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Using Quantile Regression to Evaluate 
Human Thermal Climates in China 

 

Studies of how climate influences humans have long been a major interest in climatology and other 

disciplines. Many different thermal comfort indices have been developed to measure the combined 

atmospheric effects on human bodies. Using different indices, studies have been conducted to examine 

the spatial variations of human thermal comfort in various countries (e.g. Terjung, 1966, 1968; Green, 

1967; Auliciems and de Freitas, 1976; de Freitas, 1979, 1985; Auliciems and Kalma, 1979, 1981; 

McGregor, 1993). These human bioclimatic studies have important implications on human health, 

migration patterns, retirement decisions, tourism development, energy requirements, etc.  

 Yan (2005) used the CLO (clothing insulation) index of Gagge, Burton and Bazett (1941), which 

provides a rough measure of the amount of clothing required to maintain comfort, to examine the human 

thermal climates and spatial patterns of extreme thermal stress in China. The CLO index has the 

advantage that it synthesizes the interaction between thermo-physiological processes of the body with the 

atmospheric variables to provide a dynamic energy balance model as compared to traditional empirical 

indices that are only based on exterior climatic elements that affect human comfort.  Similar to the studies 

of de Freitas (1979) and McGregor (1993), Yan (2005) investigated the human thermal climates of China 

through the examinations of seasonal average isoline maps of CLO requirements. 

 Information on average clothing needs in a specific region obtained from the average CLO maps 

is very useful. However, the average CLO maps have a severe deficiency in informing tourists of the 

physio-climatic comfort when planning for a visit or retirees in choosing the “ideal” climatic location for 

retirement.   They only provide information on the center of the distribution of climate variation of a 

region. Other information, like the shape and variation of the CLO index will provide a more complete 

picture of human comfort. For example, knowing that the average CLO index for a particular month of a 

particular destination is 1.0 (which represents the clothing ensembles of briefs, broadcloth, long-sleeved 

shirt, single-breasted suit jacket, tie, straight fitted trousers, calf-length socks and hard-soled shoes) is not 

very helpful when 25% of the time in the month the CLO index is 2.6 or above (which requires a clothing 

ensembles of long underwear, shirt, fitted trousers, gloves, socks, hat and heavy coat) while another 25% 

of the time the CLO index is 0.3 or below (representing a clothing ensembles of briefs, shorts, open-neck 

short-sleeved shirt, light socks and sandals).  

 This extra information on the variation of the CLO index can be obtained by using bivariate 

quantile regression of He, Ng and Portnoy (1998) or Koenker and Mizera (2004) to generate various 

“quantile (percentile)” CLO isoline maps, e.g. the 0.25th and 0.75th (25th and 75th) quantile (percentile) 

CLO isoline maps.  The main objective of this study is to provide a more complete picture of the amount 

of clothing requirement to maintain comfort in various regions of China by generating a broader range of 
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CLO isoline maps.  Tourists, retirees, policy makers and planners can then use the isoline maps in 

planning their vacation trips, retirement relocation, urban/regional allocations of energy resources, etc., 

and helping them better prepare for the unpleasant “surprises”.  

Methodology and Data 

CLO Index 

As explained in Yan (2005), the CLO index is computed as 
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where Icl is resistance to thermal transfer through clothing measured in clo unit (0.155m2KW-1),  33 is 

skin temperature at optimal comfort and ta is air temperature both measured in Celsius, H is the rate of dry 

heat transfer to the surrounding environment (Wm-2), R0 is solar constant (1370 Wm-2), α is solar angle, p 

is atmospheric transmissivity, m is optical air mass, C is cloud cover in tenths, x is cloud transmission 

related to optimal air mass, ar is the proportion of surface area receiving radiation, b is absorptivity of 

clothing, and V is wind speed (cm s-1).  Following Yan (2005), the rate of dry heat transfer H is chosen to 

be 87 W m-2 which is 75% of the metabolic rate (116 W m-2) of the lower limit of light class of work.  

The solar angle in degrees is calculated as ( )h coscoscossinsinsin 1 δφδφα += − where φ is latitude 

reading, δ is solar declination which is set to the declination on the fifteenth of each month as 

representative of the month, and h is hour angle which is set to 45 degrees. The atmospheric 

transmissivity p, which is depletion of solar radiation by gases, water vapor and dust particles, is set to 

87.5% (de Freitas, 1979).  The cloud transmission related to optimal air mass x is estimated to be 1.4 (Hay, 

1970) and the absorptivity factor arb is estimated by the mean value of 0.4.  Negative CLO values were 

set to zero in Yan (2005) but in this study, we chose to retain the negative values to signify heat stress that 

is more severe than just the requirement of a nude clothing ensemble. 

Quantile Regression 

After almost three decades of development, quantile regression (as invented by Koenker and Bassett 

in1978) is gradually emerging as a fundamental tool of applied statistics as more and more commercial 

software has started to incorporate this methodology into its toolbox. The conventional least-squares 

regression method provides an estimate of the relationship between the average of the dependent variable 

and the explanatory variable. However, other aspects of the relationship, e.g., variation and skewness of 

the distribution, are also pertinent and important information. Quantile regression is designed specifically 
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to provide a more complete picture of this relationship.  A concise introduction to quantile regression can 

be found in Koenker and Hallock (2001). 

In this study, the nonparametric version of quantile regressions proposed in Koenker and Mizera 

(2004) was used to estimate the various CLO quantile surfaces because the CLO surface, which is heavily 

influenced by topographic features in China, is obviously too complex to be reasonably modeled by some 

parametric functions.  We chose to use Koenker and Mizera’s (2004) penalized triogram instead of the 

bivariate quantile smoothing splines of He, Ng and Portnoy (1998) because the prior has the nice property 

of orthogonal equivariance, which means that the fitted quantile surfaces will not have the tendency to 

line up along the axes.  This is an advantage in our study when the domain of the observations, like the 

longitude and latitude weather station data we have, do not fall nicely on a regular rectangular grid 

(Figure 1). 

 
Figure 1   Map of China with provincial borders and locations of the 172 stations. 
 

 The penalized triogram minimizes the following objective function: 
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where n is the total number of observations, zi is the CLO index, xi and yi are the longitude and latitude 

readings of the ith observation,  τ which has a value between 0 and 1 determines the desired quantile 

surface, [ ]+
ir and [ ]−

ir are the positive and negative residuals ( )iiii yxgzr ,−=  (distances from the 
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actual CLO index to the estimated quantile surface), ( )gJ measures the roughness of the estimated 

quantile surface,  and λ is the smoothing parameter which controls the balance between the fidelity of the 

estimated quantile surface g  to the CLO values measured by the first part of equation (2) and the 

roughness ( )gJ  of the fitted surface g .   

 Notice that the objective function assigns a weight of τ to positive residuals and ( )τ−1  to 

negative residuals.  When 5.0=τ ,  the median (0.5-th quantile) regression surface minimizes the 

objective function which assigns the same weight to both the negative and positive residuals so that half 

of the CLO values fall above the median regression surface while the other half of them fall below it.  

Similarly, twenty-five percent of the CLO values will fall below the 1st quartile (0.25-th quantile) 

regression surface and seventy-five percent above it when 25.0=τ .  Hence, by varying the value of τ  

between 0 and 1, we can obtain the various CLO quantile regression surfaces.   

 The smoothing parameter λ controls the smoothness of the fitted surface.  When λ approaches 

infinity, a huge penalty is exerted on the roughness of the fitted surface and, hence, the quantile regression 

surface becomes a plane, which is the smoothest among all possible types of surfaces.  When λ equals 0, 

no penalty is imposed on the roughness of the quantile regression surface and the surface will attempt to 

interpolate every CLO value if there is only one CLO index at each station.  However, with the repeated 

CLO measurements at each station in our data set, the quantile surface will attempt to interpolate the τ –

th sample quantile of the CLO values at each station.  The choice of the smoothing parameter which 

determines the degrees of smoothness in any nonparametric smoothing problem is always a delicate issue.  

However, the decision is made easy in our study.  Since there are thousands of CLO measurements (in the 

neighborhood of 1,400 for a monthly window and 4,500 for a seasonal window) at each station, the 

asymptotic theory of a nonparametric smoother suggests that the chosen λ should approach zero and we 

choose to compute the interpolating quantile surface with λ equals to 0 to reveal useful local features of 

CLO.  In fact, the seasonal average CLO estimates in Yan’s (2005) were rather overly smoothed to the 

extent that many of the local characteristics of the CLO requirements being affected by geographic 

variations were lost.   

Data analysis 

Data on daily air temperature and wind speed for 172 climate stations in China from 1960 to 1998, 

obtained from the Chinese Academy of Meteorological Sciences, were used in this study (Figure 1). The 

daily temperature and wind speed data for these stations from 1999 to 2004 were downloaded from the 

US National Climatic Data Center (NCDC) (http://www.ncdc.noaa.gov/oa/ncdc.html). Cloud cover was 

omitted in the computation of the CLO index.  This omission had no practical significance; the simulation 
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that we had performed using 1960 to 1998 data revealed that only 3.6% of the observations had resulted in a 

difference in CLO values of larger than 0.3 between including and not including the cloud coverage data. 

Daily CLO values were calculated using equation (1) and the quantile regression estimates were 

then computed using the algorithms that are available in the quantreg and cobs package available in R (a 

language and environment for statistical computing and graphics that can be freely obtained from 

http://www.r-project.org via the GNU General Public License.)  Spatial distribution of stations was not 

optimal. There was no station located in the western half of the Tibet Autonomous Region.  There was no 

data on Mongolia either but the isolines that were generated in the various contour plots below showed 

the convex hull of the weather station and included a large part of Mongolia.  That portion of the isolines 

should be ignored because they were merely an extrapolation of the data information. 

Results and Discussions 

Spatial Variation of Annual Thermal Climates 

Figure 2(a) – 2(c) are the annual quantile regression surfaces of CLO requirements for τ = 0.1, 0.5, and 

0.9, respectively.  They are estimated using all CLO values of the 172 stations from 1960 to 2004.  Figure 

2(d) is the estimated annual average CLO surface computed by interpolating the average CLO values 

across all the stations over the 45-year period.  Both the average CLO surface and the median regression 

surface (τ = 0.5) provide measures of central tendency of CLO requirements at the various stations.  

However, the median regression surface has the additional advantage of not being sensitive to outliers in 

CLO values.  The 0.1th regression surface provides the upper limit for the bottom 10% of CLO 

requirements while the 0.9th regression surface is the lower bound of the top 10% of CLO requirements at 

the various stations.   

In general, the CLO requirements gradually increase from the south towards the north with the 

northeast having the highest CLO values that reflect the influence of latitude.  This is particularly 

prominent in the 0.9th quantile regression surface in Figure 2(c) which is primarily determined by the 

generally higher CLO values in winter.  This result is very similar to the finding in Yan’s (2005) figure 

for average CLO requirements in winter.  Also similar to Yan’s (2005) figure for the average clo 

requirements pattern in summer, our 0.1th regression quantile surface in Figure 2(a), which is strongly 

affected by lower CLO values in summer, are more meridional in eastern China where heat stress is 

caused by the warm moist tropical air masses and the summer monsoon.  When comparing Figure 2(b) 

and 2(d), which summarize the center part of the CLO distribution across the stations, we see a very 

similar pattern that resembles Yan’s (2005) figures for spring and for fall.  We will address the seasonal 

variation in more detail in the next section.   
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Figure 2   Panels (a), (b), and (c) present the 0.1th, 0.5th and 0.9th quantile regression surfaces, respectively, 
estimated using all CLO values of the 172 stations from 1960 to 2004 while panel (d) contains the average 
regression surface.   Panels (e) and (f) show the interdecile (0.9th – 0.1th quantile regressions) and 
interquartile range, respectively. 
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 In the Qinghai-Tibetan Plateau area, altitude contributes to the high CLO requirements even 

though it is at lower latitude than Xinjiang in the northwest, Inner Mongolia in northern central and 

Heilongjiang in northeast China.  On the other end, the relatively low CLO values in the Sichuan Basin 

compared to its surrounding areas is the result of the mountains in western Sichuan and Qinghai blocking 

the northerly cold air which is also prominent in all three quantile regression surfaces and the average 

CLO surface.  There is also a region in the eastern part of the Qinghai province centered at Qinghai with 

lower CLO values as revealed by the 0.5th, 0.9th quantile regression surfaces and the average CLO surface. 

The mountain ranges (Qilian Shan and Altun Shan) to the north have moderated the severe cold stress in 

winter. However, this lower CLO pattern has disappeared in the 0.1th quantile regression surface since the 

combination of high latitude and altitude has ameliorated the severe heat stress in summer. 

 To investigate the annual variation of the CLO requirements at the various locations, we 

constructed the interdecile (0.9th − 0.1th quantile) range in Figure 2(e).  It reflects the vertical distances in 

CLO values between the 0.9th quantile regression surface in Figure 2(c) and the 0.1th quantile regression 

surface in Figure 2(a) at each location.  It shows that the higher the latitude reading, the larger the 

variation in CLO requirements with the exception of Qinghai that has an interdecile range of 1.2, which is 

as low as those in the southern part of China.  The moderated cold stress in winter due to the mountain 

range in the north discussed above and the alleviated heat stress in summer caused by high latitude 

together contribute to the low variation among the middle 80% of the CLO values in the Qinghai area.  

The interquartile (0.75th − 0.25th quantile) range in Figure 2(f) also shows similar pattern. 

Seasonal Patterns of Thermal Climates 

To study the seasonal variation of thermal climates in China, we divide the data into winter (December, 

January and February), spring (March, April and May), summer (June, July and August) and fall 

(September, October and November).  Figure 3(a) – 3(d) contain the seasonal quantile regression surfaces 

of CLO requirements and the average CLO surface in winter.  The contour patterns of these figures are 

very similar to that in Figure 2(c).  This is no surprise because the 0.9th quantile regression surface in 

Figure 2(c) is primarily determined by the top 10% of the CLO values in each region so that 10% of the 

data points lie above the regression surface while 90% of them fall below it. Winter, in general, has the 

highest CLO requirements in all regions.  The less oppressive cold stress located in the Sichuan Basin is 

very conspicuous in the 0.1th quantile regression surface and the average CLO surface but not in the 

median quantile regression surface. This demonstrates the sensitivity of the average CLO surface to the 

abnormally low CLO values that occur in 10% of the days in winter in the Basin.  
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Figure 3  Panels (a), (b), and (c) present the 0.1th, 0.5th and 0.9th quantile regression surfaces, respectively, 
estimated using CLO values of the 172 stations in winter of 1960 to 2004 while panel (d) contains the 
average regression surface.   Panels (e) and (f) show the interdecile (0.9th – 0.1th quantile regressions) and 
interquartile range, respectively. 
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Figure 4   Panels (a), (b), and (c) present the 0.1th, 0.5th and 0.9th quantile regression surfaces, respectively, 
estimated using CLO values of the 172 stations in spring of 1960 to 2004 while panel (d) contains the 
average regression surface.   Panels (e) and (f) show the interdecile (0.9th – 0.1th quantile regressions) and 
interquartile range, respectively. 
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Figure 5   Panels (a), (b), and (c) present the 0.1th, 0.5th and 0.9th quantile regression surfaces, respectively, 
estimated using CLO values of the 172 stations in summer of 1960 to 2004 while panel (d) contains the 
average regression surface.   Panels (e) and (f) show the interdecile (0.9th – 0.1th quantile regressions) and 
interquartile range, respectively. 
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Figure 6   Panels (a), (b), and (c) present the 0.1th, 0.5th and 0.9th quantile regression surfaces, respectively, 
estimated using CLO values of the 172 stations in fall of 1960 to 2004 while panel (d) contains the average 
regression surface.   Panels (e) and (f) show the interdecile (0.9th – 0.1th quantile regressions) and 
interquartile range, respectively. 
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Figure 7   From the bottom to the top in each panel are the 0.05th, 0.1th, 0.25th, 0.5th, 0.75th, 0.9th, 0.95th 
quantile regression fits of CLO requirements on the days of the year for 6 different cities. 
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Figure 8   The 0.8th, 0.7th, 0.6th, and 0.4th quantile regression surfaces estimated using all CLO values of 
the 172 stations from 1960 to 2004. 

 

To investigate the variation of the CLO requirements in winter, we constructed the interdecile 

(0.9th − 0.1th quantile) range in Figure 3(e).  Even though the Sichuan Basin has less oppressive cold stress 

in winter as compared to its surrounding region in the east and west, it does have one of the highest CLO 

variations between the lowest and highest 10% of the CLO values.  Other regions of high variation in 

CLO requirements above 1.0 are the northern sector of the Guangxi autonomous region, the central part 

of Guangdong province around Guangzhou, the central part of Inner Mongolia, northern part of China in 

Heilongjiang and Jilin provinces, and the northwest region of Xinjiang. These high variations of CLO 

requirements are important information for tourists, retirees and policy makers when planning their travel, 

retirement migration or resource allocation decisions so that they will not be caught by any “surprises”.  

This information will not be revealed by just investigating average CLO contour plots.  In general, there 

is not much variation in CLO requirements among the middle 80% of the data in winter. 
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 The general isoline patterns for spring and fall are similar to those of winter but with lower CLO 

requirements.  However, the interdecile range contour map for spring presented in Figure 4(e) reveals two 

regions of anomalously high interdecile range in Hunan, one is centered around Zhangjiajie City (with an 

interdecile range of 1.3 CLO) in the northwest part of the province and the other around Yongzhou City 

(with an interdecile range of 1.2 CLO) in the south. This high interdecile range in Hunan can be attributed 

to its inland location in central south China and local topography. Hunan is surrounded by low mountains 

and hills, with Wuling Mountain to the northwest, Xuefeng Mountain to the west, Nanling to the south 

and Luoxiao Mountain to the east. Thus the province is influenced by the impact of continentality and 

receives less onshore winds, and results in higher temperatures.  

 Summer sees a very different contour pattern with more meridional isoline alignment similar to 

that being observed in Yan’s (2005) study.  Even high latitude in the northeast does not provide much 

relief on the severe heat stress while the high elevation in the Qinghai-Tibetan Plateau area does provide 

moderate alleviation, which results in higher CLO requirements of 1.25 half of the time in summer 

(Figure 5(b)) and also on average (Figure 5(d)).  The small cell of anomalously severe heat stress in the 

intramontane basins in Xinjiang is the effect of continentality, which has the characteristic of receiving 

large amount of radiation heat and results in very high temperature in the summer.  The interdecile range 

in Figure 5(e) shows that there is not much variation between the 0.1th and 0.9th quantile surfaces across 

the whole country.  In general, the interdecile range for spring (Figure 4(e)) and fall (Figure 6(e)) is 

higher than that in winter (Figure 3(e)) and summer (Figure 5(e)) and it increases with latitude. 

 To gain further insight into the relatively high interdecile range in the Sichuan Basin in winter, 

we constructed in Figure 7(a) the various nonparametric univariate quantile regression lines (Ng and 

Maechler (2007)) of the CLO values on the days of the year for Chongqing, which is located at the center 

of the Sichuan Basin.  It provides another view of the variability of CLO requirements that focuses on 

variability over every day of a year rather than the spatial variation over a yearly or seasonal window as 

presented in all the quantile regression surfaces so far.  From the figure, Chongqing does have high 

variability in CLO values in both winter and fall but lower variation in spring and summer.  In addition, 

the CLO values are skewed towards the lower end in winter and fall while staying pretty symmetric in 

spring and summer.  The cluster of outliers in the lower tail of the CLO distribution in winter pulls the 

0.1th quantile regression surface down and, hence, explains why it shows up as one of the regions with 

high interdecile range in winter even though its general CLO requirements in winter are not as high as 

those in the Qinghai-Tibetan Plateau area, Xinjiang, Inner Mongolia or the north-east provinces.   

 Figure 7(b) contains the various univariate quantile regression lines for Guangzhou.  Similar to 

Chongqing, Guangzhou also experiences high variability in CLO requirements in winter and lower 

variation in summer, and there is no single day with CLO value that rises above 2.5.  Like Chongqing, 
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even though Guangzhou does not experience severe cold stress in winter, it does have one of the highest 

spreads in the middle 80% of the CLO requirements.  Moreover, its CLO distribution is a lot more 

symmetric compared to that in Chongqing.  Again, this variation of CLO requirements across time is 

revealed only with the help of quantile regressions, albeit a univariate quantile regression lines instead of 

the bivariate regression quantile surfaces.  This additional information provides better insights into the 

influence of both geographic factors and the annual cycle of large scale atmospheric circulation on 

thermal climates, and the choice of appropriate clothing ensembles for maintaining comfort. 

Patterns of Severe Thermal Stress 

Yan (2005) constructed contour plots for the average percent of time with severe cold stress (CLO > 2.5) 

and severe heat stress (CLO = 0) to study patterns of severe thermal stress.  The various regression 

quantile surfaces are natural candidates for studying severe thermal stress.  From the 0.9th quantile 

regression surface in Figure 2(c), for example, it is noted that  the whole region north of about 37oN and 

almost all of the Qinghai-Tibetan Plateau area experience severe cold stress with CLO > 2.5 for 10% of 

the time in a year.  At 40oN, 43oN and 47oN, and a consecutively smaller portion of the Plateau suffers 

from severe cold stress for at least 20%, 30%, and 40% of time according to the 0.8th, 0.7th and 0.6th 

quantile regression surface in Figure 8(a), 8(b) and 8(c), respectively.   According to the 0.5th quantile 

regression surface in Figure 2(b), none of China suffers from severe cold stress for more than half of the 

time in a year. On the other hand, severe heat stress is observed 10% of a year at Guangzhou in the 

southeast, Zhangjiajie east of the Sichuan Basin and Tulufan City in the intramontane basins according to 

Figure 2(a).   

 The univariate quantile regression plots for the various cities also contain information on the 

percentage of time a city undergoes severe cold stress or heat stress for the various days of the year.  For 

example, Chongqing does not have any day with a CLO higher than 2.5 from Figure 7(a).  Looking at 

where the 0.1th quantile regression line crosses the 2.5 CLO threshold in Figure 7(c), we can see that 

Changchun in northeast China has at least 90% of the time (from the last two-third of December to the 

middle of February) in winter under severe cold stress.  Likewise, Urumqi also experiences severe cold 

stress for at least 90% of the time from mid December to mid February (Figure 7(d)).  Even though at 

high altitude of 3649 meters, Lasha in the Tibeten-Qinghai Plateau experiences severe cold stress for no 

more than 10% of the time from the second half of December through January according to where the 

0.9th quantile regression line crosses the 2.5 CLO boundary in Figure 7(e). Investigating Figure 7(f), we 

see that Tulufan experiences severe heat stress for at least half of the time in June, July and most of 

August according to where the median regression line intersects the 0 CLO line.  This is the result of 

continentality.  As observed above, Guangzhou goes through severe heat stress for at least 10% of the 
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time from early summer to as late as early fall according to Figure 7(b).  It has higher CLO variation in 

the winter, early spring and late fall, and much lower variation in summer. 

Conclusion 

The application of nonparametric version of quantile regressions to evaluate the human thermal climates 

in China using the CLO index has facilitated better insights into both the spatial characteristics and 

information on the spread and variations of the clothing requirements. Hence a more complete picture of 

the human bioclimates of the various regions in China is produced. Results of the present study are 

consistent with Yan’s (2005) findings. Furthermore, the quantile regression surface plots reveal more 

local characteristics of CLO distribution patterns affected by topographic variations. The interdecile range 

surface plots expose details in spatial CLO variability that cannot be uncovered by examining average 

CLO values.  

 Quantile regression is most commonly used in economics and financial mathematics, and recently it 

is being used in ecology (Koenker and Schorfheide, 1994), meteorology (Bremnes, 2004) and climatic 

changes (Chamaillé-Jammes, 2007). It has the ability to detect variation and skewness of a distribution. To 

our knowledge, this is the first utilization of nonparametric quantile regression in human biometeorology. 

Technically, quantile regression is fairly easy to apply, as programs are available free. We suggest that 

quantile regression should be considered more often as a tool to examine various climatic patterns. 
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