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ABSTRACT

The standard Rao’s (1948) score or Lagrange multiplier test for heteroskedas-
ticity was originally developed assuming normality of the disturbance term [see
Godfrey (1978b), and Breusch and Pagan (1979)]. Therefore, the resulting test
depends heavily on the normality assumption. Koenker (1981) suggests a stu-
dentized form which is robust to nonnormality. This approach seems to be
limited because of the unavailability of a general procedure that transforms a
test to a robust one. Following Bickel (1978), we use a different approach to
take account of nonnormality. Our tests will be based on the score function
which is defined as the negative derivative of the log-density function with
respect to the underlying random variable. To implement the test we use a
nonparametric estimate of the score function. Our robust test for heteroskedas-
ticity is obtained by running a regression of the product of the score function
and ordinary least squares residuals on some exogenous variables which are
thought to be causing the heteroskedasticity. We also use our procedure to
develop a robust test for autocorrelation which can be computed by regressing
the score function on the lagged ordinary least squares residuals and the inde-
pendent variables. Finally, we carry out an extensive Monte Carlo study which
demonstrates that our proposed tests have superior finite sample properties
compared to the standard tests.



1 Introduction

Conventional model specification tests are performed with some paramet-
ric, usually the Gaussian, assumptions on the stochastic process generating
a model. These parametric specification tests have the drawback of having
incorrect size, suboptimal power or even being inconsistent when any of the
parametric specifications of the stochastic process is incorrect. The theoretical
arguments can be found in Box (1953), Tukey (1960), Bickel (1978), Koenker
(1981), Im (2000), Linton and Steigerwald (2000), Machado and Santos Silva
(2000), and Gonzalez-Rivera and Ullah (2001) while Monte Carlo evidence is
available in Bera and Jarque (1982), Davidson and MacKinnon (1983), Bera
and McKenzie (1986), Linton and Steigerwald (2000), and Gonzélez-Rivera
and Ullah (2001). In regards to testing for autocorrelation, Evans (1992) and
Ali and Sharma (1993) investigated the robustness to nonnormality of the
Durbin-Watson test.

One approach to robustify a test statistic against possible departure from
the Gaussian specification is to make modification to the test statistic so that
it still possesses similar asymptotic distribution under a wider class of inno-
vation densities. Koenker’s (1981) modification to the standard score test for
heteroskedasticity and the more recent modifications to robustify Glejser’s test
for heteroskedasticity by Im (2000), and Machado and Santos Silva (2000) are
a few examples. This approach appears to be limited because of the unavail-
ability of a general procedure that transforms a test to a robust one.

In this paper, we use a nonparametric estimate of the score function to
develop some tests for heteroskedasticity and autocorrelation which are ro-
bust to distributional misspecifications. The importance of the score function,
defined as ¥(r) = —logf'(x) = —’;(({f))j where f(z) is the probability
density function of a random variable, to robust statistical procedures has
been sporadically mentioned, implicitly or explicitly, throughout the past few
decades [see, e.g., Hampel (1974), Bickel (1978), Koenker (1982), Joiner and
Hall (1983), Manski (1984), Cox (1985), and Bera and Ng (1995)]. Numer-
ous works have been done on nonparametric estimation of the score function,
[see Stone (1975), Csorgé and Révész (1983), Manski (1984), Cox (1985), Cox
and Martin (1988), and Ng (1994)]. These facilitate our development of non-
parametric tests of specifications using the score function without making any
explicit parametric assumption on the underlying distribution. Therefore, we
expect our procedures to be immune to loss of power and incorrect size caused
by distributional misspecifications.

The use of the score function in the context of model specification testing is
not new. Robustifying the procedures of Anscombe (1961), and Anscombe and
Tukey (1963), Bickel (1978) derives the test statistics for testing nonlinearity
and heteroskedasticity which implicitly use the score function, [see also Pagan




and Pak (1993)]. Linton and Steigerwald (2000) propose adaptive testing in
ARCH models which also involves the score function. Gonzalez-Rivera and
Ullah (2001) modify the standard Rao’s score (RS) tests for restrictions in
a linear model and test for heteroskedasticity by using an estimated density
function instead of an assumed parametric density. In this paper, we modify
the RS test by directly estimating the score function nonparametrically.

Our nonparametric test for heteroskedasticity is obtained by running a re-
gression of the product of the score function and the ordinary least squares
residuals on some exogenous variables which are thought to be causing the
heteroskedasticity. The nonparametric autocorrelation test is performed by
regressing the score function on the lagged residuals and the independent vari-
ables, which may include lagged dependent variables. We also illustrate in the
paper that when the normality assumption is true, our tests for heteroskedas-
ticity and autocorrelation reduce to the familiar Breusch and Pagan (1979) or
Godfrey (1978b) tests for heteroskedasticity and Breusch (1978) or Godfrey
(1978a) tests for autocorrelation, respectively.

We perform an extensive Monte Carlo study which demonstrates that our
proposed tests have superior finite sample properties compared to the stan-
dard tests when the innovation deviates from normality while still retaining
comparable performances under the normal innovation.

The model and the test statistics are introduced and defined in Section 2.
In Section 3, we derive the one-directional test statistics for heteroskedasticity
and autocorrelation. Section 4 gives a brief review of existing score function
estimation techniques and a description of the score estimator used in the
Monte Carlo study. The finite sample performances of the conventional test
statistics and our proposed nonparametric tests are reported in Section 5.
Section 6 provides some concluding remarks.

2 The Model and the Test Statistics

2.1 The Model

In order to compare our findings with those of previous studies, we consider
the following general model which incorporates various deviations from the
classical linear regression model

Y L)y =z +w,  0(Lu,=¢, i=1,...,n (1)

where 7; is a dependent variable, x; is a k£ x 1 vector of non-stochastic explana-
tory variables, 3 is a k x 1 vector of unknown parameters, and v(L) and §(L)
are polynomials in the lag operator with

m D
YL)=1-> L and §(L)=1-> 6L,
7=1 7=1
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The normalized innovation term is defined as z; = ot The innovation ¢; is
independently distributed and has a symmetric probability density function
fele;) = U%fz(%) with the location parameter assumed to be zero and the
scale parameter taking the form o; = y/h(vi«), in which v; is a ¢ x 1 vector of
fixed variables having one as its first element, o/ = (ay, ) is a ¢ x 1 vector
of unknown parameters, and h is a known, smooth positive function with a
continuous first derivative. The score function of the innovation ¢; is defined
as

Cfele) 1 fiz) 1
fe(Gz') 0; fz(Zi) 0;

Model (1) can be written more compactly as

Vler) = @(j—p. (2)

v =Yy + 2.+ uy, u; = U0+ ¢ (3)
where
Yi= Wizt Yiem)', U= (Wi1,.yuiyp),
Y=, m)s  and 8= (01,...,0,) .
In matrix form the model is

y=Yv+XB+u=WI+u, u=Ud+¢€

where
Y1 Y/ Ty Uy
y= ) Y = ’ X = ) U = )
Yn Y, T, U,
Ui Wi
U= : W:{YSX]: e r:(”)
U’ w! b

2.2 Test Statistics

Most conventional hypotheses tests utilize the likelihood ratio (LR), Wald
(W) or Rao’s score (RS) principle. Each has its own appeals. The LR test is
favorable when a computer package conveniently produces the constrained and
unconstrained likelihoods. The Wald test is preferable when the unrestricted
MLE is easier to estimate. In model specification tests, RS is the preferred
principle since the null hypotheses can usually be written as restricting a subset
of the parameters of interest to zero and the restricted MLE becomes the OLS
estimator for the classical normal linear model.



Even though our nonparametric approach to specification tests does not
lead to the OLS estimator for the restricted MLE under the null hypothesis,
we will demonstrate that the RS test can still use the OLS or some other
consistent estimators and specification tests can be performed conveniently by
most of the popular computer packages. For this reason, we concentrate solely
on deriving the RS test statistics in this paper.

Let [;(6) be the log-density of the ith observation, where 6 is an s x
1 vector of parameters. The log-likelihood function for the n independent
observations is then [ = [(#) = Y_I' | [;(#). The hypothesis to be tested is
Hy : h(#) = 0, where h(f) is an r x 1 vector function of § with » < s. We
denote H(0) = 0h(0)/00" and assume that rank(H) = r, i.e., there are no
redundant restrictions. The RS statistic is given by

RS =dTI'd
where d = d(0) = 0l/00 is the score vector,
9%l al ol

is the information matrix and the ‘7’s indicate that the quantities are evaluated
at the restricted MLE of . Under Hy, RS is distributed as y? asymptotically.

3 Specification Tests

The usual one-directional specification tests of the model presented in (1) in
Section 2.1 involve testing the following hypotheses:

1. Homoskedasticity (H):  Hy:ay = 0, assuming 6 = 0.

2. Serial Independence (I):  Hy:d = 0, assuming ay = 0.

3.1 Test for Heteroskedasticity

Breusch and Pagan (1979) derived the RS test statistic for testing the pres-
ence of heteroskedasticity under normality assumption. We provide the full
derivation for the RS statistic here since the situation is somewhat different
due to the nonparametric specification of the innovation distribution.
Assuming 6 = 0, the p.d.f. of the stochastic process specified in Section 2.1
can be written as (}fz(;‘—)
We partition the vector of parameters of model (3) into

v
B 01

o=\ ... | =1 ...
(o5} 92
&%)



The log-likelihood function is then given by

10)=3 {1og f. [T)] - ;mgm@;an} .

i=1 (via

The score vector under Hy becomes

aAO)| & [ AE )& a1,
R RIS ORI
o) & JAE) L | &, a1
R B RO R
ae)|  _ 1§~ ) SUT) Wy, ~1@_h'<@1>v}
8aé 2;{ fz<%)5.3 ( )l ~9 i

W (é) | i

where 6% = h(ay), U; = y; — /5 — x;B, &1, 7 and J are the restricted MLE

T
obtained as the solutions to the above first order conditions.

If we partition the information matrix into
Tiw T
7 =
< In In
corresponding to 0 = (6, 65)’, we can see that

Tw =T, = —E Pl -0 (4)
2 96,00, )

due to the symmetry of the p.d.f. of u;. The lower right partition of Z is given
by

Ton = Var [da(0)] = Var [aaléi)] .

Letting ¢; = 22U and g; = . (%)(%) = ve(u;)u;, we get

dy(6) = icwz‘(gi - 1)

from the first order conditions. This gives us Zyy = Y1, c2v;Var(g;)vi. De-

=1 "1
: 2 _ _ 2 n 2 ! : 2
noting o, = Var(g;), we have Ty, = Ty i GG We can estimate o, by the

consistent estimator

2
2 _ Z?:1 91‘2 . Z?:1 i
9 n

n

o



no o~ no o~ \2 n o~
62 = 52| = Zi= 1912_ 2i=10i _ 2= 1912_1
9 916 n n n
since Y. | §; = n from the first order condition for ay. Let § = (g, - - -,gn)',
V =[vy-v,]and 1 = (1,---,1). Since the information matrix is block
diagonal, the RS statistics for testing Hy : ay = 0 can be written as
|
RSy = dylnpdy=— (5 — 1) V{V'V}" VG - 1)
9g
1 _ _
= > {gv vy vig—g1() g}
J
If we substitute o g for 0 into RSy, we get
Do 1 ~/ / ~/ !~
RSy =—{gV(V'V) ' Vig—g1(11) "1}
o%

9

The RSy test is not feasible and neither is RS g because the score function
1 of the innovation is unknown and, hence, prevents us from solving for the
restricted MLE a4, 7, and /3. To obtain a feasible version of the RSy statistic,
let 4 and B be any weakly consistent estimators, e.g., the OLS estimators,
for 7, and [, respectively, and 1;;* be a weakly consistent estimator for the
true score function ¢, over the interval [ﬁ(l), ﬁ(n)]. Here (1) and ,) are the
extreme order statistics of the consistent residuals. Denoting §; = ¢* (;) (ii;)

and ¢ 0 Z—g — 1, we define our operational form of the RS statistic as

= 1
RSy = {gV(V'V)" Vig—g1(1'1)" 15}

9

where R? is the centered coefficient of determination from running a regression
of g on V. Following Gonzélez-Rivera and Ullah (2001) and using the results

in Ai (1997), it can be shown that under Hy, RSy & ngl.

Several interesting special cases can easily be derived from RSy assuming
different specification for fc(¢;). For example, under the normality assump-
tion on f(¢;), ¥ (u;) = u;/o?, and RSy — RSpp B 0, where RSgp is the RS
statistic for testing heteroskedasticity in Breusch and Pagan (1979). If f.(¢;) is
a double exponential distribution [Box and Tiao (1973, p.157)], RSy asymp-
totically becomes the Glejser’s (1969) statistic which regresses |@;jon v;, [see
Pagan and Pak (1993)]. Finally, for the logistic innovation, our RSy statistic
is obtained by regressing i, (eu:+1)on v;. Note that the score functions for the
double exponential and logistic distributions are bounded, and therefore, the
latter two tests might perform better for fat tailed distributions.

7



3.2 Test for Serial Correlation

Given the model specified by (3) along with the assumption o = 0, the null
hypothesis for serial independence is Hy : 6 = 0. Writing 0 = (91,9'2) =

(0, v, B, 5’) , our model for testing serial independence can be written as
yi = ¢;(Wi, Us; 602) + € (5)

where 0, is an (m + k + p) x 1 vector and the ¢;’s are L.L.D. with symmetric
p.d.f. fo(e) = %fz(;—i), in which 6, is the scale parameter.

Let us denote @ as an n x (m + k + p) matrix with the ith row being
0q;(W;, U3 05) /004, ¥ an n x 1 vector with elements ¥; = Q/Jz (—) = Ye(€&),
and o3 = E(¥?). Proceeding as in Section 3.1, we obtaln the RS statistic for
testing Hy : 6 = 0 as

x%z

where 02 = E(¥2)|. and Q is the value of Q under H.
i

= be the consistent estimator for o2

7+ we have

Similar to the test for heteroskedasticity, neither RS; nor RS 7 is feasible.
To obtain a feasible version of the RS test, let 65 be any weakly consistent
estimator for 65, 1&2 be a weakly consistent estimator for the true score function
v over the interval [é, 1) €my)s € = vi — (Wi, Us; éz) U an n x 1 vector with
elements W, = ¢* (&), Q an n x (m+ k + p) matrix with the ith row being
dq;(W;, Us; 05) /00l and 62 = W' /n, then the feasible RS statistic for testing
serial independence in model (5) is given by

where R? is the uncentered coefficient of determination of regressing U on Q.
Notice that the n x (m + k + p) matrix Q above has component Qz =
(Y/, !, U!). This facilitates the following simpler RS statistic

79V




where R? is the uncentered coefficient of determination of regressing U on U
and W due to the orthogonality given in the first order condition on the score

vector under Hy. A well known alternative for computing the RS statistic
is to regress W on U and W and test the significance of the coefficients of
U. Following similar arguments as in the case of heteroskedasticity, it can be

shown that under serial independence, RS; Y X;Z)-

Similar to f{B‘H, several interesting special cases can be obtained from f{E‘I.

Under the normality assumption, we have \ilz = ¢; and RE‘] — RSpa 5 0,
where RSpq is the RS statistic for testing autocorrelation in Breusch (1978)
and Godfrey (1978a). The test can be performed by regression ¢ on U and
W. When the density of the innovation is double exponential, our test is

performed by regressing sign(¢;) on U/ and W/. This is similar to the sign test
for randomness of a process. If the innovation has a logistic density, our RS,

. . . € _ >
test is equivalent to regressing < Ji on U] and W/.

4 Score Function Estimation

The score function as defined in (2) plays an important role in many aspects of
statistics. It can be used for data exploration purposes, for Fisher information
estimation and for the construction of adaptive estimators of semiparametric
econometric models in robust econometrics [see e.g. Cox and Martin (1988),
Ng (1994), Bera and Ng (1995), and Steigerwald (1997)]. Here we use it to

construct the nonparametric test statistics RS g and RS I

Most existing score function estimators are constructed by computing the
negative logarithmic derivative of some kernel based density estimators [see
e.g. Stone (1975), Manski (1984), and Cox and Martin (1988)]. Csorgd and
Révész (1983) suggested a nearest-neighbor approach. Modifying the approach
suggested in Cox (1985), Ng (1994) implemented an efficient algorithm to
compute the smoothing spline score estimator that solved

min / (4% — 20')dF, + A / (¥ () dx (6)

weHQ [a:b}

where Hy[a,b] = {¢ : 1), 1) are absolutely continuous, and [*[¢"(z)]?dz < oc}.
The objective function (6) is the (penalized) empirical analogue of minimizing
the following mean-squared error:

J@—wopaky = [ - 20)dFy + [ idR, (7)

in which 1)y is the unknown true score function and the equality is due to the
fact that under some mild regularity conditions [see Cox (1985)]

/ YoldFy = — / £(@)¢(2)de = / C'dFy,

9



Since the second term on the right hand side of (7) is independent of ),
minimizing the mean-squared error may focus exclusively on the first term.
Minimizing (6) yields a balance between “fidelity-to-data” measured by the
mean-squared error term and the smoothness represented by the second term.
As in any nonparametric score function estimator, the smoothing spline score
estimator has the penalty parameter A\ to choose. The penalty parameter
merely controls the trade-off between “fidelity-to-data” and smoothness of the
estimated score function. An automatic penalty parameter choice mechanism
is suggested and implemented in Ng (1994) through robust information crite-
ria.

The performances of the kernel-based score estimators depend very much
on using the correct kernel that reflects the underlying true distribution gen-
erating the stochastic process besides choosing the correct window width. The
right choice of kernel becomes even more important for observations in the
tails where density is low since few observations will appear in the tail to help
smooth things out. This sensitivity to correct kernel choice is further ampli-
fied in score function estimation where higher derivatives of the density are
involved [see Ng (1995)]. It is found in Ng (1995) that the smoothing spline
score estimator which finds its theoretical justification from an explicit statis-
tical decision criterion, i.e., minimizing the mean-squared error, is more robust
than the ad hoc estimators, like the kernel-based estimators, to distribution
variations. We, therefore, use it to construct our nonparametric test statistics.

Since no estimator can estimate the tails of the score function accurately,
some form of trimming is needed in the tails where observations are scarce
to smooth things out. Cox (1985) showed that the smoothing spline score
estimator achieved uniformly weak consistency over a bounded finite support
[ag, bo] which contains the observations w1, ..., z,. Denoting the solution to (6)
as 121(:1:), the score estimator used in constructing our nonparametric statistics

RSVH and RE‘I given in Section 3 takes the form

0 (x) = { O(a) if 2oy < 7 < 3@ (8)

0 otherwise

5 Small Sample Performances

All the results on the RS statistics discussed earlier are valid only asymp-
totically. We would, therefore, like to study the finite sample behavior of the
various statistics in this section. We are interested in the closeness of the distri-
butions of the statistics under the null, Hy, to the asymptotic y? distributions,
the estimates of the probabilities of Type-I error as well as the estimated pow-
ers. The RS statistics involved in this simulation are RS}, [given in Godfrey

10



(1978b), and Breusch and Pagan (1979)], RS; [given in Breusch (1978), and

Godfrey (1978a)], RSy and RS|.

We use the simulation models of Bera and Jarque (1982) and Bera and
McKenzie (1986) so that our results can be compared with their findings. We
generate the data using the model

4
i =y i B+ u;
j=1

where ;7 = 1, x;0 are random variates from N(10,25), x;3 from the uniform
U(7.5,12.5) and x4 from yx3,. The regression matrix, X, remains the same
from one replication to another. Serial correlated (I) errors are generated by
the first-order autoregressive (AR) process, u; = pu; 1 + €;, where |p| < 1. As
in Bera and Jarque (1982), and Bera and McKenzie (1986), the level of auto-
correlation is categorized into ‘weak’ and ‘strong’ by setting p = p; = 0.3 and
p = po = 0.7, respectively. Heteroskedasticity (H) is generated by F(e;) = 0
and V(e;) = 07 = 25+ nu;, where \/v; ~ N(10,25) and 7 is the parame-
ter that determines the degree of heteroskedasticity, with n = n; = 0.25 and
n = 1y = 0.85 represent ‘weak’ and ‘strong’ heteroskedasticity, respectively.
In order to study the robustness of the various test statistics to distribu-
tional deviations from the conventional Gaussian innovation assumption, the
non-normal (N) disturbances used are (1) Student’s ¢ distribution with five
degrees of freedom, t5, which represents moderately thick-tail distributions,
(2) the log-normal, log, which represents asymmetric distributions, (3) the
beta distribution with scale and shape parameters 7, B(7,7), which represents
distributions with bounded supports, (4) the 50% normal mixture, NM, of
two normal distributions, N(—3,1) and N(3,1), which represents bi-modal
distributions, (5) the beta distribution with scale 3 and shape 11, B(3,11),
which represents asymmetric distributions with bounded supports, and (6)
the contaminated normal, C'N, which is the standard normal N(0,1) with
05% contamination from N(0,9), that attempts to capture contamination in
a real-life situation. All distributions are normalized to having variance 25
under H,.

The experiments are performed for sample size N = 25, 50, and 100. The
number of replications is 250.* The Kolmogorov-Smirnov statistics for the

*A referee suggested that the simulation study be conducted with a larger number of
replications. We should point out that although it is not difficult to compute our suggested
tests, the whole simulation exercise is very time intensive. =~ With 250 replications the
standard error of estimating the Type-I error probabilities at the 10% nominal level will
be close to /0.1 (1 —0.1) /250 ~ 0.019, and for the power studies, the maximum standard
error will be /0.5 (1 —0.5) /250 = 0.032. Increasing the number of replications will not
alter the conclusions drawn from our results. Nevertheless, we fully agree with the refreee’s
view that larger number of replications would be more desirable and would perhaps make
our claims more convincing.

11



various RS statistics are reported in Table I.

Table I
Kolmogorov-Smirnov statistics for testing departures from the X2 distribution
Disturbance Sample Size
Distribution 25 50 100

RS3 | 0450 .0429 .0510
N(0,25) | RS; | .0457 .0361 .0380

RSy | .0734 .0504 .0288

RS; | .0440 | .0398 | .0420
RSY, | 0754 | 1385 | .1167
ts RS; | .0707 | .0351 | .0660
RSy | 0444 | .0436 | .0674

RS; | .0454 | .0293 | .0706

RS3 | 1787 | |.3005 4767

log RS; | .0676 | .0680 | .0522
RSy | 0440 | .0394 | .0371

RS; | 0511 | .0568 | .0714
RSE, | 0512 | .0504 | .0620
B(7,7) | RS | .0390 | .0452 | .0365

—

—

RSy | .0399 0653 .0472

—
—

RS | .0333 .0607 .0336

RSy | 2372 | |.2837 .3546

NM RS} | .0453 .0242 .0470

—~
—

RSy | .0386 0514 .0424

—
—

RS | .0333 .0509 .0276
RS} | 0393 .0817 .0379
B(3,11) | RS; | .0721 .0539 .0457

—~
—

RSy | .0487 .0987 .0301

RS; | .0947 | 0685 | .0496

RS}, | 0464 1104 | |.1685
CN RS} | .0396 .0444 .0849

RSy | 0447 | 0416 | .0387
RS; | 0539 | .0450 | .0906

The 5% critical values for the Kolmogorov-Smirnov statistic for sample
sizes of 25, 50, and 100 are .2640, .1884 and .1340, respectively while the 1%
critical values for 25, 50 and 100 observations are .3166, .2260, and .1608, re-
spectively [Pearson and Hartley (1966)]. In Table I, the Kolmogorov-Smirnov
statistics that are significant at the 1% level are boxed. From Table I, it is
clear that no significant departure from the asymptotic y3 distribution can
be concluded at either 5% or 1% levels of significance for all RS statistics

12



under N(0,25), B(7,7), and B(3,11). The departure from the y? distribution
becomes more noticeable for RS}, as the sample size increases when the dis-
turbance term follows the log, NM or C'N distributions. This is illustrated
in Figure 1 for log and Figure 2 for the NM disturbance terms; both sample
sizes equal 100.

Both figures are plots of the nonparametric adaptive kernel density esti-

mates of RS} and RSy [see Silverman (1986) for details of adaptive kernel
density estimation]. We can see that RS} has a thinner tail under NM and
a thicker tail under log than the asymptotic \7 distribution. This suggests
that under the null hypothesis of homoskedasticity and serial independence,
the distribution of the conventional RS statistic for testing heteroskedasticity
deviates away from the y? distribution as the distribution of the disturbance
term departs further from the normal distribution in shape while our nonpara-
metric heteroskedasticity test statistics are more robust to these distributional
deviations. From Figures 1 and 2, it is clear that at the right tail, the dis-

tributions of RSy and the X3 are very close. To maintain the correct size of
a test statistic, only the right tail of its distribution matters. As we will see

later in Table II, the true Type-I error probabilities of RT?H are very close to

the nominal level of 10%. Both the RS} and RS statistics seem to be much
less sensitive to distributional deviations in the disturbance term. The esti-
mated probabilities of Type-I error for the RS statistics are reported in Table
I1. The estimated probabilities are the portions of the replications for which
the estimated RS statistics exceed the asymptotic 10% critical value of the \?
distribution.

From Table II, it is obvious that the Type-I error probabilities for our non-

parametric test statistics, ETS'H and R\S'I are very close to the nominal 10%
level under almost all sample sizes and distributions. On the other hand, the
true sizes for RS}, could be very high. For example, when the distribution
is log, for sample of size 100, RS}, rejects the true null hypothesis of ho-
moskedasticity 54% of the times. When the distribution is t5 or CN, RS}
also overly rejects, though less severely. As we have noted while discussing the
implications of Figure 1, over rejection occurs since the distribution of RS%
has a much thicker tail when the normality assumption is violated. On the
other hand, the effect of NM distribution on RS7, is quite the opposite. RS},
has a thinner tail than \? as noted in Figure 2 resuliillg in very low Type-I

error probabilities. The Type-I error probabilities for RS u is, in contrast, very
close to the nominal significant level of 10%. As we observed in Table I that
RS7 is not as sensitive to departures from normality as RS7; is and hence the
deviations from the 10% Type-I error probability of RS} are not as severe as
those of RS},. These findings are consistent with those of Bera and Jarque
(1982) and Bera and McKenzie (1986).
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Figure 1. Distributions of the parametric (RS%) and nonparametric (RSy)
RS statistics under lognormal disturbance.
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Figure 2. Distributions of the parametric (RS%,) and nonparametric (RSy)
RS statistics under normal-mixture disturbance.
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Table 11
Estimated probabilities of Type-I error (nominal level 0.10)

Disturbance Sample Size

Distribution 25 50 | 100
RSy | 080 | .116 | .112
N(0,25) | RSy | .064 | .092 | .096

RSy | 108 | .128 | .112

RS; | .076 | .092 | .100
RST, | .108 | .208 | .200
ts RS} | 108 | .088 | .104

RSy | 108 | .088 | .068

RS; | 116 | .092 | .104
RS}, | 248 | 388 | 544
log RS} | .084 | .080 | .060

RSy | .112| .068 | .108

RS; | 100 | .136 | .104
RSy, | 076 | 072 | .068
B(7.7) | RS} | .084 | .124 | .100

RSy | 116 | .100 | .100

RS, | .072 | .124 | .096
RS, | 016 | .016 | .000
NM | RS} | 144 | 116 | .064

RSy | 120 | .084 | .108

RS, | .112 | .104 | .084
RSy, | 088 | 124 | 104
B(3,11) | RS} | .076 | .080 | .104

RSy | 128 | .100 | .112

RS; | 072 | .076 | .100
RS, | 144 | 204 | 228
CN | RS; | .100 | .064 | .140

RSy | .088 | .092 | .100
RS, | .092 | .068 | .144

Given the above results that the estimated probabilities of Type-I error
for the various RS statistics are different, it is only appropriate to compare
the estimate powers of the RS statistics using the simulated critical values.
The 100a% simulated critical values are the (1 — «) sample quantiles of the
estimated RS statistics. The estimated powers of the RS statistics are, hence,
the number of times the statistics exceed the (1 — ) sample quantiles divided
by the total number of replications. The a used in our replications is 10%. To
save space, we report only the results for N = 50 in Table III. The results for
other sample sizes are qualitatively very similar and, in fact, for larger sample
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sizes, the better performances of our suggested nonparametric tests over their

parametric counterparts are even more impressive.

Table TIT
Estimated power of the tests ( N = 50, with 10% empirical significance level)
Disturbance Alternatives: H,
Distributions HI(m) | HI(n2) | HI(py) | HI(p2) | HI(nu.p1) | HI(u, p2) | HI(n2,p1) | HI(n2, p2)
RS, 592 832 104 084 548 202 740 372
N(0,25) | RS? 112 112 552 996 576 996 564 992
RSy 524 760 100 088 456 272 688 376
RS; 116 108 568 976 568 968 552 968
RS, 448 608 096 052 388 132 540 224
ts RS? 112 120 504 1.00 524 1.00 536 1.00
RSy 432 608 104 .096 .396 236 600 348
RS; 132 140 504 984 532 972 544 1960
RS, 220 202 084 032 164 072 268 084
log RS? 108 116 584 1.00 572 1.00 576 1.00
RSy 600 752 124 132 A72 220 656 272
RS; 092 076 748 940 716 956 656 960
RS, 660 896 100 060 624 252 828 448
B(7,7) | RS} 108 092 528 1.00 552 1.00 564 1.00
RSy 648 852 120 088 640 276 788 424
RS; 108 092 500 996 524 992 564 988
RS, 960 996 148 284 916 500 992 720
NM | RS; 100 .096 540 984 536 992 548 992
RSy 896 956 176 156 824 352 928 548
RS; 104 088 844 980 744 992 564 988
RS, 588 844 108 092 556 264 772 404
B(3,11) | RS; .092 116 572 992 608 996 612 1.00
RSy 604 848 108 124 588 324 784 496
RS; 116 120 560 956 572 988 616 988
RS, 396 692 088 064 400 180 600 276
CN RS; 104 112 524 992 560 988 548 992
RSy 488 708 104 104 448 264 636 388
RS; 112 132 524 968 544 968 564 964

First we note that the estimated power of the parametric tests RS} and
RSy are similar to those reported in Bera and Jarque (1982), and Bera and

McKenzie (1986). Regarding the power of our nonparametric tests RSy and
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RS 1, we observe that they are comparable to their parametric counterparts
for N(0,25), B(7,7), B(3,11) and NM disturbances. In particular, when the
disturbance distribution is normal, for which RS} and RS} are designed to

perform best, we observe very little loss of power in using RSy and RS;.

On the other hand, RS u substantially outperforms its parametric counter-
part when the disturbance term follows a lognormal distribution. To see the

difference between the performances of RS}, and RS u, we consider the case
of lognormal distribution. RS} has “optimal” power of .832 for the alterna-
tive H1(n;) with normal disturbance. However, the estimated power for RS}
reduces to .292 when the disturbance distribution is lognormal. When we fur-
ther contaminate the data by strong autocorrelation, that is under HI (15, pa),
the estimated power i/s\merely .084, even less than the size of the test. The

estimated powers for RS u for the above three situations are respectively .760,
752 and .272. The power reduces with gradual contamination, but not as dras-
tically as that of RS};. Note that all the distributions t5, log, and C'N, under

which RS u outperforms RS}, have thicker tails than the normal distribution.
The B(7,7) and B(3,11) distributions, under which RS} is comparable to

RS u, have thinner tails than the normal distribution. The N M distribution,
which has the same tail behavior as the normal distribution does not dete-
riorate the power of RS} substantially even though the distribution of RS%
deviates quite remarkably from the y? under H, as we have noticed in Figure
2. The thick-tail distributions like ¢5 and C'N have a receding score in the
tails while thin-tail distributions have a progressive score in the tails. It is
exactly the thick-tail distributions that cause problems in conventional statis-
tical methods and it is these thick-tail distributions that robust procedures are
trying to deal with. The parametric RS}, however, seems to be less sensitive
to distributional deviation of the innovation and, hence, there are no drastic

differences between RS} and RS even for severe departures from the normal
distribution such as under t5, log, and C'N.

As indicated above, both the RS} and RSy statistics for testing het-
eroskedasticity are not robust to misspecifications in serial independence. The
power of both tests drops when there is severe serial correlation present in the
disturbance. The effect of serial correlation is, however, more serious for R.S7,.
For instance, when the distribution is ¢, estimated power of RS} reduces by
384 (= .608 — .224) as we move from HI(n:) to HI(1p,ps). On the other

hand, for RSy the power loss is .260 (= .608 —.348). This pattern is observed

for almost all distributions. The power of RS} and RS, are, however, more
robust to violation on the maintained assumption of homoskedasticity. This

is easily seen by comparing the power of RS} and RS; under four sets of al-
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ternatives: (i) HI(p1) and HI (11, p1), (ii) HI(ps) and HI(ny, ps), (iii) HI(py)
and HI(ny, p1) and (iv) HI (py) and HI (12, po). Nevertheless, this suggests
that some join tests or multiple comparison procedure in the spirit of Bera and
Jarque (1982) will be able to make our tests for heteroskedasticity more robust
to violation on the maintained serial independence assumption.

6 Conclusions

Our simulation results indicate that the distribution of our nonparametric RS
statistic for testing heteroskedasticity is closer to the asymptotic y? distribu-
tion under homoskedasticity and serial independence for all distributions under
investigation than its parametric counterpart. The parametric RS statistic for
testing autocorrelation is, nevertheless, much less sensitive to departure from
the normality assumption and hence fares as good as its nonparametric coun-
terpart. The estimated probabilities of Type-I error for the nonparametric RS
statistics for testing both heteroskedasticity and autocorrelation are also much
closer to the nominal 10% value. The superiority of our nonparametric RS
test for heteroskedasticity becomes more prominent as the sample size increases
and as the severity of the departure (measured roughly by the thickness in the
tails) from normality increases. Therefore, we may conclude that our non-
parametric test statistics are robust to distributional misspecification and will
be useful in empirical work. Several extensions to our approach are possible.
For instance, adopting a nonparametric conditional mean instead of the linear
conditional mean model [see e.g. Lee (1992)] or even using a nonparametric
conditional median specification [see e.g. Koenker, Ng and Portnoy (1994)] will
further make our test statistics robust to misspecification on the conditional
structural model. These extensions will be reported in future work.
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