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ABSTRACT

Using data from the Deep Ecliptic Survey (DES), we investigate the inclination distributions of objects in the Kuiper
Belt. We present a derivation for observational bias removal and use this procedure to generate unbiased inclination
distributions for Kuiper Belt objects (KBOs) of different DES dynamical classes, with respect to the Kuiper Belt
plane. Consistent with previous results, we find that the inclination distribution for all DES KBOs is well fit by the
sum of two Gaussians, or a Gaussian plus a generalized Lorentzian, multiplied by sin i. Approximately 80% of KBOs
are in the high-inclination grouping. We find that Classical object inclinations are well fit by sin i multiplied by the
sum of two Gaussians, with roughly even distribution between Gaussians of widths 2.0+0.6

−0.5
◦

and 8.1+2.6
−2.1

◦
. Objects in

different resonances exhibit different inclination distributions. The inclinations of Scattered objects are best matched
by sin i multiplied by a single Gaussian that is centered at 19.1+3.9

−3.6
◦

with a width of 6.9+4.1
−2.7

◦
. Centaur inclinations

peak just below 20◦, with one exceptionally high-inclination object near 80◦. The currently observed inclination
distribution of the Centaurs is not dissimilar to that of the Scattered Extended KBOs and Jupiter-family comets, but
is significantly different from the Classical and Resonant KBOs. While the sample sizes of some dynamical classes
are still small, these results should begin to serve as a critical diagnostic for models of solar system evolution.

Key words: comets: general – Kuiper Belt: general – minor planets, asteroids: general – surveys

1. INTRODUCTION

A population of small, icy bodies in the outer solar system,
known as the Kuiper Belt (Edgeworth 1943; Kuiper 1951), is
thought to be a relic of our planetesimal disk. Observations of the
orbital parameters of Kuiper Belt objects (KBOs) can be used
to constrain the dynamical history of the outer solar system and
provide insight into the processes that have shaped the region.

In this work, we derive the current inclination distributions of
the KBOs observed by the Deep Ecliptic Survey (DES; Millis
et al. 2002; Elliot et al. 2005). Inclination distributions have
proven to be a particularly good probe for learning more about
distant populations. Inclination is the easiest diagnostic orbital
element to constrain and orbital inclinations are likely to be
preserved for outer solar system objects that reach the inner
solar system.

For example, before the observational discovery of a KBO
(Jewitt & Luu 1993), the existence of a Belt of objects beyond
Neptune was hypothesized based specifically on the inclination
distribution of short-period comets (Fernandez 1980). Duncan
et al. (1988) employed numerical simulations to demonstrate
that the inclinations of short-period comets are preserved when
these bodies are scattered from the outer solar system into
cometary orbits and thus must stem from a low-inclination
population in the outer solar system. More recent studies support
the Kuiper Belt as a source for short-period comets, specifically
proposing that the Jupiter-family comets (JFCs) originated
from a scattered disk of KBOs and possibly transitioned as
Centaurs (e.g., Holman & Wisdom 1993; Jewitt & Luu 1995;
Duncan & Levison 1997; Levison & Duncan 1997; Tiscareno
& Malhotra 2003; Emel’yanenko et al. 2005; Gomes et al.

2008). Levison et al. (2001, 2006) similarly argue that the
non-isotropic inclination distribution of the Halley-type comets
(HTCs) cannot naturally arise from the Oort cloud—the source
region is likely a flattened, scattered disk of objects beyond
Neptune. The exact source region(s) for JFCs and HTCs is
still under debate. Accurate KBO inclination distributions can
therefore serve as important tests of cometary source models.

KBO inclination distributions are also a critical diagnostic for
comprehensive outer solar system evolutionary models. Exam-
ples include models of Neptune’s migration into a quiescent ver-
sus pre-excited Belt (Hahn & Malhotra 2005), models involving
Neptune “evaders” (Gomes 2003), and the “Nice” model that
proposes a rapid migration of the giant planets after a long qui-
escent period (e.g., Gomes et al. 2005; Morbidelli et al. 2005;
Tsiganis et al. 2005; Levison et al. 2008). The results of such
dynamical models must be able to reproduce the known KBO
inclinations in order to be considered valid descriptions of the
evolution of the outer solar system.

Current surveys of the Kuiper Belt are highly biased because
they do not cover the entire sky and/or are constrained by lim-
iting magnitude. Observational data must be carefully debiased
before drawing conclusions or comparing to results from dy-
namical models. As a controlled set of observations from which
to remove observational biases, we use data from the DES.
The DES had formal survey status from 2001 to 2005 by the
National Optical Astronomy Observatory (NOAO). The survey
was designed to discover and determine the orbits of hundreds
of KBOs in order to understand how dynamical phase space
is filled in the outermost solar system. Employing the wide-
field Mosaic cameras (Muller et al. 1998) on the 4 m Mayall
and Blanco Telescopes, the DES imaged over 800 deg2 within
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±6◦ of the ecliptic. The mean 50% sensitivity of the survey was
VR magnitude 22.5 (Elliot et al. 2005; hereinafter referred to
as E05). From its inception in 1998, through the writing of this
paper, the DES has discovered nearly 500 designated KBOs. A
subsample of these objects has consistent discovery parameters
and can be considered for debiasing analyses.

In addition to E05, previous studies of debiased KBO
inclination distributions include the groundbreaking work
by Brown (2001) and analyses of KBOs discovered at
the Canada–France–Hawaii Telescope (Trujillo et al. 2001;
Kavelaars et al. 2008, 2009). Here, we use the large, consis-
tent sample of DES KBOs, we explicitly account for survey bi-
ases, and we present the first inclination distributions for some
dynamical classes.

We begin by introducing a method for removing observational
biases due to object orbital inclinations and DES search–frame
properties. We employ this method to generate unbiased incli-
nation distributions for DES KBOs (separated by dynamical
class) and Centaurs. Next, we investigate functional forms as
possible fits to the unbiased inclination distributions. Statistical
tests are then applied to compare the unbiased KBO inclination
distributions with those of the Centaurs and JFCs. Finally, we
discuss the results and compare with previous findings.

2. BIAS FACTORS FOR INCLINATION DISTRIBUTIONS

Our method is to calculate the relative likelihood factor
for detecting each object discovered on DES search frames
throughout the entire survey and to apply this factor to debias
the detections. We define likelihood to be a quantity that is
proportional to the probability, with the constant of proportion
being the same for likelihoods used in the same context. The
likelihood of detection is a function of the observational bias due
to the geometry of the object’s orbit, the position of the search
frames, and the properties of the search frames (which are used
in pairs). The factors contributing to the likelihood of detection
are as follows: (1) the object and search–frame pair geometry,
(2) the solid angle covered by the search–frame pair (accounting
for overlap between frames and loss due to interfering objects),
and (3) the limiting magnitude of the search–frame pair. We
assume that magnitude and inclination are independent of each
other and that objects are on circular orbits. These assumptions
are discussed further in Section 4. Our technique is similar to that
employed in Section 8 of E05; however, the methodology for
calculating the geometric, observational bias has been revised
(see Section 2.1).

The biases listed above are based only on the discovery
observations. It is worth considering that biases may exist in
the recovery observations, which were necessary for orbits to
be firmly established to allow designation by the Minor Planet
Center (MPC). We address this issue by first looking at the
orbital properties of the 369 DES-discovered objects that were
not recovered. All but a few of these objects had arc lengths
of 2 days or less, and the orbital parameters were not well
established. In fact, we find that only 1% of the lost objects had
errors that were smaller than 50% of the nominal values for all
three parameters a, e, and i—60% of the lost objects had errors
>100% of the nominal value for i. Therefore, we cannot say
anything conclusive about the orbital parameters of these lost
objects. The most likely reasons for nonrecovery are faintness
and/or fast motion. Losing faint objects should not effect our
debiasing since we consider the magnitude distribution that was
derived for the full population (see Section 2.3). Objects can
be fast moving as a result of low a or having high e and being

near perihelion. The DES sample shows no correlation between
inclination and semimajor axis (a versus i for DES KBOs has a
Spearman rank-order correlation coefficient of −0.03, following
Press et al. 2007). The eccentricity of the DES sample is only
weakly correlated with inclination (see Section 4). This implies
that losing objects at low a or high e should not preferentially
eliminate objects of any particular inclination. Based on this
initial assessment, we conclude that any bias due to lost objects
should not have a large impact on our results. A more complete
analysis of biases from recovery observations will be carried out
in a subsequent DES paper.

Note that in this work we determine the relative likelihood of
detecting the objects that were discovered by the DES and sub-
sequently designated (i.e., a likelihood of one is assigned to the
object most likely to have been detected based on the analyses
presented here). This method is sufficient for our purposes of
debiasing and studying the observed DES inclination distribu-
tions. We do not calculate absolute detection probabilities nor
account for biases that might have resulted in non-detections.
Therefore, we cannot derive unbiased population numbers. We
leave this important topic for future work.

2.1. Geometric Component of Likelihood

Consider an object on a circular orbit that is in a chosen
reference plane (i.e., ecliptic or invariable), having an orbital
pole aligned with the pole of the plane. The probability density
over the orbital longitude, l, is

p(l) = 1
2π

, 0 ! l ! 2π. (1)

To determine the probability of detection over a range of
latitudes, dl, this value should be integrated as

∫
p(l)dl. The

probability density of the orbital longitude is related to the
probability density of the orbital latitude, β, by

p(l)dl = p(β)dβ, −90◦ ! β ! 90◦. (2)

Let the object orbit in the xy-plane of an x, y, z-coordinate system.
We can rotate the system by an orbital inclination angle, i, with
respect to the reference plane (about the x-axis), into an x′, y′,
z′- system:

x = cos l x ′ = x
y = sin l y ′ = y cos i − z sin i
z = 0 z′ = y sin i + z cos i

. (3)

The orbital pole for the inclined orbit is aligned with the z′-axis
and as a function of the orbital latitude,

z′ = sin β. (4)

Combining Equations (3) and (4) provides the following rela-
tionship between orbital inclination i, latitude β, and longitude
l:

sin β = sin i sin l, (5)

which has the differential form

cos βdβ = sin i cos ldl. (6)
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Employing the Pythagorean identity, Equation (5) can be written
as

cos l =
√

1 − sin2 β

sin2 i
. (7)

By combining Equations (1), (2), and (6), the probability density
of the orbital latitude can be written as

p(β) = cos β

2π sin i cos l
. (8)

We combine Equations (7) and (8), and normalize such
that

∫ 90◦

−90◦ p(β ′|i)dβ ′ = 1 for any inclination, to define the
conditional probability density for finding an object at latitude
β as a function of its orbital inclination i:

p(β|i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cos β

π
√

sin2 i − sin2 β
, sin i > |sin β|

0, sin i ! |sin β| & i ̸= β ̸= 0
1, i = β = 0

.

(9)

The special cases defined in Equation (9) are (1) when sin i !
|sinβ| and there is zero probability for detecting an object whose
inclination never reaches the latitudes of a search–frame pair and
(2) when both the inclination and the latitude equal zero and the
object is detected. Because the probability density is a function
of latitude and inclination (and is independent of longitude),
the second geometry corresponds to always detecting an object
having an orbit of 0◦ inclination in a DES search–frame pair
taken at β = 0◦.

Next, we consider the range of latitudes and longitudes
covered by the DES search fields. Every search field on the sky
was imaged in at least two Mosaic frames and each frame was
composed of eight CCDs. We separately consider the properties
of each CCD on each valid search frame (valid frames are
those that overlap in R.A. and decl. for each observation in
a pair as well as containing all eight mosaic CCDs). A CCD
schematic is displayed in Figure 1. Each CCD ranges from a
minimum latitude, βmin, to a maximum latitude, βmax. The tilt
of a CCD with respect to the reference plane (at which β =
0◦) is represented by θ . This CCD geometry can be analyzed
with respect to different reference planes such as the ecliptic,
invariable, or planes determined by objects within the Kuiper
Belt.

For each of the CCDs that constitute a DES mosaic frame,
the width, w, and height, h, equal 0.◦148 and 0.◦296, respectively.
These solid angle measurements assume a constant mosaic plate
scale of 0.′′26 pixel−1: the variation across the field is considered
negligible, although it decreases quadratically by 6.5% out to
the corners. The CCD dimensions can be expressed as h = ∆δ
and w = ∆α cos δ0, where ∆α and ∆δ are the angular extents of
the search field in R.A. and decl. and (α0, δ0) is the center of the
search field. Employing CCD measurements in terms of angle
removes the cos β factor which otherwise would be required to
account for change in longitude as a function of latitude.

A convenient CCD measure (cf. Figure 1) is the full latitude
extent,

H = h cos θ + w sin θ = |βmax − βmin| . (10)

Figure 1. Schematic of a CCD, eight of which comprise one DES mosaic search
frame. Each CCD is a rectangular element of solid angle, having angular height
and width of h and w, respectively. The CCDs are aligned with the R.A. and
decl. (α, δ) coordinate axes. We consider the transformation of this solid angle to
another spherical coordinate system that has longitude and latitude coordinates
(λ, β). The center of the CCD is thus transformed from coordinates (α0, δ0) to
(λ0, β0). The CCD is assumed to be far from the pole of either the coordinate
system, so that the coordinate transformation is approximated by a rotation of
the rectangular element by angle θ , defined as the position angle (measured
from north through east) of the β-axis in the (α, δ) coordinate system. The
full angular extent of the CCD in latitude is denoted by H, with minimum and
maximum values βmin and βmax. The dashed lines are of constant latitude, and
these break the CCD into subelements over which it is convenient to carry out
integrations. Useful measures ∆λmax, ∆β1, and ∆β2 are also labeled. (Figure
adapted from E05.)

The longitude extent of the CCD, ∆λ, as a function of latitude
and tilt angle is

∆λ(β, θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, −90◦ ! β < βmin

∆λmax(θ ) β−βmin
∆β1(θ) , βmin ! β < βmin + ∆β1(θ )

∆λmax(θ ), βmin + ∆β1(θ ) ! β < βmax − ∆β1(θ )

∆λmax(θ ) βmax−β

∆β1(θ) , βmax − ∆β1(θ ) ! β < βmax

0, βmax ! β ! 90◦

(11)

(following Equation (B5) of E05), where ∆λmax(θ ) is the
maximum longitude within the CCD and ∆β1(θ ) is a latitude
measurement labeled in Figure 1. The measurements used in
our analyses, which are functions of the CCD width and height
and are labeled in Figure 1, are defined as follows:

∆λmax(θ ) =

⎧
⎪⎨

⎪⎩

h

sin θ
, tan θ " h/w

w

cos θ
, tan θ < h/w

, (12)

∆β1(θ ) =
{
h cos θ, tan θ " h/w

w sin θ, tan θ < h/w
, and (13)

∆β2(θ ) = H − 2∆β1(θ )
2

. (14)

The geometric likelihood component for detecting the jth
object (which has orbital inclination 0 ! ij ! 180◦) on the kth
CCD is found by integrating the parameters from Equations (9)
and (11) over the CCD latitudes:

ξlat,k,j =
∫ βmax,k

βmin,k

∆λ(β ′, θk)p(β ′|ij )dβ ′, (15)
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Figure 2. Plots of the normalized, geometric likelihood component, ξ lat,j, for detecting an object having orbital inclination ij in a CCD of various configurations.
Schematic diagrams of the CCD are displayed below the corresponding likelihood plot. The likelihood component is normalized by solving Equation (15) for a DES
CCD integrated over all latitudes. Left: a plane-crossing CCD that has equal areas of positive and negative latitudes, |βmin| = |βmax|. In this case, ξ lat,j is 1 when
the orbital inclination is fully contained within the frame. The likelihood decreases with increasing inclination, corresponding to the orbit crossing through the CCD
latitudes and having an increasingly larger fraction of the orbit outside of the CCD. Middle: a plane-crossing CCD with unequal areas of positive and negative latitudes.
To illustrate, we have chosen the specific case when the center of the CCD is a quarter of the total CCD height above β = 0◦. The normalized likelihood is 1 only
when the orbital inclination is contained within both positive and negative latitudes of the CCD. Then, there are two transitions: (1) when the inclination has increased
beyond one, but not both, of the CCD latitude limits, and (2) when the orbital inclination is greater than the CCD latitude farthest from β = 0◦ (the maximum of |βmin|
or |βmax|), after which point the likelihood decreases accordingly. Right: a non-plane-crossing CCD, with examples of CCD tilts θ = 0◦, 17.◦8, 23.◦4, and 90◦. The
intermediate tilt angles are chosen to illustrate the mean and maximum of DES frames, 17.◦8 and 23.◦4 respectively. Because βmin and βmax vary as functions of θ , we
set the CCD to the size of a DES mosaic CCD, w = 0.◦148 and h = 0.◦296. For this example, we assume a latitude center for the CCD of β0 = 0.◦3. This selection
results in positive latitudes: the cases for the corresponding negative latitudes are identical. There is no likelihood of detection until the orbital inclination reaches the
CCD latitude closest to β = 0◦ (the minimum of |βmin| or|βmax|). The likelihood increases as the orbit peaks within the CCD latitudes. Once the inclination is greater
than the CCD latitude farthest from β = 0◦, the likelihood decreases accordingly. At θ = 0◦ the extent of the CCD in latitude is equal to h, while at θ = 90◦ it is equal
to w.

where 0◦ ! θk < 180◦, −90◦ ! βmin,k ! 90◦, and
−90◦ ! βmax,k ! 90◦ represent values specific to the kth CCD.
Equation (15) can be employed for object orbits referenced to
various planes, as long as the inclinations and latitudes are self-
consistent. Note that evaluation of this integral requires some
care—details of our method for solving Equation (15) are pre-
sented in Appendix A. Figure 2 provides examples of the result-
ing geometric likelihood component as a function of selected
KBO orbital inclinations, CCD latitudes, and CCD tilt angles.

In this work, we choose to debias using the conditional
probability density p(β|i), where the inclination is known,
rather than p(i|β), where the latitude is known (which was
the probability function provided in Equation (36) of E05).
Theoretically, these functions return the same results. The
difference is that here we consider the likelihood of detecting
an object with known inclination over a range of field latitudes,
rather than assuming a latitude and finding the likelihood over a
range of inclinations. We select p(β |i) in order to be consistent
with our sample selection of objects with low inclination
errors. In practice, the analytic method that was employed for
inclination debiasing in E05 is a close approximation to the
more accurate debiasing method used here (see Appendix A for
details).

2.2. Solid Angle Component of Likelihood

Although each DES frame covers the same solid angle in the
sky, the solid angle over which objects can be detected may be
less due to obscuration by other objects and/or misregistration
in the centers of the discovery pair of frames. To determine the

solid angle component of likelihood, we consider these issues
for all CCDs on all valid DES search frames. Defining Ωs as
the solid angle of a full CCD and Ωk as the net solid angle for
the kth CCD, the solid angle component of the likelihood factor
(following E05) is

ξang,k = Ωk/Ωs . (16)

2.3. Magnitude Component of Likelihood

The magnitude component of the likelihood factor is based on
the detection efficiency for each CCD as well as the magnitude
distribution of the discovered objects. We describe the detection
efficiency using the functional form of Trujillo et al. (2001):

ε(m,m1/2,k) = εmax

2

[
1 + tanh

(
m1/2,k − m

σm

)]
, (17)

where m is the KBO magnitude, m1/2,k is the magnitude on
the kth CCD at which the detection efficiency has dropped
to 1

2 , εmax is the maximum efficiency at bright magnitudes
(here set equal to 1), and σ m is a parameter that specifies a
characteristic range over which the survey efficiency drops from
εmax to 0. Following E05, we define m1/2,k = m2σ,k −∆m1/2−2σ ,
where m2σ,k is the magnitude of an object whose peak pixel is
two standard deviations above the mean background for the
shallower exposure of a pair of search frames (assuming m2σ,k
is the same for each CCD on a given frame) and ∆m1/2–2σ is a
constant offset that applies to all CCDs in all frames.
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In order to debias for individual objects, Equation (17) must
be considered for each object magnitude and the detection limit
in each of the 19,056 CCDs in valid DES search frames. Rather,
we assume that discovery magnitude and inclination are not
correlated (see discussion in Section 4) and that the observed
inclination distribution will be the same regardless of individual
object discovery magnitudes. Thus, we need only account for
the bias introduced by frame-to-frame variations in limiting
magnitude. We approximate the magnitude distribution as a
single power law (following Trujillo et al. 2001; Bernstein et al.
2004, for example) and integrate the detection efficiency over
the range of object magnitudes at discovery, mmin to mmax. The
resulting magnitude component of the likelihood on the kth CCD
is

ξmag,k = α ln 10
∫ mmax

mmin

10α (m−m0)ε(m,m1/2,k)dm (18)

(Equation (31) of E05) where α is the logarithmic slope of the
magnitude distribution and m0 is the magnitude for which the sky
density of objects brighter than m0 is 1 deg−2 (at opposition and
for β = 0◦). We assume DES parameters mmin = 19.0, mmax =
25.7, and the adopted solution for the magnitude distribution
from E05: σ m = 0.58, α = 0.86, m0 = 22.70, and ∆m1/2–2σ =
1.43.

2.4. Overall Likelihood of Detection

The likelihood factor for detecting the jth object on the kth
CCD is the combination of the three components described
above:

ζdetect,k,j = ξlat,k,jξang,kξmag,k. (19)

The likelihood for detecting the jth object over the entire survey
is found by summing over NF, the total number of CCDs on all
valid DES search frames:

ζdetect,j =
NF∑

k=1

ζdetect,k,j . (20)

2.5. Fraction of Objects per Degree of Inclination

Following the bias removal procedures described in E05, we
use the likelihood factors from Equation (20) to derive the
inclination distribution for the fraction of objects per degree,
fi(i). For objects separated into a total of Ni bins, with the nth
bin having width ∆in, we denote the unbiased fraction of the
population per degree as fi,n. A quantity proportional to the
likelihood of detecting an object in the nth bin, which contains
Nn objects, is Zn:

1
Zn

= 1
Nn

Nn∑

j=1

1
ζdetect,j

. (21)

The number of objects detected in the nth bin can be written
in terms the total number of objects in the Kuiper Belt, NT , the
unbiased fraction in the bin, the bin size, and a constant γ that
is proportional to the likelihood of detection:

Nn = NT fi,n∆inZnγ , (22)

where γ is normalized over all Ni bins:

γ = 1
NT

Ni∑

n=1

Nn

Zn

. (23)

Combining Equations (22) and (23) provides the following
expression for the unbiased fraction of objects in the nth bin:

fi,n = Nn

∆inZn

∑Ni

n=1
Nn

Zn

. (24)

The error on the fractional number of objects in each bin, σ (fi,n),
is estimated as

σ (fi,n)
fi,n

= σ (Nn)
Nn

. (25)

Assuming the standard deviation in the number of detected
objects per bin follows binomial statistics, with the number
of trials being the total number of objects that could have been
detected in each bin, NTfi,n∆in, and a probability of success,
Znγ , the error is

σ (fi,n) =
fi,n

√
NT fi,n∆inZnγ (1 − Znγ )

Nn

≈ fi,n√
Nn

. (26)

Without knowing the total number of objects in the Kuiper Belt
we cannot accurately evaluate γ ; however, Znγ is expected to
be ≪1 assuming tens of thousands of total objects.

Note that the fractional error given in E05 (Equation (9))
incorrectly considers the square root of the debiased number
rather than the detected number of objects in the nth bin.
The difference between the fractional errors calculated using
Equation (26) and Equation (9) of E05 is directly proportional
to the number of objects per degree in each bin. As a result,
the error bars on the data presented in E05 are too small for
bins that have less than approximately 10 objects per degree of
inclination and are too large for bins containing more objects.
This corresponds to the error bars in E05 (Figures 16, 18, and
20(a)) being 40%–80% too small on binned data points with
iK > 8◦ and being 105%–160% too large on binned data points
with iK < 8◦.

3. RESULTS

3.1. Unbiased Inclination Distributions

The database of DES objects (Buie et al. 2003) contained
482 KBOs and Centaurs on valid search fields as of 2007
October 24. The survey has officially ended and this sample
has not changed significantly between that time and submission
of this paper. From this sample, we select only the objects
with low error on their orbital inclination (!0.◦5) to allow for
higher accuracy in the derived inclination distributions. We also
consider subsamples of this population based on dynamical
classification. The samples we consider, and the number of
objects in each sample, are listed in Table 1. We note that there
are no retrograde objects in our samples. This is not due to the
exclusion of such objects in our recovery efforts, or a bias in our
discovery fields: no retrograde objects were detected.
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Table 1
Sample Statistics

Samplea No. Objectsb No. Objects in Elliot et al. (2005)c

All DES 482 373
Inclination error σ i ! 0.◦5 361 245

Centaurs 17 5
DES KBOs 344 240

Classifiedd 295 174
Resonant KBOse 104 52

3:2 e 51 29
Other Resonant 53 23
7:4 e3 12 7

Nonresonant KBOs 191 122
Classical 150 92
Scattered 41 30
Scattered Near 32 21
Scattered Extended 9 9

Unclassified 49 66

Notes.
a Objects designated by the MPC that were discovered on valid DES search
fields; indentation denotes subsamples.
b Values as of 2007 October 24, which are used for analyses in this work.
c Values as of 2003 December 31 that were used in E05 and are provided here
for reference. These samples considered an additional criterion of KBOs with
heliocentric distance <30 AU, which eliminated seven objects from the sample
of objects with low inclination error.
d We consider objects with classification quality "2, following the classification
scheme presented in E05. Only seven objects have quality 2 and the remainder
are quality 3.
e The two Resonant subsamples with the greatest number of objects are listed
as distinct samples. There are six objects or fewer in each of 18 other occupied
resonant subsamples.

We follow the DES classification scheme presented in E05,
which tests for the following criteria in the order listed: Res-
onant objects are those for which one or more resonant argu-
ments liberate; Centaurs are objects whose osculating perihelia
reach values less than the osculating semimajor axis of Neptune;
Scattered Near objects have time-averaged Tisserand parame-
ters relative to Neptune of TN < 3; Scattered Extended objects
have TN > 3 and time-averaged eccentricities >0.2; and Classi-
cal objects have TN > 3 and time-averaged eccentricities <0.2.
Objects are classified by assuming three sets of initial condi-
tions that describe a nominal orbit, along with two clones at
±1σ excursions in semimajor axis and eccentricity space, and
integrating for 10 Myr (see E05 for a complete description). If
all three initial-condition sets do not return a classification be-
cause the errors in the orbital elements are too large, the object
is deemed Unclassified. Some Unclassified objects have low in-
clination errors and thus meet the criteria to be considered in
our analyses. We stress that the Unclassified objects are not the
same as those that are lost: this sample has well-defined incli-
nations. As noted by Gladman et al. (2008b), inclinations are
tied to the Tisserand parameter (i.e., higher inclinations return
lower TN). The DES Scattered Near and Scattered Extended
classifications thus preferentially sort objects by inclination. To
overcome this partiality, we also consider the grouping of the
combined Scattered objects in our analyses.

A natural reference for KBO orbits is the mean orbital plane
of the Kuiper Belt itself. Here we reference inclinations to the
Kuiper Belt plane (KBP) for debiasing, as parameterized by
the adopted solution in E05 (see Appendix B for conversion
of object orbital inclination between planes). With respect to
the plane of the ecliptic, the KBP has inclination 1.◦74 ± 0.◦23

(a)

(b)

Figure 3. Relative likelihood of detecting each of the 482 KBOs and Centaurs
discovered on valid DES search frames. (a) The number of objects as a function
of detection likelihood, ζ detect (Equation (20)). We consider relative likelihoods;
therefore, the values are normalized to the maximum likelihood obtained for
any individual object. (b) The normalized likelihood of detection as a function
of object inclination with respect to the KBP.

and node 99.◦2 ± 6.◦6, which is consistent with the invariable
plane of the solar system. We represent orbital inclinations with
respect to the KBP as iK . The maximum difference between
iK and ecliptic inclination in our sample of DES KBOs and
Centaurs is 1.◦62. Note that slightly different locations for the
KBP have been calculated (theoretically and observationally:
Brown & Pan 2004; Chiang & Choi 2008). In fact, it is expected
that each dynamical class has its own reference plane (E. Chiang
2008, private communication). The framework described here
can be applied to any reference plane.

As an illustration of the bias factors, the normalized detection
likelihoods for the DES KBOs are plotted in Figure 3. The
dominance of the geometric likelihood component, ξ lat, is
apparent as a general decrease in detection likelihood with
increasing KBP inclination. Below approximately 0.◦5, the
likelihood of detection is relatively lower due to KBO orbits
not spending as much time in the latitudes of the discovery
search fields.

The observed inclination distribution for the 344 DES KBOs
that have low inclination errors is shown in Figure 4(a). The data
are plotted per degree: the sum of the data points in each bin
multiplied by the bin widths equals the total (1 for the fraction
of objects labeled on the left and 344 for the number of objects
labeled on the right). These observations are highly biased. From
the debiasing method in Section 2, the unbiased inclination
distribution for the full KBO sample is shown in Figure 4(b). The
strength of the bias against detecting high-inclination objects
is apparent in the difference between Figures 4(a) and 4(b).
To provide a visual representation of the types of KBOs that
constitute this distribution, the bins in Figure 4 are shaded to
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(a)

(b)

Figure 4. Inclination distributions for DES KBOs having inclination error
!0.◦5 as of 2007 October 24 (344 objects). (a) The observed fraction of objects
(left axis) and number of objects (right axis) per degree of inclination with
respect to the KBP. Bin sizes are 1◦ from 0◦ to 4◦, 2◦ from 4◦ to 10◦, 5◦ from
10◦ to 25◦, and one 10◦ bin from 25◦ to 55◦ (following Millis et al. 2002; E05,
for bins <25◦). Data points are plotted at the average inclination for the objects
in each bin. The data points are enlarged to be more clearly visible for higher-
inclination bins in which few objects were detected. Each bin is shaded to reflect
the proportion of KBOs by classification: Unclassified objects are represented
by white areas, Resonant objects are represented by light gray, Scattered (Near
and Extended) objects are represented by medium gray, and Classical objects
are represented by dark gray. (b) The unbiased fraction of objects per degree of
inclination with respect to the KBP. Data points and error bars are determined
following the debiasing procedure presented in Section 2. The debiased plot
represents only the observed DES KBOs and does not consider bias effects
that may have caused objects to not be detected; therefore, this plot should not
be considered as a representation of the relative populations of different KBO
classes.

reflect the proportion of objects by dynamical class. Figure 4(b)
is not labeled by number of objects, since our debiasing only
accounts for objects discovered by the DES and does not attempt
to derive total population numbers.

The double-peaked nature of the total inclination distribution
for KBOs that was originally reported by Brown (2001), and
confirmed by E05, is apparent. In comparison to this work, the
unbiased inclination distribution presented in E05 considered a
similarly derived sample of 240 DES objects (see Table 1 for
additional sample comparisons).

The unbiased inclination distribution for the 17 DES
Centaurs having low inclination errors is displayed in Figure 5.
We consider the Centaurs separately from KBOs due to the
perturbed nature of their orbits: as “planet-crossers,” Centaurs
are expected to have dynamically short lifetimes. The small
number of Centaurs in this sample does not yet allow for a well-
defined inclination distribution. However, Figure 5 suggests that
Centaur inclinations peak at less than 20◦. This peak is at a
slightly lower inclination and is significantly less pronounced
than that found by Emel’yanenko et al. (2005). There is only one
Centaur composing the highest inclination bin and it is the DES
object with the highest inclination (iK = 76.◦5; ecliptic inclina-
tion 78.◦0).

(a)

(b)

Figure 5. Unbiased inclination distribution for all DES Centaurs having
inclination error ! 0.◦5 as of 2007 October 24 (17 objects). (a) Data points and
error bars represent the fraction of objects per degree of inclination with respect
to the KBP, following the debiasing procedure presented in Section 2. Due to
the paucity of objects, bin sizes are 5◦ from 0◦ to 20◦, and 20◦ from 20◦ to 80◦.
Data points are plotted at the average inclination for the objects in each bin. (b)
The cumulative distribution of Centaurs as a function of inclination with respect
to the KBP (solid black dots). From 0 to 1, this plot represents the fraction of
Centaurs having inclinations at or below the corresponding abscissa value. The
steep increase in objects near 20◦ is apparent. For comparison, the cumulative
distribution of JFCs is also shown (open gray circles). The probability that
the current inclination distributions of Centaurs and JFCs are derived from the
same parent distribution cannot be rejected at the 2σ level (see Table 4).

There are now enough classified DES KBOs that it is worth-
while to investigate the inclination distributions for different
dynamical classes. Binned inclination distributions for the con-
sidered samples are displayed on the left side of Figure 6. On
the right side, cumulative distributions are shown in order to
provide a representation of unbinned data.

As noted by Brown (2001), KBOs of different dynamical
classes have strikingly different inclination distributions. The
Classical objects have a double-peaked distribution and they
dominate the low-inclination grouping in the distribution for
DES KBOs. In general, Resonant objects have a fairly flat
inclination distribution extending to ∼30◦. The differences in
the distributions of the two most-populated resonances (3:2
and 7:4) demonstrate that inclinations vary by resonance.
Scattered objects dominate the higher-inclination portion of
the distribution for DES KBOs. Scattered Near objects have
inclinations greater than 10◦ with a distribution peak just above
20◦ and Scattered Extended objects have inclinations less than
20◦. These distributions demonstrate the tie between Tisserand
parameter and inclination, and thus the selection effect of our
classification scheme. The Unclassified inclination distribution
contains primarily low-inclination objects and is most similar to
the Classicals—this is not surprising, given that the likelihood
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Figure 6. Unbiased inclination distributions for selected samples from Table 1. On the left, the fraction of the population per degree of inclination with respect to the
KBP is plotted as data points with error bars for each sample. The sample names are provided in the plots, with the number of objects in the sample in parentheses.
Bin sizes vary, in order to ensure at least a few objects in each bin. For DES KBOs and Classical objects, bin sizes are 1◦ from 0◦ to 4◦, 2◦ from 4◦ to 10◦, 5◦ from
10◦ to 30◦, and 10◦ bins from 30◦ to 80◦; for 3:2, Other Resonant, Scattered Near, Scattered Extended, and Scattered, bin sizes are 5◦ from 0◦ to 20◦ and 10◦ from
20◦ to 80◦; for 7:4 and Unclassified, bin sizes are 2◦ from 0◦ to 10◦, 5◦ from 10◦ to 40◦, and 10◦ from 40◦ to 80◦. The cumulative distributions (unbinned) for each
sample are shown on the right. The best-fit functional forms for the inclination distribution, from Table 2, are overplotted on the data. Short-dashed lines represent
sin i multiplied by a single Gaussian (Equation (29) with µ = 0), long-dashed lines are sin i multiplied by a single Gaussian offset from the plane (Equation (29)
with µ ̸= 0), dotted lines are sin i multiplied by a generalized Lorentzian (Equation (30)), solid lines are sin i multiplied by the sum of two Gaussians (Equation (31)),
and dot-dashed lines are sin i multiplied by a Gaussian plus generalized Lorentzian (Equation (32)).
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of detection is higher for low-inclination objects and that more
than half of the classified objects in our sample are Classicals.

3.2. Fitting Method

To investigate functional forms for the inclination distribu-
tions, we perform Monte Carlo simulations and use Kuiper’s
variant of the Kolmogorov–Smirnov (K-S) test. Kuiper’s vari-
ant employs the maximum deviations (plus and minus) between
two cumulative distributions to quantify the probability that a
random sample would result in a larger difference between the
two samples than that observed. We select Kuiper’s test because
it is effective at detecting changes in the tails of the distribu-
tions, whereas the standard K-S test is more sensitive to shifts
in the distributions (Press et al. 2007). The statistic for this test
is V

√
N , where V is Kuiper’s statistic and N is the effective

number of objects in the compared datasets as defined in Press
et al. (2007). Following Brown (2001), we calibrate V

√
N by

comparing a uniform distribution to 100,000 datasets comprised
of random numbers distributed between 0 and 1. The probability
of obtaining a particular value of V

√
N is determined using the

cumulative probability, as shown in Figure 4 of Brown (2001).
The 1σ , 2σ , and 3σ levels correspond to cumulative probabil-
ities of 84.1%, 97.7%, and 99.9%, and V

√
N values of 1.49,

1.85, and 2.29, respectively.
For our Monte Carlo method, we create a distribution of

objects following a functional form. We then generate a few
thousand simulated datasets from the distribution and employ
a K-S test to compare the simulated data to the sample. We
implement the K-S test by comparing piecewise continuous
functions. The average V

√
N for all simulations is taken to be

the statistic for that functional form. By stepping through a range
of values for each of the parameters in the functions, we arrive
at a best fit (minimum V

√
N ). The best-fit V

√
N statistic is then

compared with the calibrated values to determine the confidence
level at which we can reject the null hypothesis, namely that the
simulated datasets and the sample were drawn from the same
parent distribution. Results at confidence levels less than 1σ

(V
√

N < 1.49) correspond to <84.1% probability that V
√

N
would be larger than that obtained. For all samples, we find
functional forms that can only be rejected at confidence levels
less than 1σ . We thus consider these fits acceptable.

3.3. Functional Forms for KBO Distributions

Various analytical functions can be considered in trying to
match the observed inclination distributions. As demonstrated
by Brown (2001), a Gaussian appears to be a natural functional
form for the ecliptic inclination distribution of KBOs (multiplied
by sin i for the total inclination distribution). The distribution
of known asteroids is well fit by this form, as are the results
from simulations of multiple perturbations in an initially zero-
inclination disk (Brown 2001).

Because some of our unbiased inclination distributions fall
off rather steeply at high inclinations, we follow E05 and also
investigate a generalized Lorentzian multiplied by sin i. We
do not have any underlying physical reason for this form. For
distributions that are clearly double-peaked, we assume that
there are overlapping groups of objects and thus consider the
sum of two Gaussians or a Gaussian plus a Lorentzian.

We define the variables G and L to represent the following
Gaussian and generalized Lorentzian functions:

G(i, σ, µ) = e− (i−µ)2

2σ2 sin i

L(i, I, g) = [1 + (i/2I )g]−1 sin i.

(27)

Normalized versions of these functions, Gnorm and Lnorm, are
obtained by dividing by the integral of each function over all
inclinations:

Gnorm(i, σ, µ) = G(i, σ, µ)
∫ 180◦

i ′=0◦ G(i ′, σ, µ)di ′
,

Lnorm(i, I, g) = L(i, I, g)
∫ 180◦

i ′=0◦ L(i ′, I, g)di ′
. (28)

Following previous work, we first consider sin i multiplied by a
single Gaussian of width σ 1 and centered at µ1,

fG(i) = Gnorm(i, σ1, µ1). (29)

The most simple case is where the Gaussian is centered on
the plane, µ1 = 0. We employ our Monte Carlo method and
find the range of σ 1 for which V

√
N of the simulated datasets

relative to the sample is less than the 1σ level. In the case
of Equation (29) with µ1 = 0, acceptable fits are found for
samples of 3:2, 7:4, Other Resonant, and Scattered Extended.
Note that the Other Resonant sample consists of all Resonant
objects except for those in the 3:2 resonance (Table 1). Best-fit
values and 1σ error bars are listed in Table 2. The model-fitting
results are plotted in Figure 7, where best fits and rejection levels
are clearly denoted. This functional form can be rejected for all
other samples at confidence levels listed in Table 3.

For functions containing two or more parameters, such as
Equation (29) with a Gaussian offset from the plane (µ1 ̸=
0), the best fit is a multi-dimensional space enclosed by the
contour where V

√
N is at the 1σ level. Because the parameters

are correlated, we cannot simply take the 1σ values as the error
bars (see description in Brown 2001). We use our Monte Carlo
method and generate contour plots of V

√
N to determine the

nominal best fit and then calculate 1σ errors on each parameter
while keeping the other parameter(s) fixed.

As listed in Table 2, acceptable fits for Equation (29) with
µ1 ̸= 0 are found for the samples of 3:2, 7:4, Other Resonant,
Scattered, Scattered Near, and Scattered Extended. The fitting
contour plots are shown in Figure 8. Although the best-fit value
for each sample is marked by a dot, the regions for which the fits
are acceptable lie within the 1σ contour lines. The samples that
have acceptable fits for µ1 = 0, and the corresponding range of
acceptable σ 1 values, are apparent here. Note that the samples
of Scattered and Scattered Near are similar, since Scattered Near
comprises the majority of the total Scattered sample.

A function that decreases more steeply at higher inclinations
is sin i multiplied by a single generalized Lorentzian, where the
Lorentzian half-inclination is I1 and power is g1:

fL(i) = Lnorm(i, I1, g1). (30)

We find acceptable fits for this functional form to the samples
of 3:2, 7:4, Other Resonant, Scattered, Scattered Near, and
Scattered Extended. For 7:4 and all three Scattered samples, this
form has a wide range of acceptable g-parameter space—once
the drop-off at higher inclinations becomes steep, higher values
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Table 2
Fitting Results for Unbiased Inclination Distributions

Samplea Functions and Best-fit Valuesb

sin i multiplied by single Gaussian (fG(i); Equation (29))

µ1 σ 1 V
√

N (rejection%)c

3:2 e 0 10.7+2.0
−2.3 1.29 (64.4)

7:4 0 2.4+2.2
−1.1 0.98 (19.7)

Other Resonant 0 11.0+2.8
−2.5 1.12 (39.6)

Scattered Extended 0 13.2+9.1
−5.0 1.27 (62.0)

3:2 ed 6.5+3.8
−6.5 8.5+1.8

−2.0 1.26 (59.8)

7:4 2.3+2.1
−2.3 1.5+2.2

−1.0 0.93 (13.7)

Other Resonant 6.0 +3.8
−6.0 8.7+1.8

−2.0 1.26 (59.7)

Scatteredd 19.1+3.9
−3.6 6.9+4.1

−2.7 1.06 (30.9)

Scattered Neard 20.3+4.5
−4.0 6.8+4.8

−3.0 1.04 (27.1)

Scattered Extendedd 17.2+4.2
−3.3 2.9+10.6

−2.3 0.94 (15.1)

sin i multiplied by generalized Lorentzian (fL(i); Equation (30))

I1 g1
e V

√
N (rejection%)c

3:2 e 8.8+1.2
−1.7 6.4+3.4

−1.5 1.27 (61.3)

7:4d 2.2+1.4
−0.8 20.0+>100

−16.8 0.88 (8.6)

Other Resonantd 7.0+1.9
−1.7 4.4+2.1

−1.0 1.06 (30.6)

Scattered 14.1+2.3
−1.4 12.1+>100

−5.5 1.23 (57.4)

Scattered Near 15.0+2.7
−1.8 18.7+>100

−12.2 1.05 (28.6)

Scattered Extended 10.9+6.6
−2.5 21.0+>100

−17.9 1.21 (52.4)

sin i multiplied by sum of two Gaussians (f2G(i); Equation (31))

a1 σ 2 σ 3 V
√

N (rejection%)c

DES KBOs 0.18 ± 0.06 1.8 +0.8
−0.6 13.6 ± 0.9 1.32 (67.9)

Classical 0.53+0.17
−0.15 2.0+0.6

−0.5 8.1+2.6
−2.1 0.99 (20.6)

Unclassified 0.51± 0.24 1.3+0.9
−0.6 4.8+3.6

−1.8 1.02 (25.4)

sin i multiplied by a Gaussian plus Lorentzian (fGL(i); Equation (32))

a2 σ 4 I2 g2
e V

√
N (rejection%)c

DES KBOsd 0.25 ± 0.07 2.3+0.9
−0.7 11.2 ± 0.9 7.0+2.5

−1.4 1.14 (43.0)

Classicald 0.58 ± 0.15 1.9+0.6
−0.4 6.6+1.8

−1.4 9.2+>100
−4.7 0.96 (17.4)

Unclassified 0.57+0.22
−0.24 1.4+0.8

−0.6 3.9+3.3
−1.5 5.9+>100

−3.4 1.03 (26.9)

Notes.
a Samples correspond to those listed in Table 1.
b The best-fit values, ±1σ , from our Monte Carlo method applied to each sample and each function.
c The statistic from Kuiper’s variant of the K-S test for the best-fit parameters, and the corresponding confidence level at which we
can reject the hypothesis that the sample and the fit are drawn from the same intrinsic distribution.
d Fits with the lowest confidence level of rejection for each sample. Other fits listed in the table are acceptable at the 1σ level and
cannot be ruled out.
e Values for the Lorentzian power parameter, g, were only measured up to the best-fit value plus 100. See Figure 9 for plots that
provide an example of the large, 1σ , best-fit parameter space for g.

of g do not alter the Lorentzian distribution significantly and
V
√

N does not change. An example is provided in Figure 9, for
Equation (30) fit to the Scattered KBOs.

As listed in Table 2, the fits to 7:4 and Other Resonant
have a lower confidence level of rejection for Equation (30)
than Equation (29). The remaining samples have a higher
confidence level of rejection for this functional form. While
these confidence levels indicate a higher or lower likelihood of
the samples being drawn from one functional form versus the
other, none of the best fits listed in Table 2 can be ruled out at
the 1σ level.

For the double-peaked distributions, we consider a function
that is sin i multiplied by the sum of two Gaussians centered on
the plane,

f2G(i) = a1Gnorm(i, σ2, 0) + (1 − a1) Gnorm(i, σ3, 0), (31)

where the widths are represented by σ2 and σ3, and a1 is the
fraction of objects in the first Gaussian. Acceptable fits are found
for DES KBOs, Classical, and Unclassified samples. As an
example of our method for fitting a three-parameter functional
form, Figure 10 contains a series of contour plots showing the
confidence levels as a function of σ2 and σ3 for different values
of a1. This example is for the sample of Classical KBOs.

Finally, we consider sin i multiplied by a Gaussian plus a
generalized Lorentzian, where a2 is the fraction of objects in a
Gaussian of width σ4, and the Lorentzian half-inclination is I2
and power is g2:
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Figure 7. V
√

N statistic as a function of σ 1 for sin i multiplied by a single Gaussian centered on the plane (Equation (29) with µ1 = 0) for KBO samples with
acceptable fits. The solid lines denote the calibrated confidence levels at which we can reject the hypothesis that the model and the sample are drawn from the same
distribution. The best-fit values are denoted by dashed lines, and our error bars (listed in Table 2) encompass the range for which V

√
N is less than 1σ .

Table 3
Rejected Fits for a Gaussian Multiplied by sin i

Samplea σ 1 (deg)b V
√

N c Confidence Level of Rejection (%)c

DES KBOs 13.1 2.77 97.4
Classical 2.6 2.90 98.8
Scattered 16.4 1.73 95.3
Scattered Near 17.7 1.70 94.6
Unclassified 2.4 1.82 97.3

Notes.
a Samples correspond to those listed in Table 1.
b The best-fit values from our Monte Carlo method using Equation (29) with
µ1 = 0.
c The statistic from Kuiper’s variant of the K-S test for the best-fit value, and
the corresponding confidence level at which we can reject the hypothesis that
the two samples were drawn from the same intrinsic distribution. Percentages
>84.1% and >97.7% are beyond the 1σ and 2σ levels, respectively.

fGL(i) = a2Gnorm(i, σ4, 0) + (1 − a2) Lnorm(i, I2, g2). (32)

Acceptable fits are found for DES KBOs, Classical, and Unclas-
sified samples. Figure 11 contains two contour plots showing the
confidence levels surrounding the best-fit result for the Classical
KBOs. The best-fit functional forms listed in Table 2 are plotted
along with the unbiased inclination distributions in Figure 6.

3.4. Source Region Comparison

The idea that the Kuiper Belt may serve as a source region
for JFCs, with the Centaurs as a transition population, can

be investigated by comparing inclination distributions. As a
first-order evaluation, we compare the debiased DES Centaur
inclination distribution with those of different samples using
Kuiper’s variant of the K-S test as described in Section 3.2. To
calibrate V

√
N for comparing two samples of known sizes, we

generate a uniform distribution between 0 and 1 and draw two
simulated datasets from it containing the same number of objects
as each of the compared datasets. We repeat this process tens
of thousands of times to calculate the probability of obtaining a
particular value of V

√
N and thus the sigma confidence levels

(the same procedure as described for a uniform distribution in
Section 3.2).

The cumulative distribution of Centaur inclinations (solid
data points in Figure 5(b)) is compared with those of the KBO
dynamical samples (shown on the right side of Figure 6) and that
of the JFCs (open data points in Figure 5(b)). The JFC sample
contains 256 MPC comets that have Tisserand parameters with
respect to Jupiter such that 2 < TJ < 3.05 (following Gladman
et al. 2008b) and perihelia q < 2.5 AU (following Levison
& Duncan 1997). The inclination distribution of these comets
is considered to be unbiased because they approach the Earth
closely enough to have been well observed, at many different
locations, over a long period of time.

Results from our K-S tests are listed in Table 4. We find that
the null hypothesis, that the currently observed Centaur incli-
nations were drawn from the same parent distribution as the
samples of DES KBOs and Scattered Extended, can be rejected
at a confidence level less than 1σ . Therefore, it is statistically
possible that these samples have the same intrinsic inclination
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Figure 8. V
√

N statistic as a function of µ1 and σ 1 for sin i multiplied by a single Gaussian (Equation (29) with µ1 ̸= 0) for KBO samples with acceptable fits. The
best-fit values from Table 2 are shown as dots and the solid contour lines denote the confidence levels. 1σ error bars are determined for the best-fit values by calculating
V
√

N for each parameter while keeping the other fixed, similar to Figures 7, 9(b), and 9(c).

distribution. For comparisons between Centaurs and JFCs, the
null hypothesis is rejected at a confidence level between 1σ and
2σ . For comparisons between Centaurs and the remaining sam-
ples, the null hypothesis is rejected at confidence levels >2σ .

The JFC inclinations are also most closely matched by
Scattered Extended KBOs, with the probability that they are
drawn from the same parent distribution being rejected at a
confidence level of between 1σ and 2σ . Comparisons between
JFCs and the remaining samples can be rejected at levels of >2σ .

4. DISCUSSION

The debiasing procedure presented in Section 2 is critical
to our investigation and it contains the assumption of circular
orbits. Since KBO and Centaur orbits are elliptical, some be-
ing highly eccentric, we must consider how this assumption
will affect our results. The eccentricity of our sample of 482
DES KBOs is only weakly correlated with inclination (having
a Spearman rank-order coefficient of 0.30, at significance level
>99.9%; Press et al. 2007). Thus, any bias in eccentricity should
fairly evenly affect the entire range of inclinations in our full
sample. The variation from the circular assumption would be
most pronounced for objects in high eccentricity–high inclina-
tion orbits because these objects have the greatest difference in
time spent at different inclinations. The majority of objects do
not have both high eccentricity and high inclination (only 13%
have both e > 0.2 and iK > 10◦).

One way to quantify an eccentricity bias would be to simulate
objects with highly eccentric orbits and determine the likelihood

of detection in all of the DES search fields. That is beyond the
scope of this work. We instead consider the Monte Carlo mod-
eling carried out by Brown (2001), which demonstrated that
their method derives reasonably accurate inclination distribu-
tions even for objects with high eccentricity. In Brown (2001),
the key to determining inclinations is the object’s orbital incli-
nation and the latitude at discovery. We use a similar assumption
of circular orbits to debias for these parameters (compare our
Equation (9) to Equation (3) from Brown 2001). The robust-
ness of the fitting technique is identical, since we follow Brown
(2001) by employing Monte Carlo simulations and K-S testing
for our fitting methodology. The similarity of these key analysis
components suggests that the general result from Brown (2001)
is applicable here. We thus conclude that effects due to orbital
eccentricity should not greatly skew our results. However, we
note that dynamical samples based on classifications that selec-
tively consider objects of high eccentricity (such as Scattered
Extended, Resonant, and Centaurs) would be most influenced
by our assumption of circular orbits.

We assume that discovery magnitude and inclination are not
correlated, such that detection efficiency preferential to brighter
objects will not affect our derived inclination distributions.
While Levison & Stern (2001) determined that there is a cor-
relation between KBO inclination and absolute magnitude, any
bias in this work will be associated with discovery magnitude.
A Spearman rank-order test (Press et al. 2007) between inclina-
tion and discovery magnitude supports our assumption: we find
a correlation coefficient of 0.01 for classified DES KBOs and
correlation coefficients of absolute value <0.25 for all sam-
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(a)

(b)

   (c )

Figure 9. (a) V
√

N statistic as a function of I1 and g1 for sin i multiplied by a
Lorentzian (Equation (30)) for the sample of Scattered KBOs. The solid contour
lines denote the confidence levels of the fits. The dot represents the best-fit value
listed in Table 2, for which the hypothesis that the model and the sample were
drawn from the same intrinsic distribution is rejected at a confidence level of only
57.4%. This plot illustrates the large range in g1 over which fits are acceptable.
(b) V

√
N statistic for I1 while holding g1 at the best-fit value. (c) V

√
N statistic

for g1 while holding I1 at the best-fit value.

ples we consider except Centaurs (which have a coefficient
of −0.33 at a 25% significance level) and Scattered Extended
KBOs (which have a coefficient of 0.71 at a 99% significance
level). There are only nine Scattered Extended KBOs, so this
correlation may be the result of having only a small number
of objects. If the correlation were real, then we may have un-
derestimated the fraction of higher inclination objects in this
sample.

We stress that this work derives relative likelihoods of
detection. The derivation of the total numbers of objects, and
comparison of class populations, requires careful consideration
of the orbital eccentricity of each object as well as the detection

probability for each object based on its magnitude. In addition,
bins containing zero objects here indicate that no DES objects
were discovered, not that no objects exist at those inclinations.
These analyses are reserved for future work.

4.1. Comparison with Previous Findings

We have found statistically good fits for the functions pre-
sented in Section 3.3 to the unbiased inclination distributions for
all considered KBO samples. The distributions for the samples
of DES KBOs, Classicals, and Unclassified are clearly double-
peaked while the others are single-peaked. Specific samples are
discussed in the following subsections.

4.1.1. DES KBOs

For the inclination distribution of DES KBOs, we find
acceptable fits to sin i multiplied by either the sum of two
Gaussians or a Gaussian plus a Lorentzian. The double-Gaussian
fit is good, being rejected at a confidence level of only 67.9%.
The other fit can be rejected at a confidence level of 43% and is
thus statistically more likely than the double Gaussian, although
neither fit can be ruled out. These results suggest that there
may be a steeper drop-off of objects at higher inclinations than
expected from a Gaussian distribution. While we do not propose
any physical basis for the functional form of a Gaussian plus a
Lorentzian, it does provide the best match to the data that we
have found.

To compare with previous results, we consider our best-fit
double Gaussian. The results are consistent with E05 to within
the error bars. Compared to Brown (2001), which determined
Gaussians of widths of 2.6+0.8

−0.2
◦ and 15◦ ± 1◦, our results indicate

slightly smaller widths for both components. The variation
between inclinations referenced to the ecliptic versus the mean
plane of the Kuiper Belt can result in this disparity of a few
degrees. Given the differences in samples and methods between
this work and Brown (2001), the overall results are similar and
a double-peaked form for the inclinations of all KBOs seems
assured.

4.1.2. Classical

We find roughly comparable fits to the Classical objects for
functional forms of sin i multiplied by either the sum of two
Gaussians or a Gaussian plus a Lorentzian. The Gaussian plus
Lorentzian again has a slightly lower confidence level of re-
jection than the double Gaussian. For the sake of comparison
with previous results, we consider our best-fit double Gaussian.
This result is consistent with the Classical low-inclination
Gaussian widths of 2.2+0.2

−0.6
◦ and 1.◦5 ± 0.◦4 determined re-

spectively by Brown (2001) and Kavelaars et al. (2008). How-
ever, our high-inclination Gaussian width is less than the val-
ues of 17◦ ± 3◦ determined by Brown (2001), 13◦ ± 3◦ from
Kavelaars et al. (2008), and ∼15◦ from Kavelaars et al. (2009).
We also find that Classical objects are roughly evenly distributed
between the high- and low-inclination groupings. This distribu-
tion is significantly different from the majority of objects being
in the high-inclination grouping (81% as determined by Brown
2001), but is within the 1σ contour of the recent model fits from
Kavelaars et al. (2009; whose model assumed a low-inclination
Gaussian of width 2.◦2 following Brown 2001).

The cause for these discrepancies could be partially due to
different classification schemes. For example, some objects con-
sidered “classical” by Brown (2001) due to low semimajor axes
and eccentricities would be classified by the DES as Scattered
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Figure 10. V
√

N statistic as a function of a1, σ 2, and σ 3 for the sum of two Gaussians multiplied by sin i (Equation (31)) for the sample of Classical KBOs. The solid
contour lines denote the confidence levels of the fit and the best-fit value from Table 2 is represented by a dot. For the best fit, the hypothesis that the model and the
sample were drawn from the same intrinsic distribution is rejected at a confidence level of only 20.6%.

Near. We also limit Classical objects to DES-discovered KBOs
having eccentricity <0.2. Most likely, our view of the inclina-
tion distribution is evolving due to the discovery of many new
KBOs since Brown (2001).

4.1.3. Resonant

The unimodal functional forms of sin i multiplied by either
a single Gaussian or by a generalized Lorentzian provide
acceptable fits to the inclination distributions of the subsamples
of Resonant objects. This general form is consistent with
distributions for objects in the 3:2 resonance, Plutinos, from
Brown (2001) and Kavelaars et al. (2008). Our best fit for
the Plutinos is for a single Gaussian centered off the plane.
Fits of comparable confidence level are found for a Lorentzian
or a single Gaussian centered on the plane. The last result
is consistent with the best fit for sin i multiplied by a single
Gaussian of width 10+3

−2
◦ from Brown (2001) and disagrees with

the width of ∼15◦ from Kavelaars et al. (2009). The result from
Kavelaars et al. (2009) is weighted more strongly toward higher
inclinations, since three of their eight Plutinos have i > 27◦

whereas all of our 51 Plutinos have i < 23◦. This difference
may indicate that the sample sizes of controlled KBO surveys to
date are not yet large enough to fully account for the inclination
distributions of these objects.

For objects in the 7:4 resonance, the best fit is a generalized
Lorentzian; however, very good fits (rejection confidence level
<20%) are also found for a single Gaussian centered either on
or off the plane. The 7:4 distribution is striking in contrast
to the Plutinos since all objects in the 7:4 resonance have
inclinations <6◦. We generated 106 simulated datasets from the
best-fit functional forms to the Plutinos and zero of them had all
objects with inclinations <6◦. Thus, the probability that KBOs
in the 7:4 resonance have the same inclination distribution as the
Plutinos is negligibly low. We conclude that different resonances
can exhibit uniquely dissimilar inclination distributions. This is

intriguing, given that there are also indications that KBOs in
different resonances exhibit different colors (Gulbis et al. 2006).

For the sample of Other Resonant objects, we find the best
fit for a generalized Lorentzian. An alternatively good fit is
found for a single Gaussian centered on the plane. The disparity
between inclination distributions for objects in the 3:2 and 7:4
resonances suggests that each resonance should be considered
individually rather than being combined into a single sample.

All three of the considered Resonant subsamples have ac-
ceptable fits to a single Gaussian multiplied by sin i centered on
the plane. Since this is a natural physical form, it could indeed
represent the true distributions. The fact that we have found sta-
tistically more likely fits with the forms of Lorentzians and offset
Gaussians may point toward specific shaping of these samples
due to resonance sweeping or other events in their dynamical
history.

4.1.4. Scattered

The DES samples of Scattered Near, Scattered Extended,
and the combined grouping of Scattered have single-peaked
inclination distributions. This general form is consistent with
distributions for “scattered” from Brown (2001) and for “Scat-
tered” and “Detached” from Kavelaars et al. (2008; based on
the classification scheme by Gladman et al. 2008b).

The Scattered Near sample has a distinctive distribution
consisting of all high-inclination objects (i > 5◦). This is an
artificially “hot” grouping as a result of classification according
to low Tisserand parameter (and thus interaction with Neptune).
Comparably good fits are found for sin i multiplied by a single
Gaussian centered off the plane, or a single Lorentzian.

The Scattered Extended objects are best fit by sin i multiplied
by a single Gaussian. Acceptable fits are also found for a single
Lorentzian and a single Gaussian centered on the plane. The
Scattered Extended sample is comparable to the “scattered”
groupings from (1) Brown (2001), who found a poor-quality
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Table 4
Comparison Between KBO, Centaur, and Comet Inclinations

Samplea Comparison Samplea

Centaurs JFCs

V
√

Nb Confidence Level of Rejection (%)b V
√

Nb Confidence Level of Rejection (%)b

DES KBOs 1.39 80.5 3.15 >99.9
3:2 e 2.15 99.9 2.34 >99.9
Other Resonant 1.98 99.6 2.08 99.7
Classical 2.93 >99.9 6.18 >99.9
Scattered 1.84 99.1 2.15 99.9
Scattered Near 2.01 99.7 2.31 >99.9
Scattered Extended 1.31 79.9 1.55 92.7
JFCs 1.68 95.8 . . . . . .

Notes.
a Samples correspond to those listed in Table 1. JFCs are the 256 comets designated by the MPC as of 2008 October 30 with 2 < TJ
< 3.05 and q < 2.5 AU. The comet sample we use has been integrated to a common, arbitrary epoch (2003 09 18 0:00) and serves
as a snapshot for the inclination distribution.
b The statistic from Kuiper’s variant of the K-S test, and the corresponding confidence level at which we can reject the null hypothesis
that the two samples were drawn from the same intrinsic distribution. Percentages >84.1%, 97.7%, and 99.9% are beyond the 1σ ,
2σ , and 3σ levels, respectively.

single-Gaussian fit of width 20◦ ± 4◦ and (2) Kavelaars et al.
(2008), who reported a double-Gaussian fit in which the low-
inclination Gaussian could be non-existent (width 1.◦6 ± 1.◦6)
while the high-inclination Gaussian had width 13◦ ± 5◦.

When we consider a combined Scattered sample, the best
functional fit is for sin i multiplied by a single Gaussian having
width 6.◦9 and centered on 19.◦1. An acceptable fit is found
for a single Lorentzian. Since the Scattered sample consists
of nearly 80% Scattered Near objects, the distributions are
quite similar, with Scattered being slightly wider and shifted
toward lower inclination. Our Scattered and Scattered Near
samples are distinct from the other single-peaked samples in
that sin i multiplied by a single Gaussian centered on the
plane does not provide an acceptable fit. Reconsideration of
the classification scheme is merited, including investigation
of “Scattered,” “Scattering,” or “Detached” as proposed by
Gladman et al. (2008b).

In Sections 4.1.1–4.1.4, we discuss how different functional
forms provide good fits to the considered samples. The accept-
ability of single Gaussians centered off the plane supports the
idea mentioned in Section 3.1 that dynamical classes may have
different reference planes. This is an avenue for future investi-
gation. Larger sample sizes, as we expect from the upcoming
Panoramic Survey Telescope and Rapid Response System and
Large Synoptic Survey Telescope, will also allow more stringent
constraints and discrimination between functional forms.

4.1.5. Centaurs

In addition to KBOs, there are 17 Centaurs in our sample
spread over a wide range of inclinations. Our distribution peak
near 20◦ is consistent with Emel’yanenko et al. (2005). However,
our Centaur inclinations are more evenly distributed among
values less than 20◦ and our distribution extends to 40◦. Centaurs
at higher inclinations, out to 40◦, are supported by numerical
models of Tiscareno & Malhotra (2003), but our statistics are
still too sparse for definitive results at these values. Similarly,
the large error bar on detecting the sole DES object at very
high inclination (∼80◦) makes it difficult to discern the fraction
of objects that would be expected in this region. There is a
significant observational bias against detecting high-inclination
objects, and there are currently only two other known Centaurs

with inclination >45◦: 2008 YB3 (McNaught et al. 2008) and
2008 KV42 (Gladman et al. 2008a). It is possible that these high-
inclination objects are part of a class that should be considered
separately from the Centaurs.

4.2. Relationships between KBO, Centaur, and
Comet Inclinations

Direct comparison between current unbiased inclination dis-
tributions using Kuiper’s variation of the K-S test suggests con-
nections between KBOs, Centaurs, and JFCs. The evolutions
from Scattered objects to JFCs (e.g., Duncan & Levison 1997)
and Centaurs to JFCs (e.g., Tiscareno & Malhotra, 2003) have
been established by numerical simulations. Transitions have also
been demonstrated for JFCs back to Centaurs (Hahn & Bailey
1990; Horner et al. 2004) and for limited excursions of Centaurs
to Scattered KBOs (Tiscareno & Malhotra 2003). Our findings
of the similarities between currently observed JFC, Centaur, and
Scattered Extended inclination distributions support these con-
nections. In particular, the possible similarity between Scattered
Extended and the Centaur and JFC inclination distributions is
consistent with the scattered disk as a specific source region
for these groups (following, for example, Duncan & Levison
1997; Levison & Duncan 1997; Duncan et al. 2004). Classical
and Resonant KBOs have also been suggested as source regions
for the JFCs (most recently by Volk & Malhotra 2008). Our
results indicate that these KBOs currently have very dissimilar
inclination distributions to both the Centaurs and JFCs.

Note that the direct comparison between inclinations of
KBOs, Centaurs, and JFCs is based on the assumption that
the orbital inclinations remain essentially unperturbed during
evolution between the groupings. Studies have shown that the
inclination distribution of visible comets roughly follows that of
the source population (Duncan et al. 1988; Levison et al. 2001).
However, some numerical simulations have shown evolution
in the orbital parameters of Centaurs and comets: Centaur
inclinations can change by at least a few degrees over their
lifetimes (Tiscareno & Malhotra 2003), and JFC inclinations
may be independent of precursor KBO orbits (Levison &
Duncan 1997). Therefore, such comparisons serve only as a
first-order diagnostic to indicate similarities between currently
observed inclinations of these samples.
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(a)

(b)

Figure 11. V
√

N statistic for a Gaussian plus a Lorentzian multiplied by sin
i (Equation (32)) for the sample of Classical KBOs. The solid contour lines
denote the confidence levels of the fit and the best-fit value from Table 2 is
represented by a dot. Because this is a four-parameter fit, we provide two plots
to represent the results: (a) contours for I2 vs. σ 4 given the best-fit values of g2
and a2 (this plot is comparable to the best fit in Figure 10), and (b) contours for
g2 vs. a2 given the best-fit values of σ 4 and I2. For the best fit, the hypothesis
that the model and the sample were drawn from the same intrinsic distribution
is rejected at a confidence level of only 17.4%.

Many groups (e.g., Peixinho et al. 2003, 2004; Tegler et al.
2003; Doressoundiram et al. 2005; Delsanti et al. 2006) have
demonstrated a bimodal color distribution for Centaurs. This
dichotomy could be attributed to multiple source regions or
evolutionary paths (Tegler et al. 2008). Indeed, of the two groups
of Centaurs identified by Lamy & Toth (2009), Centaurs I (red)
have significantly smaller inclinations than Centaurs II (gray).
While there are no obvious connections between the colors of
specific KBO dynamical classes and those of the two Centaur
groupings (Lamy & Toth 2009), and this work reveals only a
possible similarity between the current inclination distributions
of Scattered Extended KBOs (known to have a range of colors;
Gulbis et al. 2006) and all Centaurs combined, future analyses
of inclinations and colors could prove productive in deriving
Centaur source regions.

4.3. Implications for Evolutionary Models

The inclination distribution of KBOs records and reflects the
early evolution of the outer solar system. Several models of
the history of the outer solar system have been employed in an
attempt to understand the observed properties of the Kuiper Belt.

Figure 12. Tilt angle, θ , with respect to the KBP latitude for all CCDs on valid
DES search frames. There are 19,056 CCDs in valid frames, each represented
here by a black dot. The median tilt angle is 19.◦55. Considering tilt angles with
respect to the ecliptic changes this plot only slightly—in that case, the maximum
and median tilts are 23.◦44 and 19.◦3 and the maximum ecliptic latitude is 29.◦07.

Figure 13. Percent difference in detection likelihood, ζ detect, between account-
ing for the tilt angles of DES search frames and assuming tilt angle = 0◦. Values
are plotted for each of the 482 DES KBOs and Centaurs discovered on valid
search frames as a function of inclination with respect to the KBP.

Hahn & Malhotra (2005) were able to reproduce the population
of low-inclination KBOs quite successfully by using a model
in which Neptune migrates outward into a sea of proto-Kuiper
Belt particles. However, this model failed to reproduce the high-
inclination population. In comparison, Levison et al. (2008) uses
the “Nice” model, in which encounters among the outer planets
emplace objects into the Kuiper Belt gravitationally. This model
does relatively well in reproducing both the low- and high-
inclination KBO populations (see their Figures 6 and 7, and
related figures), though in detail their model results are not in
excellent agreement with the observed inclination distribution
(see their Figure 12 as well as our Figure 6, topmost panel on
the right).

At present, there is not a clear, general theoretical model
that reproduces the overall KBO inclination distribution. The
inclination distributions that we produce for the various sub-
populations (Figure 6) are likewise not matched by any current
theoretical model. These distributions offer stringent constraints
on the history of the outer solar system and likely record specific
timings and origins of these populations. We look forward to
the next generation of theoretical models that can use our entire
suite of results as their comparative ground truth.
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5. CONCLUSIONS

This work presents an analysis of KBO inclination distribu-
tions based on data from the DES. Our sample contains 344 DES
KBOs and 17 Centaurs having errors in inclination of !0.◦5,
and all inclinations are referenced to the mean plane of the
Kuiper Belt as derived in E05. Our conclusions are enumerated
below.

1. Debiasing procedures are essential in analyzing survey data.
We present a detailed method for debiasing DES data in
order to specifically study KBO inclinations. This method
is generalized such that inclinations can be referenced to a
chosen plane.

2. A double-peaked distribution for DES KBOs is con-
firmed, with approximately 80% of the objects in the
higher-inclination grouping. We also confirm a double-
peaked distribution for Classical KBOs, which is well
fit by sin i multiplied by the sum of two Gaussians
with roughly an equivalent fraction of objects in each
Gaussian. The functional form of sin i multiplied by
a Gaussian plus a generalized Lorentzian provides fits
that are statistically more likely for these samples, pos-
sibly indicating a steeper drop than expected at higher
inclinations.

3. Different DES dynamical classes exhibit distinct inclination
distributions. Objects in resonances should be considered
separately, as demonstrated by remarkably different distri-
butions for objects in the most populated DES resonances
of 3:2 and 7:4. Scattered Near, Extended, and the combined
Scattered sample are well fit by sin i multiplied by either a

single Gaussian offset from the plane (by ∼17◦–20◦) or a
generalized Lorentzian. Scattered Near and Scattered sam-
ples are the only single-peaked groupings considered for
which no acceptable fits were found for the functional form
of sin i multiplied by a single Gaussian centered on the
plane.

4. A simple statistical comparison between current inclination
distributions shows that, at a rejection level of <2σ , the
parent distribution could be the same for (1) Centaurs and
Scattered Extended and DES KBOs, (2) Centaurs and JFCs,
and (3) JFCs and Scattered Extended KBOs. The current
inclination distributions of Resonant and Classical KBOs
are statistically dissimilar to the JFCs and Centaurs.

Although sample sizes remain low for some dynamical
classes, the unbiased inclination distributions presented here
should serve as useful diagnostics for evolutionary models of
the outer solar system.

We thank all members of the DES for their involvement
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of institutions and by many people, as noted explicitly in
E05. Much of the data were obtained at NOAO observing
facilities, which are operated by AURA, Inc. under a cooperative
agreement with the National Science Foundation. A.A.S.G.
thanks an anonymous reviewer for comments that improved
the manuscript and D. Schleicher for helpful conversations
concerning cometary inclination distributions. This work was
supported in part by NSF grant AST 07–07609.

APPENDIX A

CALCULATION OF THE GEOMETRIC LIKELIHOOD COMPONENT

Solving the integral in Equation (15) is computationally time consuming and numerical integration must be undertaken carefully
due to the complicated nature of the functions involved. This appendix presents the implementation of our calculations for the
geometric likelihood component presented in Equation (15). For simplicity, the theta dependence notation for latitude and longitude
variables is eliminated in this appendix: for example, ∆β2,k(θ k) is represented by ∆β2,k.

Integration of Equation (15) over the range of latitudes in a given CCD is problematic because the conditional probability density
p(β |i) can abruptly change slope at the latitudes of the corners of the CCD (and at β = 0◦ for a plane-crossing CCD; see Figure 2
for reference). We define the half height of the kth CCD as H1/2,k = 1

2 Hk and the following variables to represent the latitudes at the
corners of the kth CCD:

b1 = |β0,k| − H1/2,k b2 = |β0,k| − ∆β2,k

b3 = |β0,k| + ∆β2,k b4 = |β0,k| + H1/2,k
. (A1)

(For CCDs centered at positive latitudes, b1 = βmin,k and b4 = βmax,k.) Let the function F(x, y) represent the following integral, over
the latitude range x to y:

F (x, y) =
∫ y

x

∆λ(β ′, θk)p(β ′, ij )dβ ′. (A2)

The geometric likelihood component for detecting the jth object on the kth CCD is evaluated by breaking Equation (15) into the
following cases:

ξlat,k,j =

⎧
⎨

⎩

sec θk, ij = 0◦ & b1 < ij ! b4

c1[F (b1, b2) + F (b2, b3) + F (b3, b4)], b1 > 0
c1[F (b1, B1) + F (B1, B2) + F (B2, B3) + F (B3, b4)], b1 ! 0 ! b4

, (A3)

where the normalization factor, c1, is the likelihood of detecting the object over all latitudes,

c1 = 1
F (−π/2,π/2)

, (A4)
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and the integral limits for plane-crossing CCDs vary as a function of imaging location with respect to the reference plane:

B1 = 0
B2 = b2
B3 = b3

}

b1 < 0 ! b2,
B1 = b2
B2 = 0
B3 = b3

}

b2 < 0 ! b3,
B1 = b2
B2 = b3
B3 = 0

}

b3 < 0 ! b4. (A5)

The first case in Equation (A3) is necessary to account for a divergence of the conditional probability density. The second and third
cases represent non-plane crossing CCDs and plane-crossing CCDs, respectively. The limits of integration are adjusted in the third
case in order to avoid numerical integration errors at β = 0◦. Representative plots of the resulting geometric likelihood component,
and corresponding CCD geometry, are displayed in Figure 2.

Equation (A3) is used in this paper to debias the inclination distribution. However, we have derived an alternative, analytic method
for evaluating the geometric likelihood component (the method which was employed in E05). This method takes into account the
geometry of each CCD and orbit configuration, assuming no variation in the orbit as a function of the longitude extent of the CCD.
It does not require integration and thus is significantly faster to execute than Equation (A3).

The alternative method for deriving the geometric likelihood component considers the following cases: as a function of inclination,
object orbits will (1) never reach the latitudes of the observed region, (2) always be within the latitudes of the observed region,
(3) have both positive and negative latitudes contained within the observed region, (4) have positive latitudes contained within the
observed region and negative latitudes crossing through the observed region, (5) have negative latitudes contained within the observed
region and positive latitudes crossing through the observed region, (6) have both positive and negative latitudes crossing through the
observed region, (7) peak in the latitudes of the observed region, or (8) cross through the latitudes of the observed region.
For each of these cases, in the order they are listed, the geometric likelihood component can be approximated as

Ξlat,k,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ij ! b1

sec θk, |β0,k| ! ∆β2,k & ij ! min(|b2|, |b3|)
εp(β0,k, ij )ϕ(β0,k, ij , θk), |β0,k| ! H1/2,k & ij ! min(|b1|, b4)
εp(β0,k, ij )ϕ+(β0,k, ij , θk) + εc(β0,k, ij )ϕ−(β0,k, ij , θk), |β0,k| ! H1/2,k & |b1| < ij ! b4

εc(β0,k, ij )ϕ+(β0,k, ij , θk) + εp(β0,k, ij )ϕ−(β0,k, ij , θk), |β0,k| ! H1/2,k & b4 ! ij ! |b1|
1/2εc(β0,k, ij )ϕ(β0,k, ij , θk), |β0,k| ! H1/2,k & ij > max(|b1|, b4)
εp(β0,k, ij )ϕ(β0,k, ij , θk), |β0,k| > H1/2,k & b1 < ij < b4

εc(β0,k, ij ), |β0,k| > H1/2,k & ij " b4

, (A6)

where εp(β0,k, ij) and εc(β0,k, ij) represent the detection efficiencies for an orbit peaking in or crossing through a CCD, ϕ(β0,k, ij, θ k)
is the proportion of a tilted CCD relative to a CCD aligned with the plane that does not cross β = 0◦, and ϕ+(β0,k, ij, θ k) and ϕ–(β0,k,
ij, θ k) are the proportions above and below the plane for a tilted, plane-crossing CCD relative to an aligned CCD. Explicit definitions
for these variables are presented below.

For orbital inclinations that peak within the latitudes of a CCD, the detection efficiencies are

εp(β0,k, ij ) =
{

0.5 − 1
π arcsin[csc ij sin |b1|], |β0,k| > H1/2,k

0.5, |β0,k| ! H1/2,k

. (A7)

The maximum peaking efficiency for any CCD that does not span β = 0◦ is 0.5, since only positive or negative latitudes are detectable
in these CCDs.

For orbital inclinations that cross through (1) the entire CCD, (2) either the negative or positive latitudes of a CCD that spans β =
0◦, or (3) both the negative and positive latitudes of a CCD that spans β = 0◦, the detection efficiencies are

εc(β0,k, ij ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h

Hkπ
[arcsin(csc ij sin b4) − arcsin(csc ij sin b1)], |β0,k| > H1/2,k & ij > max(|b1|, b4)

h

Hkπ
arcsin(csc ij sin[min(|b1|, b4)]), |β0,k| ! H1/2,k & ij ! max(|b1|, b4)

h

2Hkπ
[arcsin(csc ij sin b4) − arcsin(csc ij sin b1)], |β0,k| ! H1/2,k & ij > max(|b1|, b4)

. (A8)

This method is independent of longitude variations in the CCD; therefore, the factor of h/Hk is used to normalize integrals that extend
over a tilted CCD of height Hk to those of a CCD of height h that is aligned with the plane.

We next consider the effect of the angle by which the CCD is tilted with respect to the plane. (See Appendix C for the effect of tilt
angle on detection likelihood.) For a CCD that does not span β = 0◦, ϕ(β0,k, ij, θ k) is defined as the proportion of an object’s orbit in
a tilted CCD relative to an aligned CCD of width w and height h:
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ϕ(β0,k, ij , θk) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, θk = 0◦

h
w
, θk = 90◦

c2
2 (ij − b1)2 sec θk csc θk, b1 ! ij ! b2
c2
2 ∆β2

1,k sec θk csc θk + c2∆λmax(ij − b2), b2 < ij ! b3

c2wh − c2
2 (b4 − ij )2 sec θk csc θk, b3 < ij ! b4

, (A9)

where the normalization factor, c2, is

c2 = 1
w(ij − b1)

. (A10)

In Equation (A9), the limiting cases of θ = 0◦ and 90◦ are necessary to prevent division by zero.
For a CCD spanning β = 0◦, detection of the object at both positive and negative latitudes needs to be considered. Here, we

consider the positive and negative latitudes separately and combine them appropriately in Equation (A6). We define ϕ+(β0,k, ij, θ k)
as the proportion of the positive latitude region in a tilted CCD that spans β = 0◦ in which an object could be detected, relative to
that of an aligned CCD:

ϕ+(β0,k, ij , θk) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, θk = 0◦

h
w
, θk = 90◦

c3∆λmaxij , |β0,k| ! ∆β2 & ij ! b3

c3∆λmaxb3 + c3
2

[
∆β2

1,k − (b4 − ij )2
]

csc θk sec θk, |β0,k| ! ∆β2 & b3 < ij ! b4

1
wb4

(
∆λmaxb3 +

∆β2
1,k

2 csc θk sec θk

)
, |β0,k| ! ∆β2 & ij > b4

c3
2 [(b4 + ij )2 − |b1|2] csc θk sec θk, |β0,k| > ∆β2 & ij ! b4

c3∆λmax(ij − b2) + c3
2 [(b2 + |b1|)2 − |b1|2] csc θk sec θk, |β0,k| > ∆β2 & |b2| < ij ! b3

c3wh − c3
2 [|b1|2 + (b4 − ij )2] csc θk sec θk. |β0,k| > ∆β2 & b3 < ij ! b4

1
wb4

(
wh − |b1|2

2 csc θk sec θk

)
, |β0,k| > ∆β2 & ij > b4

, (A11)

where the normalization factor, c3, is

c3 =

⎧
⎪⎪⎨

⎪⎪⎩

1
w

, ij = 0◦

1
wij

, ij ̸= 0◦
. (A12)

We similarly define ϕ–(β0,k, ij, θ k) as the proportion of the negative latitude region in a tilted CCD that spans β = 0◦ in which an
object could be detected, relative to that of a CCD aligned with the plane:

ϕ−(β0,k, ij , θk) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, θk = 0◦

h
w
, θk = 90◦

c3
2

(
2i |b1| − i2

j

)
csc θk sec θk, |β0,k| > ∆β2 & ij ! |b1|

|b1|
2w

csc θk sec θk, |β0,k| > ∆β2 & ij > |b1|
1

wb4

(
∆λmaxb3 + ∆β1,k

2

2
csc θk sec θk

)
, |β0,k| ! ∆β2 & ij > b4

c3∆λmaxij , |β0,k| ! ∆β2 & ij ! |b2|
c3∆λmax|b2| + c3

2 [(|b1| − |b2|)2 − (|b1| − i)2] csc θk sec θk, |β0,k| ! ∆β2 & |b2| < ij ! |b1|
1

wb1

(
∆λmax |b2| + 1

2 [(|b1| − |b2|)2] csc θk sec θk

)
, |β0,k| ! ∆β2 & ij > |b1|

. (A13)

The alternative method for calculation of the geometric likelihood component given by Equation (A6) is faster than evaluation
of the integral form in Equation (A3) by a factor of a few hundred, running Mathematica 5.2 on an Apple PowerBook G4 with a
1.5 GHz processor. This alternative method is accurate for CCDs aligned with the plane (θ = 0◦, 90◦). For tilted CCDs, however, the
assumption of no variation in an object’s orbit as a function of the longitude extent of the CCD leads to discrepancies. The discrepancy
between Equations (A3) and (A6) increases with tilt angle, peaking at θ = arctan(h/w) = 63.◦44. The discrepancy is most severe for
plane-crossing CCDs, since in these cases the likelihood varies steeply as a function of orbital inclination (cf. Figure 2).

For CCDs in DES search frames, the tilt angles range from 0.◦05 to 23.◦56, with a latitude distribution plotted in Figure 12. The
maximum discrepancy in the likelihood component between Equations (A3) and (A6) is 0.06—a 25% variation from the likelihood
itself. The average percent different between methods over all DES CCDs is 3.8%. Thus, the likelihood factors for inclination
debiasing employed in E05 vary only slightly from the more rigorous, slower method used in this work.
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APPENDIX B

OBJECT INCLINATION WITH RESPECT TO THE KBP

The following equation is used to convert between the ecliptic inclination of an object, ie, and the object’s inclination with respect
to a different plane, iplane:

iplane = π

2
− sin−1

[
sin

(π

2
− ie

)
cos I − sin I cos

(π

2
− ie

)
sin

(
3π

2
+ Ωobject − Ωplane

)]
, (B1)

where Ωobject is the longitude of the ascending node of the object, I is the inclination of the new plane, and Ωplane is the longitude of
the ascending node of the new plane, all with respect to the ecliptic. For inclinations with respect to the KBP, iK , we use the solution
from E05 of I = 1.◦74 and Ωplane = 99.◦2.

APPENDIX C

EFFECT OF CCD TILT ANGLE ON DETECTION LIKELIHOOD

To investigate the importance of the angles at which survey CCDs are tilted with respect to the reference plane, we calculate
detection likelihoods (Equation (20)) for all DES objects assuming θ = 0◦. The resulting likelihoods differ by <1.5% from the values
obtained when accounting for tilt angle (Figure 13). The difference is largest for objects having low inclinations. Overall, the effect of
the CCD tilt angles can be considered minimal for the inclination distribution analyses presented here. Note that our method considers
relative likelihoods of detection, and the tilt angles may play a more important role for future calculations of absolute detection
likelihood.
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