


Abstract

We derive a new way to test for stochastic dominance between the return of two

assets using a quantile regression formulation. The test statistic is a variant of

the one-sided Kolmogorov-Smirnoff statistic and has a limiting distribution of the

standard Brownian bridge. We also illustrate how the test statistic can be extended

to test for stochastic dominance among k assets. This is useful when comparing

the performance of individual assets in a portfolio against some market index. We

show how the test statistic can be modified to test for stochastic dominance up to

the α-quantile in situation where the return of one asset does not dominate another

over the whole spectrum of the return distribution.

Keywords: Quantile regression, stochastic dominance, Brownian bridge, test statis-

tic.

1 Introduction

Stochastic dominance finds applications in many areas. In finance, it is used to assess

portfolio diversification, capital structure, bankruptcy risk, and option’s price bound.

In welfare economics, it is used to measure income distribution and income inequality

In reinsurance coverage, the insured use it to select the best coverage option while the

insurers use it to assess whether the options are consistently priced. It is also used to select

effective treatment in medicine and selection of the best irrigation system in agriculture.

There are two big classes of stochastic dominance tests. The first is based on the

inf / sup statistics over the support of the distributions as in McFadden (1989), Klecan,

McFadden and McFadden (1991), and Kaur, Rao and Singh (1994). The second class is

based on comparison of the distributions over a set of grid points as in Anderson (1996),

Dardanoni and Forcina (1998, 1999), and Davidson and Duclos (2000). We derive a new

way to test for stochastic dominance using a quantile regression formulation. The test
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statistic is a variant of the one-sided Kolmogorov-Smirnoff statistic and has a limiting

distribution of the standard Brownian bridge. It is based on the inf / sup statistics over

the range of the distribution. So, our test can be considered a variant of the first class

that is based on the inf / sup statistics over the support of the distributions. We illustrate

how our test can be performed by casting the problem in a quantile regression setting. As

a result, our test statistic is user-friendly because it can be computed by adapting existing

statistical software that performs quantile regression estimation, e.g., the quantreg package

in R, the PROC QUANTREG in SAS/STAT, the qreg in STATA, the LAD procedure in TSP

and the quantile regression model in LIMDEP.

2 Testing for Stochastic Dominance via Quantile Re-

gression

We consider testing stochastic dominance between two return distributions in Section 2.1.

We will test stochastic dominance up to the q-th quantile in Section 2.2. Extension to k

return distributions is provided in Section 2.3.

2.1 Stochastic Dominance Between Two Unconditional Distribu-

tions

We want to compare two populations on the basis of two samples {y11, · · ·, y1n1} and

{y21, · · ·, y2n2}, with distribution functions F1 and F2, respectively. Here, y11, · · ·, y1n1

might be return observations from the first asset, i.e. realizations of R1, and y21, · · ·, y2n2

might be return observations from the second asset, i.e. realizations of R2.

Suppose that the two random samples {y1t}n1
t=1 and {y2t}n2

t=1 have location parameters
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α1 and α2, respectively:





y1t = α1 + ut, t = 1, ....., n1,

y2t = α2 + vt, t = n1 + 1, ....., n,
(1)

where ut and vt are mean zero with distribution functions Fu and Fv, respectively. The

distribution function (CDF) of y1t is given by

F1(y) = Pr (α1 + ut < y) = Fu (y − α1)

and the distribution function (CDF) of y2t is given by

F2(y) = Pr (α2 + vt < y) = Fv (y − α2) .

R1 is said to stochastically dominate R2 at first order, denoted by R1 �1 R2, if

F1(y) ≤ F2(y) for all y and there exists y such that F1(y) < F2(y). (2)

This is equivalent to

Q1(τ) = F
−1
1 (τ) ≥ F

−1
2 (τ) = Q2(τ), for all τ ∈ (0, 1)

with strict inequality on at least one point.

To test stochastic dominance, we introduce a dummy variable Dt defined as follows:

Dt =





1, for t = 1, ..., n1,

0, for t = n1 + 1, ...., n
. (3)
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Thereafter, we combine the return data from the two assets as follows:

yt =





y1t, for t = 1, ..., n1,

y2t, for t = n1 + 1, ...., n .

(4)

Then, we obtain the following pooled model:

yt = α + βDt + wt = z
�
tθ + wt, (5)

where zt = (1, Dt)�, θ = (α, β)�, w = vt + (ut − vt)Dt, α = α2, and β = α1 − α2.

The quantile function of the returns can be written as

Qyt(τ |Dt) = α(τ) + β(τ)Dt = z
�
tθ (τ) = Qyt (τ |zt) , (6)

where α(τ) = α + Qv(τ), β(τ) = β + Qu(τ) − Qv(τ), θ (τ) = (α (τ) , β (τ))�, and the

conditional distribution function of yt is P (yt < y|zt) = Fyt (y|zt) = Ft (y). Notice that

Qyt(τ |Dt = 1) = α1 +Qu(τ) = Q1(τ) = F
−1
yt

�
τ |zt = (1, 1)�

�
,

and

Qyt(τ |Dt = 0) = α2 +Qv(τ) = Q2(τ) = F
−1
yt

�
τ |zt = (1, 0)�

�
.

The hypothesis that R1 stochastically dominates R2 at first order can then be expressed

as

Qyt(τ |Dt = 1) ≥ Qyt(τ |Dt = 0) for all τ

with strict inequality on at least one point.

It is easy to see that the regression quantile process, β(τ), of the dummy variable Dt,
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measures the distributional difference between the two groups (assets) in that

β(τ) = [α1 +Qu(τ)]− [α2 +Qv(τ)] = Qyt(τ |Dt = 1)−Qyt(τ |Dt = 0) = Q1 (τ)−Q2 (τ) .

Hence, the first order stochastic dominance can be further re-formulated as, in the pooled

quantile regression model (6),

β(τ) ≥ 0, for all τ

with strict inequality on at least one point.

As a result, we may construct statistical tests for stochastic dominance based on the

following quantile regression:

min
α,β

n�

t=1

ρτ (yt − α− βDt) (7)

where ρτ (u) = u
�
τ − I(u < 0)

�
is the “check function” as in Koenker and Bassett (1978).

We consider the null hypothesis that there is no difference between the distributions of

the two assets, against the alternative of first order dominance. Thus, our null hypothesis,

H0 : F1(y) = F2(y), for all y;
�
or Q1(τ) = Q2(τ), for all τ ∈ (0, 1)

�
can be expressed as:

H0 : β(τ) = 0, for all τ ∈ (0, 1). (8)

For the alternatives of first order dominance, R1 �1 R2, we can consider:

H1A : R1 �1 R2 ,

F1(y) ≤ F2(y) for all y,

or Q1(τ) ≥ Q2(τ) for all τ ∈ (0, 1),

or β(τ) ≥ 0 for all τ ∈ (0, 1)
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with strict inequality on at least one point.

Similarly, the alternatives of first order dominance, R2 �1 R1, can be expressed as :

H1B : R2 �1 R1 ,

F1(y) ≥ F2(y) for all y,

or Q1(τ) ≤ Q2(τ) for all τ ∈ (0, 1),

or β(τ) ≤ 0 for all τ ∈ (0, 1)

with strict inequality on at least one point.

We construct our tests based on the following one-sided Kolmogorov-Smirnoff statistics

inf
τ

�β(τ) for H1A, (9)

and

sup
τ

�β(τ) for H1B, (10)

where �β(τ) is the regression quantile process obtained from performing (7).

Under the null, �β(τ) should be close to 0, but under the alternative hypothesis H1A

that R1 �1 R2, infτ β(τ) should be greater than zero (infτ β(τ) > 0). Thus, the null

hypothesis should be rejected in favor of the hypothesis that R1 �1 R2 if infτ �β(τ) is

significantly positive.

Similarly, under the alternative hypothesis H1B that R2 �1 R1, supτ β(τ) should be

less than zero (supτ β(τ) < 0). Thus, the null hypothesis should be rejected in favor of

the alternative hypothesis that R2 �1 R1 if sup �β(τ) is significantly negative.

For asymptotic analysis, we assume that there exists 0 < δ1 < δ2 < 1 so that 0 < δ1 <

ni/n < δ2 < 1, for i = 1, 2, where n = n1 + n2. To study the asymptotic properties of the

testing procedures, it is convenient for us to make the following assumptions:

Assumption 1: {yt} are uncorrelated across t and the conditional distribution function

7



Ft has a continuous Lesbesgue density, ft, with ft(u) > 0 on {u : 0 < Ft(u) < 1}.

Assumption 2: As n → ∞, Ωn = n
−1
Z

�
nZn → Ω0, where Ω0 is a positive definite

matrix.

The limiting distribution of �β(τ), however, contains nuisance parameters, and thus,

the statistics in (9) or (10) cannot be directly used as testing statistics for stochastic dom-

inance. In particular, the limiting regression quantile process is a Gaussian process whose

covariance matrix depends on the sparsity function ϕ(τ) ≡ f(F−1(τ)) and the limiting

matrix Ω0. In order to obtain asymptotically-distributional-free tests, we need to estimate

the matrix Ω0 and the function ϕ(τ), and re-standardize the regression quantile process

using these estimates. The matrix Ω0 can be naturally estimated by Ωn = n
−1
Z

�
nZn, and

the sparsity function can be estimated using existing methods in the literature.

We impose the following assumption for the sparsity estimator. For more study on

the sparsity estimator, see, e.g. Portnoy and Koenker (1989).

Assumption 3: �ϕ(s) is a uniformly consistent estimator of ϕ(·) over τ ∈ Π, where

Π = [�, 1− �], and � is a small positive number.

We define
�V1(τ) =

√
nf̂(F−1(τ))

�
RΩ−1

n R
��−1/2 �β(τ),

where R = (0, 1) is a row vector, and �f(F−1(τ)) is a consistent estimator of f(F−1(τ)).

We summarize the asymptotic results in the following theorem:

Theorem 1 Under the null hypothesis in (8) and under Assumptions 1 to 3,

sup
τ∈Π

�V1(τ) ⇒ sup
τ∈Π

W 1(τ), and inf
τ∈Π

�V1(τ) ⇒ inf
τ∈Π

W 1(τ)

where W 1(τ) is a one-dimensional Brownian bridge.
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We note that the limiting distribution of the above one-sided Kolmogorov-Smirnov

statistic is free of nuisance parameters and thus it can be used in testing for stochastic

dominance.

Remark 1 Like the construction of many other Kolmogorov type tests, we consider

superium of the process over Π = [�, 1− �]. This is because the estimation of the sparsity

function becomes poor as τ → 0 or 1. Thus, �f(F−1(τ)) is a uniformly consistent estimator

of f
�
F

−1(τ)
�

uniformly over [�, 1 − �] but the uniform convergence can hardly hold on

[0, 1], see our discussion on related issues in Section 2.4 in which higher order stochastic

dominance is investigated. In this situation, a weaker condition can be used and it is

possible to consider superium of the process over [0, 1].

2.2 Stochastic Dominance Up to the q-th Quantile

In situation where the return of one asset does not dominate another over the entire spec-

trum of the return distribution, we define stochastic dominance up to the q-th quantile,

denoted by R1 �q
1 R2, if

Q1(τ) = F
−1
1 (τ) ≥ F

−1
2 (τ) = Q2(τ), for all τ ≤ q (11)

with strict inequality on at least one point.

The proposed concept of stochastic dominance up to a specified quantile is a useful

concept because we might be particularly interested in stochastic dominance over a certain

range (say, left tail) of the distribution in some applications. Such a concept is parallel

to the stochastic dominance up to a poverty line z studied by Davidson and Duclos

(2000). In particular, if we define the dominance of R1 over R2 up to level z, denoted by

R1 �z
1 R2, when F1(x) ≤ F2(x) for all x < z with strict inequality for at least one point,

then R1 �q
1 R2 implies R1 �z

1 R2 for z = max
�
F

−1
1 (z), F−1

2 (z)
�

and R1 �z
1 R2 implies

R1 �q
1 R2 for q = max (F1(z), F2(z)).
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We can test stochastic dominance up to the q-th quantile based on

sup
τ≤q

�V1(τ), and inf
τ≤q

�V1(τ),

which has limiting distribution:

sup
τ≤q

�V1(τ) ⇒ sup
τ≤q

W 1(τ), and inf
τ≤q

�V1(τ) ⇒ inf
τ≤q

W 1(τ).

2.3 Generalizations to k Assets

One may be interested in evaluating the performance of k assets or to evaluate whether one

asset or portfolio, say for example, the market index, outperforms the remaining (k − 1)

assets. In this situation, one may be interested in testing the dominance relationship

among the k assets and find the partial order (see, for example, Egozcue and Wong, 2010)

among them.

As in the two-asset case, we can combine these assets by using dummy variables.

Suppose that there are return observations of k assets {yjt}
nj

t=1, j = 1, ......, k,

yjt = αj + ujt, t = 1, ....., nj, j = 1, ......, k, (12)

where ujt are zero mean with distribution function Fuj(·) and quantile function Quj(·).

In addition, we denote the CDF and quantile functions for the return distribution of the

j-th asset as Fj(·) and Qj(·).

To investigate the partial ordering of return distributions, we define the following k−1

dummy variables

Djt =





1, for the j-th subsample,

0, otherwise,
, j = 1, ......, k − 1. (13)
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We can pool the k assets together and consider the following regression model

yt = z
�
tθ + wt, t = 1, ...., n,

where

zt = (D1t, ....., Dk−1,t, 1), and θ = (θ1, ...., θk)
� = (α1 − αk, · · ·,αk−1 − αk,αk)

�.

Again, we define

Qyt(τ |Djt = 1) = αj +Quj(τ) = Qj(τ), j = 1, ......, k − 1

and

Qyt(τ |Djt = 0, j = 1, ......, k − 1) = αk +Quk(τ) = Qk(τ).

Thus, the hypothesis that the return distribution of Rj (j = 1, ......, k − 1) dominates

that of Rk at first order can be expressed as

Qyt(τ |Djt = 1) ≥ Qyt(τ |Djt = 0, j = 1, ......, k − 1), for all τ .

Again, since the regression quantile process of the dummy variable Djt measures the

distributional difference between the asset j and asset k,

θj(τ) = [αj +Quj(τ)]−[αk +Quk(τ)] = Qyt(τ |Djt = 1)−Qyt(τ |Djt = 0, j = 1, ......, k−1),

the first order stochastic dominance of asset k by j can be further re-formulated as, in

the pooled quantile regression model (6),

θj(τ) ≥ 0, for all τ .

11



and we can test for stochastic dominance in a similar way.

The choice of asset k usually will depend on the application. We may consider choosing

some index or other benchmark asset as asset k, and compare other stocks with this index.

2.4 Testing for Higher Order Stochastic Dominance

Second order stochastic dominance can be tested based on integrals of �β(τ) or more

precisely, integrals of �V (τ).

From the definition of the first order stochastic dominance in (2), one could define the

second order stochastic dominance, R1 �2 R2 if

� y

−∞
F1(t)dt ≤

� y

−∞
F2(t)dt for all y (14)

with strict inequality on at least one point. One could easily show that this definition is

equivalent to the following:

� τ

0

Q1(s)ds ≥
� τ

0

Q2(s)ds, for all τ ∈ (0, 1) (15)

with strict inequality on at least one point.

Theorem 2 Let y1 and y2 be random variables with distribution functions F1 and F2

respectively and let Q1(τ) = F
−1
1 (τ) and Q2(τ) = F

−1
2 (τ) for each τ ∈ (0, 1). Under

Assumption 1, � y

−∞
F1(t)dt ≤

� y

−∞
F2(t)dt for all y

is equivalent to � τ

0

Q1(s)ds ≥
� τ

0

Q2(s)ds, for all τ ∈ (0, 1) .
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Define

�V2(τ) =

� τ

0

�V1(s)ds =
√
n
�
RΩ−1

0 R
��−1/2

� τ

0

f̂(F−1(s))�β(s)ds,

where �β(s) is the regression quantile process of (5), �f(F−1(s)) is an estimator of f(F−1(s)).

If we consider the null hypothesis that there is no difference between the distributions of

the two assets, i.e. H0: Q1(τ) = Q2(τ), for all τ ∈ (0, 1), against the alternative of second

order dominance, i.e. H2A:
� τ

0 Q1(s)ds ≥
� τ

0 Q2(s)ds, for all τ ∈ (0, 1), we may construct

a test based on the following one-sided Kolmogorov-Smirnoff statistic

inf
τ

�V2(τ).

Similarly, if we test the null against the alternative that the return distribution of R2

dominates that of R1 in second order, i.e. H2B:
� τ

0 Q1(s)ds ≥
� τ

0 Q2(s)ds, for all τ ∈ (0,1),

we may construct a test based on

sup
τ

�V2(τ).

For testing higher order stochastic dominance, we only need the following weaker

condition in place of Assumption 3.

Assumption 3�: Let f̂(F−1(s)) be an estimator of f(F−1(s)) such that
� τ

0

�
f̂(F−1(s))− f(F−1(s))

�
�β(s)ds = op (1) uniformly in τ ∈ [0, 1].

The condition:
� τ

0

�
f̂(F−1(s))− f(F−1(s))

�
�β(s)ds = op (1) uniformly in τ ∈ [0, 1] is

much weaker than sup0≤τ≤1

���f̂(F−1(s))− f(F−1(s))
��� = op (1). Under this assumption

and Assumptions 1-2, we may construct a quantile regression based test for higher or-

der stochastic dominance. For example, the following test for second order stochastic

dominance can be constructed:
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Theorem 3 Under the null hypothesis in (8) and under Assumptions 1 to 3�,

sup
τ∈[0,1]

�V2(τ) ⇒ sup
τ∈[0,1]

� τ

0

W 1(s)ds, and inf
τ∈[0,1]

�V2(τ) ⇒ inf
τ∈[0,1]

� τ

0

W 1(s)ds.

Similar analysis can be carried over to third order stochastic dominance.
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Table 1: Critical values of infτ �β(τ) for the upper-tail test on H1A.
α

� 0.001 0.005 0.010 0.050 0.100
0.05 0.22 0.11 0.05 -0.10 -0.20
0.10 0.36 0.23 0.16 -0.04 -0.15
0.15 0.51 0.34 0.26 0.03 -0.09
0.20 0.63 0.43 0.35 0.10 -0.03
0.25 0.73 0.54 0.44 0.18 0.03
0.30 0.87 0.65 0.55 0.26 0.10

3 Simulation of the Asymptotic Critical Values

The following procedure is used to obtain the α-level critical value of inf �V1 in the upper-

tail test of H1A: (i) generate a one-dimensional Brownian bridge over a grid of N+1

points between 0 and 1, (ii) obtain the maximum value of the bridge over Π = [�, 1 − �]

for � = 0.05 to 0.30 in increment of 0.05, (iii) repeat step (i) and (ii) for 40,000 times,

(iv) obtain the (1− α)-th quantile of the minimum values. Following DeLong (1981) and

Andrews (1993), we use N = 3600 to approximate the one-dimensional Brownian bridge.

The level of significance α is chosen to be 0.1%, 0.5%, 1%, 5%, 10%. The critical value of

the lower-tail test is obtained similarly except the α-the quantile of the maximum values

is used instead in step (iv). The critical values for the upper-tail test of H1A are presented

in Table 1 while Table 2 contains those for the lower-tail test of H1B. We can see that

the critical values of the lower-tail test are basically the negative images of the upper-tail

test due to symmetry.

Figure 1 shows 500 simulated paths of the one-dimensional Brownian bridge while

Figure 2 contains 500 simulated path of the V̂1(τ) test statistic for first order stochastic

dominance. We can see that the paths of V̂1(τ) behave like a one-dimensional Brown

bridge but the simulated 90% confidence band of V̂1(τ) is slightly narrower than that of
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Table 2: Critical values of supτ
�β(τ) for the lower-tail test on H1B.

α

� 0.001 0.005 0.010 0.050 0.100
0.05 -0.21 -0.11 -0.05 0.10 0.20
0.10 -0.37 -0.23 -0.15 0.04 0.15
0.15 -0.48 -0.33 -0.25 -0.03 0.09
0.20 -0.59 -0.43 -0.34 -0.10 0.03
0.25 -0.76 -0.53 -0.44 -0.17 -0.03
0.30 -0.87 -0.65 -0.54 -0.25 -0.10

the Brownian bridge and the simulated variance of V̂1(τ) is also slightly smaller than the

simulated variance of the Brownian bridge.

4 Some Simulation Results on the Empirical Level of

Significance and Power

To study the empircal size of V̂1(τ), we conducted two simulations where F1 and F2 ∼

N(0, 1), and F1 and F2 ∼Burr(4.7,0.55). The Burr distribution is commonly used in

stochastic dominance simulation studies as in Dardanoni and Forcina (1999), and Tse

and Zhang (2004). The nominal level we used in the studies is 5% and the number of

replications is 1000. The results of the empirical levels are presented in Table 3 and Table

4. In general, the larger the sample size, the more trimming is needed.

To study the power of the test, we perform the following simulations:

Model 1: F1 ∼ N(1, 1) andF2 ∼ N(−1, 1)

Model 2: F1 ∼ Burr(4.7, 0.55) andF2 ∼ Burr(4.7, 0.95)

Model 3: F1 ∼ Burr(4.7, 0.55) andF2 ∼ Burr(−4.7, 0.65)

The power of the test decreases as we move from Model 1 to Model 3. This is due to

the decreasing separation between the two CDFs when we move from Model 1 to 3 as
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Figure 1: Simulated Paths of the Brownian Bridge
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Figure 2: Simulated Paths of V̂1(τ)
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Table 3: Empirical size of inf
τ∈Π

V̂1(τ) for F1andF2 ∼ N(0, 1)

n

� 50 100 250 500
.05 .077 .092 .082 .076
.10 .069 .069 .083 .065
.15 .062 .043 .064 .056
.20 .048 .043 .052 .050
.25 .056 .042 .057 .040
.30 .046 .043 .05 .046

Table 4: Empirical size of inf
τ∈Π

V̂1(τ) for F1andF2 ∼ Burr(4.7, 0.55)

n

� 50 100 250 500
.05 .075 .088 .097 .079
.10 .081 .101 .062 .067
.15 .048 .059 .063 .055
.20 .052 .058 .056 .054
.25 .049 .044 .049 .054
.30 .048 .039 .058 .063
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Table 5: Power of inf
τ∈Π

V̂1(τ) for Model 1.

n

� 50 100 250 500
.05 1.00 1.00 1.00 1.00
.10 1.00 1.00 1.00 1.00
.15 1.00 1.00 1.00 1.00
.20 1.00 1.00 1.00 1.00
.25 1.00 1.00 1.00 1.00
.30 1.00 1.00 1.00 1.00

Table 6: Power of inf
τ∈Π

V̂1(τ) for Model 2.

n

� 50 100 250 500
.05 0.638 0.828 0.934 0.977
.10 0.640 0.839 0.956 0.995
.15 0.575 0.813 0.975 0.998
.20 0.596 0.806 0.978 1.000
.25 0.537 0.834 0.991 0.999
.30 0.593 0.831 0.990 1.000

is evident from Figure 3, 4, and 5. In general, the power increases as the sample size

increases.
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Figure 3: Cumulative distribution functions of Model 1.
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Figure 4: Cumulative distribution functions of Model 2.
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Figure 5: Cumulative distributions of Model 3.
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Table 7: Power of inf
τ∈Π

V̂1(τ) for Model 3.

n

� 50 100 250 500
.05 0.196 0.308 0.410 0.592
.10 0.186 0.310 0.400 0.592
.15 0.174 0.212 0.370 0.560
.20 0.142 0.182 0.380 0.578
.25 0.108 0.174 0.400 0.574
.30 0.136 0.206 0.402 0.574

A Proofs of the Results

A.1 Theorem 1

The regression quantile process corresponding to ours is determined by the following

optimization problem

min
α,β

n�

t=1

ρτ (yt − α− βDt)

Let θ = (α, β)�, and zt = (1, Dt)�, we can rewrite the optimization problem as

�θ(τ) = argmin
θ

n�

i=1

ρτ (yt − z
�
tθ)

Notice that

yt = α + βDt + wt = θ
�
zt + wt

Qyt(τ |Dt) = α(τ) + β(τ)Dt

and

α(τ) = α +Qv(τ), β(τ) = β +Qu(τ)−Qv(τ) .
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Under regularity conditions and denoting ψτ (u) = τ − I(u < 0), and wtτ = yt − z
�
tθ(τ),

we have

wtτ = yt − z
�
tθ(τ)

= yt − α(τ)− β(τ)Dt

= α + βDt + vt + (ut − vt)Dt − α−Qv(τ)− [β +Qu(τ)−Qv(τ)]Dt

= (vt −Qv(τ)) (1−Dt) + (ut −Qu(τ))Dt,

and

Qwtτ (τ |zi) = 0

where Qwtτ (τ |zi) is the τ -th conditional quantile of wtτ , and

E [ψτ (wtτ )|xt] = 0.

Under our assumptions, the following Bahadur linear representation of �θ(τ) can be ob-

tained:
√
n

�
�θ(τ)− θ(τ)

�
=

�
1

n

n�

t=1

ftztz
�
t

�−1 �
n
−1/2

n�

t=1

ztψτ (wtτ )

�
+Rn

where the reminder term Rn is op(1) uniformly over τ . For any give τ ,

√
n

�
�θ(τ)− θ(τ)

�
⇒ N

�
0, τ (1− τ)Ω−1

HΩ−1
�

where

ft = ft(F
−1
yt (τ |zt)), Ω = lim

1

n

n�

t=1

ftztz
�
t, H = lim

1

n

n�

t=1

ztz
�
t .

Under the null, ft(F−1
yt (τ |zt)) = fu(F−1

u (τ)) = fv(F−1
v (τ)) = f(F−1(τ)), Ω = f(F−1(τ))Ω0,

and Ω0 = H. The limiting distribution of the regression quantile process is then given as

follows

25



√
n

�
�θ(τ)− θ(τ)

�
=

1

f(F−1(τ))

�
1

n

n�

t=1

ztz
�
t

�−1 �
n
−1/2

n�

t=1

ztψτ (utτ )

�
+Rn

and
√
nf(F−1(τ))Ω1/2

0

�
�θ(τ)− θ(τ)

�
⇒ W 2(τ), for τ ∈ Π

where W 2(τ) is a two-dimensional Brownian bridge. In particular, at each τ ,

√
n

�
�θ(τ)− θ(τ)

�
⇒ N

�
0,

τ(1− τ)

f(F−1(τ))2
Ω−1

0

�

Thus, let R = [0, 1], then

√
n

�
�β(τ)− β(τ)

�
⇒ N

�
0,

τ(1− τ)

f(F−1(τ))2
RΩ−1

0 R
�
�
,

and the test statistic can be constructed based on

�V1(τ) =
√
nf̂(F−1(τ))

�
RΩ−1

0 R
��−1/2 �β(τ) ⇒ W 1(τ) for τ ∈ Π

where W 1(τ) is a one-dimensional Brownian bridge.
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