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Does Distance Impact Willingness to Pay 
for Forested Watershed Restoration? 

A Spatial Probit Analysis 

I. Introduction  

Forest restoration reduces the probability of catastrophic wildfire and post-fire flooding; it therefore 

protects the quantity and quality of water in a restored watershed (Mueller et al., 2013).  The Four Forest 

Restoration Initiative (4FRI) is a landscape-scale restoration initiative that plans to restore all of the 

ponderosa pine forests in a watershed that provides municipal water for residents of Flagstaff, Arizona, a 

small city in the arid southwestern United States. According to the Unites States Forest Service, “the 

overall goal of the four-forest effort is to create landscape-scale restoration approaches that will provide 

for fuels reduction, forest health, and wildlife and plant diversity.”1 Treatment plans include timber sales, 

hand thinning, prescribed burning, and other habitat restoration methods.2  Flagstaff residents are key 

beneficiaries of the restoration through potential increases in the quantity and quality of their municipal 

water supply.  In addition, Flagstaff residents will also benefit from reduced catastrophic wildfire and 

consequent post-fire flood risk. 

Many researchers estimate the non-market values of wildfires, wildfire risk, and reduction.  For 

example, Mueller et al. (2009) find that proximity to wildfires has a statistically significant decrease in 

sale price of homes using a hedonic property model.  Donovan et al. (2007) also apply a hedonic property 

model to estimate the value of wildfire risk on home values.  They compare house prices before and after 

information on wildfire risk is provided online for 35,000 homes in Colorado Springs, CO.  Wildfire risk 

has a positive correlation with home value before the information is provided, however, the correlation 

does not remain after information provision.   Contingent valuation methods are also applied to estimate 

values of wildfire reduction (Loomis et al., 2009), values for different treatment options including 

thinning and prescribed burning (Walker et al.,. 2007), and prescribed fire (Kaval et al., 2007).   

While a large body of research exists investigating the non-market values of catastrophic wildfire 

and the values of reduction in wildfire risk in high-risk areas, relatively less attention is paid to potential 

non-market benefits of forested watershed restoration, and none of the contingent valuation studies listed 

above explicitly control for location of restoration within their estimations.  Policymakers face significant 

constraints when deciding the location of restoration, and it is likely that restoration benefits vary with 

location.  In addition, if respondent behavior is correlated over space, WTP estimates that fail to account 

for spatial spillover effects may result in inaccurate measures of net benefits for benefit-cost analyses 

(Loomis and Mueller, 2013).  We estimate WTP for forest restoration from dichotomous choice CV data 

                                                 
1 http://www.fs.usda.gov/main/4fri/history 
2 http://www.fs.usda.gov/main/4fri/timeline 
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using a Bayesian spatial probit incorporating spatial information in both the explanatory variables and the 

model specification. Our research contributes to the literature in two significant ways. First, we explicitly 

allow for spatial dependence within WTP estimates from CV data, a method rarely applied in the 

literature.  Second, we directly estimate the impact of distance to restoration area on WTP for forested 

watershed restoration.  

 
II. Methods 

Dichotomous Choice Contingent Valuation 

Non-market valuation involves estimating the value of an environmental good or service not commonly 

bought and sold in a market.  Several non-market valuation techniques exist, and most have been applied 

in some manner to estimate values of forests (Riera et al., 2012).  The Contingent Valuation method (CV) 

is a stated preference method of non-market valuation where respondents are asked to state their 

preferences for an environmental good or service that is not bought and sold in traditional markets.  Many 

CV studies, including the one presented here, apply the dichotomous-choice elicitation format as 

recommended by Carson et al. (2003).  The Dichotomous-Choice CV method involves sampling 

respondents and asking if they would vote in favor of a referenda and pay a particular randomly assigned 

dollar amount.   

Similar studies have estimated values of non-market water-related ecosystem services using CV.  

Pattanayak and Kramer (2001) used CV to estimate drought mitigation services provided by tropical 

forested watersheds in Ruteng Park, Indonesia.  Loomis et al. (2000) used CV to estimate the value of 

five water-related ecosystem services on the Platte River in Colorado and found a WTP of $252 annually 

per household.  In addition, Mueller et al. (2013) find irrigators in the Verde Valley in Arizona are WTP 

approximately $183 per year for upstream forest restoration of the Verde watershed.  While similar 

studies have estimated the value of water-related ecosystem services, few estimate the value of 

improvements in water resources following forest restoration for municipal water users, and none have 

explicitly incorporated distance to restoration.  

 
Spatial Probit Model 

Several methods of estimation exist for spatial probit models.  For example, spatial probit models have 

been estimated using full-information Maximum Likelihood (Murdoch et al., 2003 and McMillen, 1992), 

weighted least squares (McMillen, 1992) and Generalized Method of Moments estimators (Pinkse and 

Slade,1998).  Classical methods, especially use of Maximum Likelihood techniques, can require hours to 

estimate small sample problems (LeSage and Pace, 2009).  In addition, with classical or non-sampling type 

estimation procedures, simulation is necessary post-estimation to obtain a distribution of WTP. In contrast, 
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Bayesian estimation with Markov Chain Monte Carlo (MCMC) simulations and Gibbs sampling provides 

distributions of the draws of WTP post-estimation without further simulation.  We choose the Bayesian 

methodology for our spatial probit for its relative computational ease in estimation and because Bayesian 

methods provide post-estimation vectors for parameters that are easily computed into draws for WTP.   

Other authors estimate WTP from standard probit models using Bayesian methods, including 

Mueller (2013, 2014), Mueller et al. (2013), Li et al. (2009) and Yoo (2004).   In addition, Lacombe and 

Lesage (2013), LeSage et al. (2011), Ghosh (2013), and Holloway et al. (2002) use Bayesian methods to 

estimate spatial probit models.  Estimates of WTP from contingent valuation studies using spatial probit 

models are significantly less common in the literature. Loomis and Mueller (2013) estimate WTP for 

protecting Mexican Spotted Owl habitat, and find that failure to incorporate spatial spillover effects from 

dichotomous choice contingent valuation may result in policy-relevant differences in WTP estimates.  

Bayesian estimation of a spatial probit involves repeated sampling using the MCMC method and 

Gibbs sampling.  We estimate two spatial probit models—the Spatial Durbin Model (SDM) and the 

Spatial Autoregressive (SAR).  The spatial interdependence in the probit model is represented as follows, 

where W is an  ݊ × ݊ spatial weights matrix, ρ is the spatial autoregressive parameter, y is the observed 

value of the limited-dependent variable, y* is the unobserved latent (net utility) dependent variable and X 

is a matrix of explanatory variables. 

ݕ (1) = 	 ൜ ∗ݕ	݂݅	1	 > ∗ݕ	݂݅	0	0 ≤ 0	 
∗ݕ (2) = ∗ݕࢃߩ + β܆ + ε 
for the SAR model. For the SDM,   

∗ݕ (3) = ∗ݕ܅ߩ + β܆ θ܆܅+ + ε, 
where θ represents the estimated coefficients on the spatially weighted explanatory variables.  

For both models, ઽ~ܰ(0,  ). If ρ =0, the SAR collapses to the standard binary probit model.  The spatialܫ

probit models relax the strict interdependence assumption used in standard probit models by allowing 

changes in one explanatory variable for one observation to impact the values of other observations within 

a neighboring distance as defined by the spatial weights matrix, W.  Lacombe and Lesage (2013) label the 

spatial impacts from a spatial probit as direct, indirect and total, and emphasize that failure to properly 

interpret spatial probit coefficients can result in incorrect conclusions.  For example, in a standard probit, 

marginal impacts are measured by: 
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ݔ߲/ሿݔ|ݕሾܧ߲ (4) =  ,ܚ(ܚݔ̅)߮	
where xr is the rth explanatory variable, ̅ݔ is its mean, ܚ is a standard probit estimate, and ߮(∙) is the 

standard normal density.   

As stated in Lacombe and Lesage (2013), many researchers apply the above formula to interpret 

coefficient estimates from spatial probit models.  However, marginal impacts in a spatial probit take 

spatial spillover effects into consideration and are no longer scalar.  In a spatial probit,   

ᇱݔ߲/ሿݔ|ݕሾܧ߲ (5) =  ,ܚܖ۷ି܁⨀(ܚݔ̅ܖ۷ି܁)߮
where ܁ = ܖ۷) − ݊ and In is an (܅ߩ × ݊ identity matrix.  In the spatial probit, the expected value of the 

dependent variable due to a change in xr is now a function of the product of two matrices, whereas in the 

standard probit, marginal impacts are scalar components.  The direct impact of changing xr is represented 

by the main diagonal elements of (5), and the total impact of changing xr is the average of the row sums of 

(5).  Note that the direct impact is a function of ρ and W, the spatial autoregressive parameter and the 

spatial weights, respectively. The indirect or spatial spillover effect is the total impact minus the direct 

impact.  To highlight the necessity of properly interpreting spatial probit coefficients, we compare WTP 

using coefficient estimates versus using total impacts.  

III. Spatial Weights 

As seen in equations (1) – (2) modeling spatial interdependence involves the use of a spatial weights 

matrix. All spatial spillover and feedback effects work through the spatial weights matrix.  Unlike 

including a distance variable as an explanatory variable, which models the distance from an observation 

to the habitat or environmental amenity under analysis, the spatial weight matrix models the neighbor 

relationship between observations.  We base our spatial weights matrix on distances between 

observations.  W is an ݊ × ݊ weights matrix of the form	܅ = 	  0 ⋯ ⋮ଵݓ ⋱ ଵݓ⋮ ⋯ 0 ൩.  Non-zero elements 

represent neighbors.  We use a four nearest-neighbors weights matrix.   Therefore we have nonzero 

elements in the spatial weights matrix for the four nearest neighbors to each observations.  

IV. Willingness to Pay Estimates 

Following Hanneman (1984), WTP is a function of α, a “grand constant” and the coefficient on the bid 

amount following estimation of a standard probit model. We use Log of Bid Amount in the spatial probit 

and median WTP is therefore obtained by the following transformation: 
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(6)  ݁ିఈ ఉಳൗ
. 

In a standard probit, the “grand constant” 

(7) 

α = ൫ߚመଵ × തܺଵ൯ + ൫ߚመଶ × തܺଶ൯ +	⋯+ መିଵߚ) × തܺିଵ) 
for all the explanatory variables except for ߚመௗ. Thus, WTP is a function of the estimated coefficients on 

independent variables and their means. 

V. Estimation 

We estimate the SAR and SDM models using Bayesian estimation and Gibbs sampling (Gelfland et al. 

1990).  Following Li et al. (2009), let WTP represent a latent variable on n observations.  WTP for an 

individual is then a function of the explanatory variables, X, and the other parameters of interest β and σ.  

β0 and s0 are the initial values of the parameters of interest, N denotes the normal distribution and IG 

denotes the inverse gamma distribution.  Thus, 

,ᇱ܆)ܰ~∗ܹܲܶ (9)  (ଶߪ
and β and σ are independent with 

(10) |ߪଶ~ܰ(ߚ, ିߚଶߪ ଵ) 
and 

ఊబଶ)ܩܫ~ଶߪ (11) , ఊబ௦బమଶ ). 

The Gibbs sampler starts with initial values (in our case, the initial values are set =0) and draws β and σ 

through simulations. The spatial probit model leads to a multivariate truncated normal distribution 

(TMVN) for the latent y* parameters.  Following LeSage and Pace (2009), 

(12) ܹܶܲ∗|, ܖTMVNሼ(۷~ߩ − ܖሾ(۷܆ଵି(܅ߩ − ܖᇱ(۷(܅ߩ −  ሿିଵሽ(܅ߩ
Now, unlike the standard probit, the latent WTP is thus distributed: 

(13) |ߩ,ܹܶܲ∗~ܰ(ܿ∗, ∗ܿ (∗ࢀ = ࢄᇱࢄ) + ∗ݕࡿᇱࢄ)ଵ)ିଵିࢀ + ∗ࢀ (ଵܿିࢀ = ࢄᇱࢄ) + ࡿ ଵ)ିଵିࢀ = ܖ۷) −  .(܅ߩ
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We also need to sample for ρ using Metropolis Hastings approach. For the approach,  

ܖ,ܹܶܲ∗~|۷|ߩ (14) − exp|܅ߩ ቀ− ଵଶ ሾ܁y∗ − ∗y܁ሿᇱሾ܆ −  .ሿቁ܆

We make 20,000 passes through ܹܶܲ∗|, ,,ܹܶܲ∗.  We use Gibbs sampling for ܹܶܲ∗||ߩ and ,∗ܹܲܶ,ߩ| ,ߩ  ,ܹܶܲ∗.  We omit the initial 19,000 simulations|ߩ and Metropolis Hastings for ,∗ܹܲܶ,ߩ| ,ߩ

for burn-in. Another benefit of Bayesian estimation is the ability to use posterior probabilities to inform 

model specification. Following Mueller and Loomis (2010), we choose the model with the highest 

posterior probability as our final model.  

VI. Data  

Sample Selection, Focus Group, and Survey Design 

Addresses were obtained from the City of Flagstaff utility records, and were chosen at random ensuring a 

spatially representative sample. A focus group was held with the City of Flagstaff Water Commission to 

test and validate the survey instrument.  The Flagstaff Water Commission is comprised of local experts, 

policymakers and stakeholders.  A draft of the survey was distributed at a monthly Water Commission 

meeting. Approximately 20 attendees took an early version of the survey and provided valuable insight. 

In particular, the focus group help tailor the design of the diagrams in the introduction, and to bound the 

bid amounts for the WTP question.  

Data were obtained from a Dichotomous-Choice Contingent Valuation survey of Flagstaff city 

residents.  The survey was designed using the Dillman Tailored Design Method (Dillman, 2007).  A 

random sample of single family residences were sent a signed cover letter, colored survey booklet, and a 

return envelope. A reminder postcard was sent, and non-respondents received a second mailing of the 

survey booklet.  Because obtaining accurate estimates requires detailed descriptions of the resources 

being valued and the contingencies in question (Loomis et al., 2000), the first section of the survey 

included a watershed map and diagrams of three different watershed condition scenarios. Diagrams 

displayed three watershed conditions: “Current watershed condition,” “Restored Watershed Condition” 

and “Watershed Condition Following Wildfire” and the hydrologic responses associated with each 

watershed condition.  Following these diagrams were attitudinal questions about forest restoration, water 

supply and the WTP question.  The last section included demographic questions and solicited 

respondent’s comments.3  

  

                                                 
3 Please see the Appendix for the complete survey.  
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The WTP question read as follows:  

“Suppose the City of Flagstaff is to propose a referendum requiring residential water users to 

pay a monthly fee on their water bill. By law, all funds would go directly to monitoring and 

maintaining the forest health of the Lake Mary and Upper Rio de Flag watersheds.  

If the water user contribution program were to cost you an additional X $ per month, would you 

vote in favor of the referenda?” 

where “X” equals a random bid amount inserted into surveys. Bid amounts ranged from $1 to $20, 

weighted with higher frequencies from $1-$8 and lesser frequencies from $9-$20.  

Respondent Certainty 

After the WTP question, respondents were asked to rank the certainty of their response on a scale of 1 to 

10, where 1 is “Not at all certain” and 10 is “Completely certain.”  Hypothetical bias occurs when 

respondents answer a hypothetical question in a way that is inconsistent with their actual behavior, thus 

resulting in biased WTP estimates.  While respondent uncertainty results in hypothetical bias, little 

theoretical guidance exists in explaining why respondents are uncertain (Akter et al., 2009).  To 

investigate hypothetical bias, Champ and Bishop (2001) performed a split sample experiment where some 

respondents were asked their WTP to invest in wind energy for one year, while others were offered a 

hypothetical opportunity.  Champ and Bishop (2001) found evidence of hypothetical bias—the WTP of 

the respondents with the hypothetical opportunity was higher than those with the actual investment 

opportunity.  However, when respondents who were less certain of their answer to the hypothetical WTP 

question were coded as voting “no,” the hypothetical bias was eliminated.  Therefore, we choose to 

follow the approach suggested in Champ and Bishop (2001), and applied by Li et al. (2009), Mueller 

(2013, 2014), and Mueller et al. (2013).  We re-code respondents with certainty levels less than 8 out of 

10 as voting “No” for the WTP question.  

Spatial Variables 

A unique focus of our study is including distance-related variables as predictors of WTP.  We calculated 

the distance to the City Hall, a proxy for city center, as well as the distance to the nearest proposed 

treatment area.  The average respondent household was 2.7 miles from the city center, and within less 

than one mile of the nearest treatment area.  In general, real estate near the downtown area is priced at a 

premium, so we use distance to City Hall as a neighborhood proxy.   In addition, most households within 

our sample are located within walking distance to a proposed 4FRI treatment area, highlighting the 

potential importance of restoration to our respondents.  
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VII. Calculation of WTP 

We predict WTP as a function of the following explanatory variables: 

 Importance of Wildfire Prevention: the relative importance of wildfire prevention (5 point Likert 

Scale) 

 Threat of Drought: concern for threat of drought (5 point Likert Scale) 

 Distance to City Center: distance from respondent’s home to city center (miles), as a proxy for 

neighborhood quality.  

 Distance to Nearest Treatment Area: distance from respondent’s home (miles) to the nearest 

4FRI treatment area.   

We estimate WTP using both the traditional method of estimated coefficients and by including Total 

Effects.  For the traditional method: 

௩௧	መௐௗߚா௧௦ =  +൫	ெߙ (15) × തܺௐௗ	௩௧൯ + ൫ߚመ்௧		௨௧ × ത்ܺ௧		௨௧൯ + ൫ߚመ௦௧	௧	௧௬	௧ × തܺ௦௧	௧	௧௬	௧൯ + ൫ߚመ௦௧	௧	்௧௧		 × തܺ௦௧	௧	்௧௧	൯, 
where ߚመ  are the estimated coefficients from the spatial probit.  

We also use total impacts for the following: 

ா௧௦ =  +൫		௧்ߙ (16)  ܶௐௗ	௩௧ × തܺௐௗ	௩௧൯ + ൫ ்ܶ௧		௨௧ × ത்ܺ௧		௨௧൯ + ൫ ܶ௦௧	௧	௧௬	௧ × തܺ௦௧	௧	௧௬	௧൯ + ൫ ܶ௦௧	௧	்௧௧		 × തܺ௦௧	௧	்௧௧	൯, 
where ܺ are the Total Impacts from the spatial probit.  

 

VIII. Results and Discussion   

Response Rate 

490 surveys were mailed with 120 responses and 48 un-deliverables, resulting in a response rate of 24%. 

A 24% response rate is similar to other Contingent Valuation studies using mail surveys.  For example, 

Walker et al. (2007) have an average overall response rate of approximately 30%, Mueller (2013) reports 

a response rate of 26%, and Mueller et al. (2013) report a response rate of 32%.  
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Attitudinal Variables  

Respondents were asked, “Considering the full range of issues you face, how important is watershed 

health to you? On a scale of 1 to 5, where 1 indicates “Not Important” and 5 indicates “Extremely 

Important,” circle one.” The mean response was 3.97, indicating that watershed health is a high priority 

for respondents.  Respondents were also asked, “Considering the full range of issues you face, how 

important is wildfire prevention to you? On a scale of 1 to 5, where 1 indicates “Not Important” and 5 

indicates “Extremely Important,” circle one.”  The mean response was 4.52, indicating that wildfire 

prevention has a relatively high priority within the sample.  

Respondents were also asked to indicate how concerned they are about threats to the Lake Mary and 

Upper Rio de Flag Watersheds including: 

 Wildfire 

 Drought 

 Flooding 

 Global Climate Change 

On a scale of 1 to 5, where 1 indicates “Not at All Concerned” and 5 indicates “Extremely Concerned,” 

respondents are the most concerned about wildfire and drought.   

Respondent Certainty 

Respondents were asked, “On a scale of 1 to 10, with 1 being not at all certain and 10 being completely 

certain, how certain are you of you to your answer” to the WTP question.  70% of respondents chose a 

Certainty level of 8 or above on their answer to the WTP question.  We follow the approach outlined in 

Champ and Bishop (2001) discussed above and re-code responses with a certainty level of 7 or less as 

“No” votes on the WTP question to reduce hypothetical bias.4   

Willingness to Pay  

Regression results are presented in Table 1.  We find a strong and statistically significant negative 

estimated coefficient on the Log of Bid Amount, which is expected with Dichotomous Choice CV results.  

We also find that the estimated coefficient on the Importance of Wildfire Prevention is positive and 

statistically significant.  Our summary statistics indicate that the Importance of Wildfire Prevention is at 

the forefront of respondents’ concerns.  The positive and strong statistical significance of Importance of 

Wildfire Prevention in our WTP equation also indicates that respondents who view Wildfire Prevention as 

more important are also more likely to be WTP to support forested watershed restoration efforts.   

                                                 
4 It is important to note that the high certainty of our respondents may indicate that respondents who feel strongly 
about water issues were more likely to complete our survey. As noted in the methods section, we follow the Dillman 
Tailored Design method in order to mitigate non-response bias.  However, no other additional tests were done for 
non-response bias, and this remains a useful avenue of further research, especially with spatial probit models.  
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We also find a positive and statistically significant estimated coefficient on Threat of Drought.  

Respondents who view the Threat of Drought as relatively important are more likely to be WTP to 

support forested watershed restoration efforts.  From a policy perspective, this result provides insight that 

respondents connect forest restoration and drought prevention.  Understanding this connection is a key 

aspect of gaining public support for restoration efforts.  

We find a negative and statistically significant estimated coefficient on Distance to City Center.  

The negative coefficient indicates that as distance to the city center increases, the probability that a 

respondent is WTP for restoration decreases.  Our Distance variable is also a proxy for neighborhood 

quality and other demographic variables.  Most of the wealthiest neighborhoods within our sample are 

located close to the city center.   

Finally, we find a positive and statistically significant estimated coefficient on Distance to 

Treatment Area.  In other words, as Distance to Treatment Area increases, the probability of a “Yes” vote 

on the WTP question increases, holding all other explanatory variables constant.  At first glance, this 

result seems counter-intuitive.  In fact, a 2006 study in Flagstaff estimated that reducing forest canopy 

would increase property values using the hedonic property method (Kim and Wells, 2006). Thus, while 

we obtain a positive median WTP for restoration, respondents who live closer to proposed treatment areas 

are actually less likely to be WTP for that restoration, holding all other variables in the model constant. 

Thus, we may have evidence of a Not In My Backyard (NIMBY) syndrome in Flagstaff, where residents 

are generally in favor of forest restoration, yet prefer the restoration to be further away from their home.  

Another potential challenge is that the restoration does involve thinning and prescribed burning, and 

residents may not want to experience the negative effects of these restoration activities, including noise 

and smoke. We believe that the negative coefficient also provides insight into another potential area of 

further research within the forested watershed restoration literature—investigating the potential short-term 

negative impacts of restoration combined with the long term benefits. Another potential reason for the 

apparent contrast in our results relative to using revealed preference models is that our sample includes 

single family residents, however it includes both renters and owners.  Therefore, renters may not be 

considering the potential capitalized value of the forest restoration in terms of home values, and solely 

considering potential noise and smoke issues.  

We calculate two estimates of median WTP. One is a function of the estimated regression 

coefficients in the probit model, and the other incorporates total impacts and therefore total spatial 

spillovers.  We find median WTP to be significantly higher without consideration of spatial spillovers, at 

$9.56.  In contrast, median WTP is $1.56 using the total effects coefficients.   

However, it is important to note that many of the total effects are not statistically different from zero.  

This is also represented in the 0.212 p-value on the ρ parameter.  While the posterior probabilities do 
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indicate that the SAR with 4 nearest neighbors is the best model, we do have evidence that the spillover 

effects are relatively weak.  

 
Table 1: Spatial Probit Regression Results  

Variable 
Regression 
Coefficient 

Coeff. 
p-level 

Total 
Effect 

Constant -3.6422 0.001 0.1299 

Log of Bid Amount -0.5176 0.008 0.1134 

Importance of Fire Prevention 0.6111 0.002 -0.0684 

Threat of Drought 0.5487 0.021 0.1416 

Distance to City Center -0.3292 0.024 0.1299 

Distance to Treatment Area 0.6802 0.027 0.1134 

ρ -0.2827 0.224 -0.0684 

      

Median WTP using Regression Coefficients $9.56   

Median WTP using Total Impacts  $1.84   

 

IX. Conclusions  

Flagstaff has approximately 22,836 households. 5 If our median estimate approximates the WTP for the 

average Flagstaff household, our model predicts monthly benefits of restoration of approximately $42,000 

when including total impacts.  Failure to account for spatial spillovers results in a much higher benefits 

estimate of $218,000.  Therefore, we find policy-relevant differences in WTP when taking spatial 

spillover effects into account. We also find negative and statistically significant estimated coefficients on 

Distance to Treatment Area, indicating that while the average respondent is WTP to support forest 

restoration, they are less likely to support restoration in areas closer to their property.  

 While the relationship between restoration and forested watershed health is well established in the 

literature (Mueller et.al 2013), funding for restoration remains a significant constraint.  Thus, estimates of 

the benefits of restoration are essential for efficient decision-making.  While much research exists 

estimating the non-market value of wildfire, less research exists estimating the value of forested 

watershed restoration, and no studies explicitly model WTP for forested watershed restoration using a 

spatial probit.  We apply a Bayesian spatial probit and also include distance variables in our WTP 

equation.  Our results indicate that careful consideration of the spatial dimension of WTP data may be 

necessary in order to ensure accurate WTP estimates from dichotomous choice CV models.  

 

                                                 
5http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=CF  
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