. Fish eyes

have thick lenses that serve to accommodate the relatively high

refractive index of water; because of this, most species are unable

to focus images on the retina when light passes through air, which

has a lower refractive index [8]. In addition, it is not clear what

visual clues a fish would respond to in the artificial environment of

a laboratory, where there is no natural horizon and no reflective

pool of water nearby.

It seems probable that stranded fish employ the otolith-

vestibular system, the mechanism used by fishes and other

vertebrates to detect their orientation relative to gravity [9], to

determine their position on a slope. Otoliths are dense crystalline

structures that reside within the fluid-filled semicircular canals of

all vertebrates [10], and similar structures are also present in some

invertebrates [11]. The mineral composition of the otoliths varies

among vertebrate groups [12]; in actinopteryigian fishes (the bony

fishes, including the mosquitofish considered here), otoliths are

endogenously produced from calcium and aragonite precursors.

Because otoliths are always denser than the surrounding medium,

they are negatively buoyant and rest on a bed of sensory hair cells.

Movement of the otoliths in response to gravity (or acceleration)

causes the hair cells in the bed to be deflected away from their

resting position. Depending upon the direction and intensity of the

deflection, the hair cells are excited or inhibited, and they trigger

an increased or decreased rate of signaling to the central nervous

system [13]. There are three pairs of otoliths in the vertebrate

vestibular system, and each otolith pair is located within one of

three semicircular canals that project into the X, Y, and Z planes

of a Cartesian coordinate system. Based upon the pattern of

excitation or inhibition of the hair cells from the ototliths, a fish (or

any vertebrate) can determine the orientation of its head relative to

the pull of gravity [14]; in fishes the head is simply an extension of

the axial skeleton, thus the otolith-vestibular system provides

information to a fish about the orientation of the entire axial body.

It appears that the otolith-vestibular system functions to allow a

stranded mosquitofish to detect its body orientation when it is on

land. On one hand, this is unsurprising because the otolith-

vestibular system is ubiquitous among vertebrates. On the other

hand, actinopterygian fishes possess a number of unusual and

derived aspects of this system that are thought to be specializations

for life in an aquatic medium [12]. For example, the utricle (one of

the two otolith organs) is positioned at the apex of the horizontal

and anterior vertical semicircular canals, where it will be affected

by cranial movements in more than one dimension [12]. Such

features could possibly reduce the fish’s ability to accurately detect

body orientation when on land – which, for a fish out of water,

represents a predominantly two-dimensional environment. Based

on our observations, mosquitofish sensory systems appear to

function sufficiently to allow stranded individuals to ascertain their

position relative to a steep slope. However, it remains to be

determined if the otolith-vestibular system in fishes that regularly

find themselves out of water is modified when compared to species

that never emerge onto land.

Conclusions

Stranded mosquitofish typically do not immediately move in

response to being stranded on a steep slope. Instead, they remain

motionless for up to several minutes before they move the axial

body. By staying immobile in the wild, it is possible that stranded

fish enhance their ability to remain cryptic and undetected by

pursing predators, although it is also possible that a stranded fish is

simply trying to make sense of its body position relative to a novel

environment and determine the appropriate behavioral response.

When mosquitofish do move, they employ lateral contractions of

the axial body to produce behaviors that propel them rapidly

downslope – in the direction where the water would be located in

most natural environments. In contrast with anecdotal accounts of

fish ‘‘floundering’’ when out of water, the locomotor movements

produced by mosquitofish in response to stranding represent

distinct functional categories that are characterized by stereotyp-

ical movement patterns. These behaviors are quite effective in

moving the fish rapidly in what is presumed to be the ‘‘desired’’

direction of travel.

In addition, it is clear that mosquitofish can sense their body

orientation relative to the slope and alter their locomotor behavior

accordingly. This is demonstrated by the fact that some behaviors

are much more likely to be deployed in one body orientation than

another. For example, rolls are almost always initiated when

mosquitofish are stranded with the long axis of their body

perpendicular (at 90u) to the slope. Because fish can convert stored

potential energy into kinetic energy to tumble directly downslope,

rolling is an energetically inexpensive and effective way to move

back into the water from a cross-slope body orientation.

In contrast, leaps are more likely to be produced when a fish is

stranded with its head up-slope. Although leaping requires

additional mechanical work to elevate the fish’s mass against the

forces of gravity, it can quickly move an individual downhill if the

body is oriented in an appropriate position. We propose that

mosquitofish modulate their behavior according to body orienta-

tion on a slope because each behavior provides a particular

advantage when performed from a given starting position. By

varying their response according to body orientation, a fish may

increase its probability of a safe return to the water, relative to the

energy it expends.

Figure 8. Mosquitofish (Gambusia affinis) placed in both perpendicular-to-the-slope (n = 33) and parallel-to-the-slope (n = 18) body
orientations moved downslope within the filming arena to produce a mean response trajectory of ,06 (upper panel). However,
although both movement classes (leaps vs. rolls) performed in response to stranding generated similar mean response trajectories, leaps (n = 12)
were characterized by a larger variance in movement trajectory (lower panel). Rolls (n = 39) were characterized by a smaller variance in movement
trajectory and roll-type behaviors were more likely to move a mosquitofish directly down the center of the arena (lower panel); see text for additional
details.
doi:10.1371/journal.pone.0104569.g008

Stranded Gambusia Match Locomotor Behavior to Body Orientation

PLOS ONE | www.plosone.org 10 August 2014 | Volume 9 | Issue 8 | e104569



Supporting Information

Appendix S1 Summary table of data collected for a
series of laboratory trials conducted using wild-caught
mosquitofish (Gambusia affinis). During these trials, 53

individual mosquitofish were manually stranded on a 30u artificial

slope and their responses to stranding were recorded and

quantified using digital video. See Methods for a complete

description of the experimental protocol and an explanation of

how each response variable was characterized and quantified.

(DOC)

Video S1 Female mosquitofish #20 produced a tail-flip
jump (a type of leap) in response to being stranded on a

306 slope with her cranial aspect oriented up-slope. See

Methods for a description of the experimental protocol and an

explanation of how observed behavioral responses were catego-

rized.

(MOV)

Video S2 Female mosquitofish #36 produced a C-leap

in response to being stranded on a 306 slope with her
caudal aspect oriented up-slope. See Methods for a

description of the experimental protocol and an explanation of

how observed behavioral responses were categorized.

(MOV)

Video S3 Female mosquitofish #15 produced a C-roll

in response to being stranded on a 306 slope with her
dorsal aspect oriented up-slope. See Methods for a

description of the experimental protocol and an explanation of

how observed behavioral responses were categorized.

(MOV)

Video S4 Male mosquitofish #4 produced a J-roll in

response to being stranded on a 306 slope with his
dorsal aspect oriented up-slope. See Methods for a

description of the experimental protocol and an explanation of

how observed behavioral responses were categorized.

(MOV)
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