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Abstract

Background: Rhipicephalus (Boophilus) microplus is a highly-invasive tick that transmits the cattle parasites
(Babesia bovis and B. bigemina) that cause cattle fever. R. microplus and Babesia are endemic in Mexico and ticks
persist in the United States inside a narrow tick eradication quarantine area (TEQA) along the Rio Grande. This
containment area is threatened by unregulated movements of illegal cattle and wildlife like white-tailed deer
(WTD; Odocoileus virginianus).

Methods: Using 11 microsatellite loci we genotyped 1,247 R. microplus from 63 Texas collections, including
outbreak infestations from outside the TEQA. We used population genetic analyses to test hypotheses about
ecological persistence, tick movement, and impacts of the eradication program in southern Texas. We tested
acaricide resistance with larval packet tests (LPTs) on 47 collections.

Results: LPTs revealed acaricide resistance in 15/47 collections (32%); 11 were outside the TEQA and three were
resistant to multiple acaricides. Some collections highly resistant to permethrin were found on cattle and WTD.
Analysis of genetic differentiation over time at seven properties revealed local gene pools with very low levels of
differentiation (FST 0.00-0.05), indicating persistence over timespans of up to 29 months. However, in one
neighborhood differentiation varied greatly over a 12-month period (FST 0.03-0.13), suggesting recurring immigration
from distinct sources as another persistence mechanism. Ticks collected from cattle and WTD at the same location are
not differentiated (FST = 0), implicating ticks from WTD as a source of ticks on cattle (and vice versa) and emphasizing
the importance of WTD to tick control strategies. We identified four major genetic groups (K = 4) using Bayesian
population assignment, suggesting multiple introductions to Texas.

Conclusions: Two dispersal mechanisms give rise to new tick infestations: 1) frequent short-distance dispersal from the
TEQA; and 2) rare long-distance, human-mediated dispersal from populations outside our study area, probably Mexico.
The threat of cattle fever tick transport into Texas is increased by acaricide resistance and the ability of R. microplus to
utilize WTD as an alternate host. Population genetic analyses may provide a powerful tool for tracking invasions in other
parts of the world where these ticks are established.
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Background
The southern cattle tick, Rhipicephalus (Boophilus)
microplus, is a highly adaptable ectoparasite that has
become established in nearly all tropical and subtrop-
ical regions of the world where domesticated cattle
production occurs [1]. This tick species is a major
problem for livestock production worldwide because it
is the biological vector for disease agents causing bo-
vine babesiosis (Babesia bovis, B. bigemina) and ana-
plasmosis (Anaplasma marginale) [2]. Along with the
closely related cattle tick (R. annulatus) it was likely in-
troduced to the New World by Spanish colonialists. By
1906, economic losses were estimated to be > $130 million
per year in the U.S. alone [3]; this would be the equivalent
of > $3 billion today. The Rhipicephalus-Babesia system
was one of the first vector-borne diseases to be described
in detail [4], which led to the insight that eradicating tick
vectors would prevent the spread of bovine babesiosis [5].
Consequently, the National Cattle Fever Tick Eradication
Program (CFTEP) was established in the U.S. in the early
1900s to eradicate both Rhipicephalus species (collectively
referred to as cattle fever ticks) from 14 southeastern
states and southern California. By 1943, both species were
successfully eliminated from most of the U.S., with the
exception of southern Texas and Florida. Complete eradica-
tion in Florida took another 17 years [3,6] because the ticks
successfully used white-tailed deer (Odocoileus virginianus;
hereafter WTD) as an alternative host [7] and central
Florida contains highly suitable habitats for cattle fever
ticks [8,9]. Complete eradication may never have been
achieved in some areas along the Texas border with
Mexico, and tick infestations in this area have been reported
yearly since 1960 [10].
The possibility of re-introducing cattle fever tick-borne

diseases to U.S. livestock operations remains a constant
concern. The U.S. currently imports 1–2 million cattle
annually from Mexico, where cattle fever ticks and the
Babesia parasites they transmit are endemic [11]. As part
of the CFTEP, the U.S. Department of Agriculture-Animal
Plant Health Inspection Service-Veterinary Services div-
ision (USDA-APHIS-VS) maintains an ~800 km long tick
eradication quarantine area (TEQA) that follows the Rio
Grande border between Texas and Mexico (Figure 1), the
purpose of which is to monitor and apprehend stray ani-
mals from Mexico that threaten to transport cattle fever
ticks to south Texas. All cattle imported via four Texas
ports of entry located within the quarantine zone are
dipped in an organophosphate acaricide (coumaphos)
and certified as tick free prior to being shipped outside the
TEQA; CFTEP regulations specifically prohibit imported
cattle from being stocked into the TEQA. Most imported
cattle are destined for stockyard facilities in the Texas
panhandle, but thousands are purchased annually by
ranching operations in southern Texas [12]. Despite
the rigorous regulations mandated by the CFTEP, new
tick infestations on both cattle and WTD have been
detected in the area north of the TEQA in Texas. An
increasing number of these infestations are resistant to
coumaphos and pyrethroid acaricides. Resistance is
rampant in Mexico, where there is documented tick resist-
ance to five chemical groups of acaricides [13-15] as well
as multiple resistance to 2–3 acaricides simultaneously
[16]. If ticks are not detected at border-crossing stations
and survive the mandatory coumaphos treatment or stray
livestock from Mexico are not found and treated, then re-
sistant tick populations might become established in the
southern U.S. [17,18].
Tick dispersal by infested alternative hosts is another sig-

nificant threat to the eradication program. Rhipicephalus
microplus is able to successfully complete all stages of its
life cycle on WTD [20]. Infested wild ungulates, including
WTD, nilgai antelope (Boselaphus camelotragus) and red
deer (Cervus elaphus), readily cross the Rio Grande [21].
White-tailed deer have experienced a remarkable expansion
in Texas over the last 100 years, from <10,000 in the 1900s
to a current statewide population numbering 3–4 million
[22]. Movements of this free-ranging and largely un-
regulated host are not restricted by typical cattle fencing
(“low fences”) in southern Texas; therefore, movement
of ticks on WTD may greatly increase local gene flow
among tick populations. One of our primary goals in
this study was to investigate whether deer could serve
as a source of ticks that infest cattle.
New infestations of cattle fever ticks at locations outside

the TEQA have become a major concern for the CFTEP.
In response to the high frequency of new outbreaks, large
temporary preventative quarantine areas (TPQAs) were
established (Figure 1), which place major restrictions on
cattle movement and are a burden on ranching opera-
tions. The source of new infestations outside of the TEQA
must either be ecologically established tick populations
from the TEQA or ticks from Mexico. In this study, we
address three questions of major importance to the eradi-
cation program. 1) Do local R. microplus gene pools in the
TEQA persist through time, as would be expected if they
are ecologically established in Texas? If so, this should
result in low levels of temporal genetic structure. 2) Are
ticks on WTD a source of ticks on cattle? We predict
that a shared local tick source would not demonstrate
genetic structure on hosts (WTD and domestic cattle)
sampled at the same location. 3) Do new tick infesta-
tions outside of the TEQA show evidence of being
introduced from multiple genetic sources? Any infes-
tations that originated outside of our study area
should display distinct genetic signatures compared
to that observed in the TEQA. We use population
genetic approaches based on microsatellite markers
to address these questions about southern cattle tick



Figure 1 Map of sampling locations for Rhipicephalus microplus ticks in southern Texas. The tick eradication quarantine area (TEQA) lies
between the international border between Texas and Mexico (the Rio Grande River) and the pink line. This genetic study used 63 tick collections
made at 46 properties during 2005–2010 (see Table 1 for sample sizes and dates of collection). Each location is color-coded to represent the four
main genetic groups (see Additional file 3: Figure S1) that were found with Bayesian assignment testing using STRUCTURE software [19]. The light
blue symbols represent highly admixed collections along the Rio Grande River that do not assign to any single genetic group. The green group
in eastern Zapata Co. (Rm20-Rm32) includes pyrethroid-resistant tick collections. The two temporary preventative quarantine areas (TPQAs or
blanket quarantine zones) represented by light green polygons were enforced during 2007–2012 to address new infestations outside of the TEQA;
the maximum extent of these TPQAs is shown (year 2009). The blue triangles from the inset map mark three livestock feedyards where traceback
ticks from Prop37 (Rm43) were transported in April of 2008 and later eradicated.
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establishment, movement, control, and eradication in
southern Texas.

Methods
Field collections and acaricide testing
Tick surveillance occurs year-round in the TEQA and is
carried out by USDA-APHIS personnel as part of the
CFTEP, as outlined in the Texas Administrative Code under
Title 4, Part 2, Chapter 41. The TEQA is a narrow strip be-
tween the Rio Grande River and the next physical barrier
(usually State Hwy 83) that extends for ~800 km along the
border of the U.S. and Mexico (Figure 1). Temporary pre-
ventative quarantine areas (blanket quarantine zones) are
extended northwards from this eradication zone during
severe tick outbreaks; the most recent TPQAs were in
place from 2007–2012 and some properties are still under
quarantine (Texas Animal Health Commission and R.
Duhaime, pers. comm.). Our study is focused on Starr
and Zapata counties where R. microplus infestations
peaked during 2008–2009; during this time over one
million acres were placed under TPQA restrictions.
Field samples of live ticks collected directly from hosts
(cattle and WTD) are sent to the USDA Cattle Fever Tick
Research Laboratory in Edinburg, TX, to be screened for
resistance to five compounds (coumaphos, permethrin,
amitraz, ivermectin, and fipronil) using the larval packet
test [18,23]. Frozen archives of excess/unused field ticks
are stored by USDA-Agricultural Research Service (ARS)
in Kerrville, TX and were used for this study.
The most important hosts for R. microplus in southern

Texas are cattle (mixed Bos taurus/B. indicus breeds) and
WTD. Ticks are sampled from cattle at infested properties
by corralling a herd and “scratching” each animal individu-
ally to detect attached ticks. Sampling from WTD occurred
in Zapata and Starr Cos. in neighborhoods with high rates
of infested cattle and large numbers of deer. Randomly sam-
pled deer were netted from a helicopter, restrained by
ground personnel, and scratched for ticks. We used collec-
tions from both hosts to evaluate genetic variation in 63 tick
collections sampled from 46 properties in southern Texas
(Table 1 and Figure 1). A tick collection is defined as a sam-
ple of ticks from a single property taken within a 30-day
time window. Tick samples taken from the same premise
but separated by >30 days are treated as separate collections.
The full life cycle (one generation) of R. microplus in south-
ern Texas takes 3–6 months to complete. Thus, it is reason-
ably likely that ticks collected within 30 days from a single
location are sampled from the same generation.

Molecular methods
We used DNEasy kits (Qiagen, Valencia, CA) to extract
DNA from the USDA-ARS frozen archived ticks. Most



Table 1 Information for 63 collections of Rhipicephalus microplus ticks (N = 1,247), ordered from West to East (as in Figure 1)

Collection Property Collection date N Host County Analyses

Rm01 Prop01 10-MAR-2008 6 cowMX Webb S

Rm02 Prop02 09-MAR-2009 17 cow Webb S I

Rm03 Prop03 02-JAN-2008 6 cow Webb S

Rm04 Prop04 02-DEC-2009 6 cow Webb S

Rm05 Prop05 19-JUN-2008 30 cow Zapata S V I

Rm06 Prop06 17-DEC-2009, 07-JAN-2010 29 WTD Zapata S V TB D I

Rm07 Prop07 21-JAN-2010 7 WTD Zapata S

Rm08 Prop08 09-DEC-2009 10 WTD Zapata S TB I

Rm09 Prop09 14-NOV-2007 14 cow Zapata S TB

Rm10 Prop10 06-MAY-2009, 04-JUN-2009 31 cow Zapata S V TA TB D I

Rm11 Prop10 28-SEP-2009 11 cow Zapata S TA I

Rm12 Prop11 20-JUN-2007 27 cow Zapata S TA TB

Rm13 Prop11 27-JUL-2009 20 cow Zapata S TA TB D I

Rm14 Prop11 16-NOV-2009 13 WTD Zapata S TA TB D I

Rm15 Prop12 04-DEC-2008 12 WTD Zapata S TB I

Rm16 Prop13 28-DEC-2009, 13-JAN-2010 20 WTD Zapata S D I

Rm17 Prop14 16-JUL-2009 20 cow Zapata S D I

Rm18 Prop15 19-MAY-2009 6 cow Zapata S

Rm19 Prop16 06-MAY-2009 2 cow Zapata S

Rm20 Prop17 07-MAY-2008 2 WTD Zapata S

Rm21R Prop18 26-JUN-2008 4 cow Zapata S

Rm22 Prop19 06-MAY-2009 2 cow Zapata S

Rm23 Prop20 06-MAY-2009 7 cow Zapata S

Rm24 Prop21 25-JUN-2009 1 cow Zapata S

Rm25 Prop22 04-MAY-2009, 15-MAY-2009 6 cow Zapata S

Rm26R Prop23 05-NOV-2008 19 cow Zapata S I

Rm27R Prop24 27-OCT-2008, 05-NOV-2008 24 cow Zapata S I

Rm28 Prop25 15-APR-2009, 24-APR-2009, 06-MAY-2009 36 cow Zapata S V I

Rm29R Prop26 15-APR-2009, 24-APR-2009, 01-MAY-2009, 15-MAY-2009 25 cow Zapata S I

Rm30R Prop27 20-APR-2009, 24-APR-2009, 01-MAY-2009 60 cow Zapata S V TA I

Rm31R Prop27 16-JUL-2009 12 cow Zapata S TA I

Rm32R Prop28 26-JUN-2008 18 cow Zapata S I

Rm33 Prop29 15-NOV-2007 7 cowMX Starr S

Rm34 Prop30 29-APR-2005, 03-MAY-2005 42 cow Starr S

Rm35 Prop31 06-JUN-2008 22 cow Starr S I

Rm36 Prop32 30-DEC-2008 31 WTD Starr S V TB D I

Rm37 Prop33 27-MAR-2008 15 cow Starr S TB D I

Rm38 Prop34 23-MAY-2008 24 cow Starr S TA TB I

Rm39 Prop34 18-MAR-2009 18 cow Starr S TA TB D I

Rm40 Prop34 09-APR-2009, 24-APR-2009 14 cow Starr S TA TB I

Rm41 Prop35 04-APR-2008 13 WTD Starr S TB I

Rm42 Prop36 22-FEB-2008 30 cow Starr S V I

Rm43a Prop37 11-APR-2008 48 cow Starr S V I

Rm44 Prop38 19-MAY-2009 16 cow Starr S TA I
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Table 1 Information for 63 collections of Rhipicephalus microplus ticks (N = 1,247), ordered from West to East (as in Figure 1)
(Continued)

Rm45 Prop38 27-JUL-2009 7 cow Starr S TA

Rm46 Prop39 17-FEB-2009 30 cow Starr S V TA I

Rm47b Prop39 03-MAR-2009 171 WTD Starr S V TA D I

Rm48 Prop39 04-MAR-2009 22 cow Starr S D I

Rm49 Prop40 02-APR-2009 29 cow Starr S V I

Rm50 Prop41 19-JUN-2008 29 cow Starr S V I

Rm51 Prop42 16-JAN-2009 30 cow Starr S V TA I

Rm52 Prop42 27-FEB-2009 30 cow Starr S TA I

Rm53 Prop42 27-MAR-2009 11 cow Starr S TA

Rm54 Prop42 10-APR-2009 10 cow Starr S TA

Rm55 Prop42 04-MAY-2009 3 cow Starr S

Rm56 Prop42 08-JUL-2009 20 cow Starr S TA

Rm57 Prop42 13-AUG-2009 2 cow Starr S

Rm58 Prop43 04-MAY-2009 18 cow Starr S I

Rm59 Prop44 15-APR-2009 30 cow Starr S V I

Rm60 Prop45 06-MAY-2009 15 cow Starr S I

Rm61 Prop45 08-JUN-2009, 29-JUN-2009 3 cow Starr S

Rm62 Prop45 31-JUL-2009 1 cow Starr S

Rm63 Prop46 05-MAY-2008 3 cow Hidalgo S

A tick collection is defined as a sample of ticks from a single property taken within a 30-day time window. Tick samples taken from the same property but
separated by >30 days are treated as distinct collections. All samples were made by USDA-APHIS at 46 properties in southern Texas. Hosts included domestic
cattle (cow), stray Mexican cattle that were apprehended on the Texas side of the U.S.-Mexico border (cowMX), and white-tailed deer (WTD). Collections were
partitioned into appropriate datasets for statistical analyses, including: population assignment in STRUCTURE software (S), genetic marker validation tests (V),
temporal genetic structure within single properties (TA), temporal genetic structure within 4 km neighborhoods centered on Prop11 or Prop34 (TB), genetic
differentiation between paired collections of ticks from WTD and cattle (D), and isolation-by-distance (I).
RCollection was highly resistant to permethrin in larval packet test (see Methods).
aThe Rm43 collection is comprised of 15 ticks from a source pasture (Prop37) and 33 traceout ticks known to have originated from this property. The traceout
ticks were intercepted within a few days of transport to Atascosa Co. (n = 5), Madison Co. (n = 10), and Nagocdoches Co. (n = 18).
bThe Rm47 ticks were collected from 10 WTD; detailed genetic information on each infrapopulation from these 10 deer is provided in Additional file 2: Table S2.
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samples in our study were adult females, so only half of the
tick body was used per extraction. We used the entire body
of ticks that were small enough to not overload the Qiagen
columns. DNA was quantified on a NanoDrop 8000 spec-
trophotometer (Thermo Scientific, Waltham, MA) and di-
luted to 20 ng/uL for PCR. Because R. annulatus also
occurs in the TEQA and may hybridize with R. micoplus,
we developed a PCR assay to query a single nucleotide
polymorphism (SNP) found in the mitochondrial 16S
gene that distinguishes the two species. We aligned
partial 16S sequences available in GenBank for R.
microplus, R. annulatus, and Haemaphysalis cretica
(GenBank accession numbers: EU918179, EU918183,
EU918185, L34311, Z97877, and L34308) to find a pu-
tative species-specific SNP target that corresponds to
nucleotide 295 of the H. cretica reference sequence
[24]. We developed specific forward primers to detect
a thymine for R. microplus (TICK16S_DerT_Rmicroplus:
5’gggcgggcgggcAAAATGACCCATTATTAATGAAAA
TATGAGT) or an adenine for R. annulatus (TICK16S-
AncA-F1_Rannulatus: 5’AAAATGATCCATTATTAAT
GAAAATATGACA). The reverse primer (TICK16S-R1:
5’AAAATATAACGCTGTTATCCCTAGAGTATTT) was
conserved in both species, thus the amplicon lengths are
73 bp for R. microplus (because of the GC tail) and 61 bp
for R. annulatus. All three primers were used in a com-
petitive PCR; reactions were carried out in 10 μL vol-
umes containing the following reagents (given in final
concentrations): 20-40 ng of DNA template, 1X SYBR®
Green Master Mix (Invitrogen, Carlsbad, CA), 0.15 μM
of each forward primer, and 0.30 μM of the reverse
primer. Quantitative PCRs were thermocycled on an
AB7900 (Applied Biosystems, Foster City, CA) under
the following conditions: 95°C for 10 minutes to release
the Taq polymerase antibody, followed by 35 cycles of
95°C for 15 seconds, 58°C for 60 seconds, and 72°C for
30 seconds. Afterwards, a dissociation curve was generated
for each sample. The R. microplus product dissociates at
73°C because of the GC tail on primer TICK16S_DerT_
Rmicroplus, whereas the R. annulatus product dissociates
at 67°C. We ran morphologically identified R. microplus
and R. annulatus vouchers as positive controls in all runs.
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We generated multi-locus genotypes for each tick
using 12 neutral microsatellite markers (Table 2). Of 22
published loci for R. microplus, only nine amplified ro-
bustly in the Texas samples. This limited performance
might stem from a deep phylogenetic split between lin-
eages of R. microplus that colonized the Americas ver-
sus Australia and New Caledonia [25]; until now, all
published markers have been developed from the latter
tick populations. We were able to improve amplification for
three loci by redesigning reverse primers (Table 2). In
addition to the nine published loci, we added three markers
that were developed for our parallel genetics study on
R. annulatus [26]. These markers were identified by
single-end shotgun sequences of R. annulatus DNA on a
Roche 454 Titanium instrument at the Genome Resource
Center (University of Maryland). MSATCOMMANDER
[27] was used to find sequence reads with di-, tri-, and tet-
ranucleotide repeats. 138 candidate loci were tested against
R. annulatus [26] and R. microplus before choosing the
three loci added to this study (Table 2).
All PCRs were carried out in 10 μL volumes contain-

ing the following reagents (given in final concentrations):
20-40 ng of DNA template, 1X PCR buffer, 2 mM
MgCl2, 0.2 mM dNTPs, 1U Platinum Taq polymerase
(Invitrogen, Carlsbad, CA), and 0.2 μM of each primer.
Table 2 Microsatellite markers used to estimate population s

Marker Ta Duplex mix Post-PCR
dilution

Dye A Allele sizes (bp)

PNC75 64 2 1/40 NED 4 139, 143, 145, 147

PNC98 55 3 1/10 NED 4 135, 139, 141, 143

PNC153 48 naa 1/15 VIC 16 132, 136, 140, 144,
164, 172, 176, 180,

BmC07 57 1 1/100 NED 8 132, 142, 158, 170,

BmD10 57 1 1/100 6FAM 2 152, 154

BmB12 67 naa 1/60 6FAM 2 297, 301

LTF4.3 48 naa 1/15 PET 3 295, 297, 319

SJB411 55 3 1/10 6FAM 19 159, 187, 191, 195,
239, 243, 251, 259,

KRGinv 55 na na VIC 20 138, 142, 146, 150,
210, 246, 252, 256,

ATC12 64 2 1/40 PET 12 137, 143, 155, 158,
176, 179, 182

ATC15 56 4 1/30 PET 4 187, 205, 208, 211

ATT20 56 4 1/30 6FAM 25 190, 226, 229, 232,
253, 256, 259, 262,
283, 286, 289, 292,

Ta is the annealing temperature in PCR; A is the total number of observed alleles. Lo
into a single loading mix before being run on an AB3730. The KRGinv locus was rem
amplification of >2 alleles in individuals from some populations.
aLoci listed as “na” in the Duplex Mix column are run singly in separate PCRs, then
PCRs were thermocycled according to following condi-
tions: 10 minutes at 95°C to release the Platinum Taq®
antibody, followed by 38 cycles of 60s at 94°C, 30s at the
annealing temperature (Ta) and 30s at 72°C. The Ta, di-
lution, and pooling scheme for each locus are provided
in Table 2. Diluted PCR products were electrophoresed
on an ABI 3730 sequencer with LIZ®-1200 size standard
and analyzed using the software GENEMAPPER v4.0
(Applied Biosystems, Foster City, CA).

Statistical analysis
We ran a series of tests on the microsatellite markers to val-
idate their usefulness in population genetic analyses. In this
validation step, we used only our largest sample sizes: 14
populations with n ≥ 25 (see Table 1, collection subset “V”).
We performed a test of Hardy-Weinberg equilibrium in
GENEPOP using the option for a probability test that is
based on a Markov chain algorithm [31], a test for linkage
disequilibrium in FSTAT v2.9 based on the log-likelihood
ratio G statistic [32], a test of selective neutrality in FDIST2
[33], and a test for null alleles in MICROCHECKER [34].

Question 1: Temporal genetic stability
To address our first question, we investigated the temporal
genetic signature of ecologically established R. microplus
tructure in R. microplus ticks from southern Texas

Citation and/or primer sequence (5’-3’)

[28]

[28]

148, 152, 156, 160,
184, 188, 192, 196

[28] but redesigned R primer (PNC153-R2):
TTCAAAGTTCATATGCATGGTC

172, 178, 190, 192 [29] but redesigned R primer (BmC07-R2);
GTCAGCCATATGTTCAACCAGA

[29]

[29] but redesigned R primer (BmB12-R2):
CGTATGAAGCTATGATGAATAGGAGACGTG

[30]

215, 219, 223, 227, 231,
263, 267, 271, 275, 279, 283

[30]

154, 158, 162, 166, 170, 174,
258, 262, 266, 270, 274, 278

[30] Removed from study.

161, 164, 167, 170, 173, [26] F-CAAGCACAGGACCGAGTTGA

[26] R-GTGTGCTTTCGCAATGATCG

[26] F-AAAGATTCATGAAGGATGTTGATCG

[26] R-GCCTACAAATTCAACTGAGGGAAAA

235, 238, 241, 244, 247, 250,
265, 268, 271, 274, 277, 280,
295

[26] F-CGGTTAATCTACAAACGAAGTCTTG

[26] R-TTTTTATGTAGTGCTTTTTCAACTTTCA

ci were amplified in duplexes or as singletons; compatible loci were pooled
oved from this study due to linkage disequilibrium with PNC153 and

diluted and pooled together for loading onto an AB3730.
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infestations in southern Texas. We focused our analysis
on a subset of collections from seven properties that were
sampled repeatedly over time, with at least 30 days separ-
ating each collection (Table 1, collection subset “TA”). We
evaluated genetic differentiation for all pairwise FST
comparisons of collections sampled at individual properties
(e.g., we did not use among-property comparisons). The
FST of each collection pair was estimated using θ [35] in
the program FSTAT, with 20,000 randomized permutations
for significance testing (α = 0.05). In restricting our analyses
to within single properties we controlled for the effects of
isolation by distance (IBD). However, the TA collection sub-
set did not provide enough repeated temporal samples from
any single property to robustly test a correlation of θ versus
time with a Mantel test. Thus, we extended the temporal
analysis to include multiple properties located near two
infestation foci from the TA subset, Prop11 (Zapata Co.)
and Prop34 (Starr Co.). These neighborhoods experienced
chronic tick infestations from 2007–2010 (Table 1, collection
subset “TB”). The size of both neighborhoods was limited to
a diameter of 4 km to minimize the effect of IBD. In this sec-
ond dataset, we compared θ values versus time (months) to
check for a positive relationship using the Mantel test option
in the program IBD (Isolation by Distance) [36]. Because
we were not interested in testing genetic differentiation
between the two neighborhoods, we only used within-
neighborhood comparisons.

Question 2: Ticks from WTD vs. cattle
A central goal of this study was to determine whether
southern cattle ticks at any single location use cattle and
WTD indiscriminately, or instead segregate according to
host. Ideally Question #2 would be answered by compar-
ing genetic differentiation (FST) between ticks sampled
from WTD and cattle at the same property and time,
such as the paired Rm47-Rm48 collections (Table 1).
However, paired samples of this kind are rare due to the
large amount of effort required to sample ticks from
WTD. Thus, we included five additional collection pairs
that minimized spatial and temporal separation of ticks
collected from WTD and cattle (Table 1, collection
subset “D”). We estimated pairwise FST between each
WTD-cow collection pair using θ and generated 95%
bootstrap confidence limits in FSTAT. Confidence
limits that overlapped with zero would be indicative
that ticks collected from both hosts in the same pas-
ture (or neighboring pastures) share a common gene
pool. As a supporting analysis for Question #2, we also
used the large Rm47 collection (n = 171) to establish
the baseline level of genetic structure among ticks
sampled from 10 individual WTD. These ten tick
infrapopulations control for spatial and temporal vari-
ation and allow us to evaluate the level of FST variance
within a single property (Prop39).
Question #3: Multiple introductions and tick movements
in Texas
The remaining analyses in our study were focused on
Question #3. An important goal was to estimate the
number of genetic populations in the quarantine zone
and find if genetic admixture occurs. All 1,247 ticks
(Table 1, collection set “S”) were used in assignment
tests with STRUCTURE [19]. We set Bayesian parameters
to assume both genetic admixture and correlated allele
frequencies in the study system, and to ignore collec-
tion locations. These parameters were run at K values
from 1–47 with 25,000 burn-in iterations followed by
100,000 run iterations. The Bayesian analysis was re-
peated five times for each K. The resulting log(Prob K)
values were analyzed with the delta-K method [37] to
estimate the most likely number of genetic popula-
tions. We assigned ticks to a specific genetic group if
their probability of membership (Q) was ≥0.95.
Southern cattle ticks from all 63 collections were

used to estimate basic descriptors of genetic diversity,
including allelic richness (A), observed heterozygosity
(HO), and expected heterozygosity (HE) using GENALEX
[38]. As an a posteriori test of genetic diversity in the study
system, we compared HO among core genetic groups
identified in the STRUCTURE analysis using FSTAT
(option “Comp. among groups of samples”).
To address questions about tick genetic structure and

IBD in Texas, we used collections from 2008 (n = 13)
and 2009 (n = 25) (Table 1, collection subset “I”). We an-
alyzed these two years separately to reduce variation due
to time, since 2–3 tick generations may occur between
years. Original collections were used for analyses of glo-
bal and pairwise FST (i.e. we ignored the genetic groups
estimated by STRUCTURE). We used FST to estimate θ
in the program FSTAT; to reduce variance in these esti-
mates we omitted collections with n < 10. We tested for
an IBD pattern using reduced major axis (RMA) regres-
sion implemented in the IBD program [36], with geo-
graphic distance (in km) as the independent variable
and a transformed FST coefficient, FST /(1- FST) [39], as
the dependent variable. Because host species has been
shown to play a significant role in IBD patterns in
R. microplus from New Caledonia, we tested the slope
of our regression against these published estimates [40].
To make our variables directly comparable to that study,
we 1) performed a natural logarithm transformation of
geographic distance, 2) separated datasets into cow-only
and WTD-only, 3) removed pairwise comparisons that re-
sulted in FST = 0, and 4) generated 95% confidence inter-
vals for each slope using GENEPOP.

Results
The larval packet tests revealed acaricide resistance in
15 of 63 collections (Additional file 1: Table S1). All but
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three of these were located outside of the TEQA. The
level of resistance was generally low for all acaricides ex-
cept permethrin. Resistance to permethrin was medium
to high in seven collections (Rm21, Rm26, Rm27, and
Rm29-Rm32) located in eastern Zapata Co. (Figure 1).
The level of resistance was similar to that reported for
other pyrethroid-resistant field populations from the U.S.
and Mexico [18,41]. Resistance to multiple acaricides was
also observed, including low-level coumaphos resistance
in collections Rm21, Rm27, and Rm32. The higher con-
centration in our LPTs (0.32% coumaphos) simulates the
concentration of active ingredient used in the border dip-
ping vats (0.3% coumaphos); however, the exposure time
is greater during LPTs (24 hrs).
All 1,247 ticks in this study had previously been morpho-

logically identified by USDA personnel as R. microplus, and
the mitochondrial qPCR assay correctly identified every
specimen. Furthermore, the assay correctly identified
407 R. annulatus samples morphologically identified
for another study [26]. In validating the identity of all
R. microplus in our study, we demonstrate the usefulness
of this molecular tool for future studies of field-sampled
R. microplus and R. annulatus larvae and nymphs, which
are difficult to resolve using morphology alone. Since
our validation only included North American samples,
we do not know if the SNP assay will be species-specific
in R. microplus and R. annulatus from other parts of the
world. Thus, we emphasize the importance of validating
this assay on morphologically verified voucher specimens
of both species before using it.
Validation tests on the 12 markers detected one prob-

lem locus, KRGinv (Table 2). This locus was out of
Hardy-Weinberg equilibrium in 5 of 14 collections, had
linkage disequilibrium with PNC153 in 9 of 14 collections,
and amplified >2 alleles in three collections. Thus, we re-
moved this marker and used the remaining 11 loci. We
checked for allele scoring errors by comparing independent
PCR replicates of each locus on a subset of 188 ticks. From
a total of 4,136 possible allele calls (188 individuals x 11
loci x 2 alleles per diploid individual) we found 12 that
were incorrect, yielding an error rate estimate of 0.3%.

Question 1: Temporal genetic stability
Our temporal analysis suggests that southern cattle ticks
often persist for multiple generations at chronically infested
locations. At seven individual properties sampled repeatedly
over time (collection subset TA), most pairwise θ values
were <0.05 (Figure 2a), and 16 of 24 were not signifi-
cantly greater than zero. The largest time span between
two collections at any single property was 29 months
(Rm12 and Rm14 from Prop11), which resulted in surpris-
ingly little genetic differentiation (θ = 0.012, p = 0.017).
Our second time-series analysis (collection subset TB:
4 km neighborhoods at Prop11 and Prop34) uncovered
significant genetic differentiation (Figure 2b), but it was
not correlated with time (Prop11 Mantel r = 0.16, p = 0.24;
Prop34 Mantel r = −0.004, p = 0.53). The magnitude of
differentiation in the Prop11 area (global θ = 0.02, 95% CI
[0.011, 0.029]) was about one-third of that in the Prop34
area (global θ = 0.065, 95% CI [0.049, 0.081]). Since neither
global θ estimate overlapped with the 95% CI of the other,
the difference in genetic differentiation within neighbor-
hoods was significant. Of particular interest in this analysis
was the difference in the range of θ values found within
each neighborhood (low variance among Prop11 compari-
sons and high variance among Prop34 comparisons).
This indicates that the amount of temporal genetic dif-
ferentiation on a local scale (4 km) is highly labile and
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may depend on persistence history and gene flow from
outside sources.

Question 2: Ticks from WTD vs. cattle
An important analysis for the tick eradication program
was the test of genetic differentiation in six paired col-
lections from WTD and cattle. The best paired sample
to address this question is Rm47-Rm48, where south-
ern cattle ticks from WTD and cattle from the same
pasture (Prop39) were sampled just one day apart. No
genetic differentiation exists between these two collec-
tions (Table 3), which suggests that a single source of
ticks infested both host species. The Rm47 collection
was sampled from 10 WTD, and we detected a small
but significant level of differentiation among these 10
infrapopulations (global θ = 0.01, 95% CI = 0.002, 0.019).
Upon closer examination, this differentiation was driven
by the ticks from one deer (Rm47-26) that displayed
much higher pairwise θ values (0.04-0.107) than any
other infrapopulation (Additional file 2: Table S2). It
is possible this deer may have acquired its ticks at a
different location before dispersing to Prop39. The
other nine infrapopulations did not show significant
population structure (θ values −0.006 to 0.034). This
pattern is consistent with the prediction by Chevillon
et al. [42] that infrapopulation is not an important
level of genetic differentiation in R. microplus. When
cattle-derived ticks of the Rm48 collection were com-
pared to these nine infrapopulations from WTD, an even
smaller range of θ values (−0.002 to 0.017) was observed
(Additional file 2: Table S2).
We could not strictly control for the effects of space

and time in the remaining paired tick collections from
WTD and cattle (Table 3). However, two additional
comparisons displayed a lack of genetic differentiation,
despite a separation of up to 1.9 km and 7 months. In
contrast, tick collections separated by more than 2 km
or 9 months display a marked rise in genetic structure,
reflecting the overall IBD pattern in Texas (see IBD
analysis below).
Table 3 Comparisons of genetic differentiation in paired colle
white-tailed deer (WTD) and cattle in southern Texas

Collection pair (WTD vs. cow) Spatial distance (km) Temporal

Rm47 vs. Rm48 0 1 day

Rm13 vs. Rm10 0.6 2 mos.

Rm06 vs. Rm10 1.9 7 mos.

Rm36 vs. Rm37 0.3 9 mos.

Rm36 vs. Rm39 2.3 3 mos.

Rm16 vs. Rm17 6.5 6 mos.

Spatial and temporal distances were minimized as much as possible in these six pa
significant p-values are in bold font.
Question #3: Multiple introductions and tick movements
in Texas
The Bayesian analysis in STRUCTURE suggests the ex-
istence of four main genetic groups in southern Texas
(Additional file 3: Figure S1 and Additional file 4: Figure S2).
These four genetic partitions include: 1) the “green” group
of northeastern Zapata Co., which has permethrin-resistant
ticks; 2) the “yellow” group of Starr Co., which was found
in both TPQAs; 3) the “blue” group; and 4) the “red”
group (Figure 1). A total of 750 ticks (60%) assigned to
one of these four groups at Q ≥ 0.95. The remaining
ticks (n = 497 from 30 collections) did not assign to any
single genetic group at this level of confidence. Rather,
their membership probabilities were partitioned across
multiple groups and indicate widespread admixture in
the TEQA (shown as light blue markers in Figure 1).
The green and yellow genetic groups were the most
clearly defined, with at least 93% of individuals assign-
ing at Q ≥ 0.95 (Additional file 5: Table S3). Genetic
structure was essentially zero among green collections
(global θ = 0.009, 95% CI [−0.002, 0.025]) and very low
among all but one of the yellow collections (global θ =
0.06, 95% CI [−0.019, 0.124]). We also identified candi-
date diagnostic alleles in six microsatellite loci that had
frequency signatures specific to single genetic groups
(Additional file 5: Table S3). For example, the 172 bp
allele of locus PNC153 is fixed at a frequency of 1.0 in
both blue collections, is fixed at 0 in all 13 green collec-
tions, and exists at intermediate frequencies (0.16-0.57) in
the red and yellow collections.
Genotype data allowed us to track dispersal events of the

yellow and blue groups that resulted from cattle transport.
According to APHIS cattle traces and livestock sale records,
yellow group ticks appear to have been spread from a prop-
erty adjacent to Prop42 (collections Rm51-Rm57) in west-
ern Starr Co. and were transported 39 km southeast to
Prop44 (Rm59) on three cows purchased in October 2007.
By April 2009, ticks had spread from Prop44 to adjacent
pastures (including Prop40 [Rm49] and Prop45 [Rm60-62])
and resulted in the establishment of a new TPQA in Starr
ctions of Rhipicephalus microplus ticks sampled from

distance FST p-value Interpretation

0.004 0.4187 Shared infestation

0.005 0.4001 Shared infestation

0.003 0.5614 Shared infestation and persistence

0.085 0.0006 Independent infestations

0.106 0.0006 Independent infestations

0.080 0.0001 Independent infestations

irs. Estimates of FST were calculated as pairwise θ values in the FSTAT program;
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and Hidalgo Cos. (see Figure 1). In the same way, we were
able to correctly assign 33 known traceback ticks of the
blue genetic group (Rm43) back to their source at Prop37.
These movements occurred in April 2008, when tick-
infested cattle from Prop37 were inadvertently transported
to three feedyards in central and eastern Texas up to 200
miles from the TEQA (Figure 1 inset). The STRUCTURE
analysis correctly assigned 30 of these traceout ticks back
to Rm43 with a high level of confidence (Q ≥0.95) and the
final three ticks at a slightly lower level (Q = 0.91-0.94). Of
course, the source of these 33 ticks was already known,
but in another case we found a previously unsuspected
connection between Rm43 and ticks sampled three weeks
later at Prop46 (Rm63). Each Rm63 tick (n = 3) assigns to
the blue group with very high confidence (Q > 0.98), even
though these two locations are separated by 120 km. The
two locations also share three diagnostic alleles at two loci
(PNC153 allele 172 and PNC75 alleles 145/147; see
Additional file 5: Table S3). A follow-up check of APHIS
field records revealed that Rm63 was indeed the result of
a single infested cow from Prop37 (Rm43) that had been
transported to Prop46 (Rm63) in February of 2008.
The STRUCTURE analysis identified two additional

migrants that would not have been detected without
genetic data. The first assigned with very high confi-
dence (Q = 0.978) to the green genetic group of north-
eastern Zapata County, but was sampled with collection
Rm50 (Prop41) 27 km from the nearest known green
collection (Rm32). By way of comparison, the greatest
span between any two collections in the green group is
16 km. To validate this result, we re-extracted DNA
from the remaining half of the frozen tick and generated
a new multilocus genotype; this second genotype is
identical to the first. Additional green group migrants
may have been sampled at Prop41, because a small per-
centage of ticks survived the LPT test for permethrin
(see results for Rm50 in Additional file 1: Table S1). A
second unknown migrant in our study assigned primarily
to the blue genetic group (Q = 0.88), but was sampled with
collection Rm30 (green). The closest source of southern
cattle ticks with a high proportion of blue individuals is the
TEQA, about 33 km distant. We also validated this second
migrant by re-genotyping it from a new DNA extraction.
We may have sampled other migrants in our 63 collections
but, if so, they were less obvious and did not assign to any
single genetic group with a high level of confidence.
Measures of genetic diversity were low to moderate in

southern Texas. The average number of alleles per locus
ranged from 1.2-6.1 (Additional file 6: Table S4), and
was often higher in collections closer to the Rio Grande
(Additional file 7: Figure S3a). Tick collections from the
green, yellow, and blue genetic groups displayed the
smallest values of A, with an average of about two alleles
per locus. This is similar to the small number of alleles
(2.3-3.5) reported for isolated R. microplus infestations
in an eradication area of New South Wales, Australia [30]
and may indicate that these genetic groups experienced
bottlenecks during establishment. Values of HO ranged from
0.18-0.54 (Additional file 6: Table S4 and Additional file 7:
Figure S3b). In the FSTAT test for among-group differences
in HO, we omitted tick collections that 1) were not clearly
assigned to one of the four genetic groups (see Figure 1),
and/or 2) had sample sizes ≤5. A global test among the
four core genetic groups revealed a significant difference
(p = 0.023) in mean HO. This pattern was driven primarily
by the green group (mean HO = 0.31), which had an HO

much lower than the others (mean HO: yellow = 0.41,
blue = 0.43, red = 0.47).
We observed moderate to high genetic differentiation

among R. microplus collections in southern Texas. Global
estimates of mean FST were greater in 2008 (θ = 0.22, 95%
CI [0.19, 0.26] than 2009 (θ = 0.16, 95% CI [0.14, 0.17]).
The genetic structure in the quarantine zone shows an
overall pattern of IBD (Figure 3), however, a large amount
of variation is present and produced low R2 values. Al-
though the mean FST estimates were different between
years, the IBD slopes did not differ (2008 b = 0.007, 95% CI
[0.0055, 0.0088]; 2009 b = 0.006, 95% CI [0.0054, 0.0067]).
Interestingly, the WTD slopes for 2008 (b = −0.00039) and
2009 (b = 0.0022) were both significantly lower than the
slope for all pairwise comparisons. Admittedly, the 2008
WTD sample size was low (three pairwise comparisons),
but the 2009 WTD results indicate that deer may move
southern cattle ticks farther than cattle, thereby decreasing
the magnitude of genetic structure over distance. Signifi-
cant genetic differentiation was rarely observed in pairwise
comparisons ≤ 4 km, indicating genetic homogenization in
local gene pools.
After removing comparisons with zero genetic distance

and performing a natural logarithm transformation of
geographic distances, we found the IBD slope of Texas
R. microplus sampled from cattle in 2008 (b = 0.066, 95% CI
[0.050, 0.088]) and 2009 (b = 0.076, 95% CI [0.0536, 0.106])
was significantly higher than ticks from cattle in New
Caledonia (b = 0.0017), and more similar to ticks from wild
rusa deer (b = 0.0637) [40]. In contrast, the IBD slope in
WTD ticks from 2008 (b = −0.007, 95% CI [−0.028, 0.006])
and 2009 (b = 0.028, 95% CI [0.016, 0.059]) were lower than
rusa deer from New Caledonia. This is an interesting out-
come, and suggests that wild WTD may move R. microplus
ticks farther on average than wild rusa deer.

Discussion
Efforts to eradicate cattle fever ticks in Texas have
grown more complicated because of acaricide resistance,
human-mediated transportation of tick-infested cattle,
and year-to-year persistence on alternative hosts. Cattle
fever tick control programs in Australia, New Caledonia,
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Figure 3 Isolation by distance in Texas populations of
Rhipicephalus microplus ticks collected during two years of high
infestation rates, a) 2008 and b) 2009. Open grey circles denote
all possible pairwise comparisons of ticks from all hosts (cattle and
white-tailed deer [WTD]). Closed red triangles denote comparisons
among ticks from WTD only. Pairwise FST estimates from FSTAT (θ)
were transformed to FST /(1- FST) according to the method of
Rousset [39]. The regression line (solid black line) and bootstrapped
95% confidence limits for slope (dashed lines) were calculated using
reduced major axis (RMA) regression in the IBD program [36]. The
regression equation is only provided for “all” comparisons.
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and Mexico have met similar difficulties [30,40,42-44].
Population genetic approaches provide a powerful means
to infer the invasion history and movement of arthropod
pests and parasites [45,46]. We have used genetic data to
reveal patterns of southern cattle tick persistence and
spread, which will provide the CFTEP with key informa-
tion on genetically linked infestations in southern Texas.

Temporal genetic stability
Despite extensive efforts to eradicate tick infestations on
cattle as soon as they are detected, R. microplus remains
ecologically established in the TEQA of southern Texas.
Understanding the mechanisms that lead to tick persistence
is a central concern for the CFTEP. We investigated this
problem by quantifying genetic differentiation over time
while controlling for spatial variation. At seven individual
properties genetic structure was very low (most θ <0.05)
over short timespans (Figure 2a). This pattern was observed
up to 29 months and suggests most samples came from
persistent tick gene pools. WTD can support serial genera-
tions of R. microplus [7,20], therefore, persistence probably
occurs even when ticks are regularly eliminated from cattle
herds. A recent study found tick-infested WTD were com-
mon on low-fence properties in southern Zapata Co. that
had been vacated of cattle for years [6]. Two low-fence
properties in our study (Prop10 and Prop11) were known
to be inhabited by infested WTD; the Rm14 collection from
Prop11 is a sample of these WTD ticks. Despite intensive
acaricide treatment of cattle at Prop10 and pasture vacation
at Prop11, clean cattle at both locations quickly became re-
infested (sampled in collections Rm10-Rm11 and Rm13).
Because infestations on cattle are eradicated rapidly once
found, other hosts, especially WTD, are more likely to be
responsible for tick persistence over time.
Our temporal analyses suggest that two different

mechanisms can lead to cattle fever tick persistence in
southern Texas. In the first (mechanism #1), local tick
populations persist on wildlife and result in a stable gene
pool over time. In the other (mechanism #2), a cycle of
eradication/reduction followed by serial re-infestation
from genetically diverse sources leads to a rapidly chan-
ging gene pool. We found evidence of both mechanisms
with our second temporal analysis (TB), which included
collections sampled near two chronically infested prop-
erties, Prop11 and Prop34 (Figure 1; collections Rm06-
Rm15 and Rm36-Rm41). Both neighborhoods included
tick collections from cattle and WTD. In the Zapata Co.
neighborhood, mean genetic differentiation remained
quite low (pairwise θ = 0-0.05) over a 30-month window,
suggesting multi-year persistence of the local gene pool
by wildlife and/or cattle with minimal gene flow from
outside genetic sources (Figure 2b). In contrast, the
amount of genetic differentiation within the Starr Co.
neighborhood was greater (pairwise θ = 0.02-0.13) over a
shorter time span (just 12 months). This is important
because, as noted in the pairwise comparisons among
infrapopulations from Rm47, repeated sampling from a
single genetic source of ticks will recover relatively low
variation in θ values (0–0.034). Thus, larger variation
in θ may suggest that the Starr Co. neighborhood is
experiencing rapid genetic change, possibly due to
eradication/reduction followed by re-infestation from
genetically distinct sources in the TEQA or Mexico
(population replacement). The ability to use genetic
patterns to distinguish between these two mechanisms
of persistence will be useful in tailoring strategies for
tick control. At properties where mechanism #2 dominates,
monitoring and restricting transportation of infested
cattle may be effective at preventing re-infestation
after eradication. In areas where mechanism #1 is more
important, tick eradication on WTD and other wildlife
will be required.
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Ticks from WTD vs. cattle
Controlling ticks on wildlife has now become critical to
efforts to eradicate cattle fever ticks because our genetic
data suggest WTD likely serve as a source for ticks on
cattle. The opposite situation (cattle serving as a source
for ticks on WTD) is probably rare in the TEQA because
cattle (and horses) are inspected and treated intensively.
As such, under the CFTEP treatment strategy cattle have
functionally become a dead-end host. On a local scale,
R. microplus collected from WTD and cattle in the same
pasture share a single gene pool. The best paired collec-
tion of ticks was sampled from a single property in Starr
Co. (Prop 39), where ticks from WTD (Rm47) and cattle
(Rm48) were collected just one day apart. These ticks
are not genetically differentiated and clearly originate
from a common source. In fact, the ticks collected from
cattle displayed a smaller amount of variation in all pair-
wise comparisons with WTD ticks than was observed
among the nine most similar WTD infrapopulations
(Additional file 2: Table S2). A complete lack of genetic
differentiation between ticks from the two hosts can be
seen in paired samples separated by up to 2 km and
7 months. From this, we infer each source is a local
population of ecologically established ticks, which can
infest “clean” cattle even after a pasture has been va-
cated for years. We did find paired WTD-cow tick col-
lections that were significantly differentiated. However,
these samples were more widely separated in space
and/or time, and probably result from the movement
of genetically dissimilar ticks onto a neighboring prop-
erty between sampling sessions, as inferred in our tem-
poral analysis. In terms of the eradication program,
this genetic dataset validates an ecological situation
that field personnel have suspected for a long time
(USDA-APHIS, Ed Bowers Pers. Comm.), and emphasizes
that long-term control strategies must account for WTD
as a source of southern cattle ticks on cattle.

Multiple introductions and tick movements in Texas
R. microplus has likely been introduced to southern
Texas on multiple occasions and these introductions ap-
pear to be associated with two main dispersal mechanisms.
The assignment tests predict the existence of four major
genetic groups of R. microplus in southern Texas. The most
well-defined genetic groups (green and yellow) occur out-
side the TEQA, in an area that was free of ticks until 2007.
In contrast, every collection situated within the TEQA
(close to the Rio Grande) displays a signature of genetic ad-
mixture (Additional file 3: Figure S1; denoted as light blue
markers in Figure 1). This dichotomous pattern may be the
result of frequent short-distance host movements along
and across the Rio Grande in the vicinity of the TEQA, and
rare long-distance transport from outside of the study area
to locations north of the TEQA.
Within the TEQA, genetic admixture of southern cattle
ticks is likely due to local movements of WTD and stray
cattle. The Rio Grande is a natural corridor for wildlife
movement along both banks and is only a weak barrier to
WTD, which are known to cross the river in both direc-
tions [21]. Such movements would promote genetic admix-
ture among tick populations on both sides of the border.
This could also lead to increased levels of genetic diversity
(A and HO), which, in this study, tended to be higher in lo-
cations adjacent to the river (Additional file 7: Figure S3).
The movement of stray and smuggled livestock could also
increase gene flow along and across the Rio Grande be-
cause 40-90% of intercepted cattle are infested with R.
microplus [47]. Two of our collections (Rm01 and Rm33)
were sampled from stray Mexican cattle intercepted in the
US. Both demonstrate the signature of genetic admixture
found inside the TEQA. Although the cattle could have
acquired ticks after crossing to Texas, it is likely that at
least some of their ticks were acquired in northern Mexico
and represent the genetic variation found on the Mexican
side of the Rio Grande. Any new infestations north of the
TEQA that arise from the Rio Grande corridor should
carry this particular signature of admixture. Indeed, we
found this general pattern in Rm17, Rm50, and Rm40-
Rm42 (Figure 1). The red (Rm44-Rm48) and blue
(Rm43) genetic groups are also situated relatively near
the Rio Grande and may be the result of short-distance
movements from this area. In the TEQA, the blue gene
pool is commonly represented in admixed populations
(Additional file 3: Figure S1); to a lesser extent the
same is true for the red genetic group. Therefore, it is
possible the “pure” blue and red groups are semi-isolated
infestations that originated from the Rio Grande corridor.
Over time, we expect that admixture with neighboring
genetic groups will remove the distinct genetic signatures
of the blue and red groups.
Tick infestations in Texas that occur outside the TEQA

are genetically distinct, which is likely due to long-distance,
human-mediated dispersal. The farther away the source,
the more genetically distinct new infestations should ap-
pear. Cattle imported into Texas can originate from any
cattle-producing region in Mexico, although the major-
ity are from northern states. These imports must all be
shipped beyond the TEQA. If a small number of ticks
survive acaricide treatment at the US border, they could
become established north of the TEQA but not inside of
it, and should display a distinct genetic signature. We
suggest that two of the recent infestations observed outside
of the TEQA (green and yellow) originated in distant lo-
cations and then spread locally for a few years before
being detected and eradicated. We base this on the high
proportion of each population with Q values ≥0.95, the
presence of diagnostic alleles, low genetic differentiation
among collections within the green and yellow groups
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and the greater distance of these infestations from
the TEQA.
Acaricide resistance is a major threat to the eradica-

tion program, which is almost completely dependent
on chemical control, and we found acaricide resistance in
all four genetic groups. One of the most distinct genetic
groups found outside the TEQA, the green group (Figure 1),
includes collections that are resistant to single and multiple
acaricide classes. Three of the permethrin-resistant green
collections also had low-level resistance to coumaphos,
the acaricide used to dip all cattle imports from Mexico.
This provides additional evidence that the source of this
infestation is likely in Mexico, where resistance has
increased in the last decade due to heavy acaricide use
[16,48-50]. One green collection, Rm20, was sampled from
two WTD and highlights the risk of this host potentially
spreading resistant ticks across property boundaries in
areas not under quarantine and therefore not routinely
monitored by APHIS inspectors. Thus, WTD are a major
concern for the eradication program not just because they
decrease the effectiveness of pasture vacation as a control
method, but also because they have a great potential to
disperse untreated, resistant ticks.
The two main mechanisms of tick movement in southern

Texas, common short-distance dispersal and rare long-
distance dispersal, appear to be responsible for the IBD
pattern we observed across southern Texas (Figure 3).
Although the IBD pattern is significant in both 2008
and 2009, the regression coefficients are low to moderate
and a large amount of variation is apparent. This variation
most likely originates from greater than average movements
of cattle and WTD, genetic drift, or a combination of the
two. Extreme outlying FST estimates above and below the
regression line always involve ticks from cattle and are
known, in some cases, to be the result of humans trans-
porting livestock fairly long distances (30–120 km). The
documented spread of ticks in the blue and yellow groups
across long distances is an example of this dispersal mode.
In contrast, local dispersal is probably facilitated more by
WTD than cattle, because ticks from this alternate host
have a significantly lower IBD slope. This pattern makes
sense biologically, given the high population density of
WTD in Texas and their relatively unimpeded movement
among properties with low fencing.
The WTD in Texas appear to fill a different role in

R. microplus dispersal compared to wild rusa deer
(Cervus timorensis) in New Caledonia [40]. Rusa deer on
that island have small home ranges (~5 km2) and display
strong site fidelity over time [51]. As a result, they move
ticks relatively shorter distances than Texas WTD and
have a correspondingly greater IBD slope [40]. In fact, the
IBD slope of ticks from rusa deer (b = 0.0637) is about the
same as for ticks from Texas cattle (b range = 0.06-0.07), a
host whose local movements are restricted by fences.
Somewhat surprisingly, the flat IBD slope of WTD ticks is
more similar to ticks from New Caledonian cattle. Long-
distance dispersal of R. microplus on New Caledonia is
mediated by the transport of cattle from across the entire
island to livestock markets in the city of Bourail. It appears
that both hosts (Texas WTD and New Caledonia cattle)
promote genetic admixture in ticks that leads to similarly
low IBD slopes. Overall, the IBD patterns match what is
known about host movement in both systems.
We have developed a large genetic database that can

be used to track new infestations back to their most
likely source(s). The panel of 11 microsatellite markers
allowed us to identify two likely migrants (one from an
acaricide resistant infestation) and correctly assign traceout
ticks from the yellow and blue groups. Human-mediated
movement of ticks in the yellow group in 2007 led to new
tick infestations on the eastern border of Starr Co. and the
establishment of a new TPQA. The genetic data show
an obvious genetic relationship that links yellow group
ticks in Starr Co. and validates APHIS records tracing a
cattle transfer from the Prop42 neighborhood to Prop44
in October 2007. Another successful genetic traceback
analysis was accomplished for the blue group. We correctly
assigned 33 traceout ticks intercepted at three feedlots in
central Texas back to their known source, Rm43, and found
a previously unsuspected connection between Rm43 and
Rm63. This discovery provided the starting point for a
follow-up investigation by APHIS. The search revealed that
Rm63 ticks could be traced back to a single cow purchased
at a stockyard auction in February of 2008; the infested
cow originated from Prop37 (Rm43). Ticks from this
single cow led to the infestation of five additional cattle
at Prop46 within a three month period, a sample of
which became Rm63. Our ability to provide accurate
traceback information highlights the usefulness of
molecular tools for tracking cryptic tick movements in
southern Texas and elsewhere.

Conclusions
The cattle industry in the southern U.S. is under a con-
stant threat of re-invasion from cattle fever ticks from
endemic areas in Mexico, which can carry and transmit
disease caused by Babesia. Although new infestations of
R. microplus on cattle are typically eradicated within a
short time of detection, southern cattle ticks remain eco-
logically established in parts of the TEQA by using alter-
nate hosts such as WTD. By genotyping R. microplus
samples routinely collected by USDA-APHIS mounted
patrol inspectors, we were able to reveal several patterns
of major importance to the eradication program. First,
we suggest that ticks from any single location use both
cattle and WTD freely. This situation probably explains
tick persistence over time and highlights the importance
of controlling ticks on wildlife as well as cattle. Second,
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the southern cattle tick has likely been introduced to
multiple locations in southern Texas on numerous occa-
sions due to a combination of frequent short-distance
movements from the Rio Grande corridor and rare long-
distance dispersal from Mexico. Third, a number of new
infestations are resistant to acaricides, which is a major
problem because the CFTEP relies almost exclusively
upon chemical control. Unfortunately, the number of
resistant populations in Mexico and Texas has been on
the rise in the past decade [17,18,52].
Because the genetic data suggest tick movements in

southern Texas are common, this study highlights the
importance of restrictions on cattle movement and sur-
veillance protocols that are already in place where ticks
are ecologically established. Genetic tools such as micro-
satellite markers can support this goal by identifying the
most likely source of migrants and traceout ticks. The
genotyping data in this study are one part of a larger
genetic database we have developed to study this prob-
lem. Other information we have gathered includes geno-
typing ticks for single nucleotide polymorphisms (SNPs)
associated with acaricide resistance [53,54] and screening
for the presence of Babesia parasites with qPCR [55].
A central goal of our future research is to sample tick
populations from cattle-producing regions in Mexico
to determine the most probable source of resurgent in-
festations in southern Texas. Another major goal is to
sample additional time series datasets from properties
in the TEQA and Mexico to deepen our understanding
of the ecological scenarios that lead to tick persistence in
endemic areas. The genetic tools developed in this study
will benefit the CFTEP by providing much-needed data
regarding the source and spread of cattle fever tick infesta-
tions in southern Texas, and provides a framework for
similar studies in other regions of the world affected by
cattle fever ticks.
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