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ABSTRACT
We present a performance-optimized algorithm, subsampled open-reference OTU
picking, for assigning marker gene (e.g., 16S rRNA) sequences generated on next-
generation sequencing platforms to operational taxonomic units (OTUs) for micro-
bial community analysis. This algorithm provides benefits over de novo OTU picking
(clustering can be performed largely in parallel, reducing runtime) and closed-
reference OTU picking (all reads are clustered, not only those that match a reference
database sequence with high similarity). Because more of our algorithm can be run
in parallel relative to “classic” open-reference OTU picking, it makes open-reference
OTU picking tractable on massive amplicon sequence data sets (though on smaller
data sets, “classic” open-reference OTU clustering is often faster). We illustrate that
here by applying it to the first 15,000 samples sequenced for the Earth Microbiome
Project (1.3 billion V4 16S rRNA amplicons). To the best of our knowledge, this is
the largest OTU picking run ever performed, and we estimate that our new algorithm
runs in less than 1/5 the time than would be required of “classic” open reference OTU
picking. We show that subsampled open-reference OTU picking yields results that
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are highly correlated with those generated by “classic” open-reference OTU picking
through comparisons on three well-studied datasets. An implementation of this
algorithm is provided in the popular QIIME software package, which uses uclust for
read clustering. All analyses were performed using QIIME’s uclust wrappers, though
we provide details (aided by the open-source code in our GitHub repository) that will
allow implementation of subsampled open-reference OTU picking independently
of QIIME (e.g., in a compiled programming language, where runtimes should be
further reduced). Our analyses should generalize to other implementations of these
OTU picking algorithms. Finally, we present a comparison of parameter settings in
QIIME’s OTU picking workflows and make recommendations on settings for these
free parameters to optimize runtime without reducing the quality of the results.
These optimized parameters can vastly decrease the runtime of uclust-based OTU
picking in QIIME.

Subjects Bioinformatics, Ecology, Microbiology
Keywords OTU picking, Microbial ecology, Microbiome, Qiime, Bioinformatics

INTRODUCTION
Three high-level strategies for defining Operational Taxonomic Unit (OTU) cluster

centroids have been widely applied for centroid-based greedy clustering (Li & Godzik,

2006; Edgar, 2010) of marker gene (e.g., 16S rRNA) sequences generated on next-

generation sequencing platforms to facilitate microbial community analysis. These are

canonically described as de novo, closed-reference, and open-reference OTU picking

(Navas-Molina et al., 2013). In each of these approaches, respectively, centroids are

defined internally based only on the sequences being clustered, based only on an external,

predefined database of cluster centroids, or based on a combination of the two. Each of

these methods has benefits and drawbacks.

In de novo OTU picking, input sequences are aligned against one another, and sequences

that align with greater than a user-specified percent identity are defined as belonging to

the same OTU. There are many variations and free parameters in this process, such as

how many alignments are performed before a sequence is assigned to an OTU or used to

define a new OTU, but the common feature of these methods is that no external reference

database is required. This is also the primary advantage of this method: it is not necessary

to have accumulated a collection of reference sequences before working with a new marker

gene. However, de novo OTU picking is difficult to parallelize because all processes must

be able to use new OTUs that are defined by other processes. Consequently, this approach

cannot scale to modern-sized data sets.

In closed-reference OTU picking, input sequences are aligned to pre-defined cluster

centroids in a reference database. If the input sequence does not match any reference

sequence at a user-defined percent identity threshold, that sequence is excluded. The

primary advantage of closed-reference OTU picking is that it is easily parallelizable.
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Because the cluster centroids are predefined, the input sequence collection can be

partitioned into n subsets, the assignment process can be split across n processors,

and the clustering results can be collated when all processes have completed. This

dramatically reduces the “wall time” (i.e., the total time to completion as you would

see it on a clock on the wall, not in terms of CPU × hours) of this method, and makes

closed-reference OTU picking a convenient strategy for extremely large datasets (e.g.,

as in Yatsunenko et al., 2012). Additionally, it has the convenient feature that, because

OTUs are defined by a pre-existing reference, there are typically high-quality taxonomic

assignments for each OTU, and a high-quality phylogenetic tree, often based on full-length

sequences rather than fragments, exists and describes the relationships among those OTUs.

Furthermore, because input sequences are not compared directly to one another, but

rather to an external reference, the input sequences need not overlap. This is essential,

for example, if performing a meta-analysis including sequences derived from different

amplification products of the same marker gene, such as the V2 and V4 regions of the

16S rRNA (e.g., as in the meta-analysis performed in Caporaso et al., 2010). The major

drawback to closed-reference OTU picking, however, is that it cannot identify novel

diversity: if a sequence has no match in the reference database, it cannot be included in

the analysis, restricting analyses to already-known taxa. (Of course, the importance of this

limitation decreases as the reference database increases in coverage.)

Finally, open-reference OTU picking combines the previous protocols. First, input

sequences are clustered against a reference database in parallel in a closed-reference OTU

picking process. However, rather than discarding sequences that fail to match the reference,

these “failures” are clustered de novo in a serial process. Open-reference OTU picking

offers benefits over both the de novo and closed-reference protocols. Because it includes

the parallel closed-reference step, it will typically run faster than de novo OTU picking.

And, since it includes de novo OTU picking of the sequences that fail to hit the reference

database, all sequences are clustered, so analyses are not restricted to already-known OTUs.

However, because the de novo clustering process is run serially, it can still be prohibitively

slow for very large datasets or datasets with a substantial number of sequences that fail

to hit the reference database. Because of these long runtimes, it has not yet been widely

applied despite the benefits it offers.

We present a novel strategy for open-reference OTU picking that allows a larger portion

of the computation to be run in parallel, which we call subsampled open-reference OTU

picking, allowing open-reference OTU picking on very large datasets. We compare this

method to “classic” open-reference OTU picking (as described in the previous paragraph)

to confirm that, despite potentially slightly different OTU definitions, the summary

statistics that are often used derive biological conclusions from application of these

different methods to the same data set would remain the same. To achieve this, we show

that alpha diversity, beta diversity, and taxonomic profiles are highly correlated between

the “classic” open-reference OTU picking and subsampled open-reference OTU picking.

We also compare these methods to de novo and closed-reference OTU picking, and explore

the effect of dataset and algorithm parameters on runtime and analysis results. We note
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that we specifically focus on centroid-based greedy clustering approaches in this study

(e.g., as in uclust and cd-hit Li & Godzik, 2006; Edgar, 2010), not approaches that require

alignment of all pairs of unique sequences (i.e., the hierarchical methods described in

Schloss & Westcott, 2011), as the former scale better to larger data sets. However, because

our full evaluation framework (metrics and data sets) and the EMP raw sequence data are

all freely accessible, it is straightforward for other groups to reproduce these evaluations on

alternative methods.

All analyses presented here are performed using the QIIME and pandas python

packages. As far as we know, QIIME contains the only existing implementation of the sub-

sampled open-reference OTU picking algorithm, but the algorithm is not QIIME-specific.

Thus while our comparison is based on specific QIIME/uclust-based implementations of

de novo, closed reference, classic open reference, and subsampled open reference OTU picking,

our findings should be general to other implementations of these algorithms.

MATERIALS AND METHODS
Subsampled open-reference OTU picking algorithm
Open-reference OTU picking is preferable to the other methods presented here because

it combines the advantages of closed-reference and de novo clustering. However, the de

novo step of open-reference OTU picking can only be run serially, and therefore can be

time-consuming for large datasets if many sequences fail to hit the reference database.

To improve the runtime of open-reference OTU picking, we developed subsampled

open-reference OTU picking, which incrementally increases the size of the reference

database by de novo clustering a subset of the sequences that fail to match the reference

database. The remainder of the sequences that fail to hit the reference database can then be

clustered against these new cluster centroids in a parallel closed-reference OTU picking

process. This allows for partial parallelization of the de novo clustering step and can

significantly decrease runtime on large datasets, allowing open-reference OTU picking

to scale to billions of input sequences (e.g., as generated in multiple Illumina HiSeq 2000

runs). It can additionally be run iteratively, so that representative sequences for the new

(i.e., non-reference) OTUs can be combined with the reference database for future OTU

picking runs. It is important to note that runtime is not always reduced with subsampled

open-reference OTU picking. Data set and algorithm parameters have a large effect on

runtime (discussed further in Runtime differences). This approach is similar to the Buck-

shot algorithm (Cutting et al., 1992; Jensen et al., 2002), initially described for semantic

clustering of documents in a corpus, though we do not use the parallel hierarchical

clustering approach described by Jensen et al. (2002) for initial clustering definition.

A detailed description of this workflow is illustrated in Fig. 1. It is implemented using

uclust v1.2.22q (Edgar, 2010) for clustering in QIIME 1.6.0 (Caporaso et al., 2010) and

later, though any sequence clustering software that provides support for de novo and

closed-reference clustering could be substituted for uclust in an alternate implementation.

The inputs provided to this method are demultiplexed, quality-filtered sequences, and a

reference sequence collection (for example, the Greengenes 13 8 97% OTU representative

Rideout et al. (2014), PeerJ, DOI 10.7717/peerj.545 4/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.545


Fi
gu

re
1

Sc
h

em
at

ic
of

th
e

su
b

sa
m

p
le

d
op

en
-r

ef
er

en
ce

O
T

U
p

ic
ki

n
g

al
go

ri
th

m
.

Rideout et al. (2014), PeerJ, DOI 10.7717/peerj.545 5/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.545


sequences DeSantis et al., 2006; McDonald et al., 2012b). First, sequences are clustered

in parallel using a closed-reference OTU picking workflow, where sequences are queried

against the reference database at percent identity s (default 97%). If a read matches a

reference sequence at greater than or equal to s% identity, it is assigned to the OTU

defined by that reference sequence. These are referred to as the reference OTUs. Next, a

random subsample of n% (n should be small, the default value in QIIME 1.8.0-dev and

earlier is 0.1%) of the sequences that failed to match the reference sequence collection

are clustered de novo, and the cluster centroids for all resulting OTUs are used to define

a new reference sequence collection. Those OTUs are referred to as the new reference

OTUs. The sequences that were not included in the random subsample that was clustered

de novo then go through an additional round of parallel closed-reference OTU picking,

this time where they are clustered against the new reference OTUs based on matching a

sequence in the new reference sequence collection at greater than or equal to s% identity.

This creation of a “new reference database” allows us to harness the parallelization of our

closed-reference OTU picking pipeline, greatly decreasing the time it takes for sequences

that fail to hit the initial reference database to be clustered into OTUs. In the final clustering

step, sequences that fail to hit a reference sequence during this final closed-reference OTU

picking step are clustered de novo. These are referred to as the clean-up OTUs. Finally, the

reference OTUs, new reference OTUs, and clean-up OTUs are combined into a single OTU

table (i.e., table of counts of OTUs on a per-sample basis, as described in McDonald et al.

(2012a)), and this table, as well as a filtered table excluding OTUs with counts less than or

equal to a user-defined threshold c, are provided to the user. By default, c = 2, so each OTU

is observed at least twice (i.e., singleton OTUs are excluded). Because many more of the

sequences can be clustered using closed-reference OTU picking in this workflow, it can run

in far less time than classic open-reference OTU picking (see Runtime differences section

below).

Evaluation of subsampled open-reference OTU picking
We validated the subsampled open-reference OTU picking workflow by comparing it to

de novo, closed-reference, and classic (i.e., non subsampled) open-reference clustering

methods on three different datasets: the Lauber “88 Soils” study (Lauber et al., 2009)

(referred to as 88-soils here), the Caporaso “Moving Pictures” study (Caporaso et al., 2011)

(referred to as moving-pictures here), and the Costello “Whole Body” study (Costello et al.,

2009) (referred to as whole-body here) using three metrics. Table 1 provides a description of

the OTU picking methods being compared. First, we tested the correlation between sample

alpha diversities (OTU counts, i.e., QIIME’s observed species metric, and Phylogenetic

Diversity (PD) (Faith, 1992)) based on subsampled open-reference OTU picking and

the other OTU picking protocols. Next, we tested whether beta diversity patterns (as

determined by weighted and unweighted UniFrac (Lozupone & Knight, 2005) distances

between samples) were consistent across OTU picking protocols, based on Mantel tests

(Mantel, 1967) with 1,000 Monte Carlo iterations. Finally, we tested whether the same

taxonomic profiles were obtained on a per-sample basis using each of the OTU picking
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methods. It is important to note that we are not trying to assess whether one method is

better than another using these metrics. Instead, we are testing whether the methods give

highly correlated results.

Data availability
The raw sequence data analyzed in this study is available in the QIIME Database under

study numbers 103 (88-soils), 449 (whole-body), and 550 (moving-pictures). All analyses

were run with QIIME 1.8.0-dev. All commands, as well as all processed data and IPython

Notebooks that illustrate how to work with that data, are available in this project’s GitHub

repository at https://github.com/gregcaporaso/cloaked-octo-ninja.

RESULTS AND DISCUSSION
Subsampled versus “classic” open-reference OTU picking
Alpha diversity (Table 2; whole-body PD Pearson r = 0.989; 88-soils PD Pearson r = 0.930;

moving-pictures PD Pearson r = 0.996), beta diversity (Table 3; whole-body unweighted

UniFrac Mantel r = 0.948; 88-soils unweighted UniFrac Mantel r = 0.939; moving-pictures

unweighted UniFrac Mantel r = 0.991) and taxonomic summaries (Table 4; whole-body:

r = 0.999 at phylum level, 0.999 at species level; 88-soils r = 0.999 at phylum level,

r = 0.999 at species level; moving-pictures r = 0.999 at phylum level, r = 0.999 at

species level) were highly correlated between classic and subsampled open-reference OTU

picking. Minor differences likely arise from the non-deterministic step of rarefying all

samples to even sampling depth before comparing samples. These results suggest that

subsampled open-reference picking yields the same results as classic open-reference OTU

picking, including identical numbers of sequences failing to hit the reference database, and

therefore is a suitable replacement.

Application to the Earth Microbiome Project dataset
In order to evaluate the effectiveness of the subsampled open-reference OTU picking

method on an extremely large data set, the first 15,000 samples (1.3 billion V4 16S rRNA

amplicons) from the Earth Microbiome Project (EMP, Gilbert et al., 2010) were processed

on the Amazon Web Services (AWS) EC2 platform. These samples were split across more

than 60 studies, which were clustered iteratively. To the best of our knowledge, this is the

largest OTU picking run ever completed. We created a StarCluster-based (http://star.mit.

edu/cluster/) virtual cluster on AWS using between 8 and 18 M2.4xlarge spot instances (the

number of instances was varied at different stages of the run). Each instance (or virtual

cluster node) had 69 GB RAM and 8 cores. A total of 11,242 CPU hours were consumed to

complete subsampled open-reference OTU picking (at 97% nucleotide identity), and the

combined input and output files consumed 1.2 TB of disk space. (This runtime includes

the pre-filtering step. The process would have completed much faster if this were disabled.)

The resulting OTU table contained 5.6 million non-singleton OTUs. This is the largest

number of OTUs identified, and the most comprehensive survey of microbial diversity

across environment types to date, so it likely suggests the magnitude of the lower-bound

on the microbial diversity of the Earth (although the accuracy is limited because some of

Rideout et al. (2014), PeerJ, DOI 10.7717/peerj.545 9/25

https://peerj.com
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
https://github.com/gregcaporaso/cloaked-octo-ninja
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
http://dx.doi.org/10.7717/peerj.545


Table 2 Alpha diversity results. Pearson correlation coefficients (r) of alpha diversity for (a) 88-soils PD, (b) moving-pictures PD, (c) whole-body
PD, (d) 88-soils observed species, (e) moving-pictures observed species, and (f) moving-pictures observed species.

(a)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc 1 0.951 0.933 0.934 0.953 0.956 0.936 0.927 0.948 0.947

ucr 0.951 1 0.902 0.931 0.93 0.946 0.94 0.903 0.952 0.944

ucrC 0.933 0.902 1 0.894 0.909 0.905 0.914 0.978 0.902 0.911

ucrss 0.934 0.931 0.894 1 0.929 0.944 0.935 0.894 0.948 0.949

ucrss wfilter 0.953 0.93 0.909 0.929 1 0.952 0.933 0.903 0.931 0.943

uc fast 0.956 0.946 0.905 0.944 0.952 1 0.953 0.898 0.956 0.96

ucr fast 0.936 0.94 0.914 0.935 0.933 0.953 1 0.914 0.95 0.952

ucrC fast 0.927 0.903 0.978 0.894 0.903 0.898 0.914 1 0.902 0.903

ucrss fast 0.948 0.952 0.902 0.948 0.931 0.956 0.95 0.902 1 0.962

ucrss fast wfilter 0.947 0.944 0.911 0.949 0.943 0.96 0.952 0.903 0.962 1

(b)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc 1 0.996 0.993 0.996 0.996 0.995 0.996 0.992 0.996 0.996

ucr 0.996 1 0.993 0.997 0.997 0.995 0.996 0.992 0.996 0.997

ucrC 0.993 0.993 1 0.994 0.991 0.994 0.994 0.998 0.995 0.994

ucrss 0.996 0.997 0.994 1 0.996 0.996 0.997 0.994 0.997 0.997

ucrss wfilter 0.996 0.997 0.991 0.996 1 0.994 0.995 0.991 0.996 0.996

uc fast 0.995 0.995 0.994 0.996 0.994 1 0.997 0.994 0.997 0.996

ucr fast 0.996 0.996 0.994 0.997 0.995 0.997 1 0.994 0.997 0.997

ucrC fast 0.992 0.992 0.998 0.994 0.991 0.994 0.994 1 0.994 0.994

ucrss fast 0.996 0.996 0.995 0.997 0.996 0.997 0.997 0.994 1 0.997

ucrss fast wfilter 0.996 0.997 0.994 0.997 0.996 0.996 0.997 0.994 0.997 1

(c)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc 1 0.985 0.957 0.985 0.985 0.984 0.986 0.961 0.983 0.984

ucr 0.985 1 0.956 0.99 0.989 0.988 0.987 0.96 0.987 0.986

ucrC 0.957 0.956 1 0.961 0.958 0.959 0.961 0.99 0.953 0.961

ucrss 0.985 0.99 0.961 1 0.991 0.988 0.99 0.964 0.989 0.987

ucrss wfilter 0.985 0.989 0.958 0.991 1 0.985 0.989 0.963 0.987 0.985

uc fast 0.984 0.988 0.959 0.988 0.985 1 0.986 0.961 0.986 0.985

ucr fast 0.986 0.987 0.961 0.99 0.989 0.986 1 0.965 0.988 0.989

ucrC fast 0.961 0.96 0.99 0.964 0.963 0.961 0.965 1 0.957 0.965

ucrss fast 0.983 0.987 0.953 0.989 0.987 0.986 0.988 0.957 1 0.986

ucrss fast wfilter 0.984 0.986 0.961 0.987 0.985 0.985 0.989 0.965 0.986 1

(continued on next page)

these OTUs may be artifacts of PCR or sequencing: such artifacts, e.g., chimeras, need to be

identified after the OTU picking step).

We were next interested in how long the de novo clustering step of classic open-reference

OTU picking would take on the EMP data set, but as we’ll illustrate this is an intractable

problem in practice with current computer hardware. We began by applying de novo
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Table 2 (continued)

(d)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc 1 0.948 0.88 0.909 0.924 0.935 0.934 0.877 0.925 0.913

ucr 0.948 1 0.905 0.946 0.947 0.947 0.953 0.903 0.938 0.932

ucrC 0.88 0.905 1 0.926 0.888 0.882 0.908 0.973 0.91 0.896

ucrss 0.909 0.946 0.926 1 0.932 0.923 0.935 0.915 0.931 0.929

ucrss wfilter 0.924 0.947 0.888 0.932 1 0.943 0.946 0.884 0.932 0.927

uc fast 0.935 0.947 0.882 0.923 0.943 1 0.942 0.883 0.941 0.94

ucr fast 0.934 0.953 0.908 0.935 0.946 0.942 1 0.908 0.943 0.932

ucrC fast 0.877 0.903 0.973 0.915 0.884 0.883 0.908 1 0.904 0.906

ucrss fast 0.925 0.938 0.91 0.931 0.932 0.941 0.943 0.904 1 0.953

ucrss fast wfilter 0.913 0.932 0.896 0.929 0.927 0.94 0.932 0.906 0.953 1

(e)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc 1 0.992 0.984 0.992 0.992 0.989 0.99 0.978 0.989 0.99

ucr 0.992 1 0.994 0.998 0.998 0.992 0.997 0.991 0.997 0.997

ucrC 0.984 0.994 1 0.995 0.995 0.984 0.993 0.997 0.994 0.994

ucrss 0.992 0.998 0.995 1 0.998 0.992 0.997 0.991 0.997 0.997

ucrss wfilter 0.992 0.998 0.995 0.998 1 0.992 0.997 0.991 0.997 0.997

uc fast 0.989 0.992 0.984 0.992 0.992 1 0.993 0.981 0.992 0.992

ucr fast 0.99 0.997 0.993 0.997 0.997 0.993 1 0.992 0.998 0.998

ucrC fast 0.978 0.991 0.997 0.991 0.991 0.981 0.992 1 0.993 0.992

ucrss fast 0.989 0.997 0.994 0.997 0.997 0.992 0.998 0.993 1 0.998

ucrss fast wfilter 0.99 0.997 0.994 0.997 0.997 0.992 0.998 0.992 0.998 1

(f)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc 1 0.986 0.971 0.986 0.986 0.993 0.988 0.972 0.988 0.987

ucr 0.986 1 0.984 0.995 0.995 0.987 0.993 0.98 0.993 0.993

ucrC 0.971 0.984 1 0.985 0.984 0.97 0.981 0.992 0.98 0.979

ucrss 0.986 0.995 0.985 1 0.995 0.987 0.993 0.981 0.993 0.992

ucrss wfilter 0.986 0.995 0.984 0.995 1 0.986 0.993 0.979 0.992 0.992

uc fast 0.993 0.987 0.97 0.987 0.986 1 0.989 0.972 0.99 0.988

ucr fast 0.988 0.993 0.981 0.993 0.993 0.989 1 0.981 0.994 0.994

ucrC fast 0.972 0.98 0.992 0.981 0.979 0.972 0.981 1 0.982 0.979

ucrss fast 0.988 0.993 0.98 0.993 0.992 0.99 0.994 0.982 1 0.995

ucrss fast wfilter 0.987 0.993 0.979 0.992 0.992 0.988 0.994 0.979 0.995 1

clustering using the “fast” uclust parameter settings to the representative sequences from

the 5.6 million non-singleton OTUs from the run described above. These representative

sequences represent the full alpha diversity of the EMP data set (a property known to

be important to runtime of de novo and open reference OTU clustering) but the data

set contains only 5.6 m sequences, so is feasible to cluster de novo. We then subsampled

this to contain between 10% and 80% of those sequences, in steps of 10% with 10

iterations at each step, and compiled the runtime for each clustering run. Figure 2
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Table 3 Beta diversity results. Mantel correlation coefficients (r) of beta diversity for (a) 88-soils unweighted UniFrac, (b) moving-pictures
unweighted UniFrac, (c) whole-body unweighted UniFrac, (d) 88-soils weighted UniFrac, (e) moving-pictures weighted UniFrac, and (f) moving-
pictures weighted UniFrac.

(a)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc NA 0.935 0.908 0.944 0.942 0.939 0.945 0.909 0.943 0.941

ucr NA NA 0.915 0.94 0.945 0.934 0.942 0.918 0.944 0.949

ucrC NA NA NA 0.917 0.91 0.926 0.913 0.95 0.917 0.92

ucrss NA NA NA NA 0.94 0.938 0.945 0.914 0.938 0.942

ucrss wfilter NA NA NA NA NA 0.934 0.943 0.907 0.942 0.941

uc fast NA NA NA NA NA NA 0.938 0.92 0.939 0.941

ucr fast NA NA NA NA NA NA NA 0.909 0.946 0.947

ucrC fast NA NA NA NA NA NA NA NA 0.917 0.924

ucrss fast NA NA NA NA NA NA NA NA NA 0.945

ucrss fast wfilter NA NA NA NA NA NA NA NA NA NA

(b)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc NA 0.992 0.974 0.988 0.988 0.992 0.991 0.977 0.991 0.992

ucr NA NA 0.982 0.992 0.991 0.991 0.992 0.984 0.993 0.993

ucrC NA NA NA 0.986 0.985 0.973 0.982 0.994 0.981 0.981

ucrss NA NA NA NA 0.99 0.988 0.992 0.987 0.992 0.991

ucrss wfilter NA NA NA NA NA 0.986 0.99 0.986 0.99 0.991

uc fast NA NA NA NA NA NA 0.991 0.976 0.992 0.991

ucr fast NA NA NA NA NA NA NA 0.983 0.993 0.992

ucrC fast NA NA NA NA NA NA NA NA 0.982 0.983

ucrss fast NA NA NA NA NA NA NA NA NA 0.993

ucrss fast wfilter NA NA NA NA NA NA NA NA NA NA

(c)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc NA 0.935 0.891 0.938 0.936 0.93 0.926 0.889 0.933 0.925

ucr NA NA 0.899 0.948 0.95 0.934 0.931 0.895 0.941 0.927

ucrC NA NA NA 0.908 0.899 0.878 0.885 0.952 0.897 0.878

ucrss NA NA NA NA 0.953 0.938 0.936 0.905 0.945 0.928

ucrss wfilter NA NA NA NA NA 0.937 0.94 0.894 0.941 0.932

uc fast NA NA NA NA NA NA 0.942 0.872 0.939 0.938

ucr fast NA NA NA NA NA NA NA 0.888 0.939 0.948

ucrC fast NA NA NA NA NA NA NA NA 0.891 0.879

ucrss fast NA NA NA NA NA NA NA NA NA 0.933

ucrss fast wfilter NA NA NA NA NA NA NA NA NA NA

(continued on next page)

illustrates the relationship between runtime and input sequence count, along with the

results of a regression analysis presenting median runtime as a function of sequence count

(r2
= 0.98,p = 8e–6).

In the subsampled open-reference OTU picking run on the EMP dataset, 660 million

sequences failed to hit the reference database, and therefore need to be clustered de novo
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Table 3 (continued)

(d)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc NA 0.896 0.936 0.951 0.901 0.925 0.937 0.924 0.956 0.902

ucr NA NA 0.896 0.889 0.966 0.891 0.939 0.895 0.901 0.947

ucrC NA NA NA 0.919 0.914 0.906 0.928 0.984 0.931 0.896

ucrss NA NA NA NA 0.9 0.917 0.947 0.903 0.949 0.899

ucrss wfilter NA NA NA NA NA 0.885 0.938 0.911 0.899 0.94

uc fast NA NA NA NA NA NA 0.909 0.898 0.919 0.874

ucr fast NA NA NA NA NA NA NA 0.92 0.952 0.96

ucrC fast NA NA NA NA NA NA NA NA 0.918 0.89

ucrss fast NA NA NA NA NA NA NA NA NA 0.918

ucrss fast wfilter NA NA NA NA NA NA NA NA NA NA

(e)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc NA 0.971 0.949 0.97 0.973 0.972 0.977 0.949 0.974 0.966

ucr NA NA 0.928 0.952 0.952 0.957 0.958 0.928 0.96 0.954

ucrC NA NA NA 0.96 0.94 0.948 0.934 0.999 0.965 0.932

ucrss NA NA NA NA 0.938 0.965 0.955 0.96 0.98 0.932

ucrss wfilter NA NA NA NA NA 0.946 0.966 0.941 0.951 0.967

uc fast NA NA NA NA NA NA 0.97 0.948 0.971 0.949

ucr fast NA NA NA NA NA NA NA 0.934 0.967 0.967

ucrC fast NA NA NA NA NA NA NA NA 0.965 0.932

ucrss fast NA NA NA NA NA NA NA NA NA 0.951

ucrss fast wfilter NA NA NA NA NA NA NA NA NA NA

(f)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc NA 0.947 0.896 0.934 0.943 0.96 0.939 0.898 0.904 0.936

ucr NA NA 0.9 0.924 0.95 0.951 0.92 0.904 0.871 0.944

ucrC NA NA NA 0.886 0.924 0.907 0.911 0.994 0.831 0.939

ucrss NA NA NA NA 0.944 0.92 0.917 0.882 0.918 0.911

ucrss wfilter NA NA NA NA NA 0.933 0.918 0.926 0.897 0.932

uc fast NA NA NA NA NA NA 0.955 0.909 0.889 0.966

ucr fast NA NA NA NA NA NA NA 0.91 0.936 0.951

ucrC fast NA NA NA NA NA NA NA NA 0.83 0.94

ucrss fast NA NA NA NA NA NA NA NA NA 0.866

ucrss fast wfilter NA NA NA NA NA NA NA NA NA NA

clustering in open-reference OTU picking. While it is obviously problematic to use a

regression model trained on 5.6 million sequences to extrapolate the runtime on 660

million sequences, we feel that this can give us an idea of the magnitude of the runtime

for the serial de novo clustering of the full dataset. Our regression model projects that the

serial de novo clustering of sequences that fail to hit the reference data set would require

approximately 150 days to run (in wall time). In contrast, the subsampled open-reference

OTU picking run presented here (which included the pre-filtering step) ran in just under
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Table 4 Taxonomic profile results. Pearson correlation coefficients (r) of taxonomic summaries for (a) 88-soils at phylum level, (b) 88-soils at genus
level, (c) moving-pictures at phylum level, (d) movingpictures at genus level, (e) whole-body at phylum level, and (f) whole-body at genus level.

(a)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc NA 1 0.983 1 1 1 1 0.981 1 1

ucr NA NA 0.983 1 1 1 1 0.981 1 1

ucrC NA NA NA 0.983 0.983 0.983 0.983 0.999 0.983 0.983

ucrss NA NA NA NA 1 1 1 0.981 1 1

ucrss wfilter NA NA NA NA NA 1 1 0.981 1 1

uc fast NA NA NA NA NA NA 1 0.981 1 1

ucr fast NA NA NA NA NA NA NA 0.981 1 1

ucrC fast NA NA NA NA NA NA NA NA 0.981 0.981

ucrss fast NA NA NA NA NA NA NA NA NA 1

ucrss fast wfilter NA NA NA NA NA NA NA NA NA NA

(b)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc NA 0.939 0.85 0.939 0.939 1 0.94 0.84 0.94 0.94

ucr NA NA 0.821 1 1 0.94 0.998 0.923 0.998 0.998

ucrC NA NA NA 0.821 0.821 0.85 0.82 0.818 0.82 0.82

ucrss NA NA NA NA 1 0.94 0.998 0.923 0.998 0.998

ucrss wfilter NA NA NA NA NA 0.94 0.998 0.923 0.998 0.998

uc fast NA NA NA NA NA NA 0.94 0.84 0.94 0.94

ucr fast NA NA NA NA NA NA NA 0.921 1 1

ucrC fast NA NA NA NA NA NA NA NA 0.921 0.921

ucrss fast NA NA NA NA NA NA NA NA NA 1

ucrss fast wfilter NA NA NA NA NA NA NA NA NA NA

(c)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc NA 1 0.997 1 1 1 1 0.997 1 0.998

ucr NA NA 0.997 1 1 1 1 0.997 1 0.998

ucrC NA NA NA 0.997 0.997 0.997 0.997 1 0.997 0.998

ucrss NA NA NA NA 1 1 1 0.997 1 0.998

ucrss wfilter NA NA NA NA NA 1 1 0.997 1 0.999

uc fast NA NA NA NA NA NA 1 0.997 1 0.998

ucr fast NA NA NA NA NA NA NA 0.997 1 0.998

ucrC fast NA NA NA NA NA NA NA NA 0.997 0.997

ucrss fast NA NA NA NA NA NA NA NA NA 0.998

ucrss fast wfilter NA NA NA NA NA NA NA NA NA NA

(continued on next page)

30 days of wall time. This illustrates that while on relatively small data sets the performance

enhancement of subsampled relative to classic open-reference OTU picking is either

non-existence or modest (discussed in Run-time differences), on datasets at the current

upper limit of size, the increased parallelizability of subsampled open-reference OTU

picking makes open-reference OTU picking far more tractable.
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Table 4 (continued)

(d)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc NA 0.964 0.929 0.964 0.963 0.999 0.923 0.882 0.923 0.92

ucr NA NA 0.963 1 0.999 0.967 0.954 0.923 0.954 0.951

ucrC NA NA NA 0.963 0.963 0.934 0.925 0.917 0.925 0.925

ucrss NA NA NA NA 0.999 0.967 0.954 0.923 0.954 0.951

ucrss wfilter NA NA NA NA NA 0.966 0.953 0.923 0.953 0.952

uc fast NA NA NA NA NA NA 0.927 0.887 0.927 0.924

ucr fast NA NA NA NA NA NA NA 0.885 1 0.997

ucrC fast NA NA NA NA NA NA NA NA 0.885 0.884

ucrss fast NA NA NA NA NA NA NA NA NA 0.997

ucrss fast wfilter NA NA NA NA NA NA NA NA NA NA

(e)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc NA 1 0.999 1 1 1 1 0.998 1 1

ucr NA NA 0.999 1 1 1 1 0.998 1 1

ucrC NA NA NA 0.999 0.999 0.999 0.999 0.999 0.999 0.999

ucrss NA NA NA NA 1 1 1 0.998 1 1

ucrss wfilter NA NA NA NA NA 1 1 0.998 1 1

uc fast NA NA NA NA NA NA 1 0.998 1 1

ucr fast NA NA NA NA NA NA NA 0.998 1 1

ucrC fast NA NA NA NA NA NA NA NA 0.998 0.998

ucrss fast NA NA NA NA NA NA NA NA NA 1

ucrss fast wfilter NA NA NA NA NA NA NA NA NA NA

(f)

uc ucr ucrC ucrss ucrss wfilter uc fast ucr fast ucrC fast ucrss fast ucrss fast wfilter

uc NA 0.959 0.9 0.959 0.959 1 0.913 0.879 0.913 0.913

ucr NA NA 0.918 1 1 0.957 0.967 0.871 0.967 0.967

ucrC NA NA NA 0.918 0.918 0.896 0.893 0.935 0.892 0.893

ucrss NA NA NA NA 1 0.957 0.967 0.871 0.967 0.967

ucrss wfilter NA NA NA NA NA 0.957 0.967 0.871 0.967 0.967

uc fast NA NA NA NA NA NA 0.912 0.876 0.912 0.912

ucr fast NA NA NA NA NA NA NA 0.855 1 1

ucrC fast NA NA NA NA NA NA NA NA 0.854 0.855

ucrss fast NA NA NA NA NA NA NA NA NA 1

ucrss fast wfilter NA NA NA NA NA NA NA NA NA NA

Run-time differences
The speed improvements of subsampled open-reference OTU picking arise from the fact

that a larger portion of the clustering process can be parallelized. When not run in parallel,

or run in parallel over only a few (e.g., 3) CPUs, classic open-reference OTU picking is

likely to be faster. Similarly, for smaller data sets (e.g., less than a few million sequences),

especially if most sequences have a match in the reference database (e.g., with human gut

microbiome data), classic open-reference OTU picking will achieve similar runtimes to
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Figure 2 Runtime comparison.

Table 5 Runtime comparison. Comparison of runtimes (as seconds of wall time) for each method on
each data set.

88-soil Moving-picture Whole-body

uc 1220 27748 1095

ucr 1358 46576 1082

ucrC 226 28572 388

ucrss 1493 47207 1212

ucrss wfilter 1885 76061 2088

uc fast 914 23510 489

ucr fast 1052 19371 621

ucrC fast 44 2428 68

ucrss fast 1021 23710 707

ucrss fast wfilter 1525 52811 1661

subsampled open-reference clustering (Table 5). However, in these cases, the results are still

highly correlated, so if in doubt of which method will be faster, subsampled open-reference

OTU picking is a reasonable choice as the summary statistics of interest (often alpha

diversity, beta diversity and taxonomic profiles) are very unlikely to be different between

the two methods.

When more sequences fail to hit the reference database, subsampled open-reference

OTU picking becomes faster than classic open-reference OTU picking (Table 6). To

illustrate this, we clustered the moving-pictures sequences against the 82% and 97%

Greengenes reference OTUs at 97% identity using subsampled and classic open-reference

OTU picking on 29 processors. When clustering against the 82% OTUs, 52.1 million failed

to hit the reference, while when clustering against the 97% OTUs 3.4 million sequences

failed to hit the reference. Subsampled open-reference OTU picking ran in 4000 s less wall
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Table 6 Runtime comparisons (subsampled open-reference OTU picking variants). Comparison of
runtimes (as seconds of wall time) for subsampled and “classic” open-reference OTU picking methods
with variations on the default parameters.

Abbreviation Moving-picture

ucr fast O29 r82 21737

ucr fast O29 r97 16241

ucrss fast O29 r82 17812

ucrss fast O29 r97 16169

ucrss fast O29 s1 14911

time than classic open-reference clustering (in a single run of each on a system dedicated

for this run time comparison) against the 82% OTUs, and in 72 s less time against the

97% OTUs, illustrating that as more sequences fail to hit the reference, subsampled

open-reference OTU picking offers more of an advantage. This runtime difference would

be even larger if the job were split over more processors.

Another parameter that can affect runtime of subsampled open-reference OTU picking

is the size of the random subsample that is selected. The optimal setting for this parameter

is affected by the size of the dataset being clustered and the diversity of the sequences that

fail to match the reference database. On small datasets, or datasets with a lot of novel

diversity, a large fraction (e.g., 1%) is better than a small fraction (e.g., 0.001%), but as

the data set increases in size a large fraction can result in far more time spent performing

de novo clustering of the sequences that initially fail to hit the reference database. We

recommend using the default (0.1% in QIIME 1.8.0-dev and earlier), which was chosen

to reduce runtime on larger datasets where optimized runtime is more important. As this

parameter setting approaches zero, subsampled open-reference OTU picking becomes

more like classic open-reference OTU picking, in that more of the reads that fail to hit

the reference database are clustered de novo serially, and at the limit of 0% of sequences

subsampled, the subsampled open reference OTU picking becomes classic open-reference

OTU picking. The summary statistics investigated here are highly correlated between

classic and subsampled open-reference OTU picking, suggesting that this parameter

setting will not affect those statistics, but can affect runtime.

Pre-filtering
QIIME’s open-reference OTU picking workflow optionally includes a pre-filtering step,

where sequences are searched against the reference database with low percent identity

(the default in QIIME 1.8.0 and earlier is 60%), and sequences that fail to match are

discarded from the analysis. The goal of this process is to discard sequences that are likely

not representatives of the marker gene, such as host genomic sequences or products of

non-specific amplification. This process is functionally similar to closed-reference OTU

picking (sequence reads are searched against a pre-defined reference database), and

therefore is easily run in parallel.
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We show that alpha diversity (Table 2; whole-body PD Pearson r = 0.991; 88-soils

PD Pearson r = 0.930; moving-pictures PD Pearson r = 0.996), beta diversity (Table 3;

whole-body unweighted UniFrac Mantel r = 0.953; 88-soils unweighted UniFrac Mantel

r = 0.940; moving-pictures unweighted UniFrac Mantel r = 0.990) and taxonomic

summaries (Table 4; whole-body: r = 1.000 at phylum level, r = 1.000 at species level;

88-soils r = 1.000 at phylum level, r = 1.000 at species level; moving-pictures r = 1.000 at

phylum level, r = 0.999 at species level) are highly correlated between the pre-filtered

and non-pre-filtered results, when pre-filtering is performed at percent identity of

60%. Despite nearly identical results, the pre-filtering process results in vastly increased

runtimes. Consequently, we no longer recommend pre-filtering of sequences prior to

open-reference OTU picking. Rather, contaminant sequences should be discarded after

OTU picking. This feature is now disabled by default starting with QIIME 1.8.0-dev.

One case where pre-filtering may prove useful is in the preparation of sequence data

where there is a large amount of contamination of non-marker-gene sequence, for example

host genomic contamination. In this case, pre-filtering can be useful to remove those

sequences prior to clustering. Note that if you suspect that your sample may contain

human genomic contaminant sequences, it is important to filter them out before analysis

or data deposition due to Institutional Review Board or other ethical concerns related to

release of human DNA sequences.

Clustering parameters
We also investigated the effect of clustering parameters on the same summary statistics,

as these can have a considerable effect on runtime. We compared uclust’s default settings

(referred to in QIIME as “fast mode”) with the default settings in QIIME 1.8.0 and earlier

(“slow mode”). We again compared the methods based on the degree to which they

resulted in correlated alpha diversity (Table 2), beta diversity (Table 3), and taxonomic

results (Table 4), and found that all results were highly correlated between fast and

slow modes. This suggests that while fast mode will occasionally make suboptimal OTU

assignments, the effects are subtle enough to be unnoticeable in downstream ecological

analyses. We therefore recommend using the “fast” settings for decreased runtime, and

these are now the default in QIIME 1.8.0-dev.

We do recommend using the “slow” settings if clustering sequences to build reference

OTUs (for example, as is performed when building the Greengenes reference OTU collec-

tion McDonald et al., 2012b) because suboptimal OTU assignments can have further reach-

ing consequences. For example, “splitting” an OTU (i.e., defining two sequences that are

within s% identity of each other as the centroids of two different s% OTUs), which is always

a possibility in greedy clustering algorithms, is more common with the “fast” settings than

with the “slow” settings. If this occurs in a single study, the downstream effects are limited

to that study and are likely only to be problematic if the split OTU is of key significance

to the system being investigated. However, a split OTU when defining reference OTUs

is more problematic, because those definitions will be used in many studies, increasing

the chance that the split OTU will be problematic for someone. For this application,
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the processing step is typically only run once per database release (which is relatively

infrequent). Therefore, the longer runtime is preferable to less accurate OTU definitions in

this particular application. If splitting and lumping of OTUs is of concern on your dataset,

you may want to experiment with the “slow” parameter settings, which are still accessible

in QIIME and we also recommend exploring the use of Oligotyping (Eren et al., 2013).

Consistent OTU definitions across runs: iterative open-reference
OTU picking
Subsampled open-reference clustering, as implemented in QIIME, provides new identifiers

for sequences that fail to match the reference database, allowing OTUs to be directly com-

pared across clustering runs (although sequences clustered against this expanded reference

sequence collection do need to be from the same gene fragment as the sequences used to

expand the reference sequence collection). These OTUs can also be used in iterative OTU

picking, which is useful in studies where sequence data is continuously accumulating, for

example in routine monitoring of microbial communities in human subjects (e.g., patients

monitored over time), the built-environment, or during environmental clean-up.

CONCLUSIONS
Taken together, the reduced runtime of subsampled open-reference OTU picking

relative to classic open-reference OTU picking on large datasets, and the benefits that

open-reference OTU picking offers over full de novo OTU picking (vastly decreased

runtime) and closed-reference OTU picking (all sequences are clustered, not only those

that match the reference collection), we recommend subsampled open-reference OTU

picking when a reference collection is available.

Because the metrics provided here show that the same summary statistics are derived

from the four OTU picking protocols, an interesting question is whether de novo or

open-reference OTU picking offers any benefit over closed-reference OTU picking. The

primary motivation for using methods that incorporate previously unknown OTUs

(i.e., those that are not represented in the reference database) such as de novo and

open-reference OTU picking is that OTUs not represented in the reference database might

best illustrate a biological pattern of interest. For example, in the 88-soils data analyzed

here, 1 of the top 10 OTUs identified as significantly different across sample pH is an OTU

that is not represented in the reference database (Table 8) (this OTU was classified as in

the Actinomycetales order by QIIME’s uclust-based taxonomy classifier). Similarly, for

the whole-body data set, 2 of the top 10 OTUs identified as significantly different across

body sites were not represented in the reference database (these were classified as Prevotella

melaninogenica and Veillonella parvula by QIIME’s uclust-based taxonomy classifier).

On the other hand, in the moving-pictures data analyzed here, all of the top 10 OTUs

identified as significantly different across body site were OTUs represented in the reference

database. Table 7 illustrates the fraction of OTUs not represented in the reference database

by environment based on the Earth Microbiome Project dataset. We expect that using OTU

picking methods that incorporate new OTUs is more important in samples where this

fraction is higher.
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Table 7 OTU counts by environment. Comparison of OTUs with closed-reference and open-reference OTU picking by biome in the Earth
Microbiome Project dataset.

Average
de novo
OTUs (10K
sequences
per sample)

SD de novo
OTUs (10K
sequences
per sample)

Average
Reference
OTUs
(10k
sequences
per
sample)

SD Reference
OTUs (10k
sequences
per sample)

% novel
diversity
(10k
seqs per
sample)

% error
novel
diversity
(10K seqs
per sample)

Number of
samples

Environmental Biome

Mangrove biome 2,169 1,159 354 73 0.86 0.46 7

Tropical humid forests 2,398 260 397 35 0.858 0.094 26

Tundra biome 1,771 403 312 117 0.85 0.201 110

Deserts and xeric
shrubland biome

3,917 127 707 15 0.847 0.028 7

Taiga 2,598 102 505 35 0.837 0.035 4

Marine biome 2,040 1,048 484 410 0.808 0.446 890

Aquatic biome 714 299 177 199 0.801 0.403 762

Freshwater biome 768 541 194 120 0.798 0.576 375

Warm deserts and semideserts 2,386 473 607 147 0.797 0.166 97

Tropical and subtropical moist
broadleaf forest biome

3,072 125 846 18 0.784 0.032 2

Temperate needle-leaf forests
or woodlands

2,836 159 785 132 0.783 0.057 21

Polar biome 1,721 886 483 218 0.781 0.414 277

Tropical and subtropical
coniferous forest biome

1,993 256 579 94 0.775 0.106 3

Mixed island systems 1,552 618 511 203 0.752 0.315 124

Marginal sea 1,795 325 611 225 0.746 0.164 7

Temperate coniferous
forest biome

2,504 1,206 885 201 0.739 0.361 19

Mediterranean forests,
woodlands, and
shrub biome

695 361 275 195 0.717 0.424 371

Large river biome 1,844 629 743 369 0.713 0.282 5

Terrestrial biome 2,714 222 1,138 163 0.705 0.072 627

Nest of bird 821 276 355 138 0.698 0.262 313

Temperate broadleaf and
mixed forest biome

1,910 491 879 235 0.685 0.195 14

Temperate grasslands 2,745 290 1,315 164 0.676 0.082 696

Animal-associated habitat 758 329 376 240 0.668 0.359 1036

Mammalia-associated habitat 973 357 583 222 0.625 0.27 1918

Cold-winter (continental)
deserts and semideserts

847 210 551 215 0.606 0.215 102

Temperate grasslands,
savannas, and
shrubland biome

1,688 272 1,497 275 0.53 0.121 85

Human-associated habitat 292 242 590 366 0.331 0.498 1597

Rideout et al. (2014), PeerJ, DOI 10.7717/peerj.545 20/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.545


Table 8 Significantly different OTUs by environmental metadata. Top 10 OTUs identified as significantly different across (a) binned pH in 88-soils,
(b) body site in moving-pictures, and (c) body site in whole-body.

(a)

Taxonomy Test-statistic

OTU

113212 k Bacteria;p Acidobacteria;c DA052;o Ellin6513;f ;g ;s 55.859

1123837 k Bacteria;p Actinobacteria;c Rubrobacteria;o Rubrobacterales;f Rubrobacteraceae;
g Rubrobacter;s

50.433

New.Reference
OTU22

k Bacteria;p Actinobacteria;c Actinobacteria;o Actinomycetales;f ;g ;s 49.172

252012 k Bacteria;p Proteobacteria;c Gammaproteobacteria;o Xanthomonadales;f Sinobacteraceae;g ;s 48.65

843189 k Bacteria;p Acidobacteria;c Solibacteres;o Solibacterales;f Solibacteraceae;
g Candidatus Solibacter;s

47.006

1127423 k Bacteria;p Acidobacteria;c Acidobacteriia;o Acidobacteriales;f Koribacteraceae;g ;s 43.87

1129210 k Bacteria;p Acidobacteria;c Acidobacteriia;o Acidobacteriales;f Koribacteraceae;g ;s 43.804

831520 k Bacteria;p Actinobacteria;c Rubrobacteria;o Rubrobacterales;
f Rubrobacteraceae;g Rubrobacter;s

43.625

1139779 k Bacteria;p Proteobacteria;c Alphaproteobacteria 41.863

804187 k Bacteria;p Acidobacteria;c [Chloracidobacteria];o RB41;f ;g ;s 41.151

(b)

Taxonomy Test-statistic

OTU

368134 k Bacteria;p Firmicutes;c Bacilli;o Bacillales;f Staphylococcaceae;g Staphylococcus;s epidermidis 1599.696

3154070 k Bacteria;p Bacteroidetes;c Bacteroidia;o Bacteroidales;f Bacteroidaceae;g Bacteroides;s uniformis 1625.703

1000986 k Bacteria;p Actinobacteria;c Actinobacteria;o Actinomycetales;f Corynebacteriaceae;g Corynebacterium;s 1630.009

1992 k Bacteria;p Bacteroidetes;c Bacteroidia;o Bacteroidales;f Bacteroidaceae;g Bacteroides;s 1728.164

4304475 k Bacteria;p Bacteroidetes;c Bacteroidia;o Bacteroidales;f Bacteroidaceae;g Bacteroides;s 1545.445

191238 k Bacteria;p Firmicutes;c Clostridia;o Clostridiales;f Lachnospiraceae;g Coprococcus;s 1546.436

187665 k Bacteria;p Firmicutes;c Clostridia;o Clostridiales;f Lachnospiraceae;g ;s 1474.529

4396297 k Bacteria;p Firmicutes;c Clostridia;o Clostridiales;f Lachnospiraceae;g ;s 1585.015

3903651 k Bacteria;p Firmicutes;c Clostridia;o Clostridiales;f Ruminococcaceae;g Oscillospira;s 1670.188

3472078 k Bacteria;p Bacteroidetes;c Bacteroidia;o Bacteroidales;f Bacteroidaceae;g Bacteroides;s 1783.488

(continued on next page)

In conclusion, this paper presents the performance-optimized subsampled open-

reference OTU picking algorithm, now available in QIIME. This method can be applied

iteratively to define stable OTUs across sequencing runs, and achieves nearly identical

results to “classic” open-reference OTU picking (i.e., not including the subsampling

step). It enables massive sequencing projects such as the Earth Microbiome Project to

use open-reference OTU picking in far less time than is possible with classic open-reference

OTU picking, which will facilitate our exploration of microbial diversity. Further, the

iterative nature of the process (which is also possible with classic open-reference OTU

picking) enables progressively expanding datasets, as might be generated in clinical

laboratories as microbiome-based medical treatment becomes a reality, to cluster OTUs

using OTU definitions from previous clustering runs as reference sequences. This
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Table 8 (continued)

(c)

Taxonomy Test-Statistic

OTU

4326219 k Bacteria;p Proteobacteria;c Epsilonproteobacteria;o Campylobacterales;
f Campylobacteraceae; g Campylobacter;s

363.881

New.CleanUp.
Reference
OTU222

k Bacteria;p Bacteroidetes;c Bacteroidia;o Bacteroidales;f Prevotellaceae;g Prevotella;
s melaninogenica

358.02

4325533 k Bacteria;p Bacteroidetes;c Bacteroidia;o Bacteroidales;f Rikenellaceae;g ;s 349.852

New.CleanUp.
Reference
OTU17550

k Bacteria;p Firmicutes;c Clostridia;o Clostridiales;f Veillonellaceae;g Veillonella;s parvula 337.656

316732 k Bacteria;p Firmicutes;c Clostridia;o Clostridiales;f Lachnospiraceae;g Lachnospira;s 337.309

4346374 k Bacteria;p Bacteroidetes;c Bacteroidia;o Bacteroidales;f Bacteroidaceae;g Bacteroides;s uniformis 331.433

4458959 k Bacteria;p Firmicutes;c Clostridia;o Clostridiales;f Veillonellaceae;g Veillonella 329.772

3866487 k Bacteria;p Firmicutes;c Clostridia;o Clostridiales;f Lachnospiraceae;g Oribacterium;s 323.488

4391641 k Bacteria;p Proteobacteria;c Gammaproteobacteria;o Pasteurellales;
f Pasteurellaceae;g Haemophilus; s parainfluenzae

312

175751 k Bacteria;p Firmicutes;c Clostridia;o Clostridiales;f Lachnospiraceae;g ;s 305.531

avoids re-clustering all sequences every time new sequences are generated, thereby vastly

decreasing computational costs.
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https://github.com/gregcaporaso/cloaked-octo-ninja.

QIIME Database:

whole-body: ftp://thebeast.colorado.edu/pub/QIIME DB Public Studies/study 449

split library seqs and mapping.zip

moving-pictures: ftp://thebeast.colorado.edu/pub/QIIME DB Public Studies/study

550 split library seqs and mapping.zip

88-soils: ftp://thebeast.colorado.edu/pub/QIIME DB Public Studies/study 103 split

library seqs and mapping.zip.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.545#supplemental-information.
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