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Abstract

Economic models are often stated as systems of nonlinear equations, for example general equilibrium
models, game theory models, and macroeconomic models. The existence and uniqueness of solutions to
the model are critical issues. Interval arithmetic is an arithmetic that operates on interval values rather
than point values. It can be used to find all solutions of a system of nonlinear equations over a specified
region and to determine if a solution is unique. We present arguments demonstrating that this arithmetic
is capable of determining existence and uniqueness. We then use a public domain software package to
find all roots of several simple economic example problems.

1 Introduction

Hansen [6] cites an example given by Dennis and Schnabel [4] concerning the function f1(x) = x4 − 12x3 +

47x2 − 60x where they state that “It would be wonderful if we had a general purpose computer routine that

would tell us: ‘the roots of f1(x) are x = 0, 3, 4, and 5; · · · ’. It is unlikely that there will ever be such a

routine. In general, the questions of existence and uniqueness–does a given problem have a solution and is

it unique?–are beyond the capabilities one can expect of algorithms that solve nonlinear problems..”

Interval arithmetic is a mathematical method that can be used to produce the results Dennis and Schnabel

desire. The solution to this problem using interval arithmetic is shown in Sec 6. Globsol is a public domain

package written in Fortran 90 that includes an interval as a user-defined data type and the software methods

needed to implement the rules of interval arithmetic. This software is part of the code made available

by the Globsol project headed by R. Baker Kearfott (University of Louisiana at Lafayette), George Corliss

(Marquette University), Chenyi Hu (University of Houston–Downtown), Michael Schulte (Lehigh Univeristy)

and Mark A. Stadherr (Notre Dame University). Globsol was designed primarily to be a global optimization
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package, but can be used to solve systems of nonlinear equations as well. A URL that points to the code for

Globsol as well as other interval arithmetic packages is http://cs.utep.edu/interval-comp/main.html.

The Globsol site can be found at http://studsys.mscs.mu.edu/ globsol/. In addition to the Globsol code,

the authors also provide makefiles for the Sun Fortran compiler, the NAG compiler for the Sun operating

systems, SGI with the MIPS compiler, the Compaq Fortran compiler for machines using Microsoft operating

systems, and the NAG/Salford Fortran compiler for Microsoft operating systems.

Two of the working papers available at the Globsol web site are applications of the program to financial

problems. Working note No. 6 is portfolio optimization problem and working note No. 7 is an application

of portfolio management subject to currency rate risk. These papers provide substantial detail illustrating

much of the the development of the theory of the problem and then showing how it is coded for Globsol. An

explanation of the theory of the Globsol routines can be found in Kearfott [8] .

Sec 2 presents the rules of interval arithmetic, Sec 3 gives some useful results of interval analysis and

Sec 4 outlines an algorithm that can used for locating and verifying the uniqueness of the solutions of a

system of nonlinear equations. Sec 5 is a discussion of the capabilities and use of Globsol. Sec 6 applies

this algorithm to the problem mentioned by Dennis and Schnabel. Sects 7 and 8 apply the algorithm to

multivariate examples. Sec 9 applies the method to a small classical macroeconomic model. Sec 10 applies

the algorithm to a three consumer, three good general equilibrium model and Sec 11 considers a general

equilibrium model with multiple roots. Sec 12 is devoted to conclusions.

2 The rules of interval arithmetic

The modern form of interval arithmetic was introduced by R. E. Moore [10]. This section presents some of

the concepts of Moore’s arithmetic and introduces the notation used in the remainder of this work.

Upper case letters, such as X, indicate intervals while lower case letters, such as x, represent point values.

An interval is defined to be the real compact interval X = [a, b] where a and b indicate the lower and upper

endpoints. If X = [a, b] and Y = [c, d] are intervals, the binary operations for interval arithmetic are

X + Y = [a + c, b + d],

X − Y = [a − d, b − c],

X · Y = [min(ac, ad, bc, bd),
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max(ac, ad, bc, bd)],

X/Y = [a, b] · [1/d, 1/c] if 0 �∈ Y.

If 0 ∈ Y then the result for division requires an extended interval arithmetic. So if 0 ∈ Y

X/Y =




[b/c,+∞) if b ≤ 0 and d = 0,
(−∞, b/d] ∪ [b/c,+∞) if b ≤ 0

and c < 0 < d,
(−∞, b/d] if b ≤ 0 and c = 0,
(−∞, a/c] if a ≥ 0 and d = 0,
(−∞, a/c] ∪ [a/d,+∞) if a ≥ 0

and c < 0 < d,
[a/d,+∞) if a ≥ 0 and c = 0,

(−∞,+∞) if a < 0 and b > 0,

and X/0 = (−∞,+∞). The details of computing with infinite or semi-infinite intervals can be found in

[13, 6, 8].

Some definitions that will be needed later are the width, w(X) = b − a of an interval X = [a, b] and the

absolute value | X |= max{| a |, | b |}. Also let the midpoint of X be m(X) = (b + a)/2.

Interval evaluation of monotonic elementary functions is straightforward,

f(X) = [f(a), f(b)],

where f(X) is a function evaluated over an interval X = [a, b]. For example,

ln(X) = [ln(a), ln(b)].

Non–monotonic elementary functions (sine, cosine, etc.) are more difficult and will not be considered here.

Non–monotonic functions that are constructed using monotonic elementary functions can be computed using

the binary rules and the rule for elementary monotonic functions without any special treatment, as in

f(X) = ln(exp(X2 − X)).

A box is a vector of intervals such as X = [X1,X2, . . . , Xn]. The above rules can be applied element by

element to boxes.
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3 Two Useful Results

Moore [9] established the following two important results. One of these is that interval arithmetic is inclusion

monotonic,

X ⊂ Y implies f(X) ⊂ f(Y ). (1)

Rall [12] calls the second useful result the fundamental theorem of interval analysis.

x ∈ X implies f(x) ∈ f(X). (2)

This result says that the range of a function, f(x), evaluated over some interval X, will always be a subset of

the interval computation f(X). The fundamental theorem implies that if 0 �∈ f(X) then X cannot contain

a zero of f .

4 An Interval Newton Method

Moore [9] also derived an interval Newton method for the solution of a system of nonlinear equations based on

the mean value theorem. Moore’s method is presented here for a function of a single variable for simplicity;

the results can be extended to the multivariate case. The mean value theorem is

f(x) − f(x∗) = (x − x∗)f ′(ξ),

where x ≤ ξ ≤ x∗. Suppose f(x∗) = 0, then

x∗ = x − f(x)
f ′(ξ)

.

Let X be an interval containing x and x∗, then because x ≤ ξ ≤ x∗, ξ ∈ X. Using the fundamental theorem

(2), f ′(ξ) ∈ f ′(X) and

x∗ = x − f(x)
f ′(ξ)

∈ x − f(x)
f ′(X)

,

so x∗ ∈ N(x,X) where

N(x,X) = x − f(x)
f ′(X)

.

Assume that for the moment that 0 �∈ f ′(X) so the difficulties of an extended interval arithmetic can be

avoided. Now any zero of f in X is also in N(x,X) and hence is in the intersection N(x,X) ∩ X. N(x,X)

has the following properties:
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(a) Every zero x∗ ∈ X of f satisfies x∗ ∈ N(x,X),

(b) If N(x,X) ∩ X = ∅ then no zero of F exists in X, and

(c) If N(x,X) ⊂ X, then a unique zero of f exists in X and hence in N(x,X).

See [9, 6, 11] for proofs. If items (b) or (c) in the above list cannot be satisfied, f may have two or more

zeros in X. The interval Newton method (for n = 0, 1, 2 . . . n) is:

xn = m(Xn),

N(xn,Xn) = xn − f(xn)
f ′(Xn) ,

Xn+1 = Xn ∩ N(xn,Xn).

(3)

If 0 ∈ f ′(Xn) then N(xn,Xn) results in one or two semi-infinite intervals. The intersection N(xn,Xn) ∩
Xn, however, results in a single interval, the union of two finite intervals, or the empty set.

Hansen [6] gives the following algorithm (modified here to avoid some subtle technical issues of using

floating point arithmetic):

1. Put the initial interval X0 into a list L.

2. If L is empty, stop. Otherwise remove the first interval from L, call it X.

3. if w(X) < εX and | f(X) |< εF store X on a final list F .

4. Let x = m(X). Evaluate f ′(X). If 0 �∈ f ′(X) go to 5, else go to 6.

5. Do one step of the interval Newton method. If the result is empty, then no zero exists in X, go to 2.

If X is unchanged then X contains two or more zeros. In this case bisect X into two parts, X1 and

X2 such that X = X1 ∪ X2 and X1 ∩ X2 = ∅. Store X1 and X2 in L then go to 2. Otherwise go to 3.

6. Do one step of the interval Newton method. The results will be the empty set, a single interval, or two

disjoint intervals. If the result is empty go to 2. If the result is a single interval, call it X and go to 3.

If the result is two disjoint intervals, store one of them in L, call the other one X, and go to 3.

In the algorithm εX and εf are stopping criteria. The intervals stored in the list F contain the zeros of f .
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5 Using Globsol

Globsol uses automatic (computational) differentiation, interval arithmetic and numerical techniques that

have been adapted to use these concepts, such as the interval Newton method mentioned above. The authors

have written the software in such a fashion as to shield users from most of the details of the software.

The chief tasks for a user is to (a) write a main program that represents the system of equations to

be solved and (b) to modify a configuration file that provides parameters to the program that control its

execution. The latter file specifies such things as the length of time to allow the program to execute, how

much printed output is to be generated, and what solution techniques are to be used. Further details

regarding the configuration file will not be discussed here.

The main program uses a Fortran90 interface (called overload in the following code examples) to the

definition of the interval arithmetic user-defined type and to the interval arithmetic routines. The main

program consists of the system of equations to be solved (as well as any equality or inequality constraints

in optimization problems). The output of the main program is an internal representation of the problem

called a codelist [8]. The codelist is then processed by a second program that uses automatic differentiation

to produce a new codelist that contains derivative information. This second program is part of Globsol and

the user only has to submit the first codelist to this program.

The second codelist is then processed by a third program that finds the roots of the system of equations

(or the global minimum for optimization problems). Again the user does not have to do anything other than

give this third program the second codelist as input. In summary the steps are

Step 1. Write a program representing the problem to be solved. The output of this program will

be an internal representation of the problem called a codelist.

Step 2. Process this codelist with a program that produces a new codelist that contains derivative

information.

Step 3. Process the second codelist with a program that finds all solutions of the system of

equations.

Examples of program representation of problems are presented later.
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The interval Newton method requires interval derivative information. The authors of Globsol have used

automatic differentiation techniques adapted to interval methods to compute this derivative information.

Without this users would have to find analytical expressions for the derivatives and then code the appropriate

interval expressions which would be a very laborious and error-prone process. The authors have gone a step

further and also provided for an automatic interval slope computations. Recall that the fundamental theorem

implies that interval calculations will tend to lead to produce interval results that are wider than the range

of a particular function. Hansen [5] was able to show that interval slopes tended to be narrower than

interval derivatives and still enclose the range of a derivative. So replacing derivative information with slope

information would tend to lead to sharper results with, say, the interval Newton method.

A large number of other specialized interval routines are contained in the Globsol package that cannot be

discussed here. Details can be found at the previously mentioned web sites or in Kearfott’s [8] book. Some

examples of problems solved using Globsol are considered next.

6 Example: f(x) = x4 − 12x3 + 47x2 − 60x

The problem cited by Dennis and Schnabel in Sec 1 is to find the zeros is of f(x) = x4 − 12x3 + 47x2 − 60x.

Recall that the zeros are located at x = 0, 3, 4, and5, all of which are found by Globsol. The program for this

problem is shown next followed by the programs output. The search space is X = [−1020, 1020].

Program Hansen1

use overload !contains the definition of an interval

!and provides an interface to interval routines

type(cdlvar), dimension(1) ::x

type(cdllhs), dimension(1) ::f

output_file_name = ’Hansen1.cdl’

call initialize_codelist(x)

f(1) = x(1)**4 - 12.0d0*x(1)**3 + 47.0d0*x(1)**2 - 60.0d0*x(1)

call finish_codelist

End Program Hansen1
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The output for the program follows. The first item shown is the search space for the problem. This is

then followed by the CPU time required for solution. This research used the Compaq Fortran compiler and

a 1.6 MHz Pentium computer running under Windows XP. Note that the computer time for the problem is

quite small considering the size of the search space.

The next portion of the output reports the approximate location of the roots. The routine first reports

a relatively small box that has been verified to contain a unique root. Globsol finds that there is a unique

root in Box no. 1 which is the box [0.3998D + 01, 0.4002D + 01]. An approximate root is computed and the

box further reduced until a “small” box known to include the root is computed. The statement THERE WERE

NO UNRESOLVED BOXES means that no other roots exist in the search space.

Initial box coordinates:

[ -0.1000D-19, 0.1000D+21 ]

CPU time: 0.3125D-01

The following boxes have been verified to contain unique roots:

Box no.: 1

Box coordinates:

[ 0.3998D+01, 0.4002D+01 ]

Level: 0

Box contains the following approximate root:

0.4000D+01

Small box in which the root must lie:

[ 0.4000D+01, 0.4000D+01 ]

Interval residuals over the small box:

[ -0.4210D-11, 0.4210D-11 ]

-------------------------------------------------

Box no.: 2

Box coordinates:

[ 0.4987D+01, 0.5013D+01 ]
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Level: 0

Box contains the following approximate root:

0.5000D+01

Small box in which the root must lie:

[ 0.5000D+01, 0.5000D+01 ]

Interval residuals over the small box:

[ -0.7734D-11, 0.7800D-11 ]

-------------------------------------------------

Box no.: 3

Box coordinates:

[ 0.2995D+01, 0.3005D+01 ]

Level: 0

Box contains the following approximate root:

0.3000D+01

Small box in which the root must lie:

[ 0.3000D+01, 0.3000D+01 ]

Interval residuals over the small box:

[ -0.1867D-11, 0.1836D-11 ]

-------------------------------------------------

Box no.: 4

Box coordinates:

[ -0.3940D-23, 0.1316D-23 ]

Level: 0

An approximate root has not been computed.

Small box in which the root must lie:

[ -0.3940D-23, 0.1316D-23 ]

Interval residuals over the small box:

[ 0.0000D+00, 0.0000D+00 ]

-------------------------------------------------
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THERE WERE NO UNRESOLVED BOXES

7 A Multivariate Example

Burden and Faires [1] consider a problem where two species compete for the same food supply. The number

of each species alive at time t is x1(t) and x2(t). The population of each species is described by

ẋ1(t) = x1(t)[4 − 0.0003x1(t) − 0.0004x2(t)]

and

ẋ2(t) = x2(t)[2 − 0.0002x1(t) − 0.0001x2(t)].

The two populations will be at equilibrium when

ẋ1(t) = ẋ2(t) = 0.

Four solutions are shown below. The last three solutions arise when one or both of the species are extinct.

The first solution gives equilibrium between the two species where neither is extinct. All solutions for the

problem have been found. Note the large domain, [0, 1010], covered by each variable.

Glosbol could not find small boxes on the first run for all roots. It was necessary to take the initial results

(fairly large boxes in some case) and these as starting boxes in a second run. The second run did produce

acceptably small boxes containing unique roots.

The Globsol program is

Program Main

! This program solves the nonlinear system of equations from

! Burden and Faires where two species compete for the same food supply

! The variables x1(t) and x2(t) speficy the number of each species alive at time t.

! The system will be in equlibilrium when dx1(t)/dt = dx2(t)/dt = 0.

! The derivatives are presented here

10



use overload

type(cdlvar), dimension(2) :: x

type(cdllhs), dimension(2) :: f

output_file_name = ’Burden.cdl’

call initialize_codelist(x)

f(1) = x(1)*(4 - 0.0003d0*x(1) - 0.0004d0*x(2)) ! dx1(t)/dt

f(2) = x(2)*(2 - 0.0002d0*x(1) - 0.0001d0*x(2)) ! dx2(t)/dt

call finish_codelist

End Program Main

Results

Initial box coordinates:

[ 0.0000D+00, 0.1000D+11 ] [ 0.0000D+00, 0.1000D+11 ]

The following boxes have been verified to contain unique roots:

Box coordinates:

[ 0.8000D+04, 0.8000D+04 ] [ 0.4000D+04, 0.4000D+04 ]

Level: 1

Box contains the following approximate root:

0.8000D+04 0.4000D+04

Small box in which the root must lie:

[ 0.8000D+04, 0.8000D+04 ] [ 0.4000D+04, 0.4000D+04 ]

Interval residuals over the small box:

[ -0.9600D-05, 0.9600D-05 ] [ -0.3200D-05, 0.3200D-05 ]

-------------------------------------------------

Box coordinates:
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[ -0.5000D-09, 0.5000D-09 ] [ 0.1278D+05, 0.2722D+05 ]

Level: 0

Box contains the following approximate root:

0.0000D+00 0.2000D+05

Small box in which the root must lie:

[ -0.5000D-09, 0.5000D-09 ] [ 0.2000D+05, 0.2000D+05 ]

Interval residuals over the small box:

[ -0.2000D-08, 0.2000D-08 ] [ -0.2086D-08, 0.2086D-08 ]

-------------------------------------------------

Box coordinates:

[ 0.1332D+05, 0.1334D+05 ] [ -0.1000D+01, 0.1000D+01 ]

Level: 0

Box contains the following approximate root:

0.1333D+05 0.0000D+00

Small box in which the root must lie:

[ 0.1333D+05, 0.1333D+05 ] [ -0.5563-307, 0.5563-307 ]

Interval residuals over the small box:

[ -0.2667D-04, 0.2667D-04 ] [ -0.8159-307, 0.8159-307 ]

-------------------------------------------------

Box coordinates:

[ -0.1000D+01, 0.1000D+01 ] [ -0.1000D+01, 0.1000D+01 ]

Level: 1

Box contains the following approximate root:

0.0000D+00 0.0000D+00

Small box in which the root must lie:

[ -0.5000D-09, 0.5000D-09 ] [ -0.4450-307, 0.4450-307 ]

Interval residuals over the small box:

[ -0.2000D-08, 0.2000D-08 ] [ -0.1335-306, 0.1335-306 ]
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8 Another Multivariate Example

Chow [2] gives as a problem finding the steady state solution of

y1t = .8y1,t−1 + .4 exp(−.05y2,t−1) + .2 + u1t,

y2t = .1 exp(.2y1,t−1) + .75y2,t−1 + u2t,

where u1t and u2t are error terms. The program and output follow.

Program Main

use overload

type(cdlvar), dimension(2) ::x

type(cdllhs), dimension(2) ::f

output_file_name = ’chow.cdl’

call initialize_codelist(x)

f(1) = x(1) - (0.8d0*x(1) + 0.4d0*exp(-0.05d0*x(2)) + 0.2d0)

f(2) = x(2) - (0.1d0*exp(0.2d0*x(1)) +0.75d0*x(2))

call finish_codelist

End Program Main

Initial box coordinates:

[ -0.1000D+04, 0.1000D+04 ] [ -0.1000D+04, 0.1000D+04 ]

CPU time: 0.9375D-01

The following boxes have been verified to contain unique roots:

Box no.: 1

Box coordinates:

[ 0.2057D+01, 0.3802D+01 ] [ -0.1298D+01, 0.2735D+01 ]
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Level: 7

Box contains the following approximate root:

0.2929D+01 0.7186D+00

Small box in which the root must lie:

[ 0.2929D+01, 0.2929D+01 ] [ 0.7186D+00, 0.7186D+00 ]

Interval residuals over the small box:

[ -0.2929D-09, 0.2929D-09 ] [ -0.5263D-10, 0.5263D-10 ]

-------------------------------------------------

THERE WERE NO UNRESOLVED BOXES

9 A Classical Macroeconomic Model

In this section a small classical macroeconomic model is solved. The model is

l = αpy/w labor demand
l = N0 + Nd(w/p) labor supply
y = lα production function

Md = kpy Cambridge equation
Ms = Md Money market equilibrium

where l is the amount of labor used, y is real output, and p is the price level, Ms and Md represent money

supply and money demand. The Globsol program and the output from the program are shown next. Note

that the initial box is very large as usual. Further note that Globsol has determined that only one solution

to the model over the search space.

Program Main

use overload

type(cdlvar), dimension(4) :: x

type(cdllhs), dimension(4) :: f

type(cdlvar) :: w !nominal wage rate

type(cdlvar) :: p !price level

type(cdlvar) :: l !labor

type(cdlvar) :: y !output

real(kind=8), parameter :: No = 10.0d0 !labor supply parameter
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real(kind=8), parameter :: Ns = 10.0d0 !labor supply parameter

real(kind=8), parameter :: a = 0.2d0 !production function parameter

real(kind=8), parameter :: Ms = 20.0d0 !Money supply

real(kind=8), parameter :: k = 0.20d0 !Cambridge k

output_file_name = ’classical.cdl’

call initialize_codelist(x)

w = x(1)

l = x(2)

y = x(3)

p = x(4)

f(1) = l - (No + Ns*(w/p) ) !labor supply

f(2) = l - a*p*y/w !labor demand

f(3) = y - l**(a) !production function

f(4) = Ms - k*p*y !Money market equilibrium

call finish_codelist

End Program Main

Initial box coordinates:

[ 0.1000D-09, 0.1000D+21 ] [ 0.1000D-09, 0.1000D+21 ]

[ 0.1000D-09, 0.1000D+21 ] [ 0.1000D-09, 0.1000D+21 ]

CPU time: 0.3267D+02

The following boxes have been verified to contain unique roots:

Box no.: 1

Box coordinates:
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[ 0.1713D+01, 0.2167D+01 ] [ 0.9104D+01, 0.1151D+02 ]

[ 0.1408D+01, 0.1781D+01 ] [ 0.6203D+02, 0.6340D+02 ]

Level: 128

Box contains the following approximate root:

0.1940D+01 0.1031D+02 0.1595D+01 0.6271D+02

Small box in which the root must lie:

[ 0.1940D+01, 0.1940D+01 ] [ 0.1031D+02, 0.1031D+02 ]

[ 0.1595D+01, 0.1595D+01 ] [ 0.6271D+02, 0.6271D+02 ]

Interval residuals over the small box:

[ -0.5309D-08, 0.5309D-08 ] [ -0.1546D-07, 0.1546D-07 ]

[ -0.9568D-09, 0.9568D-09 ] [ -0.1000D-07, 0.1000D-07 ]

-------------------------------------------------

THERE WERE NO UNRESOLVED BOXES

10 General equilibrium

Cornwall [3] gives a model with the following excess demand equations for a three consumer, three good

world:
z1(p) = −r1p2

p1+p2
+ r2p3

p1+p3
,

z2(p) = r1p1
p1+p2

− r2p2
p2+p3

,

z3p = r2p2
p2+p3

− p1r3
p1+p3

,

where pi are prices and ri is the endowment that consumer i has of good i. Suppose that the initial

endowments are r1 = r2 = r3 = 1, then the only equilibrium prices occur where p1 = p2 = p3 > 0 [3].

Choosing p1 as a numéraire and applying Walras’ law gives the following Globsol program:

Program Main

use overload
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type(cdlvar), dimension(2) :: p

type(cdllhs), dimension(2) :: f

real(kind=8), dimension(3) :: r

real(kind=8) :: num

num = 1.0d0

r(1) = 1.0d0

r(2) = 1.0d0

r(3) = 1.0d0

output_file_name = ’GE1.cdl’

call initialize_codelist(p)

f(1) = -r(1)*num/(num + p(1)) + p(2)*r(3)/(num+p(2))

f(2) = num*r(1)/(num+p(1)) - r(2)*p(2)/(p(1)+p(2))

call finish_codelist

End Program Main

CPU time: 0.4531D+00

The following boxes have been verified to contain unique roots:

Box no.: 1

Box coordinates:

[ 0.9817D+00, 0.1018D+01 ] [ 0.9474D+00, 0.1053D+01 ]

Level: 134
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Box contains the following approximate root:

0.1000D+01 0.1000D+01

Small box in which the root must lie:

[ 0.1000D+01, 0.1000D+01 ] [ 0.1000D+01, 0.1000D+01 ]

Interval residuals over the small box:

[ -0.1250D-09, 0.1250D-09 ] [ -0.2942D-14, 0.2859D-14 ]

-------------------------------------------------

THERE WERE NO UNRESOLVED BOXES

11 Another general equilibrium problem

Judd [7] presents a general equilibrium problem that would create difficulty for Newton’s method. Judd

considers an exchange economy with two agents (i = 1, 2) and two goods (j = 1, 2). The agents have utility

functions

ui(x1, x2) =
ai
1x

(γi+1)
1

γi + 1
+

ai
2x

(γi+1)
2

γi + 1
.

Agent i is assumed to have endowment ei = (ei
1, e

i
2). Let p1 and p2 designate the price of the two goods.

Agent i has a demand function di
j(p) = θi

jI
ip−ηi

j where Ii = p1e
i
1 + p2e

i
2 and θi

j = (ai
j)/

∑2
l=1(a

i
l)

ηip
(1−ηi)
l .

Judd assumes the following values for the problem: a1
1 = a2

2 = 1024, a1
2 = a2

1 = 1, e1
1 = e2

2 = 12, and

η1 = η2 = 0.2 where ηi ≡ −1/γi.

Equilibrium is given by
2∑

i=1

di
1(p) =

2∑
i=1

ei
1, p1 + p2 = 1.

The market for good two is not needed because of Walras’s law. There are three equilibria for this

problem: p = (0.5, 0.5), p = (0.1129, 0.8871) and p = (0.8871, p = 0.1129). Judd simplifies the problem by

imposing the solution p2 = 1 = p1, leading to an equation with only one unknown. This substitution creates

numerical difficulties for Newton’s method. Newton’s method in this case can lead to searching in regions

with negative prices. This is not a problem for the interval Newton method.

Two versions of the problem will be considered here. The first version uses the substitution p2 = 1 − p1

while the second does not. The Globsol program for the first version is
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Program Main

use overload

real(kind=8), dimension(2,2) :: e !format e(person, good)

real(kind=8), dimension(2,2) :: a

real(kind=8), dimension(2) :: eta

integer :: i, j

type(cdlvar), dimension(1) :: p

type(cdlvar), dimension(2) :: Index

type(cdlvar), dimension(2,2) :: theta

type(cdlvar), dimension(2) :: d

type(cdllhs), dimension(1) :: f

call initialize_codelist(p)

output_file_name = ’Judd3.cdl’

e(1,1) = 12.0d0

e(1,2) = 1.0d0

e(2,1) = 1.0d0

e(2,2) = 12.0d0

a(1,1) = 1024.0d0

a(1,2) = 1.0d0

a(2,1) = 1.0d0

a(2,2) = 1024.0d0

eta(1) = 0.2d0

eta(2) = 0.2d0

Index(1) = p(1)*e(1,1) + (1-p(1))*e(1,2)

Index(2) = p(1)*e(2,1) + (1-p(1))*e(2,2)

Do i = 1,2

Do j =1,2

theta(i,j) = (a(i,j)**eta(i))/( (a(i,1)**eta(i))*(p(1)**(1-eta(i)) )&
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+ (a(i,2)**eta(i))*((1-p(1))**(1-eta(i)) ) )

end do ! j

end do ! i

d(1) = theta(1,1)*Index(1)*(p(1)**(-eta(1) ) )

d(2) = theta(2,1)*Index(2)*(p(1)**(-eta(2) ) )

f(1) = e(1,1) + e(2,1) - d(1) - d(2)

call finish_codelist

End Program Main

Initial box coordinates:

[ 0.1000D-10, 0.1000D+01 ]

CPU time: 0.3438D+00

The following boxes have been verified to contain unique roots:

Box no.: 1

Box coordinates:

[ 0.8813D+00, 0.8929D+00 ]

Level: 1

Box contains the following approximate root:

0.8871D+00

Small box in which the root must lie:

[ 0.8871D+00, 0.8871D+00 ]

Interval residuals over the small box:

[ -0.2483D-12, 0.2560D-12 ]

-------------------------------------------------

Box no.: 2

Box coordinates:

[ 0.4988D+00, 0.5012D+00 ]
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Level: 1

Box contains the following approximate root:

0.5000D+00

Small box in which the root must lie:

[ 0.5000D+00, 0.5000D+00 ]

Interval residuals over the small box:

[ -0.3904D-12, 0.3855D-12 ]

-------------------------------------------------

Box no.: 3

Box coordinates:

[ 0.1116D+00, 0.1142D+00 ]

Level: 1

Box contains the following approximate root:

0.1129D+00

Small box in which the root must lie:

[ 0.1129D+00, 0.1129D+00 ]

Interval residuals over the small box:

[ -0.4647D-12, 0.4628D-12 ]

THERE WERE NO UNRESOLVED BOXES

Version 2 of the solution

Program Main

use overload

real(kind=8), dimension(2,2) :: e !format e(person, good)

real(kind=8), dimension(2,2) :: a
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real(kind=8), dimension(2) :: eta

integer :: i, j

type(cdlvar), dimension(2) :: p

type(cdlvar), dimension(2) :: Index

type(cdlvar), dimension(2,2) :: theta

type(cdlvar), dimension(2) :: d

type(cdllhs), dimension(2) :: f

call initialize_codelist(p)

output_file_name = ’Judd2.cdl’

e(1,1) = 12.0d0

e(1,2) = 1.0d0

e(2,1) = 1.0d0

e(2,2) = 12.0d0

a(1,1) = 1024.0d0

a(1,2) = 1.0d0

a(2,1) = 1.0d0

a(2,2) = 1024.0d0

eta(1) = 0.2d0

eta(2) = 0.2d0

Index(1) = p(1)*e(1,1) + p(2)*e(1,2)

Index(2) = p(1)*e(2,1) + p(2)*e(2,2)

Do i = 1,2

Do j =1,2

theta(i,j) = (a(i,j)**eta(i))/( (a(i,1)**eta(i))*(p(1)**(1-eta(i)) )&

+ (a(i,2)**eta(i))*(p(2)**(1-eta(i)) ) )

end do ! j

end do ! i

d(1) = theta(1,1)*Index(1)*(p(1)**(-eta(1) ) )

d(2) = theta(2,1)*Index(2)*(p(1)**(-eta(2) ) )
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f(1) = e(1,1) + e(2,1) - d(1) - d(2)

f(2) = 1 - p(1) - p(2)

call finish_codelist

End Program Main

Initial box coordinates:

[ 0.1000D-09, 0.1000D+01 ] [ 0.1000D-09, 0.1000D+01 ]

CPU time: 0.1734D+01

The following boxes have been verified to contain unique roots:

Box no.: 1

Box coordinates:

[ 0.1116D+00, 0.1143D+00 ] [ 0.8830D+00, 0.8911D+00 ]

Level: 10

Box contains the following approximate root:

0.1129D+00 0.8871D+00

Small box in which the root must lie:

[ 0.1129D+00, 0.1129D+00 ] [ 0.8871D+00, 0.8871D+00 ]

Interval residuals over the small box:

[ -0.2212D-06, 0.2212D-06 ] [ -0.5000D-07, 0.5000D-07 ]

-------------------------------------------------

Box no.: 2

Box coordinates:

[ 0.8857D+00, 0.8884D+00 ] [ 0.1092D+00, 0.1167D+00 ]

Level: 10

Box contains the following approximate root:

0.8871D+00 0.1129D+00

Small box in which the root must lie:
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[ 0.8871D+00, 0.8871D+00 ] [ 0.1129D+00, 0.1129D+00 ]

Interval residuals over the small box:

[ -0.3585D-08, 0.3586D-08 ] [ -0.5001D-07, 0.5000D-07 ]

-------------------------------------------------

Box no.: 3

Box coordinates:

[ 0.4968D+00, 0.5032D+00 ] [ 0.4981D+00, 0.5019D+00 ]

Level: 10

Box contains the following approximate root:

0.5000D+00 0.5000D+00

Small box in which the root must lie:

[ 0.5000D+00, 0.5000D+00 ] [ 0.5000D+00, 0.5000D+00 ]

Interval residuals over the small box:

[ -0.1565D-07, 0.4631D-07 ] [ -0.6111D-07, 0.1809D-06 ]

-------------------------------------------------

THERE WERE NO UNRESOLVED BOXES

12 Conclusions

Interval arithmetic is a method of determining all roots of a system of nonlinear equations within a specified

space. We have examined a public domain software package that incorporates interval arithmetic, automatic

differentiation arithmetic and slope arithmetic, and an interval Newton method. We were able to use this

package, Globsol, to find all the roots of a number of test cases. We will apply Globsol to much larger systems

of equations in the near future.
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