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Abstract

The effects of elevated CO2 on ecosystem element stocks are equivocal, in part because cumulative effects of CO2 on
element pools are difficult to detect. We conducted a complete above and belowground inventory of non-nitrogen macro-
and micronutrient stocks in a subtropical woodland exposed to twice-ambient CO2 concentrations for 11 years. We
analyzed a suite of nutrient elements and metals important for nutrient cycling in soils to a depth of ,2 m, in leaves and
stems of the dominant oaks, in fine and coarse roots, and in litter. In conjunction with large biomass stimulation, elevated
CO2 increased oak stem stocks of Na, Mg, P, K, V, Zn and Mo, and the aboveground pool of K and S. Elevated CO2 increased
root pools of most elements, except Zn. CO2-stimulation of plant Ca was larger than the decline in the extractable Ca pool in
soils, whereas for other elements, increased plant uptake matched the decline in the extractable pool in soil. We conclude
that elevated CO2 caused a net transfer of a subset of nutrients from soil to plants, suggesting that ecosystems with a
positive plant growth response under high CO2 will likely cause mobilization of elements from soil pools to plant biomass.
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Introduction

Many studies have evaluated the effects of elevated CO2 on

nitrogen cycling, and focused on the hypothesis that tree growth

response to elevated CO2 may be limited by N availability, or

change with N use efficiency [1–4], but the impact of CO2 on

elements other than N has been studied less frequently. The

nutrients P, K and Ca can also limit plant productivity [5,6], non-

N nutrients can limit N2 fixation and C storage [7], and changes in

Al, Mn and Fe concentrations might affect the availability of other

mineral nutrients in soils [8]. To fully assess the impact of elevated

CO2 on ecosystem nutrient cycling, it is important to evaluate

effects on all elements that are necessary for plant nutrition and

elements that control the availability of other nutrients in the soil

system.

Photosynthesis and growth are often stimulated by elevated

CO2 in C3 plants [9,10], often leading to more biomass

production. Increased growth increases nutrient demands [11].

It has been suggested that nutrients become more limiting for

growth over time and can limit terrestrial C uptake [12]. Increased

production of carbohydrates in plants is suggested to reduce

element concentrations in plants [13]. Elevated CO2 generally

reduces plant N concentration, but increased growth does not

inherently dilute the concentration of other elements in plant

tissues [14–18]. In sweet gum (Liquidambar styraciflua), Johnson et al.

[17] found significant declines in foliar Fe concentration with

elevated CO2. At the POP-EUROFACE CO2 experiment, there

was no change in poplar leaf K or Ca concentrations, while Mg

concentration actually increased in those trees [19]. A cross-

experiment evaluation of elevated CO2 by Natali et al. [20]

showed significantly lower Fe concentration in sweet gum at the

Duke FACE site, decreased Al, V and Fe concentrations in sweet

gum at the Oak Ridge FACE site, but increased Mn and Mo

concentrations in Quercus myrtifolia at the Smithsonian Institution

Elevated CO2 site in Florida. Lastly, a recent meta-analysis of 14

tree species and 10 nutrient elements found that elevated CO2

lowers Cu, Fe, K, Mg, P and S concentrations, but only at high N

availability [15].

Element availability varies by soil type and ecosystem. Soil

element availability is a function of soil organic matter content

(SOM) and pH, with elements generally less adsorbed to metal

oxides and SOM in acid soils [21]. Elevated CO2 has been shown

to increase P availability, possibly a function of decline in SOM in

the experimental plots [22]. Elevated CO2 has also been

implicated in reducing leaching of soil N and P from upper soil

layers [17]. A recent study found that trace metal concentrations

increased in soils exposed to elevated CO2 at Duke FACE and
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Oak Ridge FACE, but decreased under elevated CO2 for every

element surveyed at the Florida SERC experiment [20].

Johnson et al. [23] reported a decrease in foliar N and S

concentration of scrub-oak (Q. myrtifolia), an increase in oak foliar

Mn, and no change in P, K, Cu, B or Zn after 5 years of CO2

enrichment [23]. However, because biomass was significantly

higher under elevated CO2, total plant pool sizes (on an area basis)

for all elements were increased under elevated CO2. The data

reported here were collected at the end of the Florida CO2

experiment, providing an assessment of the cumulative effect of

more than a decade of CO2 enrichment on soil element pools. We

evaluate the impacts of elevated CO2 on a scrub-oak stand in a

fire-regenerated ecosystem by quantifying soil, litter and plant

tissue (above and below ground tissue) element pools after 11

years, and to determine if elevated CO2 facilitated nutrient

retention, loss or redistribution in this system.

Our overarching hypothesis was that declines in soil nutrients

under elevated CO2 are quantitatively caused by increases in plant

pools, in other words, that the cumulative impact of elevated CO2

is to redistribute elements in the plant-soil system. Specifically, we

hypothesized that nutrient cycling in the Florida ecosystem

changed under elevated CO2 in the following ways:

1) Increases in aboveground biomass driven by elevated CO2

will increase the pool size of elements in those tissues (leaves, stems,

litter and roots).

2) Increased plant uptake depletes plant soluble element pools in

soils exposed to elevated CO2.

3) Element retention in this ecosystem will increase under

elevated CO2 because of increased plant element pools, especially

in long-lived tissue like wood and coarse roots.

Materials and Methods

Study site
Our study was conducted at the Smithsonian Environmental

Research Center’s long-term elevated CO2 experiment at

Kennedy Space Center, Cape Canaveral, Florida, USA (28u 389

N, 80u 429 W). The experiment consisted of 16 octagonal open-top

chambers that were 2.5 m high covering a ground surface area of

9.42 m2. Eight chambers were kept at ambient atmospheric CO2

concentration (ambient treatment) and 8 chambers were main-

tained at ambient +360 mmol mol21 CO2 (elevated treatment)

from May 1996 to June 2007. Soils at the site are acidic sands

(Arenic Haplahumods and Spodic Quartzipsamments). The

vegetation is Florida coastal scrub-oak palmetto [23,24]. In the

experimental chambers, greater than 90% of the aboveground

biomass is scrub oak [25].

Field collections
We harvested aboveground biomass in July 2007. We took foliar

samples by collecting 5 fully expanded leaves per tree (Q. myrtifolia)

from 5 distinct trees per plot. Oak stem samples were taken from 5

large branches from the main trunk per plot. We also took samples

from the principal symbiotic nitrogen-fixing vine in the system,

Galactia elliottii. We collected leaves from 5 G. elliottii vines per plot.

Soil was collected with a 7 cm diameter soil core at five

locations within each chamber. We separated horizons as follows:

A horizon (0–10 cm), E horizon (10–30 cm), E2 horizon (30–

100 cm) and spodic horizon (Bh), a distinct zone of organic matter

accumulation that varied from ,100–250 cm depth. Because the

spodic horizon varies in depth and is the deepest soil layer above

the vadose zone, not all of the chambers were sampled to the same

depth. The cores from each plot were combined per depth into a

single composite sample for element analysis.

We collected litter from 1.18 m2 of the chamber. We collected

roots from soil cores by sieving (2 mm mesh). For each soil depth,

we separated roots by size into fine (,2 mm diameter) and coarse

(.2 mm) fractions. Nutrient concentrations in root tissues were

scaled up using root biomass estimates based on minirhizotron

photographs (fine roots) and ground penetrating radar imaging

[26].

Sample Preparation and Element Analysis
We analyzed soil and plant tissues from the experimental site for

the following elements (in order by atomic mass): Na, Mg, Al, P, S,

K, Ca, V, Mn, Fe, Cu, Zn, Se, Sr and Mo. All glass wear and

plastic containers used for sample extractions and digestions were

acid washed in 0.5 M HCl for 48 hours prior to use. All acid

reagents were of trace-metal clean purity. Prior to soil digestions

and extractions, roots were removed from soil core samples and all

soil was passed through a 2 mm sieve and oven dried at 105 uC.

An acid digestion was used to prepare samples for measuring total

soil element concentrations. Dried soil samples of 100–150 mg

were ashed at 600 uC prior to acid digestion in a MARS

Figure 1. Re-sampled effect size (1000 iterations) of elevated
CO2 compared to ambient CO2 means and 90% confidence
intervals, for element pools in A) Quercus spp. leaves, B)
Quercus spp. stems.
doi:10.1371/journal.pone.0064386.g001
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microwave digestor. Microwave digestion was performed for

20 minute runs at 200 uC with trace metal grade, concentrated

HF, HNO3
2 and HCl, until all soil was dissolved into solution.

Plant-available element pools in soil were determined using an

ammonium oxalate extraction [27]. One (1.0) g of soil was

extracted in 15 ml of 0.3 M ammonium oxalate in a 60 ml sample

cup, placed on a reciprocal shaker at 180 rpm for 18 h, filtered,

diluted 10 times, and re-suspended in 10 ml of 0.32 M trace metal

grade HNO3. We use this extraction as an estimate of plant-

available element pools because the yields from this extraction fall

within the published values for plant available elements and are

consistent with the percent of the plant available element pool

compared to the total (in this case acid digest) element pool [8,28].

Plant tissues (leaves, woody biomass and roots) were oven dried

at 60 uC for 24 h after collection. Roots were cleaned of excess soil

by sonicating ,3–5 g of root tissue in15 ml centrifuge tubes for

30 minutes in ultrapure (18 MV) water. The washed roots were

again oven-dried for 24 h at 60uC. All plant samples were then

ashed at 600 uC, and 500–600 mg of each ashed sample was acid

Table 1. Element pools in the above ground plant biomass,
litter layer and roots (0–100 cm, coarse + fine roots) under
ambient and elevated atmospheric CO2, Kennedy Space
Center, Florida.

Element Tissue
Ambient
CO2 SE

Elevated
CO2 SE

Na (kg .

ha21)
Foliar 5.09 2.27 1.89 0.86

Stems* 0.72 0.31 1.22 0.31

Litter 45.51 6.60 42.54 6.55

Roots to
100 cm*

87.45 4.54 146.81 26.50

Mg Foliar 24.25 10.77 15.55 3.26

Stems* 0.93 0.25 2.26 0.47

Litter 32.62 4.87 35.75 5.40

Roots to
100 cm*

69.81 4.63 97.90 12.17

Al Foliar 0.16 0.08 0.11 0.02

Stems 0.30 0.10 0.67 0.17

Litter 41.60 6.51 47.21 6.40

Roots to
100 cm

91.17 12.90 145.41 24.73

P Foliar 12.45 4.55 9.52 1.80

Stems* 0.02 0.01 0.07 0.02

Litter 6.13 0.98 7.78 1.04

Roots to
100 cm

3.04 0.29 4.07 0.56

S (g . ha21)Foliar 104.08 31.05 299.93 65.71

Stems 6.26 1.90 13.54 3.11

Litter 1184.07 157.57 1262.56 135.14

Roots to
100 cm

168.09 20.35 419.00 130.25

K Foliar 30.17 8.01 37.87 7.83

Stems* 78.25 24.26 237.36 51.80

Litter 80.34 11.40 95.38 14.71

Roots to
100 cm

382.26 87.86 384.73 72.97

Ca Foliar 79.76 36.18 48.52 9.10

Stems 0.32 0.08 0.71 0.16

Litter 16.96 2.89 20.22 2.53

Roots to
100 cm

18.47 1.60 26.31 3.20

V (g . ha21)Foliar 0.44 0.18 0.30 0.06

Stems* 7.57 3.51 20.81 6.96

Litter 356.66 44.52 391.05 48.22

Roots to
100 cm

0.47 0.07 1.04 0.25

Mn Foliar 0.71 0.22 0.72 0.14

Stems 0.07 0.02 0.14 0.03

Litter 5.26 1.20 4.82 1.04

Roots to
100 cm

1.98 0.39 2.62 0.53

Fe Foliar 0.22 0.07 0.18 0.03

Stems 0.09 0.04 0.13 0.04

Litter 2.10 0.34 11.28 7.87

Table 1. Cont.

Element Tissue
Ambient
CO2 SE

Elevated
CO2 SE

Roots to
100 cm

1.34 0.22 1.74 0.24

Cu (g . ha-

1)
Foliar 43.58 13.43 44.07 9.04

Stems 7.08 2.00 16.06 3.95

Litter 298.87 46.66 295.14 37.05

Roots to
100 cm

678.74 118.14 1215.08 292.35

Zn Foliar 0.20 0.07 0.22 0.04

Stems* 0.05 0.01 0.09 0.02

Litter 2.41 0.23 2.83 0.63

Roots to
100 cm

2.20 0.18 4.37 1.10

Se (g .

ha21)
Foliar 0.14 0.03 0.16 0.06

Stems n/a n/a n/a n/a

Litter n/a n/a n/a n/a

Roots to
100 cm

0.02 0.00 0.03 0.01

Sr (g .

ha21)
Foliar 235.23 124.75 173.36 41.78

Stems 55.90 18.00 132.58 36.97

Litter 2470.91 478.97 2431.55 282.15

Roots to
100 cm*

3.70 0.43 4.40 0.58

Mo (g .

ha21)
Foliar 0.07 0.02 0.05 0.01

Stems* 0.91 0.31 1.67 0.38

Litter 241.24 28.68 264.25 31.25

Roots to
100 cm

0.10 0.02 0.23 0.07

Asterisks denote significant ANOVA results for larger pools under elevated CO2

compared to ambient CO2 ,ˆ denotes larger pools in ambient CO2 plots. All units
are kg. ha-1 unless specified differently.
doi:10.1371/journal.pone.0064386.t001
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digested on the MARS microwave digestor. Element analyses were

conducted using Thermo X Series quadrupole ICP-MS.

Estimates of total plant biomass [25], were used to calculate the

aboveground pool of elements. We multiplied element concentra-

tions from Q. myrtifolia leaves and stems with total leaf and stem

biomass to estimate the overall content of nutrients in the three

oak species. G. elliottii element concentrations were likewise

multiplied by biomass. The belowground plant element pool (to

100 cm) was calculated by multiplying the element concentration

of roots by their biomass.

Statistical Analyses & Data Availability
We analyzed the effects of CO2 on Q. myrtifolia biomass, element

concentration, and element mass with a one-way ANOVA. We

also used a two-way ANOVA model to test for CO2 effects and

differences in the element mass of different plant pools (leaves,

stems, litter and roots), and interactions between those factors. The

effect of elevated CO2 on soil element mass was analyzed using a

repeated measures ANOVA model with CO2 treatments and soil

depth as the repeated measure. We employed the two-tailed

Flinger-Killen test to check assumptions of equal variance [29].

Pairwise comparisons of CO2 effects on soil pools by depth were

made using Tukey’s HSD test. Due to relatively low sample size

(n = 8 per treatment), we use an alpha of 0.10 to determine

significance [20].

To control for family-wise error rates, we used the False

Discovery Rate (FDR) test to ensure that using a large number of

pair-wise tests for CO2 effects did not yield a significant number of

Type I errors. Our tests of multiple elements within a ‘‘group’’, for

example, soil plant available element pools, consisted of 15

individual ANOVAs. In all cases, the FDR expected less than one

false discovery per group of multiple tests, justifying our use of

multiple ANOVAs.

We also calculated the percent effect of elevated CO2 on

nutrient pools:

%EffectSize~

(ElementmassElevatedCO2� ElementmassAmbientCO2)=

ElementmassAmbientCO2x100

To ensure that we were able to detect differences due to the

CO2 treatment with relatively low sample size, and reduce our

study-level Type II error rate, we also used resampling with

replacement to determine the % effect size of elevated CO2 effects

on element pools, an approach complementary to ANOVA for

determining differences between treatments [30]. We re-sampled

from the sample population of element masses in elevated CO2

plots and ambient CO2 plots, with replacement (1000 iterations).

This approach enabled us to determine the mean effect of elevated

CO2 compared to the control plots, as well as calculate 90%

confidence intervals around the mean effect size. We consider the

CO2 effect meaningful if the confidence intervals do not overlap 0.

Statistical analyses were performed in JMP, Microsoft Excel and R

[31]. Data used in these analyses are available online via the

University of Illinois’ Institute for Genomic Biology Public Data

Archive [32].

Results

The concentration of V and Ca decreased in Q. myrtifolia leaves

exposed to elevated CO2 (F1,14 = 3.22, P = 0.09; F1,14 = 3.20,

P = 0.09, respectively), but foliar S concentration increased

(F1,14 = 5.66, P = 0.03). Elevated CO2 reduced the concentration

of stem Ca (F1,14 = 5.93, P = 0.03), Mn (F1,14 = 3.17, P = 0.10) and

Fe (F1,14 = 4.18, P = 0.06). Elevated CO2 did not significantly

change the concentration of any element measured in root tissue

or in the litter layer.

The total aboveground biomass of scrub oak exposed to

elevated CO2 was ,100% higher at the end of the experiment

(F1,14 = 10.44, P = 0.01, from ref. 25). Pools of K and S in total

above ground oak biomass were greater under elevated CO2

(P,0.05) compared to ambient CO2 (Table 1). The effect of CO2

exposure suggests a greater accumulation of S under elevated CO2

(Figure 1A). Oak stems under elevated CO2 hosted significantly

greater pools of Na, Mg, P, K, V, Zn and Mo (ANOVA, P,0.10;

Table 1), and our resample analysis suggests every element other

than Mn and Sr was accumulated in woody tissue under elevated

CO2 (Figure 1B).

Figure 2. Re-sampled effect size (1000 iterations) of elevated
CO2 compared to ambient CO2 means and 90% confidence
intervals, for element pools in A) all plant roots to a depth of
1 m and B) the litter layer.
doi:10.1371/journal.pone.0064386.g002
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There was generally a positive effect of CO2 on the root element

pool (Figure 1C). Indeed, our resample analysis showed significant

CO2 effect on Na, Mg, Ca and V, and only a negative effect on Zn

(Figure 2A). The mass of litter was not significantly changed by

CO2 exposure, but compared to foliar and stem tissues there were

large pools of Na, Mg, S, V, Fe, Cu, Sr and Mo in the litter layer

(Table 1). There was at least a slight trend for a positive CO2 effect

on litter pools for every element measured other than Na and Mn

(Figure 2B).

Two-way ANOVA including CO2 treatment and plant pool as

predictor variables revealed that there were significant differences

among plant pools for every element measured. This difference

was driven by larger pools of elements in roots than other plant

material for every element other than Al and Ca, which were in

Table 2. Total pool (acid digest) of soil elements after 11
years exposure to under ambient and elevated atmospheric
CO2, Kennedy Space Center, Florida elevated CO2, Kennedy
Space Center.

Element
Soil
Horizon

Ambient
CO2 SEM

Elevated
CO2 SEM

Na (kg .

ha21)
A (0–10 cm) 340.5 23.6 287.2 19.9

E (10–30 cm) 845.6 128.9 756.4 69.2

E2 (30–
100 cm)

231.1 11.1 216.1 13.4

Spodic 44.6 2.8 53.4 10.7

Mg (kg .

ha21)
A (0–10 cm) 46.3 3.1 36.7 1.9

E (10–30 cm) 64.8 6.6 69 12.8

E2 (30–
100 cm)

7.5 1.5 8.7 1.8

Spodic 1.5 0.2 1.6 0.2

Al (kg .

ha21)
A (0–10 cm) 1687.9 219.9 1284.5 145.3

E (10–30 cm) 2523.9 501.2 2524 366.6

E2 (30–
100 cm)

515.7 122.9 995.6 545.1

Spodic 245.6 35.2 247.5 39

P (kg .

ha21)
A (0–10 cm) 9.8 2.2 9.1 2

E (10–30 cm) 131.8 25.9 103.1 16

E2 (30–
100 cm)

10 3.6 13 3.5

Spodic 4.1 0.7 5 0.9

S (kg .

ha21)
A (0–10 cm) n/a

E (10–30 cm) n/a

E2 (30–
100 cm)

6.6 1.4 7.6 1.2

Spodic 1.2 0 1.2 0

K (kg .

ha21)
A (0–10 cm) 680.3 62.4 536.7 49.3

E (10–30 cm) 1527.1 320.1 1346.8 146.5

E2 (30–
100 cm)

126462.7 35285.6 117669.6 31055.1

Spodic 50398 5619.8 41336.6 4337.6

Ca (kg .

ha21)
A (0–10 cm) 30.7 1.6 26.5 1.4

E (10–30 cm) 65.4 6.2 63.9 3.9

E2 (30–
100 cm)

17.2 5.1 18.4 4.7

Spodic 4.8 0.1 5 0.2

V (kg .

ha21)
A (0–10 cm) 2.50 0.18 1.99 0.13

E (10–30 cm) 5.01 0.63 4.87 0.60

E2 (30–
100 cm)

2.44 0.20 2.42 0.17

Spodic 0.48 0.02 0.52 0.03

Mn (kg .

ha21)
A (0–10 cm) 19.5 1.5 15.3 1

E (10–30 cm) 45.8 9.9 40.3 7.9

Table 2. Cont.

Element
Soil
Horizon

Ambient
CO2 SEM

Elevated
CO2 SEM

E2 (30–
100 cm)

4.3 0.8 4.1 0.6

Spodic 0.8 0 0.9 0.1

Fe (kg .

ha21)
A (0–10 cm) 72.7 5.8 56.1 3.9

E (10–30 cm) 137.2 25.5 140 25

E2 (30–
100 cm)

21.9 7.2 19.7 4.5

Spodic n/a

Cu (kg .

ha21)
A (0–10 cm) 3.06 0.20 3.11 0.36

E (10–30 cm) 6.23 0.50 5.47 0.39

E2 (30–
100 cm)

1.94 0.08 1.97 0.07

Spodic 316.8 9.3 315.7 10

Zn (kg .

ha21)
A (0–10 cm) 10.3 1.2 8.1 1

E (10–30 cm) 16.7 1.5 15.2 1.2

E2 (30–
100 cm)

3.2 0.2 3.7 0.3

Spodic 0.5 0 0.5 0

Se (g .

ha21)
A (0–10 cm) 150.9 6.4 143.4 6.1

E (10–30 cm) 337 37.4 339.7 21.2

E2 (30–
100 cm)

276.3 264.9 45.3 206.1

Spodic 54.9 6.5 55.5 8.1

Sr (kg .

ha21)
A (0–10 cm) 6.89 0.64 4.93 0.39

E (10–30 cm) 11.25 2.45 11.20 1.55

E2 (30–
100 cm)

3.24 0.52 3.01 0.45

Spodic 1.03 0.16 1555.3 0.43

Mo (g .

ha21)
A (0–10 cm) 318.2 20.4 289.9 12.9

E (10–30 cm) 685.7 34.1 681.9 30.4

E2 (30–
100 cm)

1785.3 17.4 1758.9 34.6

Spodic 307.5 6.2 316.9 9

doi:10.1371/journal.pone.0064386.t002
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larger quantity in leaf tissue (Table 1). There were significant,

positive main CO2 effects on the overall above ground plant

element pool for Ca (F1,56 = 2.76, P = 0.10), K (F1,56 = 2.99,

P = 0.09) and Sr (F1,56 = 3.00, P = 0.08). There was also a

significant CO2 by tissue pool interaction for those three elements

(Ca, F3,56 = 2.77, P = 0.05; K, F3,56 = 3.00, P = 0.04; Sr,

F3,56 = 3.09, P = 0.03).

Examining the entire soil profile, there was no CO2 effect on

nutrient pools for the entire soil profile (0–100 cm + Bh) for either

the total digest or plant available soil elements (Figure 3A, 3B).

There were no CO2 effects when individual horizons were

considered independently (Table 2, Table 3), other than plant

available Al to a depth of 30 cm (F1,29 = 3.33, P = 0.08). However,

we observed a significant effect of horizon depth for all total digest

elements, and a horizon effect for plant-available nutrient pools of

Mg, Al, K, Ca, V, Mn, Se and Sr (Table 3). We also observed

Table 3. Pool of plant available (ammonium oxalate
extractable) elements after 11 years exposure to under
ambient and elevated atmospheric CO2, Kennedy Space
Center, Florida elevated CO2, Kennedy Space Center.

Element
Soil
Horizon

Ambient
CO2 SEM

Elevated
CO2 SEM

Na (kg .

ha21)
A (0–10 cm) 5.12 0.94 4.79 0.65

E (10–30 cm) 15.20 1.10 15.09 2.15

E2 (30–
100 cm)

11.64 0.29 11.14 0.15

Spodic 11.94 0.20 10.81 0.60

Mg (kg .

ha21)
A (0–10 cm) 8.51 2.13 5.41 0.87

E (10–30 cm) 7.61 1.03 7.04 1.00

E2 (30–
100 cm)

2.50 0.33 2.22 0.12

Spodic 4.60 0.19 3.54 0.57

Al (kg .

ha21)
A (0–10 cm) 8.61 1.81 5.25 1.90

E (10–30 cm) 37.95 11.95 14.42 2.45

E2 (30–
100 cm)

312.01 73.30 286.22 85.62

Spodic 67.92 2.80 53.47 7.65

P (kg .

ha21)
A (0–10 cm) 3.50 0.77 3.24 0.70

E (10–30 cm) 46.99 9.25 36.77 5.69

E2 (30–
100 cm)

7.41 1.55 7.38 1.88

Spodic 4.81 0.11 3.67 0.77

S (kg .

ha21)
A (0–10 cm) 12.03 2.67 11.14 2.39

E (10–30 cm) 161.66 31.81 126.50 19.56

E2 (30–
100 cm)

25.49 5.32 25.39 6.47

Spodic 16.57 0.37 12.62 2.65

K (kg .

ha21)
A (0–10 cm) 8.20 1.74 7.04 1.06

E (10–30 cm) 13.98 3.28 10.06 1.33

E2 (30–
100 cm)

5725.41 422.47 5996.16 389.53

Spodic 18408.19 605.24 14427.58 2228.08

Ca (kg .

ha21)
A (0–10 cm) 3.12 1.17 3.11 1.03

E (10–30 cm) 38.78 3.93 39.55 3.47

E2 (30–
100 cm)

0.63 0.03 0.64 0.03

Spodic 1.30 0.01 1.01 0.19

V (g . ha21) A (0–10 cm) 32.97 6.24 14.00 3.05

E (10–30 cm) 20.98 3.27 15.77 1.05

E2 (30-
100 cm)

152.86 8.68 157.44 12.85

Spodic 149.04 2.74 133.07 8.72

Mn (g .

ha21)
A (0–10 cm) 122.37 19.94 93.03 11.27

E (10–30 cm) 141.58 11.82 148.75 19.07

E2 (30–
100 cm)

283.02 11.80 281.44 7.11

Table 3. Cont.

Element
Soil
Horizon

Ambient
CO2 SEM

Elevated
CO2 SEM

Spodic 282.94 8.98 239.83 22.77

Fe (kg .

ha21)
A (0–10 cm) 7.60 2.16 4.42 1.78

E (10–30 cm) 27.59 10.71 9.56 1.79

E2 (30–
100 cm)

14.76 3.55 11.53 3.83

Spodic 3.62 0.17 2.93 0.36

Cu (kg .

ha21)
A (0–10 cm) 2.26 0.73 2.64 0.86

E (10–30 cm) 6.12 1.52 10.66 4.05

E2 (30–
100 cm)

0.32 0.08 0.31 0.08

Spodic 0.34 0.01 0.29 0.03

Zn (kg .

ha21)
A (0–10 cm) 0.58 0.15 0.47 0.12

E (10–30 cm) 0.97 0.19 1.30 0.32

E2 (30–
100 cm)

0.76 0.17 0.94 0.18

Spodic 0.87 0.03 0.73 0.07

Se (g .

ha21)
A (0–10 cm) 1.00 0.27 0.65 0.22

E (10–30 cm) 5.07 2.19 1.74 0.37

E2 (30–
100 cm)

n/a

Spodic 177.24 12.07 n/a

Sr (g .

ha21)
A (0–10 cm) 31.63 3.55 27.64 4.19

E (10–30 cm) 85.51 11.01 78.84 10.80

E2 (30–
100 cm)

168.69 7.72 164.63 6.23

Spodic 142.55 2.77 128.73 6.97

Mo (g .

ha21)
A (0–10 cm) 0.99 0.68 0.21 0.02

E (10–30 cm) 1.25 0.54 0.49 0.03

E2 (30–
100 cm)

97.09 1.11 96.18 1.46

Spodic 82.78 0.65 80.41 1.19

doi:10.1371/journal.pone.0064386.t003
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trends in the pool size for different elements at different soil depths.

Irrespective of CO2 treatment, there was a large total (acid digest)

pool of K in the E2 and Bh (spodic) horizons, and this held for

plant available K as well (Table 2, Table 3). Consistent with other

spodosols, a large pool of Fe was found in the 10–30 cm portion of

the horizon (Table 2). Plant available molybdenum was found in

the greatest quantity in the deeper parts of the profile (Table 3).

The effect of CO2 on the total ecosystem element pool,

calculated as the sum of the total plant and plant available element

pools in soil, was only significantly higher under elevated CO2 for

Ca (Figure 4).

Discussion

While elevated CO2 is expected to lower element concentra-

tions in plant leaves [13], element concentrations in oak leaves we

measured after 11 years of elevated CO2 exposure were generally

not significantly impacted by high CO2. Calcium and V

concentrations decreased, but S concentrations were higher in

oak leaves in the elevated CO2 treatment. Scrub oaks at the

Florida experiment showed significantly greater growth over the

11 years they were exposed to elevated CO2 [25]. The increased

above ground oak biomass under elevated CO2 was high enough

to consistently lead to increases in above ground plant and litter

nutrient element pools irrespective of changes in element

concentration (Table 1, Figure 1, Figure 2B).

We did not measure significant differences in soil element pools

under elevated CO2 compared to ambient conditions. Combined

with the sustained biomass stimulation of oaks under elevated

CO2, there is no evidence that non-nitrogen nutrients are limiting

growth after extended CO2 enrichment. There was a strong signal

for a positive effect of elevated CO2 on root nutrient pools (Figure

1C), and the overall pool of elements in roots for oaks exposed to

both elevated and ambient CO2 was often orders of magnitude

higher than the element content of stems and leaves, driven by the

large below ground biomass pool [33]. Thus, it is possible that

these oaks are liberating nutrient elements from the total element

pools into soluble forms by increasing production of root exudates,

facilitating mycorrhizal colonization and changes to rhizosphere

chemistry that facilitate nutrient uptake [34–37]. At the end of our

study, root biomass was significantly higher under elevated CO2

treatments [33]. If oaks under elevated CO2 are shifting C

allocation belowground, which is in turn providing greater root

surface area and potentially more root exudate production, it

would explain both the possibility that oaks are mining the soil for

elements to meet their nutritional demands, as well as the positive

effect of CO2 on root element pools (Figure 2B).

We do not have direct measurements of Q. myrtifolia mining soils

for nutrients via root exudation and rhizosphere acidification.

However, a source of nutrient liberation (and therefore facilitation

of movement from soils to plant biomass) could come from the

Figure 3. Re-sampled effect size (1000 iterations) of elevated
CO2 compared to ambient CO2 means and 90% confidence
intervals, for elements in A) total acid digest soil pool and B)
plant available soil element pools.
doi:10.1371/journal.pone.0064386.g003

Figure 4. Re-sampled effect size (1000 iterations) of elevated
CO2 compared to ambient CO2 means and 90% confidence
intervals, for the total ecosystem element pool, calculated as
the difference between the total plant and plant available
element pools in soil under elevated CO2 compared to ambient
CO2.
doi:10.1371/journal.pone.0064386.g004
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‘‘priming’’ effect of elevated CO2 on organic matter mineraliza-

tion, which could enhance the release of nutrients like P, Ca and

metals bound to SOM. Indeed, we observed that the increase in

Ca stocks in oaks was higher than the decline of extractable Ca in

the soils (Figure 4). This phenomenon has been observed for N at

this site, in the form of increased N mineralization under elevated

CO2 [38], and the Ca result supports the hypothesis that CO2

induced soil priming increases nutrient availability could be a

general phenomenon.

Calculating the CO2 effect of total ecosystem elements showed

that CO2 enhances Ca retention but not significantly so for other

elements (Figure 4). Because of the fire regime of this system, non-

volatile elements sequestered in plant biomass will eventually

return to the soil, but elements leached from the soil system to the

water table are effectively gone from the system [39].

Liu et al. [40] measured increased leaching of Mg (385%), K

(223%), Ca (167%) and NO3
2 (108%) under elevated CO2, and

attributed element loss to accelerated mineral weathering and

higher soil water content under elevated CO2. Element loss

through leaching is permanent, and we expect that soluble forms

of elements that migrate downward through the soil profile will be

exported from the system via lateral transfer [28]. However, the

total pool of most elements is large relative to the plant available

pool (Table 2, Table 3), and soluble forms of elements (especially

K, Fe and Mg) can also be replenished in the soil via geochemical

processes like chemical weathering, which may be accelerated by

exposure to elevated CO2 [34,40]. Indeed, our observed trend for

lower concentrations of amorphous Al-oxides under elevated CO2

at the Florida site could be a result of accelerated chemical

weathering [41].

Our results demonstrate that nutrient cycling is substantially

altered after 11 years of exposure to elevated CO2, but the CO2

effect is element dependent [15,42]. The strong, positive growth

response of oaks to CO2 [25] led to increased pools of some

elements (Na, V, Zn and Mo) in plant biomass and quantifiably

lower plant available pools of most elements throughout the soil

profile (Table 3). However, because there were only significant

changes in the movement of some elements, it is likely that CO2

effects on element cycles are not easily generalized.

Conclusions

Our results support the hypothesis that increases in oak biomass

under elevated CO2 would increase the pool of nutrient elements

in oak tissues. We also observed measurably lower stocks of most

nutrients in soils under elevated CO2. The observation that Ca

was retained in this system under elevated CO2 opens the

possibility that some plants actively mine soils under elevated CO2

for nutrients other than N.
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