

Using z-Tree for a Non-Interactive Accounting Experiment *

Working Paper Series—10-05 | April 2010

Tom Downen
Assistant Professor of Accounting

Northern Arizona University
P. O. Box 15066

Flagstaff, AZ 86011
(928) 523-8522

Tom.Downen@nau.edu

* This paper is derived from the final chapter of my dissertation, completed at Texas Tech University.
I appreciate greatly the patience and guidance provided by my dissertation committee members:
Steve Buchheit (chair), Ralph Viator, Penelope Bagley, and Peter Westfall. This paper has also
benefited from many helpful comments provided by Beau Barnes, Derek Dalton, Dawn Fischer,
Francesca Flores, Nancy Harp, Becky Hyde, Gregg Murray, Susan Murray, Marc Ortegren, and
Ming Zhou. Additionally, I thank Zafar Miller at Texas Tech University and Brandon Jones and
Damien Plunkett at Northern Arizona University for providing technical assistance. Theresa Stacy-
Ryan at Northern Arizona University should also be recognized for her extensive graphic design
assistance. I also thank an anonymous reviewer and participants at the 2010 Conference of the
Southwest Region of the American Accounting Association for helpful feedback.

1

Using z-Tree for a Non-Interactive Accounting Experiment

I. INTRODUCTION

 Behavioral researchers in accounting have long faced challenges in how to best present
experimental materials to subjects and to collect subject responses.1 As technology has advanced in
recent decades, more researchers are shifting away from pen-and-paper instruments in favor of
computerized experiments. There are a number of potential advantages of using computerized
experiments, including: (1) reduced data entry effort for the researcher, (2) less risk of data entry
errors, (3) greater flexibility in the layout and presentation of materials, (4) more efficient interaction
between subjects, and (5) more timely performance feedback. Although the study described in this
paper (from Downen, 2010, hereafter referred to as “my study”) does not involve interaction between
subjects, it does benefit in the other noted ways.2
 Although z-Tree (Zurich Toolbox for Readymade Economic Experiments) was primarily
designed for use in economic experiments, it has also been used for behavioral research in a variety of
other disciplines, including accounting (Bowlin, 2008; Bowlin et al., 2009; Christ, 2008; Hales and
Williamson, 2009; Newman, 2009), political science (Dickson et al., 2008), finance (Haruvy and
Noussair, 2006; Dittrich et al., 2005), and marketing (Engelbrecht-Wiggans et al., 2007). One primary
advantage of using z-Tree is set forth early in Fischbacher’s tutorial, with his remark that “an
experimenter with a certain amount of experience can program a public goods game in less than an
hour and a double auction in less than a day” (Fischbacher 2002, p 4). Although my study is neither a
public goods game nor a double auction, z-Tree proved to be extremely easy to use for even a
relatively inexperienced designer. From its inception, my experiment was functional within a few days
and complete and ready to be administered within about a week. Just entering the data associated with
my study may have taken longer than a week, if it had been administered using pen-and-paper
methods, and would have introduced much greater risk of error.
 This paper provides a step-by-step description of the process used to program a non-
interactive accounting experiment using z-Tree. It provides some basic coding examples and various
tips and suggestions. The primary focus of this paper, and of z-Tree in general, is developing quick
and easy-to-use experiments. Other software options, such as linked workbooks in Microsoft Excel or
custom web-based programming, likely offer greater aesthetics and some improvements in
functionality, but also usually require considerably more time in development and maintenance.3
 The next section of this paper describes general processes for getting started with using z-Tree.
The third section describes some basic program components, and the fourth section provides custom
program elements. The fifth section describes unique and specific z-Tree coding examples and the
sixth section concludes.

1 Although it is not acceptable protocol anymore to refer to research participants as subjects, that label is used
throughout the English version of z-Tree and its supporting materials. Therefore, for consistency purposes within
this paper, I too will use the term subjects rather than participants.
2 Though such functionality was not used in my study, z-Tree does have the capability for interacting subjects,
including the development of small economic markets.
3 My experiment uses version 2.1.4 of z-Tree. A more recently released version of the software, version 3.3.6,
claims to include increased aesthetical options and graphical reporting. However, the supporting documents
(tutorials and reference manuals) for the newer version are very limited and my initial attempts to use the newer
version of the software resulted in what seemed to be frequent bugs or errors.

2

II. GETTING STARTED

 The z-Tree software is free to download from the University of Zurich. All that is required is
that users sign a license agreement with terms of use that include providing the appropriate reference
in any papers generated from a z-Tree experiment. The specific reference required is as follows: “The
experiment was programmed and conducted with the software z-Tree (Fischbacher, 2007)”. The
license agreement can be downloaded at http://www.iew.uzh.ch/ztree/howtoget.php. Additional z-Tree
related materials are available from the z-Tree home website at http://www.iew.uzh.ch/ztree/index.php.
 Once the license agreement form has been completed and signed, it must be mailed to Zurich
for approval. When it arrives in Zurich and has been approved, the z-Tree administrators send the
requester an e-mail message with a user ID and password for downloading the software. Using standard
mail, it took approximately two weeks for my license agreement to get from the central United States to
Zurich and to be processed. The z-Tree administrator also signs the license agreement and returns a copy
of it to the requester by mail.
 When the download instructions have been received by e-mail, the process to download the
software is very straightforward. z-Tree is a client / server system, with z-Tree being loaded on the
server and z-Leaf being loaded on the client computers. For testing purposes, as described in more
detail later, it may be useful to download both z-Tree and z-Leaf onto the primary researcher’s
computer during program development. z-Tree also now has the capability of online administration of
experiments, with a stable IP address on the server side. However, the process described here used a
laboratory setting, with a traditional client / server framework.4

III. BASIC PROGRAM SETUP

 z-Tree was developed in Switzerland, where a dialect of German is predominant. z-Tree can
be converted to a variety of languages, but German is the default. To use z-Tree in English, the
following command must be added to the target field in the properties option for the z-Tree shortcut:
C:\zTree\zTree.exe /language English. If z-Tree is not directed to use English, then any server / error
messages that subjects see will be in German and are likely to be very confusing. The same syntax
also should be added to the run command for the z-Leaf program on the client computers.

There are various level descriptors in z-Tree, including sessions, treatments, periods, and
stages. An experimental study often involves multiple sessions, though each session is usually
identical except for the actual subjects involved. My study involved four sessions, with essentially no
differences between them except for the subjects participating. The lab being used for my experiment
had limited capacity, which required multiple sessions in order to include all planned subjects.5
 A treatment typically involves multiple periods. For a repeated measures study such as mine,
similar periods are grouped together into treatments. Within a treatment, there are not typically any
changes to the manipulations for a specific subject. Instead, a treatment simply involves repeating the

4 When using a computer lab to administer a z-Tree experiment, be aware that administrator authority is often
required for downloading executable programs. Please be sure to allow sufficient time and planning to get z-Tree
loaded onto the lab server and z-Leaf loaded onto all of the subject computers in the lab. Also, depending upon
the setup of the lab computers, it may be necessary to add the following command to the run procedure for z-
Leaf on the client computers: /server IPADDRESS (where IPADDRESS is replaced by the actual IP address for
the server). This allows the client computers to recognize the server and to connect with z-Tree on the server.
Please also be aware that certain firewall and security blocks may need to be softened to allow for proper
connections between clients and the server.
5 Also, as described in more detail later, there can be time advantages associated with administering a z-Tree
experiment using several smaller groups of subjects. z-Tree games require that all subjects in a session proceed
at the same pace. Therefore, if the group of subjects is overly large, then one or two slow responding subjects
can unnecessarily use up a lot of time for many other subjects.

3

same general task over multiple periods. When a manipulation change for a specific subject is needed,
a new treatment is usually established. In my study, there were two treatments, each of which
corresponded to a different module of the study. My two modules differed from one another with
regard to cost structure (one within-subjects manipulation). Between-subjects manipulations are best
handled within the treatment, unless subjects from different conditions will not be completing the
experiment at the same time.
 A period can be divided into stages, with the most common stages being a decision stage and a
reporting stage. However, z-Tree allows multiple decision stages and multiple reporting stages within
the same period, depending upon the structure of the game. My experiment included, for each period,
an introduction stage, a decision stage, and a profit display stage. Input variables can be included in
any or all of these stages, though they are most common for the decision stage. Table 1 provides a
brief summary of these levels and their application in my study.

Table 1. Levels Used in z-Tree and Sample Applications

z-Tree Level Description of Application for My Study

Treatment
A single game module (out of two), where multiple repeated-
measures periods are completed and various within-subject
manipulations are shifted.

Period A single decision round, including several decision variables,
after which feedback is provided.

Stage A component of a period, examples of which are the introduction
stage, the decision stage, and the profit display stage.

 The first step in designing a z-Tree experiment is the same as with any other programming
project: PLANNING! A little extra time spent planning the design upfront will save a lot of time in
making revisions later. In addition to thinking about the treatments and stages that will best
accommodate the research needs, it is worthwhile to give thought to the most appropriate presentation of
information on the screens and any peripheral information you might like to collect during the game.
 Figure 1 provides a screen display of a new z-Tree treatment. It shows the primary screens (the
ACTIVE SCREEN and the WAITINGSCREEN) and the primary tables (GLOBALS, SUBJECTS, SUMMARY,
CONTRACTS, and SESSION) used in z-Tree. Esarey (2005) provides a good summary of the structure
and content of each of the z-Tree tables:

• GLOBALS table – holds variables that will be the same for all subjects but may differ between
periods

• SUBJECTS table – holds variables that may be different between subjects and between periods

• SUMMARY table – like the subjects table, but used to display running statistics of an
experiment for the experimenter on the screen

• CONTRACTS table – holds buy and/or sell offers in an auction

• SESSION table – holds variables that may differ across subjects but persist across treatments

As these descriptions suggest, most of the data used in the program, for displaying to subjects and for
collecting responses, is stored in the SUBJECTS table.

4

Double-clicking on the BACKGROUND option allows the researcher to establish several
important parameters, as shown in Figure 2. Those include identifying the number of subjects, the
number of groups (for interactive games), the number of practice periods, the number of paying periods,
the exchange rate (from experimental currency units to Swiss francs or other appropriate currency), the
lump-sum payment, and the show-up fee. Depending upon the nature of the study, some of these
parameters may not be relevant or deserving of consideration.

One available option included in the BACKGROUND is to establish or modify BANKRUPTCY
RULES. If the game being programmed includes the prospect of losing experimental currency in any
particular period, then it may be wise to establish appropriate BANKRUPTCY RULES. Otherwise, for
example, if a subject loses money in the very first period, then he or she could end up with a negative

Figure 1. z-Tree Screen Display for a New Treatment

Figure 2. z-Tree Screen Display for Background Parameters

5

balance and z-Tree will not know how to proceed. Use of the BANKRUPTCY RULES allows the
researcher to indicate whether a subject with a negative balance will be allowed to continue in the
experiment, perhaps by applying part of the lump-sum payment or the show-up fee to cover the deficit.

Programs, discussed in more detail later, can also be added to the BACKGROUND. The advantage
of using programs to define variables and assign values in the BACKGROUND is that they remain defined
as such throughout all stages of a particular period. If variables are instead defined in one of the stages,
they cannot generally be used (without repeating the definition program) in other stages.

The HEADER option allows the user to define the layout of the top part of the screen that
appears for subjects throughout most of the game. Figure 3 provides a screen display of the HEADER
options. The options that are likely most relevant are the name used for periods (in my study, I referred
to periods as towns) and the message to be displayed to subjects when their time has expired and they
have not yet provided a response. There are also options for screen / box placements and
configurations that may be helpful for presenting information in the most organized manner.

Variables in a z-Tree treatment can only contain numeric values. Therefore, decision variables
that involve responses such as “Yes” or “No” or other categories must be treated like dummy
variables, where numeric values are assigned to each categorical choice. For collection of long-answer
data such as would be included in surveys, z-Tree has a questionnaire function that is outside of a
treatment. The questionnaire follows immediately after the completion of a treatment.

Various items can be added to the background and/or the screens of a treatment. Those items
include programs, text strings, data input screens, variable values, and buttons, among others.
Programs and data input screens are discussed in more detail on the pages that follow. Text strings are
informational items presented to subjects, with or without variable values included. Buttons can be
used to complete a stage, with a label such as “OK”. To provide for a more aesthetic presentation of
information in my study, with the older version of z-Tree, I used a variety of rich text format (RTF)
options in my item coding.

Figure 3. z-Tree Screen Display for Header Options

6

IV. CUSTOM PROGRAM DESIGN
 The custom elements described in this section pertain to my specific experimental design. To
demonstrate the game design, I will focus on the Lincoln module of my experiment. However, my
experiment in its entirety included an example module (treatment), a Great Falls module (treatment), a
Great Falls survey, a Lincoln module (treatment), and a Lincoln survey. The order of the two primary
modules was randomly varied between experimental sessions, to remove any potential order effects;
otherwise, the sessions were identical.
 My study included one between-subjects manipulation (referred to as the signal manipulation),
relating to whether a subject was presented with a point estimate for variable costs per patient or a
confidence interval estimate. Within each session, I wanted approximately half of the subjects to fall
into each of these conditions. Therefore, I included a program at the start of my treatment that assigned
the signal variable a value of 0 (point estimate) for the first 13 of 26 subjects in the lab and a value of
1 (confidence interval estimate) for the last 13 subjects.6 For the one session that I conducted that
involved fewer than the lab capacity of 26 subjects, I simply changed the values in this program to
<=10 and >=11 (to split 19 subjects roughly equally between conditions).7 Figure 4 provides a screen
display of the program used to assign the signal condition, for the point estimate subjects.

Figure 4. z-Tree Screen Display for the Program for Assigning Signal Condition

6 The Subjects variable is pre-defined in z-Tree, and is assigned values based on the order in which client
computers execute the z-Leaf program. An experimenter who wishes to control the values for the Subject
variable, as a matter of controlling the condition assignments, should either execute z-Leaf on the client
computers himself or herself or should direct subjects as to when to execute z-Leaf.
7 Since the layout of the computers in my lab included four rows, I decided to switch the signal condition
assignments between sessions. In the second session, the subjects in the front of the room (the first 13 subjects)
received the confidence interval estimates and the subjects in the back of the room received the point estimates.

7

For each period of my game, numerous variables took on different values. For example, the
values assigned for patient count, screening fee, variable costs point estimate, variable costs minimum
estimate, variable costs maximum estimate, and actual variable costs all differed from one period to
the next. Therefore, I used programs within the BACKGROUND to assign these values. Each program
used conditions, to ensure that the values were only assigned in the appropriate period. Figure 5
provides a screen display of the variable assignment program included for one of the periods.

A variable used to control the introduction screen was also included in the Background
programs. Since I wanted subjects to be able to choose whether or not to play each module, I included
a prompt in the introduction screen for them to indicate their choice. However, I did not want subjects
to see this prompt for every period. So, the introduction variable was set to a different value in the first
period, compared to the other nine periods of the treatment, to control which introduction screen
appeared to subjects. In the first period, the introduction screen provided general information about the
module in addition to the prompt for subjects to choose whether or not to play the module (see Figure
6). In subsequent periods, the introduction screen simply restated for subjects their current balance and
stalled the progress of the game briefly for them to make any notes that they wanted.

There is no apparent programming mechanism that would allow subjects to skip all of the
screens if they chose not to play a module. Therefore, the introduction screen included a note indicating
that subjects would still be required to complete each screen even if they were not playing the module,
but that none of their decisions would be recorded and they would simply retain their starting balance.
Including this requirement served a couple of purposes, other than being easy to code. First, it
discouraged subjects from opting out of modules just to be lazy and sit in the lab for the duration of the
session. Second, by forcing subjects to complete the screens, it hopefully gave them a sense of what
profit possibilities existed and therefore discouraged them from opting out of future modules.
 The information that I presented to subjects in the decision stage was dependent upon their
signal condition. Therefore, I created a separate program clause for each condition. Both clauses
include reporting of the town under review, the patient count, the screening fee (revenue per patient),
and the facility charge. In the signal condition, the subjects were provided with a confidence interval
estimate of variable costs per patient. In the no-signal condition, a point estimate was provided instead.
Figure 7 provides a screen display of the coding used for the decision stage in the signal condition, and
Figure 8 presents the screen as it appeared for subjects.

Figure 5. z-Tree Screen Display for the Program for Assigning Variable Values for a Period

8

Figure 6. z-Leaf Introduction Screen for the Lincoln Module

Figure 7. z-Tree Screen Display for the Confidence Interval Decision Stage Coding

9

Figure 8. z-Leaf Decision Stage Screen with a Confidence Interval

 The decision stage screen included three input variables. The first input variable asked
subjects to estimate what the profit or loss would be for the period if they chose to provide services.
The second input variable asked subjects to estimate the likelihood of earning a profit if they provided
services for the period. Answers to these two questions did not impact performance evaluation of the
subjects, but instead were intended to get subjects thinking about their decisions and to help me to
identify possible inconsistencies or incompetencies.8 The third input variable was the critical decision
in the game – whether or not to provide services. Each of these input variables had rules associated
with it. For example, only integer values between 0 and 100 were allowed for the question about the
likelihood of earning a profit. And only one of the two radio buttons (for “Yes” or “No”) could have
been selected for the question about whether to provide services. Figure 9 provides the code screen
displays for these two input variable items.

8 For example, not considering risk preferences, I generally expected subjects who predicted a profit to also
choose to provide services. And, if they predicted a profit, then the likelihood that they provided for a profit
occurring should have been greater than 50%. To the extent that subjects were routinely inconsistent in their
answers to these questions and their decisions to provide services, then it suggested that the subjects did not
really understand the game and maybe should have been eliminated from certain analyses.

10

Figure 9. z-Tree Screen Displays for Two Different Input Variable Items

11

 If subjects tried to respond to one of these input variables in a manner not allowed, such as to
enter a percentage for the first question that was not between 0 and 100, they would receive an error
message from the program (hopefully in English!) reminding them of the value constraints for the
variable.

Notice also that I added a calculator button to the decision screen. Many subjects brought
calculators with them to the lab, but having this option available to them on the screen allowed for
equal computational power (at least mechanically) across the entire subject pool.
 Before the profit display screen could function appropriately, several computations were needed.
Therefore, additional programs were added. A number of these programs were designed to compute
revenues, expenses, and profit for the current period, depending upon the decision the subject made; the
other programs computed the revenues, expenses, and profit that would have resulted if the alternate
decision had been made. These programs could not have been included in the background section, with
the other variable assignment programs, because they required the values gathered from the decision
stage screen (in particular, whether or not services were to be provided). The profit display screen first
reminded subjects of what decision they had made and then summarized for them the resulting outcome
from the decision. Then, they were also told what the results would have been if they had made the
alternate decision. Figures 10 and 11 provide example profit display screens, for a subject in the signal
condition who either chose to provide services or chose not to provide services, respectively.

Figure 10. z-Leaf Profit Reporting Screen with a Confidence Interval and Providing Services

12

Figure 11. z-Leaf Profit Reporting Screen with a Confidence Interval and Not Providing Services

 Keeping the experiment on pace can be challenging, particularly for a large lab. With 26
subjects participating simultaneously, it was very common for one or two of the subjects to delay all of
the others. Including time limits on certain decision screens can be a helpful way to maintain a
reasonable pace. Although I did not have any screens that exited and used a default value for slow
decision makers, that is an option that z-Tree provides and which may be appropriate in some studies.
 To most easily test a program being designed, multiple shortcuts for z-Leaf can be established
on the desktop of the primary experimenter computer. Each shortcut just needs to have a different
name assigned. The name can be assigned using the shortcut properties, with the following coding in
the target field: C:\zTree\zLeaf.exe /name Plyr1 /language English /size 640x480 /position 10,10. For
my experiment, it was meaningful to simultaneously preview the two different between-subjects
conditions. Therefore, I created two z-Leaf shortcuts with the names Plyr 1 and Plyr 2. I also used a
shrunken version of the z-Leaf screen, appearing toward the top left of my monitor, with the size
command and the position command as shown above. The Plyr 2 target included the position
command of /position 620,280 to correspond to the bottom right part of the monitor.
 Since I had only one between-subjects manipulation, it was effective for me to test my
program using only two z-Leaf shortcuts. To test each condition, I modified the program to assign a
condition value of zero for the first subject and one for the second subject. Then, with z-Tree active on
the desktop, I simply opened each of the two shortcuts for z-Leaf. The first z-Leaf shortcut opened is
identified as the first subject and the second z-Leaf shortcut opened is identified as the second subject,
regardless of the names (Plyr 1 or Plyr 2, for example) used in the shortcut properties. Using ALT-
TAB, a researcher can then jump between the program in z-Tree and each z-Leaf screen.

13

To begin a z-Tree program, once all applicable z-Leaf clients are connected, select RUN from
the top menu and then START TREATMENT. If there are no issues, such as having the wrong number of
clients connected (remember, the number of clients is specified in the BACKGROUND), then starting the
treatment should automatically update the client monitors to show the first z-Leaf screen for the
program started rather than just the default z-Leaf screen.

At the end of each module of my experiment, I included a short questionnaire. The z-Tree
programming for a questionnaire is similar to that used for a treatment, with a number of
simplifications. The z-Tree programming for the Lincoln questionnaire is provided in Figure 12, with
the specific coding for one likert-scale response variable shown in Figure 13. A questionnaire can only
be run after a treatment has been run. To begin a z-Tree questionnaire, simply select Run from the top
menu and then Start Questionnaire when the questionnaire code is active on the desktop. z-Tree will
expect the same number of subjects that were used for the immediately preceding treatment. Figure 14
provides the questionnaire screen as it appeared for subjects.

z-Tree stores the data collected in several different files with differing structures, using the
same file location as the z-Tree executable file. Table 2 provides some sample file names and
descriptions related to a recent administering of my z-Tree program, for the two primary files that get
used by most researchers. z-Tree also creates similar payment (.pay), address (.adr), and game safe
(.gsf) files, which could become important in certain experimental situations. Having the variable data
from the treatments available in Microsoft Excel format makes for easy reorganizing and analysis, a
process which can otherwise be very time consuming after an experiment has been administered (such
as by pen-and-paper methods).

Table 2. Sample Primary z-Tree File Names and Descriptions

File Name a Description

090611HB.xls
Stores the values from all variables used in a treatment or a series of
treatments, in Microsoft Excel format. Subjects are represented in rows
whereas variables are represented in columns.

090611JS.sbj
Stores the values from all variables used in a questionnaire or a series of
questionnaires, in Notepad format. Subjects are represented in columns
whereas variables are represented in rows.

a The first four characters of each file name represent the date (YYMMDD) when the file was
created, in this case 06/11/2009. The next two characters in each name represent the time when
the file was created, using an alphabetic scale with the first character corresponding to the hour
and the second character corresponding to the minute. That scale assigns hour values between A
and X, for hours 00 through 23, and minute values between 0 and T, in two minute increments (i.e.,
0 = 00 minutes, 1 = 02 minutes, …, 9 = 18 minutes, A = 20 minutes, …, T = 58 minutes).

Figure 12. z-Tree Screen Display for the Questionnaire Code for the Lincoln Module

14

Figure 13. z-Tree Screen Display for a Likert-Scale Questionnaire Response Variable

Figure 14. z-Leaf Questionnaire Screen for the Lincoln Module

15

V. SELECTED CODE DESCRIPTIONS
The entire block of code used for the Lincoln module of my study is provided in Appendix A. Several
aspects of my z-Tree coding may seem unusual and therefore likely warrant further discussion.

“If-Then-Else” Clauses. “If-Then-Else” clauses are a standard element in almost any
computer programming language, although the exact syntax varies from one language to the next. For
z-Tree, two signs of comparison are always needed in the If component of the clause. For example,
when I assign subjects to different conditions for the between-subjects manipulation, I specify one
condition value for subjects <= 13 and the other condition value for subjects >=14. Logically, it would
make sense to simply use <14 and >13 for the two conditions, but z-Tree does not seem to respond to
such syntax. Also, when specifying an equality condition in the If statements, two equal signs are
required (i.e., Period == 1). Note that such dual sign syntax is not required in the Then component of
the clause. Also, for “If-Then-Else” clauses, the If statements are enclosed in normal
parentheses and the Then statements are enclosed in squiggly brackets; each Then statement is
concluded with a semicolon. And the word “then” is not included.

Rich Text Formatting. Rich text formatting (RTF) is not a component of z-Tree, per se, but it does
allow a researcher to design more aesthetically pleasing screens using the older version of z-Tree.
There are numerous RTF parameters that can be specified, and a quick search online for RTF
commands will provide additional examples. However, the RTF commands that I found most useful
and that are specified often in my z-Tree code are summarized in Table 3. Each statement that involves
RTF commands must begin with an open squiggly bracket and the expression \rtf. The statement
must end with a closing squiggly bracket, and each RTF command should be followed by a space.

Table 3. Common Rich Text Formatting (RTF) Commands Used

RTF
Command Purpose

\b Initiates bolding of text
\b0 Concludes bolding of text

\fs24 Initiates a change in the font size, in this case to a font size of 24
\i Initiates italicizing of text
\i0 Concludes italicizing of text
\qc Initiates center alignment of text a
\ql Initiates left alignment of text a
\ul Initiates underlining of text

a When rich text formatting is not specified, z-Tree uses text centering in most cases
and in other cases places text / variable fields in columns.

Time Limits and Automatic Exits. For many of the stages included in a z-Tree treatment, the researcher
can specify how much time is permitted for subject responses and whether or not to automatically exit
at the end of that time allotment.9 When a time limit is specified, but an automatic exit is not, then the
time remaining for that stage will count down in the upper right portion of the subject screen and,

9 In the z-Tree code (see Appendix A), the time allowed and the exit specification are indicated at the end of the
description for the screen. For example, at the end of the description for the INTRODUCTION SCREEN, there is a
“=|=(5)N” notation. That indicates that the screen has a time limit of five seconds and does not automatically
exit.

16

when time has expired, a warning message will flash encouraging the subject to complete the
necessary actions for the stage. If an automatic exit is specified, then default values for any input
variables in that stage must also be specified so that z-Tree will know how to treat non-responders. For
decision variables critical to the research purpose, it is probably better to avoid using automatic exits
and associated default values. Pilot tests of an experiment should help to identify appropriate time
limits, considering that some subjects will act more quickly than others. (The time limit should
generally be long enough to accommodate the slowest responding subjects, particularly if an automatic
exit is specified.)

Variable Values. When a variable value is included in a z-Tree statement, the syntax includes adjacent
carrot brackets at the start of the line, individual carrot brackets before and after the variable name, and
a specification for the decimal format to be used for the variable value. For example, in one of the
lines in my decision stage screen, I include the following syntax: <>{\rtf \qc \fs24 Number
of Patients: <PtntCnt | 1>}. In this case, the assigned value for the variable PtntCnt
(as defined in the BACKGROUND) would be shown after the label, and it would be rounded to the
nearest integer. If instead the specification for the decimal format was 0.1 (to replace 1 in the syntax
above), then the value for the variable would be rounded to the nearest tenth of an integer.
If it is more appropriate to present a text string rather than the variable value, but to base the text string
on the variable value, then slightly different syntax is required. An abridged example from my code
block is as follows: <>{\rtf \qc \fs24 LINCOLN Module Town < Period | !text:
1 = “1: Norfolk, NE”; 2 = “2: Hastings, NE”>}. Using this code, the text that will
be shown is “LINCOLN Module Town 1: Norfolk, NE” if it is the first period and “LINCOLN
Module Town 2: Hastings, NE” if it is the second period. Other similar text strings can be added using
the !text: syntax.

Sequential Variable Definition Programs. More than one variable definition statement can be included
in the same program block. However, if the value of a variable being defined is based on the value of
one or more other variables, then the other variable(s) must have been defined in a prior program
block. For example, I use one program block in the PROFIT DISPLAY stage to define the values for the
variables Revs and VarCosts (depending upon the decision made by the subject). Those variable
values are based on other variables (PtntCnt, ScrngFee, and VCActual) for which values were
assigned in the BACKGROUND. Then, I want to compute the value for the Profit variable. Since the
value for the Profit variable is based on the values for the Revs and VarCosts variables (as well
as the value for the FacChg variable, which was defined in the BACKGROUND), a separate and
subsequent program block must be used.

VI. CONCLUSION

 Clearly, z-Tree is a viable tool that can be used for a variety of behavioral accounting research
studies. The study described here is non-interactive, meaning that subjects are not sending information
to one another and the performance of one subject is not based at all on the performance of another
subject. (In other words, the program could be administered for a single subject at a time if it were
efficient and effective to do so.) In about the time that it would take to design and print paper forms
for subjects to complete a pen-and-paper experimental design, a custom program can be written in z-
Tree. The additional benefits of reduced risk of data entry error and more timely subject feedback can
also then be attained. Other computerized methods for conducting experiments, such as web
programming and linked spreadsheets, can offer some additional flexibility, but they also usually
require more time and effort for development and maintenance. For researchers interested in quick and
easy computerization, z-Tree should definitely be considered.

17

REFERENCES

Bowlin, K. "Can Strategic Reasoning Prompts Improve Auditors' Sensitivity to Fraud Risks?"
Working Paper, University of Texas, 2008.

Bowlin, K. O., J. Hales, and S. J. Kachelmeier. "Experimental Evidence of How Prior Experience as

an Auditor Influences Managers’ Strategic Reporting Decisions." Review of Accounting Studies
14, no. 1 (2009): 63-87.

Christ, M.H. "Intending to Control: An Experimental Investigation of the Interactions among
 Intentions, Reciprocity and Control" Working Paper, University of Texas, 2008.

Dickson, E. S., C. Hafer, and D. Landa. "Cognition and Strategy: A Deliberation Experiment." The

Journal of Politics 70 (2008): 974-989.

Dittrich, D., W. Guth, and B. Maciejovsky. "Overconfidence in Investment Decisions: An

Experimental Approach." European Journal of Finance 11, no. 6 (2005): 471-491.

Downen, T. “Signaling Accounting Uncertainty: Potential Decision Implications.” Working Paper,

Northern Arizona University, 2010.

Engelbrecht-Wiggans, R., E. Haruvy, and E. Katok. "A Comparison of Buyer-Determined and Price-

Based." Marketing Science 26, no. 5 (2007): 629-641.

Esarey, J. "zTree Workshop: Fundamentals of zTree." Florida State University - Department of

Political Science. 2005. http://userwww.service.emory.edu/~jesarey/ztree.ppt (accessed 06 11,
2009).

Fischbacher, U. z-Tree Tutorial 2.1. Zurich: University of Zurich, 2002.

Fischbacher, U. "z-Tree: Zurich Toolbox for Ready-Made Economic Experiments." Experimental

Economics 10, no. 2 (2007): 171 - 178.

Hales, J. and M. G. Williamson. "Implicit Employment Contracts: The Limits of Management

Reputation for Promoting Firm Productivity" Journal of Accounting Research (forthcoming)
(2009).

Haruvy, E., and C. N. Noussair. "The Effect of Short Selling on Bubbles and Crashes in Experimental

Spot Asset Markets." The Journal of Finance 61, no. 3 (2006): 1119-1157.

Newman, A. H. "The Behavioral Effect of Cost Targets on Managerial Cost Reporting Honesty."

Dissertation, Georgia State University, 2009.

18

APPENDIX A. Z-TREE CODE FOR THE LINCOLN MODULE

19

APPENDIX A. Z-TREE CODE FOR THE LINCOLN MODULE (CONT’D)

20

APPENDIX A. Z-TREE CODE FOR THE LINCOLN MODULE (CONT’D)

21

APPENDIX A. Z-TREE CODE FOR THE LINCOLN MODULE (CONT’D)

