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Abstract 

Given a data set arising from a series of observations, an outlier is a value that deviates substantially from the 
natural variability of the data set as to arouse suspicions that it was generated by a different mechanism. We call an 
observation an extreme outlier if it lies at an abnormal distance from the "center" of the data set. We introduce the 
Monte Carlo SCD algorithm for detecting extreme outliers. The algorithm finds extreme outliers in terms of a 
subset of the data set called the outer shell. Each iteration of the algorithm is polynomial. This could be reduced by 
preprocessing the data to reduce its size. 

This approach has an interesting new feature. It estimates a relative measure of the degree to which a data point 
on the outer shell is an outlier (its "outlierness"). This measure has potential for serendipitous discoveries in data 
mining where unusual or special behavior is of interest. Other applications include spatial filtering and smoothing 
in digital image processing. We apply this method to baseball data and identify the ten most exceptional pitchers of 
the 1998 American League. To illustrate another useful application, we also show that the SCD can be used to 
reduce the solution time of the D-optimal experimental design problem. 

K e y w o r d s : Extreme outliers, outlierness, semidefinite programming, Monte Carlo, redundancy, D-optimal 
design 

1. Introduction 

Let D = {aJ }"=1 be a set of multivariate 

observations in I R P . We assume throughout that 

the number of points n> p. An outlier is a 

member of the data set D that is abnormal in 

comparison to the main body of observations. 

An outlier relatively deviates f rom the natural 

variability of the data set as to arouse suspicions 

that it was generated by a different mechanism. 

An extreme outlier is an observation that lies at 

an abnormal distance from the "center" of the 

data set, and we shall give a precise definition of 

this below. 

Outlier detection has become an area of great 

interest in data mining. For example [15] 

discusses applications to detect various forms of 

transactional fraud. Data miners, in their 

analysis of large data sets, may regard outliers as 

indicators of interesting events. 

A common estimator of the "center" of a 

dataset is the sample mean. Sample means can 

be distorted nonetheless by the presence of just 

one outlier [18]. A commonly used measure of 

robustness is the asymptotic breakdown point. 



158 S. Jibrin , l.S. Pressman, M. Salibian-Barrera/Int. J. Nonl. Sei. Num. Simulation, 5(2), 157-170, 2004 

Intuitively, it reflects the smallest proportion of 
contamination of the data set that can cause the 
estimator to break down when the sample size 
n—> oo . The mean has an asymptotic 
breakdown point of 0% . 

One procedure for detecting outlier uses the 

Mahalanobis distance d j given by 

d j = - J ( ä j 

where χ 

x)rCov'V -*), 
the mean of is 

( 1 . 1 ) 

D and 

Cov = 1 / ( « - 1)X; = 1 ( a J - x ) ( a J - x ) T 

denotes its covariance matrix. Points with large 

dj value may be deleted from D . Since the 

distances d . are based on the sample mean, it is 

not surprising that this approach does not always 
work well when more than one outlier is present 
([4], [18]). 

References for statistical methods for outlier 
detection include [4] and [20], Many of the 
techniques in [4] require prior knowledge about 
the underlying distribution. These methods 
identify outliers by examining the deviations of 
individual data points relative to their 
distribution (e.g., Normal, Poisson, etc.) [4]. 
Unfortunately, this approach is not applicable in 
most practical cases when the underlying 
distribution is unknown. 

Another approach uses Mahalanobis distance 
as in (1.1) above but replacing χ and Cov by 
highly robust multivariate estimators of location 
and scatter [20], Rocke and Woodruff [17] 
discuss some challenges encountered in 
detecting multivariate outliers and explain why 
the level of difficulty increases with the 
dimension of the data. Other outlier detection 
methods are distance-based ([13], [20]). These 
methods distinguish outliers by the number of 
data points in the neighborhood of an individual 
data point. No assumptions on the distribution of 
the data set are made. Density-based methods [7] 
are based on the local density of an observation's 
neighborhood. These methods measure how 
strongly an observation can be viewed as an 
outlier. Layer-based methods rely on the 
computation of different layers or hulls that 
partition the data set into shells. Outliers are 
observations in the outer layers of these shells 
([4]' [13]). An example is the ellipsoidal peeling 

method [21]. More recently, depth-based [23] 
multivariate estimates have been proposed in the 
statistical literature ([9], [16], [27]). Projection 
estimates [1] provide another interesting 
approach. 

We introduce a new procedure here to detect 
outliers, that we call the SCD or (semidefinite 
coordinate direction) method. It uses the L, 
estimator of "center" of D , known as the 
Fermat-Weber point X*, given by 

η 
x ' = a r g m i n V || - x | | . (1.2) 

Tt 
Although the Fermat-Weber point is not affine 
equivariant in general, it is equivariant with 
respect to all affine transformations that preserve 
Euclidean distances. It generalizes the univariate 
median and it has a high breakdown point of 
5 0 % . 

We use semidefinite programming techniques 
to determine the points of the data that are on the 
"outer shell" of the sample (see Definition 1 
below). A matrix A is called positive definite 
( A >- 0 ) (respectively, positive semidefinite 
( A X 0) ) if and only if all of its eigenvalues are 
strictly positive (respectively, non-negative). 

A linear matr ix inequality ( L M I ) is a 
constraint of the form 

P 
Α·ο + Σ Χ ' Ά · ' — 0 » where A, are mxm 

/=1 
symmetric matrices. Constraints of this type 
generalize linear and quadratic constraints. They 
arise directly in Control Theory, Statistics and 
Combinatorial Optimization ([2], [24]). 

Consider a system of LMFs 

Α ω ( χ ) : = Α ^ + ^ χ , Α ^ Ο , 

(\<j<n), 

where x e I R / and A are 

(1.3) 

m/ χ m j 

symmetric matrices. An LMI constraint is called 
necessary (in this system) if its removal changes 
the feasible region of the system, otherwise it is 
called redundant. An LMI can be both necessary 
and redundant, for example, in the case of 
duplicate LMFs. 

The semidefinite coordinate direction 
algorithm, SCD, presented in [12] is a Monte 
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Carlo method for detecting necessary linear 
matrix inequalities. SCD applies to convex 
bounded regions constrained by a finite set of 
LMFs. It works as follows: let χ be a random 
interior point in the feasible region called the 
standing point. Select a random search vector 
s e l R / along a coordinate direction to 
determine a ray {x + as : σ > 0}. Let 

σ, = maxis7<n{cr: Α ω ( χ + σ.!?) Χ 0}. 

The k'h constraint is necessary if 
σ, = m a x { a : Α ( λ ) (χ + σ 5 ) ^ 0 } . (1.4) 

The above procedure is repeated until a 
termination criterion is satisfied. 

Extreme outliers will be defined to correspond 
to the necessary LMFs within a certain system. 
The use of coordinate directions greatly reduces 
the number of calls to the random number 
generator and provides for easy updating of the 
inverse of a key matrix. 

As an application of this method, consider the 
linear model z = Αβ + ω , where CO is an 

"η-vector" of errors and A is called the design 
matrix. Let xj be the number of times the jth 

row of A is selected. The "Fisher information 
matrix" 

arises in the formula for the least-squares 
estimator of β , based on the design x. 
Experimental Design theory aims at finding the 
experimental conditions that provide the best 
regression estimates by minimizing a measure of 
the overall variability of the regression estimator, 
a 2 F~ ' (x). In D-optimal design, the determinant 
of the inverse of the Fisher matrix is minimized 
[25]. Finding this optimum can be 
computationally expensive. In Section 4 , we 
show how SCD facilitates the efficient solution 
of the D-optimal design problem. This 
simplification is an important application of the 
method introduced in this paper. 

2. Outer shells and Redundancy 

In this section, we develop the SCD method for 

detecting points on the outer shell of D. We 
show the connection between the identification 
of the outer shell and the problem of detecting 
necessary constraints in semidefinite 
programming. The practicality of the ellipsoidal 
approach to describing extreme outliers will be 
confirmed by the simplicity of the calculation 
that arises 

2.1. Affine Independence 

The set D = cz IR P is an affinely 

independent set if no point ak is contained in 
the affine space spanned by ρ or fewer points 

of D - {ak} . In a randomly generated set, the 
probability that p +1 points are an affinely 
dependent set is zero. We make the following 
independence assumption throughout: 

Assumption: Every subset of D of size 
(p +1) is affinely independent. (2.1) 

Recall that the Fermat-Weber point x* of D 
given in (1.2) is a robust estimator of "center". It 
can be computed by solving the following 
optimization problem: 

min Σ ο 
7=1 

s.t. \\aJ-x\\<tj,7=1,2,Cß 

where / . are auxiliary variables in IR . This 

can be cast as a semidefinite programming 
program SDP [24]: 

η 
min ^ t j 

j=ι 
tl 

0aJ -x)T 
s.t. 

(2.2) 

a1 -x ho, 
(2.3) 

Note that the constraints (2.3) can be 
expressed in the form (1.3), and so are LMI 
constraints. The above SDP can be computed 
efficiently using the SDPSOL [26] software. 
The Fermat-Weber point is commonly used for 
facility location to find the point that minimizes 
the total travel distance to each of a population 
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of customers. We consider a data point that 
relatively deviates substantially from the 
Fermat-Weber point to be an extreme outlier. 

Definition 2.1 A point ak e D belongs to the 
outer shell of D denoted by 0(D), if there is an 

ellipsoid centered at the Fermat-Weberpoint x* 
that contains D-{ak] and whose boundary 

passes through ak . We call all such points 
extreme outliers. 

Note that if ak e D belongs to the outer shell 
0(D), then it is not representable as a linear 
combination of ρ or fewer other points. The 
independence assumption on D implies that ρ 
of the vectors a' - aJ are linearly independent 
and form a basis of I R p . In practice any finite 
set can be made affinely independent by slight 
perturbations of the data. Not every point of D 
that is on its convex hull is an extreme outlier. 

The SCD algorithm that we are presenting is 
designed to find points in the outer shell 0(D) 

of D . The set of all ellipsoids centered at χ* that 
contain D is given by the solutions to the 
system 

|| E(aJ -χ*) ||2< 1, 1 <j<n (2.4) 
E ^ O , (2.5) 

where E e S ' ' denotes the set of all jόχ ρ 
symmetric matrices. Note that (2.4) can be 
expressed equivalently in the form (1.3), so, 
the above system is equivalent to: 

I Ε\a> - x ) 

_ W - X ) ) ' 1 J - (2.6) 

(1 <j<ri) 
(2.7) 

The ambient space of the constraints is IR*', 
where Ν = p ( p +1) / 2 . 

Let R(D)c:IRn be the feasible region 
defined by the system (2.6) and (2.7). The set 
R(D) corresponds to the space of ellipsoids 

centered at the Fermat-Weber χ* that contain D . 
It is well known [24] that the LMI constraints 

Λ ω (Ε) := 

y 0 , 1 < j < η (2.8) 

(2.9) 

y o, 1 < j <n 

(1.3) are convex constraints in IR . Since SCD 
applies to bounded feasible regions we show the 
connection between affine independence of D 
and the boundedness of R(D) . 

Theorem 2.1 The feasible region R(D) given 

by (2.6) and (2.7) is bounded if a subset of ρ +1 

of the data points {a1 }"=1 is an affinely 

independent set. 

Proof: Suppose R(D) is unbounded. With 

Λ ( ν )(Ε) given by (2.6), a necessary condition 

[12] for the unboundedness of R(D) is the 

existence of S e S p , not zero, such that 

0 SaJ~ 

_(S aJ)T 0 

S b O . 

The η equations (2.8) imply that 

I S aJ' 

(S aJ)T 0 

By the Schur Lemma [11], we obtain 

- ( S a 7 Y ( S a J ) > 0 ,1 <j<n. Hence, 

SaJ - 0, 1 < j < η 

S(a' -aJ) = 0, 1 <ij<n 

By the affine independence of {aJ}"=l, ρ of the 
vectors a'-aJ are linearly independent and 
form a basis of I R P . The equation (2.11) yields 
S =0. This is a contradiction of the assumption 
that S is not zero. Thus, the region R(D) is 
bounded. 

2.2. Topology of R(D) 
We adapt some ideas from Topology to the 

case of a finite set. Denote the topological 
boundary of a closed set Τ <= IR P by d(T). 
Definition 2.2 The convex hull, CH(D), of D 
is the intersection of all (closed) half planes in 

. IR" containing D. Its boundary, d(CH(D)), 
is a polytope. 

A convex linear combination of χ and 
y, λχ + (\- Ä)y, 0< λ<\, is strict if 

(2.10) 

(2.11) 
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0 < / l < l . 

Definition 2.3 A point of D that is not a strict 
convex linear combination of two other points of 
D is called an extreme point. 

The ellipsoidal peeling method described in 
[21], trims the most extreme observations, 
namely those lying on the boundary of the 
minimum volume ellipsoid containing the data 
set. The number of points trimmed from D is 
almost certain to be at most p(p + 3 ) / 2 [21], 

For any Ε >- 0, there is a corresponding 

ellipsoid e(E) cz I R / with center x*: 

f?(E) = {z e IR" :|| E(z - x * ) ||2 < 1}; (2.12) 
If Ε >: 0 and det(E) = 0 , then e(E) describes 
an ellipsoidal cylinder. The boundary of the 
ellipsoid (or ellipsoidal cylinder) determined by 
Ε is denoted by 

ö(e(E)) = {ζ :|| E(z - χ*) ||2= 1}. (2.13) 

Definition 2.4 e(E) properly contains the set 

D if for all aJ e D, || E(aJ - χ * ) ||< 1. 

We next show that the interior of R(D) is 
non-empty by giving a necessary and sufficient 
condition for a point to be in the interior. 
Ellipsoids in IR P that properly contain D 
correspond to points in the interior of R(D). 
We will show later that all ellipsoidal cylinders 
that properly contain D are on the boundary of 
R(D). 

Proposition 2.1 e(E) properly contains 
D < = > there is an open neighborhood 
N(E) c R(D) for which || X(aJ-χ') ||< 1 for 
every X e N(E) and for each a' e D. 
Proof: Suppose that || Ε ( α ' - χ * ) ||< 1, 
1 < j < n, so that we can define a strictly 
positive number 

ζ = l-maX\ijSn || Ε (a1 - x * ) ||> 0 . Use the set 
D to define an open neighborhood U of the 
origin in IRW 

U = j w :|| W ^ · 7 - χ * ) ||< .9ζ,1 < j<n). 

The required open neighborhood N ( E ) is the 
Euclidean translation of this open set, U + E. 
Take z in the convex hull of D, 

L e · ' z = ς ; , ι* ί α ' * μ j - Σ > , - " / = l w e 

have: 

|| E(z - x ) INI E ( X ; , μ / - ^ μ / ) || 

= ( ΐ - 0 · 
Similarly, we have || W ( z - x ' ) | | < .9ζ. Thus, for all ( W + E) e £/ + E, 

|| ( W + E ) ( z - x*) ||<|| W ( z - x*) || + 

|| E ( z - χ*) ||< .9ζ + (1 - 4") < 1 · 
Conversely, if there is an open neighborhood 
JV(E) surrounding Ε for which 

|| X(aJ -χ") ||< 1 for every j, 1< j<n, and 

for all X e N(E) then in particular 

|| E(aJ - χ ' ) ||< 1 holds for every aJ e D. 

Since there are many ellipsoids surrounding 
the finite set D, the proposition above proves 
that the interior of R(D) must be nonempty. 
The volume of an ellipsoid e(E) is given by: 

d 
π2 

V = 
r ( ^ ) x d e t ( E ) ' 

and e(/E) has volume VI td. As the parameter 
t —> oo the ellipsoid shrinks. Along the ray 

from Ε moving directly away from the origin in 
IRW , the family of concentric ellipsoids e(/E) 
contract around D until there is and an 
akeD for which || /,Ε(α* - χ * ) ||= 1. This 
gives an extreme point (2.13) of R(D) . If 
E e R(D), the ellipsoid contains all of D, and 
this containment is proper if Ε is in the interior 
of R(D). 

2.3. The boundary of R(D) 
The role of ellipsoidal cylinders is noteworthy 
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here. We can take an X ^ 0 in the interior of 
R(D) and drive its smallest eigenvalue to zero, 
without forcing the ellipsoid to pass through a 
point of D. For instance, consider the subset of 
IR2 

DA = {(3,4), ( -3,4) , ( - 3 , - 4 ) , (3,-4)}. The 
circle of radius 5.1 centered at the origin 
containing D4 can be described by the 
matrix Ε = 1/ 5.1I2. The circle is converted into 
the cylinder |x, |<5.1 in IR2 as the second of 
the diagonal elements (eigenvalues) becomes 
very small. 

The following proposition shows that on the 
boundary of the feasible region R(D) one also 
finds the ellipsoids containing D that have a 
point ak e D on the boundary, plus all 
ellipsoidal cylinders containing D. 

Proposition 2.2 Suppose X y 0 . Then 
X e d(R(D)) <=> || Xaj ||< 1 for all 
1 < j < η and either X >- 0 and || Χα* ||= 1 for 
at least one value of k , or det(X) = 0. 
Proof: For X € d(R(D)), consider the case 
det(X) > 0. If || Xak ||< 1 for all 1 < k < η , 
then by Proposition 2.1 X is in the interior 
so Xed(R(D)). Hence || Xak ||= 1 for at least 
one value of k, 1 < k < n. Hence, e(X) passes 
through at least one ak. Otherwise det(X) = 0. 
Conversely, suppose | |Χα 7 | |<1 for 
all j, 1 <j<n. First, suppose det(X) = 0. 
Let Ρ denote the cone of positive semidefinite 
matrices contained in Sp. Since X is a 
positive semidefinite matrix, it is on the 
boundary of the cone P. Geometrically this is 
an ellipsoidal cylinder e(X) that contains D. 
Hence X e d(R(D)) . Now suppose X >- 0 and 
|| Xak ||= 1. By Proposition 2.1 X cannot be in 
the interior of R(D) so it must be on the 
boundary. 

That is, given E0eSp. such that 

| |E 0 (a y -JC*) | |< l for all aJ e D, and for 

some k || E0(ak-χ*) ||= 1, then E0 is a 
boundary point. 

Theorem 2.2 A point ak e D belongs to the 
outer shell 0(D) if and only if the k'h 

constraint in the system (2.6) and (2.7) is 
necessary. 
Proof: Let ak e D. If α* 6 0{D), then there is 

an ellipsoid centered at x* 

e(E0) = {x : | |E 0 (x -x* ) | | 2 <l} 

that contains D-{ak} and whose boundary 

passes through α Hence, | |E 0 ( a* -x* ) | | 2 = l 

and || Ε 0 ( α ; - χ * ) ||2< 1 for all aJ eD-{ak}. 

By Proposition 2.2, E0 is on the boundary 
of R(D) . Choose a point E* in the interior of 
the convex region R(D) and define the ray S 
from E* to E 0 , S = E 0 - E*. Since 
E0 e R(D), E0 =E* +1S, 

1 = max{a: A(k) (E* + öS) ^ 0} = 

max{a: A0 )(E* + aS) h 0,1 < j < n). 

It follows that the k'h constraint is necessary. 

Conversely, suppose the k'h constraint is 

necessary (1.4). Choose a point E* in the 

interior oiR(D) . Then, there is a search vector 

S for which we have: 

σ, = max{CT: AW (E* + öS) y 0} = 

max{a: Α ω (Ε* + o S ) ^ 0 , l < j< ή). 

Let E0 = Ε* + It follows that 

| | E 0 ( a ' - x * ) | | 2 = l and || E0(aJ - χ ' ) ||2< 1 

for a l l 7 = 1 , ^ -\,k + \,C/J . Hence E0 is an 

ellipsoid that contains D - {ak} and whose 

boundary passes through ak, so ak e O(D). 
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Figure 1 The figure shows how separation of 
point * from other points by an ellipsoid extends 
to separation of * by an ellipsoid whose 
boundary passes through *. 

Proposition 2.3 Let e(E) be an ellipsoid 

centered at x*. If e(E) separates ak from 

D-{ak}, then ak eO(D). 
Proof: As t decreases from 1 towards 0, e(/E) 

continuously expands to an ellipsoid centered at 

x* that separates ak from D - {ak} and whose 

boundary passes through ak, (as indicated in 

Figure 1). Hence, ak e 0(D). 

Denote the minimum volume ellipsoid 

centered at χ' , containing D by en . The 

ellipsoid en can be found by solving the 

optimization problem: 

s.t. to, 

max logdet(E) 

I E(aJ-x*) 
(E (aJ-x))r 1 

(1 <j<n) 
E ^ O 

This problem can be solved using SDPSOL [26] 
software. In the Proposition below we note that, 
by the definition of 0(D), all of the points on 

the boundary of en belong to the outer shell. 

-2 -1.5 -1 -0.5 

Figure 2. The solid ellipsoid is en. The point 

F is in the outer shell O(D), but not on en. 
Note that F is separated from D - {F} by the 

dotted ellipsoid centered at the Fermat-Weber of 

D and passing through F . The Fermat-Weber 

point is (0 .2325,0 .0842) . 

Proposition 2.3 If a ' e D n 3 ( e ß ) , then 

ak
 G O(D). 

Figure 2 shows that a point in O(D) is not 

necessarily a boundary point of e n , where 

D = {A,B,C,D,E,F} = 

{ ( - l , l ) 7 ' , ( - l , - l ) 7 ' , ( - l , l ) r , ( 1 , - 1 . 3 ) ' \ 

(1,1)', (0 ,1 .6) '} 

3. The SCD Algorithm 

We introduce the SCD algorithm to find 
points on the outer shell of D by examining the 
system (2.6) and (2.7) to find the corresponding 
outer shell O(D). 

We adapt SCD [12] here to apply to the 
system (2.6) and (2.7) and describe the SCD 
algorithm. The SCD algorithm is an extension of 
the CD algorithm [5] for detecting necessary 
linear constraints. 
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Let E0 be the standing point, and S e Sp 

a search direction. The hitting step involves 
the computation of the distances a \ J ) and 

a [ j ) to the boundary of each constraint (2.6) 
along the line determined by point E0 and 
direction S . The following proposition 
shows how to compute the distances σ1

0) 

and a\J). For aJ e D, define 

(3.1) 

(3.2) 

z J = ^ a J - x ) 

wJ = S aJ 

Proposition 3.1 The two distances σ,(7) and 

σ2J) to the boundary of the j'h constraint (2.6) 

along the line determined by the point E0 and 

the direction S are given by 
a[J\zJ,wJ) = 

-(zOV +^((z')7 V)2+|| iV H2 i\-\\z' H2) 

KII2 
au\zJ,wJ) = 

+ ( Η Ι * Ί β ) 

(3.3) 

(3.4) 

then use the substitutions (3.1) and (3.2) to get 
(3.3) and (3.4). The rest follows from Theorem 
2.1 in [12], 

The SCD procedure effects a rank one 
perturbation E0 + CTS of E 0 , where σ > 0. In 
the algorithm, S is chosen from the set of Ν 
coordinate direction vectors, so there are only 
two possible cases in which S = j Φ 0: 

1. for one i, Su = 1, Sjk = 0 otherwise; 

2. for one pair (k, j), k Φ j, Sjk = Skj = 1, 

S j k = 0 otherwise. 

Denote the perturbed matrix E0 + <rS by E 0 . 
Proposition 3.1 shows the two bounds on σ , i.e., 
σ[?+1) and that ensure that E0 remains 

positive definite. Note that E0 changes by at 
most two entries, after each iteration. The 
inverse E^' requires 4p 2 multiplications to 
update using the following modification of a 
procedure given in [6], The eigenvalues of SE^1 

are found by examining a l x l or 2 x 2 matrix, 
so at worst this is equivalent to solving a 
quadratic. 

Moreover, the two distances to the boundary of 
the Ε >: 0 constraint along the line through the 
standing point E0 in direction S are given by 

1 ,.("+>) — ^ 

-1 

r(»+i) _ 

^ ( - S E ö 1 ) ' - 4 J - S E " 1 ) 

where σ+ and respectively denote the 
maximum positive eigenvalue and the minimum 
negative eigenvalue. 
Proof: Clearly || zJ ||< 1 by (2.12). Note that it 

is possible for wJ = 0; in such cases we will 
have 
a[J\zJ ,wJ) = 00, or a(}\zJ ,wJ) = -00. By 

(2.4), the distances <7; and a{
2

J) are given by 
the two solutions of the system 

\Ε,(ά -χ )+σ(&)ί W -χ)+σ(Μ)]=1 
where σ e IR. Solve the system for σ and 

Procedure Φ : to find E0 from E0 

Let Skj = Sjk Φ 0 and S/( = 0 , otherwise. Let 

B :=E~ ' and A : = E ö ' . Denote the k'h row 

(respectively i'h column) of matrix Μ by 
M " ( M " ) . Set B'* :=l/(Eo* * A ' k ) * A ' k . 
for i=l:p 

i f i Φ k 

Β" = E0' - (Ε** * A " ) * B'k 

end 
end 
if kΦ j 

Update A := Β 
Update B v :=1/(E^· * A'J)*A'J 

for i=l:p 
i f i ^ y 

Β" = E*' - (Eq* * A " ) * B v 
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end 
end 

end 

Corollary 3.1 can be computed 

with 0(p2) floating point operations for each 
SCD search. 
Proof: By the structure of S , the matrix SE0 ' 
in Proposition 3.1 has at most two nonzero rows 
and therefore requires 0(p2) flops to find its 
eigenvalues. The inverse Eg' is found from 
Procedure Φ so the computation requires at 
most 4p 2 multiplications. 

An interior point E 0 of R(D) can be found 
using the following procedure on the given set of 
data points D to use as the standing point of the 
algorithm. 
1. Find ρ = max{|| α1 -χ* ||, 1 < j < ή). 

2. Choose the sphere E0 = l / ( 2 p ) I of radius 

2p, centered at x*, as an interior point. 

Each iteration of SCD gives a new standing 
point E 0 . The standing points generated by the 
CD algorithm are asymptotically uniform [5] in 
linear programming. We conjecture that the 
standing points E0 generated by SCD are 
asymptotically uniform in R(D) [8], 

SCD Outlier Detection Algorithm 

Initialization: Set 0(D) = • . Choose an 

interior point E0 of R(D) and call it the 
standing point. Choose MAX, a maximum 
number of iterations of this algorithm. Calculate 
zJ = E0(aJ -x'),\<j<n Set 

ft = 0, l < y < « + l . Set N = p(p + \)/2 . 

Set iter = 0 . 
Repeat 

Search Direction: Choose a random 
coordinate search direction S e Sp 

Hitting Step: For each j , 1 < j < n +1, 
compute a [ j ) and σ[ύ) as in Prop. 3.1 

σ+ = ιηϊηΐσ^ : 1 < j < η +1} 

σ_ = minfCT^ : 1 < j < η +1}. 
For 1 <k <η, 

if a[k) = σ+ or σιχ> = σ_ 

fk <-/* +1 

if k t 0(D) 
set 0(D)+-0(D)v{k} 

end 
end 

end 
Move: Take u e £7(0,1) and set 

E0 := E0 + («σ+ + (1 - u ) a _ ) S . 

Set iter <— iter +1 
Until either iter=MAXor | 0(D)) |= 0.25 * q. 

It is usually the case that the percentage of 
contamination due to outliers is less than 25% 
[19]. We use this fact to give an upper bound on 
the size of O(D) . At the end of the SCD 
algorithm we obtain the set O(D) . The 
algorithm counts the number of times 
observation k is detected and records it as f k . 
The relative frequency of detection of detection 
for k is defined by fk / iter, where iter is the 
total number of iterations. The higher the value 
bf MAX used, the greater the chance of 
detecting less extreme outliers. This measure is a 
major contribution of this paper. 

The main computational effort of the 
algorithm is in the hitting step. Computing wJ in 
(3.2) requires no multiplications because of the 
special form of S ! Computing the two distances 
a(

+
j) and <y[j) requires p2 multiplications to 

compute zJ (3.1), another p 2 to compute its 

norm, 2 divisions and 1 square root. Hence it 

takes 0(p2) flops to compute and 

σ(«+ΐ) fhgj-g a r e 4p 2 fl0pS n e e c) e ( i t 0 update 

E 0 . Hence, each SCD iteration is at most 

•0(np2). 
We now show give four examples of the 

method covering a variety of possible objectives 
in the detection of points on the outer shell. 
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These range from data cleanup before doing 
some other statistical analysis to simply 
identifying interesting points. The latter might 
be more typical in a data mining application. In 
any real problem variables are expected to be 
correlated, hence no attempt is made to 
orthogonalize. Similarly variability will be 
different across variables, hence no 
standardization is done. 

In the figures, the points marked with an 
asterisk, *, belong to the outer shell and 
correspond to the detected necessary constraints 
of (2.6) and (2.7). The relative frequency of 
detection is recorded. The analytic center of the 
system (2.6) and (2.7) was used as the standing 
point. We used MAX = 1000 * ρ . 

Example 1: This has 50 data points in IR4 , 

randomly generated from jV(0,1) . The outer 

shell consists of the points { 4 7 , 3 7 , 4 6 , 3 0 } and 

{0 .4043 ,0 .3176 ,0 .2515 ,0 .0266} are the 

respective relative detection frequencies. The 

extreme outlier 47 has the largest relative 

detection frequency, and corresponds to the 

point ( 1 .2490 ,3 .0868 ) r in Figure 4. 

Figure 3 The figure shows that point marked * 
belongs to the outer shell since * can be 
separated from the other points by an ellipsoid 
passing through it and centered at the 
Fermat-Weber point ( 0 . 0 3 0 0 , - 0 . 0 4 5 4 ) 

-3 -2 0 1 2 

Figure 4 The points marked with a * belong to 
the outer shell. These are the extreme outliers. 

Example 2: We consider the "so-called" 

Hawkins-Bradu-Kass data set constructed in [10] 

data with 7 5 points in I R 4 . It is considered a 

benchmark in outlier detection methods; 

observations 1 — 14 are outliers. Classical 

techniques only discover that 12 and 14 as 

outliers due to a masking effect caused by these 

points [3], SCD found ten of the fourteen outliers 

in terms of the outer shell 

{12 ,14 ,7 ,3 ,10 ,6 ,2 ,4 ,13 ,5} , and the 

corresponding relative detection frequencies are 

{0 .3131 ,0 .3108 ,0 .2098 ,0 .0628 ,0 .0505 , 

0 . 0 3 5 4 , 0 . 0 1 0 5 , 0 . 0 0 4 4 , 0 . 0 0 2 5 , 0 . 0 0 0 2 } 

respectively. Observation 12 has the highest 
detection frequency. 

The next two examples are instances of data 
mining. We make several incidental 
observations using the relative detection 
frequencies as our guide. 
Example 3: Table 1 and Table 2 is taken from 
boxes of 20 brands of Kellogg's cereals [14]. 

SCD gives the outer shell {1,12,9,20,5} with 

the relative detection frequencies 

{0 .4194 ,0 .2258 ,0 .1613 ,0 .1613 ,0 .0323} 

respectively. All Bran has the highest relative 

frequency of detection; its high fiber content 

protein and potassium (K) discriminates it. 
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Mueslix was second and Frosted Mini Wheats 
third (0 Sodium discriminates the latter.) 

No. Cereal 
1 AllBran 
2 Applejacks 
3 CornFlakes 
4 CornPops 
5 CracklinOatBran 
6 Crispix 
7 FrootLoops 
8 FrostedFlakes 
9 FrostedMiniWheats 
10 FruitfulBran 
11 JustRightCrunchyNuggets 
12 MueslixCrispyBlend 
13 NutNHoneyCrunch 
14 NutriGrainAlmondRaisin 
15 NutriGrain Wheat 
16 Product 19 
17 RaisinBran 
18 RiceKrispies 
19 Smacks 
20 SpecialK 

Table 1. A selected subset of Kellogg's cereals 

No. Cal Protein Fat Na Fiber Carbs Sugar Κ 
1 70 4 1 260 9 7 5 320 
2 110 2 0 125 1 11 14 30 
3 100 2 0 290 1 21 2 35 
4 110 1 0 90 1 13 12 20 
5 110 3 3 140 4 10 7 160 
6 110 2 0 220 • 1 21 3 30 
7 110 2 1 125 1 11 13 30 
8 110 1 0 200 1 14 11 25 
9 100 3 0 0 3 14 7 100 
10 120 3 0 240 5 14 12 190 
11 110 2 1 170 1 17 6 60 
12 160 3 2 150 3 17 13 160 
13 120 2 1 190 0 15 9 40 
14 140 3 2 220 3 21 7 130 
15 90 3 0 170 3 18 2 90 
16 100 3 0 320 1 20 3 45 
17 120 3 1 210 5 14 12 240 
18 110 2 0 290 0 22 3 35 
19 110 2 1 70 1 9 15 40 
20 110 6 0 230 1 16 3 55 

Table 2. Nutritional data of Kellogg's cereals in 
Table 1 

Example 4: We consider the 1998 American 
League Pitching Final Statistics data from the 
Baseball Archive http://baseballl .com/ 
statistics/98alpit.html. The data has 285 
pitchers and 14 entries for each pitcher. SCD 
determined that 61 of the 285 pitchers are 
outliers. This means the contamination is less 
than 2 5 % . The most interesting result comes 
from the relative detection frequencies that 
distinguish these 61 pitchers. 

Table 3. 1998 American League pitchers with 
highest relative frequency of detection and a 
subset of their statistics. 

Table 3 gives the ten players with the highest 
relative detection frequencies in the American 
League in 1998. Clemens and Wells all pitched 
in the All Star game. Scott Erickson (16 wins -
13 losses) led the league with the highest starts 
(36), innings pitched (251.1) and complete 
games (11). Roger Clemens (20-6) had a great 
year. Clemens had the best ERA (2.65), won the 
Cy Young Award and was the Triple Crown 
winner. David Wells (18-4) had the most 
shutouts (5) and the highest winning percentage 
(0.818). Not all the ten players were outstanding, 
e.g., John Burkett (9-13) gave up the most 
earned runs (123) and gave up 230 hits. 
No. Player Team Rel 

Freq 
W L S ERA 

1 CLEMENS, 
ROGER 

TOR 0.103 20 6 0 2.65 

2 JOHNSON, 
RANDY 

SEA 0.081 9 10 0 4.33 

3 WELLS, 
DAVID 

NY 0.060 18 4 0 3.49 

4 ERICKSON, 
SCOTT 

BAL 0.059 16 13 0 4.01 

5 SAUNDERS, 
TONY 

TB 0.054 6 15 0 4.12 

6 BURKETT, 
JOHN 

TEX 0.047 9 13 0 5.68 

7 FINKLEY, 
CHUCK 

ANA 0.046 11 9 0 3.99 

8 ROGERS, 
KENNY 

OAK 0.045 16 8 0 3.17 

9 SELE, 
AARON 

TEX 0.042 19 11 0 4.23 

10 NAVARRO, 
JAIME 

CHI 0.039 8 16 1 6.36 
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These examples show the advantage of SCD 
method as a tool for the detection of extreme 
outliers and for data mining. The algorithm can 
efficiently identify the most extreme outliers, 
especially those that are isolated. The method 
can be applied to any set of quantitative data. It 
has the disadvantage that it might miss some 
outliers and might identify valid observations 
that are extremal in some sense but not statistical 
outliers. This is true of any such tool. However, 
it has the advantage that more potential extreme 
outliers can be found than by using one step of 
ellipsoid peeling. It also seems to be more robust 
than ellipsoidal peeling since SCD is based on 
ellipsoids centered at the Fermat-Weber point. 

Furthermore, our algorithm has the advantage 
that it gives as a by-product a measure of 
outlierness for each outlier found. This is 
meaningful, especially in data mining. Our 
measure of outlierness seems easier to compute 
than the local outlier factor (LOF) described in 
[7]. In contrast to SCD, the LOF based method 
of [7] does not explicitly say what data points are 
outliers. 
Remark: The relative detection frequencies 
correspond to the fraction of the total solid angle 
in IRW subtended at the standing point E0 by 

the portion of the surface of d(R(D)) due to the 

constraint generated by a point ak e 0(D). A 
point that is more isolated gives a larger relative 
detection frequency. It is a challenge to develop 
a complete analytical description of this 
boundary surface. 

4. Application to D-optimal experimental 
designs 

We consider the application of the SCD 
algorithm to the D- optimal experimental design 
problem. Here, the set D is a set of test vectors 
in IRP and the point x* is fixed at the origin in 
IR". 

The goal of the D-optimal design problem is 
to furnish information on the linear model 

z = Αβ + ω, where ω) e N(0,1), /? e I R ' is 

a vector of variables, \ = {b\b2,jzf, m}, for 

b' e D = {a\a2,4H "}. The vectors aJ, 
1 < j < n, correspond to η possible settings for 
running an experiment. 

The problem is to decide which a 1 , from 
among a very large set, to use to define the 
columns of A7 These columns are called 
optimal test vectors. We describe how SCD is 
used to select them. Let χ . be the fraction of the 

/ Λ Τ columns b' of A that equal a' . The test 
vector a1 is chosen if and only if xf > 0 in the 

optimal solution of the following optimization 
problem [25]: 

mm l o g d e t [ £ x y v y r 1 (4.1) 
7=1 

s.t.y^ Xj — 1, 1 < j < η 
7=1 

χ. > 0 , 1 <j<n 
The experiment is carried out using the optimal 
design settings χ that are estimated from the 

experiment by χ = ( J^A)" 1 ffz [25], 
The dual of the D-experimental design 

problem is to find the minimum volume 
ellipsoid en = {y :|| Ey | |2< 1} centered at the 

origin and containing D [22], The problem can 
be written as the semidefinite optimization 
problem: 

(4.2) max logdet(E) 

/ Ε aJ 

( E a ^ y 1 

E> 0 

s.t. b 0, 1 < j < η 

The matrix Ε that defines eQ is given by 
the optimal solution of the above optimization 
problem. We note from [25] that the optimal test 
vectors aJ in the design problem are those that 
lie on the boundary of the minimum volume 
ellipsoid en. 

Lemma 4.1 [25] Let χ be the optimal solution 
of (4.1) and Ε the optimal solution of the dual 
problem (4.2). Then, xf > 0 only if a ' lies on 
the boundary of the minimum volume ellipsoid 
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ea. 

To apply SCD, choose χ* as the origin, since 
en is centered at the origin. In this case, we say 

that a point a e I R / belongs to the outer shell 
0(D) if there is an ellipsoid centered at the 
origin that contains D - {a} and whose 
boundary passes through a . 
Corollary 4.1 If χ is the optimal solution of 
(4.1), then x j is positive only if aJ lies on the 
outer shell 0(D). 

Proof: By Proposition 2.3, if a' lies on the 
boundary of the minimum volume ellipsoid en, 

then aJ lies on 0(D). The rest follows from 
Lemma 4.1. 

The corollary indicates that the optimal values 
aJ in the design problem (4.1) can be found 
from 0(D), without having to solve the dual 
problem (4.2) with the entire set D. SCD can be 
used to give a reduced subset given by the outer 
shell to solve the design problem. This can 
reduce the time required for solving the design 
problem when the SCD time to find the outer 
shell 0(D) is relatively low. 

Figure 5. A D-optimal experiment design 
involving 50 test vectors in I R 2 . The points in 
the outer shell are marked as *. 

As an example, consider the D-optimal 
experiment design problem with the 50 test 
vectors in IR 2 given in [25], The application of 
SDPSOL [26] to solve (4.2) yields the ellipsoid 

indicated in Figure 5. The four vectors 
represented by * are vectors detected by SCD, 
and these can be used to solve the optimization 
problem (4.1) instead of using the entire 50 
vectors. The two test vectors lying on the 
ellipsoid are the optimal design test vectors. 

5. Conclusion 

We have introduced the SCD Monte Carlo 
method for detecting extreme outliers in a 
multivariate data set D . The extreme outliers 
are defined in terms of a subset called the outer 
shell, and correspond to those points whose 
constrained in IR A can be viewed from an 
interior point. The problem of finding the outer 
shell is shown to be equivalent to the problem of 
detecting necessary constraints in a semidefinite 
program. 

Each iteration of the algorithm is polynomial 
of order 0(np2) . This method has the new 
feature that it gives a measure of the 
"outlierness". This is a correlative percentage 
measure of a data point being an isolated 
extreme outlier in terms of the relative 
frequencies of detection of the associated 
constraint in I R ^ . This can be used in digital 
image processing to find points on the boundary 
of a convex image that are essential. 

Furthermore, we describe how the SCD 
algorithm can be used to reduce the solution time 
of the D-optimal experimental design problem 
where D contain possible test vectors. The 
algorithm finds a reduced subset of D that can 
be used to more efficiently find the optimal test 
vectors. 

There are several interesting open questions 
that remain unsolved. First, we would like to 
better understand the robustness properties of 
the SCD. Second, suppose that two constraints 
A ( 1 ) (E) >z 0 and A ( 2 ) ( E ) ^ 0 are necessaiy;. 
what necessary and sufficient conditions would 
guarantee that they intersect on some open 
subset of the boundary S(i?(£>))? Finally, if 
after a given number of Monte Carlo iterations a 
point is found to have zero detection frequency, 
what is the probability that it is not an extreme 
outlier? 
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