COMPUTING COX’S SMOOTHING SPLINE SCORE ESTIMATOR

Pin T. Ng

College of Business Administration
Northern Arizona University

Flagstaff, AZ 86011-5066

Key Words and Phrases: score function; spline; robustness; adaptive esti-

mators.

ABSTRACT

We provide an efficient algorithm for computing the smoothing spline score
estimator of Cox (1985). The algorithm exploits the banded structure of the
linear algebra involved. Calls are made to the LAPACK, Level 1, 2 and 3
BLAS subroutine libraries designed to be efficient on a wide range of modern

high-performance computers.

INTRODUCTION

The score function, defined as ¢y(z) = —log’fo(z) = —f§(x)/fo(z), of a
probability density function fy(z) plays an important role in many aspects of

statistics. In the robustness literature, it is related to the constructions of L-,

1

M- and R-estimators for location and scale model as well as related estimators
for regression models. See Joiner and Hall (1983) for an excellent overview.
Estimation of the score function is an integral part of various adaptive L-, M-
and R-estimators which achieve the Cramer-Rao efficiency bounds asymptoti-
cally. See e.g., Koenker (1982). Estimation of Fisher information also involves
estimation of the score function. See Ng (1995). In hypothesis testing, the
score function plays a crucial role in making conventional testing procedures
more robust to distribution misspecification as in Bickel (1978) and Bera and
Ng (1992).

The fundamental contribution of the score function to statistics can, how-
ever, be best seen in the realm of exploratory data analysis. Figure 1 and
Figure 2 present the probability density and the score functions of some com-
mon distributions.

We can see from the figures that the mode of a distribution is character-
ized by an upward crossing of the score function at the horizontal axis while
an anti-mode is located at the point of downward crossing. An exponential
distribution has a horizontal score. A tail thicker than the exponential has a
negatively sloped score while a tail thinner than the exponential corresponds
to an upward sloping score. A Gaussian distribution has a linear score func-
tion passing through the horizontal axis at its mean with a slope equals to the
reciprocal of its variance. This particular feature was exploited in Bera and
Ng (1995) to suggest an alternative to the popular probability or Q-Q plot for
identifying potential departures from a Gaussian distribution in data analysis.
An estimated score function with a redescending tail towards the horizontal
axis indicates departure towards distributions with thicker tails than the nor-
mal distribution while a diverging tail suggests departure in the direction of

thinner tailed distributions. An estimate of the density function may be re-

covered through exponentiating the negative integral of the estimated score
function although this may seem to be a roundabout approach.

Most existing score estimators are constructed through computing the neg-
ative logarithmic derivative of some kernel based density estimators [see e.g.,
Stone (1975), Manski (1984), and Cox and Martin (1988)] while Csérgo and
Révész (1983) suggested a nearest neighbor approach. Cox (1985) presented a
totally different approach based on minimizing a penalized mean-squared error
rule and giving rise to an estimator which was a variant of a cubic smoothing
spline. Ng (1994) found that Cox’s smoothing spline score estimator, which
finds its theoretical justification from an explicit mean-squared-errors statis-
tical decision criterion, is more robust than several ad hoc kernel estimators
to distribution variations. This approach to score function estimation is also
appealing because it is computationally quite tractable. Using the nonpara-
metric curve fitting analogy, Ng (1994) provides a new characterization of the
estimator and suggests an efficient computational strategy taking advantage
of the banded structures of the linear algebra involved. In this paper, an

implementation of such smoothing spline score estimator is presented.
THEORY

Cox (1985) suggested estimating the score function, 1)y, of an unknown

distribution, Fy, as the minimizer of

Ll = [(w2 =20) dF, + A [(0" (@) da, (1)

over the Sobolev space, Hs[a,b] = {1 : 1,7’ are absolutely continuous, and
Jo W (@) dz < oo}
The motivation for the estimator may be seen by viewing it as the (penal-

ized) empirical analogue of the mean-squared error loss function

/W — 1g)* dFy = / (¢2 - QW) dFy + /¢§dF0,

where F},, the empirical distribution function, replaces Fj.

Minimizing (1) provides a balance between “fidelity-to-data” represented
by the mean-squared error term, the first integral in (1), and smoothness,
represented by the second integral in (1), of the estimator ©). The param-
eter A controls the trade-off between these objectives, and is usually called
the smoothing parameter. In kernel terms it may be viewed as a bandwidth
parameters.

Suppose 1 < T2 < ... < @, is an ordered random sample of size n from
the unknown density function fy. Using the so-called Dirac delta function
0o () = 09 (x — «) which assigns mass one to the point « as in Ng (1994), we

may rewrite (1) as

L[y] = ipz' / (¢2 () — 29/ (x)) Oz, () dx +)\/(w” (2))* da (2)

and derive the Euler-Lagrange conditions,

jzlpi [¢ (2) Og; () + 0y, (a:)] + 2@ (2) =0 (3)

Notice that instead of 1/n, a more general weight p; satisfying > ;p; = 1
is assigned to each observation in (2). The general weighting scheme has the
advantages of (i) avoiding singular matrix inversions discussed in the Restric-
tions section, and (ii) generating the derivative of the score function estimator,
the J-weight function estimator, J (F~ (z)) = ¢' (), that can be readily used

to construct the adaptive L-estimator of Portnoy and Koenker (1989).

METHOD

It was shown in Ng (1994) that the solution, ¥, to the Euler-Lagrange

condition (3) is piecewise cubic with the form,

V(@) =a;+bi (@ —x) +¢ (@ —) +di (x — z;)° (4)
for x € [z, x41], i =1,---,n — 1, along with
0 if £k=0,1
O (@) = 00 i) = § B i k=2)
_Pi'l/;sxi) if k=3

in which ﬁ(k) (x;£) = limy 9 &(k) (x; £ h).

Comparing (5) with condition (6) in Reinsch (1967), we can see that a
significant difference between the properties of our ¢ (z) and the conventional
cubic spline regression estimator is the additional jumps in the second deriva-
tive caused by the term involving d,, () in (3). This complicates computation
of the coefficients in the cubic spline variant somewhat but we will see that
efficient algorithms can still be implemented.

There are 4n linear constraints in (5) and 4 (n — 1) unknowns in (4) plus
the 4 unknowns ag, b an, b, characterizing the estimate, ’QZ, outside the inter-
val [x1,2,]. Note that ¢g = dy = ¢, = d, = 0, since, were they not, the
penalty in (1) could be reduced without disturbing the mean-squared error
term. Thus, there are 4n equations with 4n unknowns, a well posed system of
linear equations.

Letting h; = x;+1 — ; and using (5), as in Ng (1994) we have the following
relationships among the vectors of parameters a, b, ¢, and d of our cubic

spline in (4):

1
'a = Re+ —TP1

Q'a= Rc+) (6)

b= Aa— Cc— —UP1 (1)
—aa 2

c = (625) Cn—l)l)
d = (dla) dn—l)l)
1 = (1,---,1)" is a nx1 column vector of 1's,

A . 0 0
ha 2ha 4 2hs ha
3 3 T3 3
hs
R = 0 3
hn73
3 0
hn—3 2hn—3 + 2hpn—2 hn—2
5 P has P 2hes O 2n
n—2 n—2 n—1
i 0 0 3 5 T 73
is a (n — 2) x (n — 2) tridiagonal symmetric matrix,
r 1
hl 0 0
1 _ 1 1
h1 ha ha
1 1 _ 1
ha ha hs
1
Q= ’ ha
1
hn—3 0
-1 1 1
hn—3 hn—2 hn—2
1 11
:) hn—2 hn—2 hn—1
i 0 e cee e 0 -

is an x (n — 2) banded matrix,

0

is a n X n banded matrix,

is an x (n — 2) banded matrix,

isa (n—1) x (n — 2) banded matrix,

0

0

h1

3
_ha
3

0

0

2h1
3
0

> @y o

h

o

. N
WS> W
5]

is a (n — 2) x n banded matrix,

1 1
hp—2 hp—2 0
1 1
0 hﬁfl hﬁfl
0 —-hn—l hn—l i
0 -
hn—3
3
2hn—2 hn—2
3 3
2hn—1
0 3
__ Np—1
0 3
0
hn—3
5 0
hn—2 hn—2
3 3
0 __hn—l
3
0 0
hs
3
2hp—3 hn—2
3 3 0
0 2hn—2 hn—l
3 3

. o
A)
0 0 =
U= ' .
n3—2 0
: 0 ES
oy
0 e e e 0 —Zme]
is a n X n banded matrix,
bl q
2+ 20 0
h .
0o 0 %
V: . *. A
: - h»n372 0
0 o «ov e hom

is a (n — 1) x n banded matrix and

pr 0 -ee oo 0]
0 p '
P = Do
Pn—1 0
L 0 0 pn]

is a n X n diagonal matrix.
Using these relationships, we can express, as in Ng (1994), the penalized

loss function (1) as

Ly] = (a’Pa—21'Pb)+2Xc'Rc+21'"P'T'c+ K
= a'(P+2\QR'Q)a—2a'(A-CR'Q)P1+K

where K is a constant independent of the smoothing spline parameters. As a
standard quadratic optimization exercise, the solution yields

-1

a=(I+2\P7'QR'Q)” P (A-CR'Q) P1 (9)

With a, estimates for the rest of the coefficients b, ¢, and d can be obtained

using (6) —(8). From (6), (9) and writingy = P~' (A — CR'Q’")' P1, we get

¢= (R + 2AQ’P—1Q)*1 Qy — %R‘ITPI (10)

Similarly, a can alternatively be expressed as

-1

a= (1 —2PQ(R+2QP Q) Q’) v (11)

The y in (10) and (11), called the pseudo y in Ng (1994), plays the role of the

dependent variable in nonparametric curve fitting.
IMPLEMENTATION

The banded structure of the linear systems to be solved in (10) and (11)
is much preferable to (9). Efficient algorithms can be written using subrou-
tines tailored specifically for banded matrices. The public domain LAPACK
(Linear Algebra PACKage) is one of those designed to be efficient on a wide
range of modern high-performance computers (e.g. vector processors, high-
performance “super-scalar” workstation, and shard memory multiprocessors)
by calling the Level 1, 2 and 3 BLAS (Basic Linear Algebra Subprograms).
The banded nature of the linear algebra in (7) — (8) and (10) —(11) can also
be exploited by using the public domain Level 1 and 2 BLAS subroutines. As
machine code versions of the BLAS are written by more and more machine
vendors to fully exploit specific machine architecture, we can achieve good per-
formance in a portable way over a large class of modern computers by calling
the Level 1, Level 2 BLAS and LAPACK subprograms.

The subroutine splscr first calls cox to compute the coefficient vectors a, b,
¢, and d of the smoothing spline score estimator. The coefficient vectors are
returned to splscr through the matrix f. splscr then calls hat with the matrix

f to (i) allocate a bin number to each evaluation point, at which estimate of

9

the score is desired, (ii) compute the differences between the evaluation points
and the lower bounds of their respective bins, which are the n sample points
of the random sample of size n from the unknown density function, f, and (iii)
compute the estimated values of the score function at the evaluation points
using the formula given by (4). As a by product, the pseudo y and the L-score
function, which is the derivative of the score function, are also returned in

splscr.
STRUCTURE

subroutine splscr(nz,x,p,nz,z exlam,big,w,iw,ift,psi,lscore,suy)

Formal parameters:

nr Integer input: number of observations

T Double(nx) input: random sample of size nz from Fj

D Double(nx) input: weights associated with z

nz Integer input: number of evaluation points

z Double(nz) input: evaluation points

exlam Double input: pre-chosen smoothing parameter,
\ = 10¢ezlam

bzg Double input: a machine-dependent largest finite

floating-point number or any number
greater than the largest value in z
w Double(37*nx-18+nz) work: double precision work array of length

at least 37 xnx — 18 + nz

iw Integer(nx+nz) work: integer work array of legnth at least
nr + nz
ift Integer output: premature exit code:

10

pst

Iscore Double(nz)

suy

Double(nz)

Double(nx)

0 - OK

i — the reciprocal condition number
during the 7th call to linear system
solution routine dptsvz or dpbsvz is

less than the machine precision

output: estimated scores at the evaluation

points

output: estimated L-scores at the evaluation

points

output: the pseudo y

subroutine cox(nz,x,p,exlam,h,c,r,q,pq,a,pa,wl, w2,ws,ws, wd,w6,w7,w8,iw,

ift.f,suy)

Formal parameters:

nx

X

p

exlam Double

h

bq

pa

wl

Double(nx-1)

Double(3,nx-2)
Double(2,nx-2)
Double(3,nx-2
Double(3,n
Double(3,nx)
Double(3,nx)
Double(nx)

input:
input:
input:

input:

work:
work:
work:
work:
work:
work:
work:

work:

as in splscr

as in splscr

as in splscr

as in splscr

stores the ordered spacing of x
stores C' in banded form
stores R in banded form
stores () in banded form
stores P~1(Q in banded form
stores A in banded form

stores P71 A’ in banded form

11

w2 Double(nx) work:

w3 Doublenx work:

w4 Double(nx) work:

wb Doublenx work:

w6 Double(3,nx) work:

w7 Double(3,nx work:

w8 Double(3*nx) work:

iw Integer(nx) work:

ift Integer output: as in splscr

f Double(nx+1,4) output: coefficients of the smoothing spline

score estimator:

fi+1,1) = a;
f(i+1,2) =
fi+1,3) = ¢
f(i+1,4) = d;

suy Double(nx) output: as in splscr

subroutine hat(nx,z,p,nz,z,1z,dz,xz,f,big,psi,lscore)

Formal parameters:

nr Integer input: as in splscr
T Double(nx) input: as in splscr
D Double(nx) input: as in splscr
nz Integer input: as in splscr
z Double(nz) input: as in splscr
iz Integer(nz) work: vector of bin numbers of the

evaluation points

dz Double(nz) work: vector of distances between

12

the evaluation points and the lower
bounds of their respective bins
zz Double(nx+1) work:

f Double(nx+1,4) input: output from cox

big Double input: as in splscr
psi Double(nz) output: as in splscr
Iscore Double(nz) output: as in splscr

Auziliary algorithms:

The following subroutines from the Level 1 BLAS are called:
subroutine dcopy(n, z, incz, y, incy) — copies x to y
subroutine daxpy(n, alpha, x, incz, y, incy) — constant times a vector plus a
vector

The following subroutine from the Level 2 BLAS is called:
subroutine dgbmu(trans, m, n, ki, ku, alpha, a, lda, z, incz, beta, y, incy) —
general band matrix-vector product

The following subroutines from the LAPACK are called:
subroutine dptsvz(fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr, berr,
work, info) — solves a symmetric positive definite tridiagonal system of linear
equations with estimate of the condition number and error bounds of the
solution
subroutine dpbsvz(fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b, ldb, z,
ldx, rcond, ferr, berr, work, iwork, info) — solves a symmetric positive definite
banded system of linear equations with estimate of the condition number and

error bounds of the solution

RESTRICTIONS

13

The vector of random sample x of size nx from distribution F passed to
subroutine coz is assumed to be pre-sorted in ascending order. It is also essen-
tial that the random sample x does not have equal valued elements, which will
theoretically never occur for random sample drawn from continuous distribu-
tion, that can result in floating point overflows in cox due to division by zero
values of h; for any ¢+ = 1,---,nx. Close values of adjacent elements in the
sorted x will still, nevertheless, be very likely to result in a premature exit from
coz caused by calls to dptsvz or dpbsvz from within cox. When such premature
exit occurs, an alternative will be to replace the close values with a single
value, e.g., the average, having weight equals to the sum of their respective

weights.

PRECISION

We suggest using double precision on 32 bit machines. On 64 bits machines,
single precision would be adequate. This can easily be done through changing
the “double precision” statements to “real” in subroutines splscr, coxr and hat,
changing the constant definitions in the “parameter” statements from double
to single, and calling the single precision versions of the BLAS1, BLAS2 and
LAPACK subroutines scopy, saxpy, sgbmv, sptsvr and spbsvx in cox and hat.

ACKNOWLEDGEMENT

I wish to express my appreciation to Roger Koenker and Dennis Cox for
their helpful discussions. Computations are performed on equipment sup-
ported by National Science Foundation Grants SES 89-22472 and SBR 93-
20555.

BIBLIOGRAPHY

14

Anderson, E.; Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorensen,
(1992), LAPACK Users’ Guide, Society for Industrial and Applied Mathemat-
ics, Philadelphia.

Bera, A.K., and P.T. Ng, (1992), Robust Tests for Heteroskedasticity and
Autocorrelation Using Score Function, working paper.

Bera, A.K., and P.T. Ng, (1994), Tests for Normality Using Estimated
Score Function, Journal of Statistical Computation and Simulation, 52, 273-
287.

Bickel, P.J., (1978), Using Residuals Robustly I: Tests for Heteroscedastic-
ity, Nonlinearity, The Annals of Statistics, 6, 266-291.

Cox, Dennis D., (1985), A Penalty Method for Nonparametric Estimation
of the Logarithmic Derivative of a Density Function, Annals of the Institute
of Statistical Mathematics, 37, 271-288.

Cox, Dennis D. and D.R. Martin, (1988), Estimation of Score Function,
working paper.

Csorgo, M. and P. Révész, (1983), An N.N-estimator for the Score Func-
tion, Seminarbericht Nr.49, Proceedings of the First Easter Conference on
Model Theory, Sektion Mathematik.

Dongarra, J.J., J. Du Croz, 1.S. Duff and S. Hammarling, (1990), A Set of
Level 3 Basic Linear Algebra Subprograms, ACM Transaction on Mathemat-
ical Software, 16, 1-17.

Dongarra, J.J., J. Du Croz, S. Hammarling and R.J. Hanson, (1988), An
Extended Set of FORTRAN Basic Linear Algebra Subprograms, ACM Trans-
action on Mathematical Software, 14, 1-17.

Joiner, B.L. and D.L. Hall, (1983), The Ubiquitous Role of f’/f in Efficient
Estimation of Location, The American Statistician, 37, 128-133.

15

Koenker, R.W., (1982), Robust Methods in Econometrics, Econometric
Reviews, 1, 213-255.

Lawson, C.L., R.J. Hanson, D.R. Kincaid and F.T. Krogh, (1979), Basic
Linear Algebra Subprograms for Fortran Usage, ACM Transactions on Math-
ematical Software, 5, 308-323.

Manski, C., (1984), Adaptive Estimation of Non-linear Regression Models,
Econometric Reviews, 3, 145-194.

Ng, P.T., (1994), Smoothing Spline Score Estimator, SIAM, Journal on
Scientific Computing, 15, 1003-1025.

Ng, P.T., (1995), Finite Sample Properties of Adaptive Regression Estima-
tors, Econometric Reviews, 14, 267-297.

Portnoy, S. and Koenker, R., (1989), Adaptive L-Estimation of Linear
Models, The Annals of Statistics, 17, 362-381.

Reinsch, C., (1967), Smoothing by Spline Functions, Numerische Mathe-
matik, 10, 177-183.

Stone, C., (1975), Adaptive Maximum Likelihood Estimation of A Location
Parameter, The Annals of Statistics, 3, 267-284.

subroutine splscr(nx,x,p,nz,z,exlam,big,w,iw,ift,psi,

& lscore,suy)

Algorithm to compute the estimated score function of an
unknown distribution using smoothing spline with
pre-chosen smoothing parameter
Subroutines called:

"cox","hat"

O O O O O O 0

integer nx,nz,ift,iw(1),nx3,ic,ir,iq,ipq,ia,ipa

integer iwl,iw2,iw3,iw4,iwb,iw6,iw7,iw8,ixx,idz,iif,iiz

16

O o o o

double precision x(1),p(1),z(1),exlam,psi(1),1lscore(1)
double precision big,w(1),suy(1)

nx3 = 3*nx

ic = nx
ir = ic+nx3-6
iq = ir+2*(nx-2)

ipq = iq+nx3-6

ia = ipq+nx3-6

ipa = ia+nx3

iwl = ipa+nx3

iw2=iwl+nx

iw3d=iw2+nx

iwd=iw3+nx

iwb=iw4+nx

iw6=iwb+nx

iw7=iw6+nx3

iw8=iw7+nx3

ixx=iw8+nx3

idz=ixx+nx+1

iif=idz+nz

iiz=nx+1

call cox(nx,x,p,exlam,w(l),w(ic),w(ir),w(iq),w(ipq),w(ia),
& w(ipa),w(iwl) ,w(iw2) ,w(iw3) ,w(iw4) ,w(iwb) ,w(iw6) ,w(iw7),
& w(iw8),iw(1),ift,w(iif),suy)

call hat(nx,x,p,nz,z,iw(iiz),w(idz) ,w(ixx),w(iif) ,big,psi,
& lscore)

return

end
subroutine cox(nx,x,p,exlam,h,c,r,q,pq,a,pa,wl,w2,w3,ws,w5,
& w6,w7,w8,iw,ift,f,suy)
Subroutine to compute the smoothing spline coefficients
using equation (6), (7), (9) and (10)

BLAS1 routines called:

17

o o o o o o0

O O O O O O

10

"dcopy","daxpy"
BLAS2 routines called:
"dgbmv"
LAPACK routines called:
"dptsvx","dpbsvx"

characterxl equed

integer i,nx,ift,nxml,nxm2,nxm3,nxpl,info,iw(1)

double precision x(1),p(1),exlam,f(nx+1,1)

double precision zero,one,two,three,onethd,twothd,lambda
double precision h(1),c(3,1),r(2,1),q(3,1),pq(3,1),a(3,1)
double precision pa(3,1),w1(1),w2(1),w3(1),wd(1),ws5(1)
double precision w6(3,1),w7(3,1),w8(1),suy(1),rcond

double precision ferr,berr
parameter (zero = 0.0d1l, one = 0.1d1, two
& three = .3d1, onethd = .1d1/.3d1, twothd

ift = 0

nxml = nx-1
nxm2 = nx-2
nxm3 = nx-3
nxpl = nx+1

lambda = 1.d1**exlam
Compute ordered spacings
do 10 i=1,nxml

h(i) = x(i+1)-x(1i)

continue

.2d1,
.2d1/.3d1)

Pack the C matrix into ¢, T into w7, Q into q,

P7-1xQ into pq, A’ into a, and P"-1%A’ into pa

Note: in loop 20, flow dependencies are traded for

duplicated computations so as to achieve parallelism

call dcopy(nxm2,zero,0,c(3,1),3)

20

call dcopy
call dcopy
call dcopy
do 20 i =
c(1,1)
c(2,1)
w7 (1,i+
wr(2,i+
q(1,1)
q(2,1)
q(3,1)
pq(l,i)
pq(2,1)
pq(3,1)
a(2,1i)
a(3,i)
pa(2,1)
pa(3,1i)
continue
c(3,nxm2)
w7 (3,1) =
a(2,nx) =
a(2,nxml)
a(3,nxml)
a(3,nx)
a(1,nx)

pa(2,nx) =
pa(2,nxml)
pa(3,nxml)

pa(3,nx)

pa(l,nx)

Pack the R

do 30 i =
r(1,i)

(nxm2,zero,0,w7(3,1),3)
(nxml1,zero,0,a(1,1),3)
(nxm1,zero,0,pa(1,1),3)
1,nxm2

onethdx*h (i)
twothd*h (i+1)
2) = onethd*h(i+1)

1) = twothd*h(i)
= one/h(i)
= -(one/h(i)+one/h(i+1))
one/h(i+1)
= one/h(i)/p(i)
= —(one/h(i)+one/h(i+1))/p(i+1)
= one/h(i+1)/p(i+2)
= -one/h(i)
= one/h(i)

= -one/h(i)/p(i)

= one/h(i)/p(i+1)

-onethdx*h (nxm1)

-c(1,1)

one/h(nxml)

-a(2,nx)

a(2,nx)

zero

a(2,nxml)
a(2,nx)/p(nx)

-a(2,nx) /p(nxml)

pa(2,nx)
zZero
pa(2,nxml)

matrix into r

2,nxm3
= ¢c(2,i-1)+c(2,1)

19

O O O O O

O

aO o o o0

30

r(2,i) = c(1,i+1)
continue
r(1,1) = c(2,1)+twothd*h(1)
r(1,nxm2) = c(2,nxm3)+c(2,nxm2)
r(2,1) = c(1,2)

Compute pseudo y = P -1%A’*P*1 - P -1xQ*R™-1xC’*Px*1
Create C’*Px*1
call dgbmv("t",nx,nxm2,2,0,one,c,3,p,1,zero,suy,1)
call dcopy(nxm2,r(1,1),2,wl,1)
call dcopy(nxm2,r(2,1),2,w2,1)
Make R™-1*C’*P%*1; result stored in wb
call dptsvx("n",nxm2,1,wl,w2,w3,w4,suy,nxm2,w5,nxm2,rcond,
& ferr,berr,w6,info)
if (info .gt. 0) then
ift = 1
return
endif
Create P7-1*Q*R™"—-1xC’*P*1
call dgbmv("n",nx,nxm2,2,0,one,pq,3,w5,1,zero,suy,l)
Psuedo y stored in suy

call dgbmv("n",nx,nx,1,1,one,pa,3,p,1,-one,suy,1)

Compute R™-1xT*P*1, the second part of the c
coefficient vector and store temporarily in wb

call dgbmv("n",nxm2,nx,0,2,0ne,w7,3,p,1,zero,w5,1)
call dptsvx("f",nxm2,1,wl,w2,w3,w4,w5,nxm2,w8,nxm2,rcond,

20

o o o o o o o 0

40

& ferr,berr,w6,info)
if (info .gt. 0) then
ift = 2
return
endif
call dcopy(nxm2,w8,1,w5,1)

Compute (R+lambda*Q’*P~-1xQ) " -1*Q’*y, the first part of
the ¢ coefficient vector of smoothing spline
Solution returned in w4

Create R+lambda*Q’*P"-1%Q and store in w6

Create Q’*y and store in w2 and w3

do 40 i = 1,nxm2
w6(1,1) = (q(1,1)*pq(1,i)+q(2,1)*pq(2,i)+q(3,1)
& *pq(3,1i))*lambda+r(1,i)
w6(2,1) = (q(1,i+1)*pq(2,1)+q(2,i+1)*pq(3,1))
& *lambda+r(2,1)
w6 (3,1) = (q(1,i+2)*pq(3,i))*1lambda
continue
call dgbmv("t",nx,nxm2,2,0,0ne,q,3,suy,1,zero,w2,1)
call dcopy(nxm2,w2,1,w3,1)
call dpbsvx("e","1",nxm2,2,1,w6,3,w7,3,equed,wl,w2,nxm2,
& w4 ,nxm2,rcond,ferr,berr,w8,iw,info)
if (info .gt. 0) then
ift = 3
return

endif

Store the ¢ coefficient vector in f(*,3)
call dcopy(nxm2,w4,1,wl,1)

call daxpy(nxm2,-one/lambda,w5,1,wl,1)
call dcopy(nxm2,wl,1,£(3,3),1)

f(1,3) = zero

21

O o o o0

O o o o o o o0

50

£(2,3) = -p(1)/lambda
f(nxpl1,3) = zero

Store the a coefficient vector in f(*,1)

call dcopy(nx,suy,1,wl,1)

call dgbmv("n",nx,nxm2,2,0,-lambda,pq,3,w4,1,one,wl,1)
call dcopy(nx,wl,1,£(2,1),1)

f(1,1) = £(2,1)

Store the b coefficient vector in f(*,2) and the d

coefficient in f(x*,4)

do 50 i = 1,nxmi
f(i+1,4) = (£(i+2,3)-f(i+1,3)+p(i+1)/lambda)
& /(h(i)*three)
f(i+1,2) = (£(i+2,1)-f(i+1,1))/h(i)-(twoxf(i+1,3)
& +f (i+2,3)+p(i+1)/lambda)*h (i) *onethd
continue
£(1,2) = £(2,2)
f(nxp1,2) = (f(nxpl,1)-f(nx,1))/h(nxml)+h(nxml)*(f(nx,3)+
& twoxp(nx)/lambda)*onethd
f(1,4) = zero
f(nxpl,4) = zero
return

end

subroutine hat(nx,x,p,nz,z,iz,dz,xx,f,big,psi,lscore)

Subroutine to compute the score estimates at the
evaluation points, z(i), using equation (3). As a by
product, the L-score estimate at each z(i) is also
returned

BLAS1 routines called:

"dcopy"

22

o o o o0

20
10

30

integer nx,nz,iz(1)

double precision zero,half,one,two,three,big
parameter (zero = 0.0d0, half = 0.5d0, one = 0.1d1,
& two = 0.2d1, three = .3d1)

double precision x(1),p(1),z(1),dz(1),xx(1),f(nx+1,4)
double precision psi(1),lscore(1)

Assign bin numbers, iz(i), to evaluation points, z(i)

call dcopy(nx,x,1,xx,1)
xx(nx+1) = big
do 10 i=1,nz
do 20 j=1,nx+1
if (z(i) .1t. xx(j)) then

iz(i)=j-1
goto 10
endif
continue

continue

Computes the differences between evaluation points and
the lower bounds of their respective bins

call dcopy(nx,x,1,xx(2),1)
xx(1) = xx(2)

do 30 i=1,nz
dz(i)=z(i)-xx(iz(i)+1)
continue

Compute the score and L-score estimates

do 40 i = 1,nz
psi(i) = £(iz()+1,) +£(iz(i)+1,2)*dz(1)+£(iz(i)+1,3)*
& dz(i)**2+f(iz(i)+1,4) *dz (i) **3
lscore(i) = f(iz(i)+1,2)+twoxf(iz(i)+1,3)*dz(i)+threex*

23

40

&

f(iz(i)+1,4)*dz (1) **2
continue
return

end

24

