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ABSTRACT

AN INVESTIGATION OF THE ROLE OF THERMAL CONDITIONS, HYDROLOGIC
PROCESSES, AND COUNTRY-ROCK PERMEABILITY IN MAAR ERUPTIONS

EMILY S. ANDERSON

The interaction of magma and groundwater often results in explosive eruptions due to
processes of molten fuel-coolant interaction (MFCI). Explosivity of these eruptions is largely
controlled by the extent of mixing between water (coolant) and magma (fuel) and the location in
the conduit where interaction occurs. Recently published experiments and calculations show that
most phreatomagmatic tuff-ring deposits are probably produced by explosions occurring above
~200 m depth, while those below this depth are rarely energetic enough to displace material at
the ground surface. It is thus uncertain how phreatomagmatic eruptions occur where depth to the
water table is far below this critical depth of 200 m, as it is in some semi-arid and arid
environments. Even in locations where groundwater is above this depth, explosions using up
available water can result in progressive drawdown of the water table, producing a cone of
groundwater depression within the diatreme. In these cases, the question arises as to how
explosions continue if the water source “dries up.” The idea of explosive transport, or water
being thrown upward from explosions beneath the water table, has been described as one
possible mechanism for providing shallow water for continued explosions; however, this process
would not likely move the large quantities of water needed to sustain long-term
phreatomagmatism. Few studies have focused on questions regarding the details of
thermohydrologic processes that control these eruptions. To address this problem, I have
investigated two maars, Colton Crater and Rattlesnake Crater, in the San Francisco Volcanic

Field of northern Arizona. Hydrologic, structural, and stratigraphic data of the subsurface
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beneath each volcano have been used to construct conceptual models of groundwater flow and
heat transfer within each eruptive system, and relevant thermophysical flow processes have been
modeled using the TOUGH2 simulator.

Colton Crater was formed by a prolonged, dry cinder-cone-building eruption with only a
brief late period of intense phreatomagmatic activity, while Rattlesnake Crater’s deposits display
characteristics of sustained magma-water interaction and an eventual drying-out. The continued
phreatomagmatic explosions at Rattlesnake Crater may have resulted from large-scale vapor
transport, driven by magmatic heat, through permeable country rock and vertical fractures prior
to and during eruption. Water (from condensed vapor) held at a shallow depth could then interact
with quickly ascending magma, producing explosions. These processes do not appear to have
occurred to the same extent at Colton Crater, as the eruption only experienced a brief period of
phreatomagmatism. Models indicate that some vapor transport and condensation could have
occurred outside the conduit during the eruption, producing a small amount of available water
for MFCI, but explosions could have also been driven by a limited volume of perched water
present in the shallow limestone unit prior to eruption. Results of this study aim to provide an
example of a modeling approach for quantitative analysis of complex non-isothermal two-phase
systems undergoing vaporization and condensation driven by magma intrusion, which can
potentially be used for hazard assessment and monitoring for future eruptions in active volcanic

regions.
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CHAPTER 1: INTRODUCTION

1.1. Background

Phreatomagmatic eruptions occur when magma interacts directly with liquid groundwater
or surface water, resulting in rapid conversion of thermal energy to mechanical energy in
processes often referred to as molten fuel-coolant interaction (MFCI). The efficiency of MFCI
processes is affected by properties of the magma and water, as well as by external factors
including contact surface geometry and system conditions (pressure, temperature, etc.). Magma-
water interaction can therefore result in a range of activity, from passive thermal granulation to
violent thermohydraulic explosions. Current understanding of these processes is largely based on
numerous experimental studies that have been carried out since the 1970s, and observation of
phreatomagmatic eruptions and their deposits (White, 1996; Zimanowski et al., 2015). Insight is
also provided via theoretical studies, such as White’s (1996) discussion of the impact of an
“impure” coolant, or sediment-laden water, on MFCI efficiency.

Maar-diatreme eruptions are characterized by repetitive phreatomagmatic explosions that
may vary in magnitude and severity. Maars are typically monogenetic, but their eruptions pose
significant volcanic hazards, as they have the potential to be highly explosive and destructive to
human life and civilizations (White and Ross, 2011; Blaikie et al., 2014). Maar-diatremes can
form suddenly and in a wide range of subsurface environments, from soft-sediment substrate
(e.g., Tecuitlapa, Mexico, Ort and Carrasco-Nuiiez (2009); Hopi Buttes, AZ, Hooten and Ort
(2002)) to hard, fractured country rock (e.g., West Eifel volcanic field, Germany and Massif

Central, France, Lorenz (2003)). These volcanoes are increasingly well-studied in terms of



structure and deposits, but questions remain regarding thermohydrologic processes that control
their eruptive behavior.

The explosive magma-water interactions that form maars may excavate country rock to
produce diatremes extending as deep as ~2.0-2.5 km (Valentine and White, 2012; Blaikie et al.,
2014). The maar is seen at the surface as a broad crater lying below the pre-eruptive surface that
is generally enclosed by a tephra ring < 30 m in height (de Silva and Lindsay, 2015), while
diatremes are the volcanic-debris-filled conduits beneath maars, formed as explosions brecciate
wall rock and recycle material throughout the eruption (Fig. 1). Diatremes are typically filled
with a poorly sorted mixture of lithic and juvenile material, often overlain by bedded tuff and
lapilli deposits that have slumped into the upper diatreme. This slumping of material around the
crater rim contributes to the production of a roughly cone-shaped diatreme. Lower pressure at
shallow depths also results in more efficient MFCI and decreased rock strength, which allows
shallow explosions to break up larger areas of surrounding country rock than deeper explosions
(White and Ross, 2011; Valentine and White, 2012).

Maars display repetitive dilute pyroclastic density current and fall deposits, which
suggests their eruptions are driven by recurring explosions (Ort and Carrasco-Nuiiez, 2009;
Valentine and White, 2012). The repetitive occurrence of these explosions and their variable
intensity may be affected by several factors, including diatreme collapse, a fluctuating water
supply, and vent migration. Unstable walls or debris piles often collapse into the vent, which can
trigger explosions or cut off the water supply (Lorenz, 1986; Morrissey et al., 2000). The amount
of water interacting with magma may also fluctuate throughout an eruption due to gradual
drawdown of the water table or movement of the explosion locus through different layers of

country rock (Lorenz, 1986). Maar deposits often show a progressive “drying-out” sequence,



suggesting the water source becomes exhausted, while in other cases, magma may interact with
increasing amounts of water if the vent or explosion locus moves into a confined aquifer or
saturated unit (Ort and Carrasco-Nufiez, 2009; Valentine and White, 2012).

Country-rock structure, material, and permeability can also strongly influence eruptive
behavior, as these factors determine hydraulic flow rate, “impurity” or amount of sediment in the
water, and pressure conditions. Structural features in the subsurface such as faults and joints may
serve to increase or possibly hinder groundwater movement. In general, fractures produced by
tensional stress have larger apertures and promote groundwater flow, while compressional
fractures are typically closed and unlikely to increase flow by much, if at all. Heavy sediment
infilling of fractures can potentially decrease hydraulic conductivity, while other fractures may
grow wider and more open with dissolution of country rock (Bills et al., 2000). This dissolution
or sedimentation in fractures can be largely dependent on country-rock composition, which also
controls matrix permeability and porosity of the formation itself. Susceptibility of country rock
to mechanical weathering can also be important in determining eruptive behavior: in explosive
magma-water interaction, sediment content or “impurity” of the coolant is believed to affect
MFCI as particles absorb heat that would otherwise transfer to the water (White, 1996; Wohletz,
1986). In environments with a “soft” substrate, volcanic tremor can lead to liquefaction of
saturated sediment, producing a slurry that may then interact with magma in unique ways (Auer,
et al., 2006; White, 1996). It is therefore crucial to understand structure and composition of
bedrock to understand how water may move through and interact with magma in the subsurface
in the event of an intrusion.

The development of diatremes is typically modeled based on location of both the water

table and MFCI explosions as the eruption progresses (Lorenz, 1986; Valentine and White,



2012). In the current conceptual model (Fig. 2; Valentine and White, 2012), explosions may
occur at any depth below the critical pressure of water (P = 22.5 MPa) throughout eruption.
Deeper explosions brecciate country rock and contribute to the recycling of water and lithic and
juvenile material. Higher lithostatic pressure and, in turn, country-rock strength prevent deep
explosions from being as efficient, or as destructive, as those that occur closer to the ground
surface. Shallow explosions occurring under decreased pressure and surrounded by weaker
country rock are generally capable of excavating a larger area surrounding the explosion sites,
ejecting material onto the surface and producing a crater. As explosions progressively disrupt the
shallow subsurface, broken-up material slumps into the vent, further widening the diatreme near
the ground surface (Valentine and White, 2012).

The conceptual model described above assumes a static, and presumably shallow, water
table, with MFCI occurring throughout the water-saturated diatreme. In some cases, the water
table may depress and result in overall progressively deepening explosions, as country-rock
permeability may limit rapid groundwater recharge toward the diatreme (Sweeney and Valentine,
2015; Valentine and White, 2012). An understanding of rock properties and hydrogeologic
setting is therefore necessary to identify where efficient MFCI may occur.

Valentine et al. (2014) calculated explosion energies in typical phreatomagmatic
eruptions based on theoretical and limited experimental data. Total driving energy is calculated
using heat capacity, density, volume, and total temperature change of the magma, and assuming
that the fraction of energy converted to kinetic energy during MFCI (i.e., MFCI efficiency) is 1-
10%. Optimal and maximum depths of explosions to produce ejecta dispersal are determined
based on these results: most ejecta-producing phreatomagmatic explosions probably occur above

~200 m depth, while explosions down to a maximum of ~500 m depth may rarely be powerful



enough to contribute material to surficial deposits. Throughout an eruption, explosions can occur
at a wide range of depths, brecciating country rock and moving material up and down within the
subsurface, but generally only those occurring above ~200 m, and mostly above ~100 m, are
powerful enough to throw material out of the crater (Valentine et al., 2014). These depth
estimates work well for eruptions that occur in locations with a surface water supply or a
moderate-to-shallow water table. However, this is not always the case; maars occasionally form
in locations where the water table is significantly deeper than 200 m, as it is in some arid and
semi-arid environments (e.g., the San Francisco Volcanic Field, Arizona, USA, Bills et al.
(2000)).

Continuous water supply in maar eruptions has been discussed in terms of upward
recycling and debris jets within diatremes (White and McClintock, 2001; Ross and White, 2006).
Upward recycling occurs as explosions that are too deep to eject material at the surface
repeatedly disrupt and mix diatreme fill and associated groundwater (White and McClintock,
2001). Debris jets involve the same general concept, but are more focused. These jets, or
streams, of material are sourced from phreatomagmatic explosions and consist of debris, steam,
and liquid water that shoot upward through overfill (Fig. 2) (McClintock and White, 2006). The
amount of liquid water (i.e., pore water) that can be resupplied in this way remains uncertain, as
these subsurface processes cannot be witnessed in real time and research has been limited to
observation of eroded diatremes. The amount of resupplied water is limited to the non-interactive
water in an explosion, i.e., the pore water that was not directly involved in MFCI or otherwise
erupted, e.g., as vapor, along with water that may have vaporized but then re-condensed.

Though these jets and recycling processes can move some liquid water upward, it is

probably a limited amount. A sustained phreatomagmatic eruption requires abundant shallow



liquid water to interact with rising magma. If the water table at equilibrium is too deep to support
efficient MFCI and ejecta-producing explosions, or if the water table depresses throughout an
eruption as explosions use up available water, there must be some mechanism for moving
substantial amounts of water up in the subsurface to produce shallow explosions prior to or early
in an eruption. An example of this can be seen in descriptions of eruptive activity during the first
weeks of the 1759-1774 eruption of El Jorullo in central Mexico. The eruption began with
phreatic and phreatomagmatic activity, as well as what eye-witness accounts described as
“pulses” of mud, steam, and water emerging from vents and springs, flooding the landscape
(Gadow, 1930). It is evident in this case that groundwater was being superheated by shallow
magma and driven out of the ground. Similar processes could be possible in areas with very deep
water tables, and if so, the efficiency of these processes is likely affected by different variables
such as country rock and aquifer properties.

In the eastern San Francisco Volcanic Field (SFVF) of northern Arizona, the water table
is currently estimated to be well below the optimal depth for ejecta-producing phreatomagmatic
explosions reported by Valentine et al. (2014). Regional cross-sections (Bills et al., 2000) and a
water table elevation map (SGC, 2015) show water table depths ranging from ~275 to >600 m
below the surface across much of the central and eastern parts of the volcanic field, while depths
quickly shallow to the north as surface elevation drops off. However, the SFVF has been host to
a small number of monogenetic maar eruptions. Colton Crater and Rattlesnake Crater both
exhibit evidence of phreatomagmatism, but at different stages in their eruptions and of
contrasting intensity and duration. Based on the current depth to water table beneath each of

these maars and their respective behaviors, two questions remain unanswered:



1. How was the necessary quantity of water supplied to each eruption to drive efficient

phreatomagmatic activity?

2. What caused these two eruptions to behave differently from one another, as well as

from most of the eruptions in the SFVF?

To address these questions, I have constructed a series of models, using the TOUGH2
numerical simulator (Pruess et al., 2011), of possible pre-eruptive and syneruptive processes that
occurred in the subsurface of each volcano. The TOUGH?2 software was developed at Lawrence
Berkeley National Laboratory for modeling geothermal reservoir systems and has grown to
include capabilities for numerous geologic applications. The use of TOUGH?2 to address
questions related to shallow volcanic eruption processes is less common, but the software
provides a unique method to explore dynamic thermohydrologic processes. The models
presented in this work are designed specifically to highlight magma-water interactions based on
hydrologic conditions in the subsurface and thermal properties of both the country rock and
magma. They do not model the MFCI, but they show how water (as vapor and liquid) can move
as driven by magmatic heat, setting up the conditions for explosive interaction through upward

vapor-phase transport and condensation at shallower depths.

1.2.  Geologic Setting
Colton Crater and Rattlesnake Crater are located in the San Francisco Volcanic Field
(SFVF) of northern Arizona (Fig. 3). The SFVF is located on the southwestern margin of the
Colorado Plateau and spans an area of approximately 4,700 km?, consisting of over 600 eruptive
centers. Volcanism in the SFVF began in the late Miocene epoch and continues to the present,
primarily producing monogenetic basaltic volcanoes (Tanaka et al., 1986). Late Cretaceous to

early Tertiary uplift and crustal compression of the Colorado Plateau produced extensive faulting



and folding throughout the region, followed by further faulting and jointing associated with
Basin and Range extension (Bills et al., 2000).

Colton Crater, also referred to as Crater 160 (Colton, 1936 and Cummings, 1972) and
Vent 5715 (Ulrich and Bailey, 1987), is located in the northern portion of the SFVF,
approximately 3 km south of SP Crater and 20 km north of San Francisco Mountain (Fig. 3). The
cone has a diameter of 2 km at its base and 1.2 km at the summit, and the crater floor is
approximately 60 m below the surrounding surface elevation. A small cinder cone sits in the
crater floor. The large cinder cone is primarily composed of welded or loose olivine basalt cinder
beds overlain by a 15-m-thick palagonite tuff that contains mafic inclusions (mantle or lower
crustal xenoliths) and lithic fragments from the underlying Permian Kaibab Limestone and
Coconino Sandstone (Cummings, 1972). Lithic fragments from the Supai Formation may also be
present in this deposit. On the northern rim of the crater, just below a low-relief saddle, the
phreatomagmatic tuff deposits are sparsely exposed in an approximately 40-m-thick section. The
deposits thin around the northwestern rim, and are not identified elsewhere in the crater (Fig. 4).

Water-magma interaction in the eruption of Colton Crater was probably largely
controlled by water flow through the highly fractured limestone and sandstone units identified in
lithic fragments. The eruption is interpreted as having initially formed a large scoria cone, with
little to no MFCI, but an apparent change in the eruption produced explosive magma-water
interaction that blew much of the cone off and produced a large crater (Van Kooten and Buseck,
1978). This behavioral change has been hypothesized to be the result of vent migration from the
southern portion of the crater to the north, causing the conduit dike to intersect water-filled
fractures (Leudemann et al., 2013). However, whether the migrating dike intersected water in

fractures or the water reached the conduit in another way remains uncertain. The eruption



returned to dry, magmatic behavior, producing the small cinder cone in the center of the crater in
the final eruptive stage.

Rattlesnake Crater is located approximately 20 km east of Flagstaff and 43.5 km
southeast of Colton Crater (Fig. 3). The timing of the Rattlesnake Crater eruption is placed in the
Younger Pleistocene/ Older Brunhes period, ~0.4-0.74 Ma (Moore and Wolfe, 1987).
Rattlesnake Crater consists of a wide, semi-circular maar rim located north-northwest of a small
scoria cone, which presumably overlies what was once the southern maar rim (Fig. 5). The
exposed northern rim of the crater is composed of thick bedded phreatomagmatic tuff deposits
with clasts of the underlying Kaibab Formation, and lesser amounts of Coconino Sandstone and
red beds (likely Supai Formation). Fragments of the latter two increase in abundance in the upper
tuff deposits, and red-bed lithic clasts are slightly more abundant at the base of the exposure
(Valentine, 2012). A section of basaltic cinder deposits underlies the tuffs, suggesting an initial
Strombolian eruption prior to phreatomagmatic activity (Schwoerer, 2014). The eruption appears
to have then sustained consistent, pulsing phreatomagmatic explosions through most of its
lifespan, followed by another brief period of Strombolian activity that produced the small scoria
cone.

At present, two primary regional aquifers lie beneath the study area: the C (Coconino)
Aquifer and the Redwall-Muav Aquifer. The C-Aquifer consists of the Kaibab Formation,
Toroweap Formation, Coconino Sandstone, Schnebly Hill Formation, and Supai Group. The
Redwall-Muav Aquifer is located below the C-Aquifer and is contained within the units
extending from the Redwall Limestone down to the Tapeats Sandstone on the Coconino Plateau
(Fig. 6A) (Bills et al., 2016). The shallower C-Aquifer is considered to have been the primary

water source for phreatomagmatic activity at both Colton and Rattlesnake Craters (Fig. 6B).



Based on depth and pressure constraints for production of efficient phreatomagmatic explosions
and the apparent lack of xenoliths at either maar from units deeper than the Supai, the Redwall-
Muav Aquifer is not considered to have been host to tephra-ring-producing phreatomagmatic

explosions at the study locations and is not discussed further in this work.
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CHAPTER 2: METHODS
2.1. Depositional Analysis

Field work was conducted during the summer and fall of 2016. Phreatomagmatic tufts
were analyzed at each crater to identify and estimate the relative abundance of different
sedimentary clast types. The studied portion of Rattlesnake Crater tuffs is located on the
northwest rim and is ~15 meters thick. Two samples were collected from near the bottom and
near the top of the exposure. Three samples (lower, middle, and upper) were also collected from
tuffs exposed in the northeastern rim of Colton Crater. Several samples of loose sedimentary
lithic fragments were collected from each site as well.

Billets were cut from each of the five tuff samples collected. These were made into thin
sections at National Petrographic Services. Thin sections were analyzed under a petrographic
microscope and relative abundance of sand grains within the basaltic matrix was estimated.
Interpretation of lithologic origin of individual sand grains was made based on analysis of thin
sections from the Kaibab Formation, Upper and Lower Coconino Sandstone, and Upper Supai

Formation. Annotated thin-section images are presented in Appendix B.

2.2. Fracture Analysis
The uppermost sedimentary units beneath both Rattlesnake and Colton Crater were
studied to characterize and describe their fracturing patterns. Exposures of the Kaibab
Limestone, Coconino Sandstone, and Supai Formation are not present within either Rattlesnake
or Colton Crater, so nearby exposures of the Kaibab and Coconino Formations were selected for
analysis. No Supai Formation is exposed in the region. The nearest exposure of Kaibab

Limestone to Rattlesnake Crater is in San Francisco Wash, approximately 2 km north of the
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crater rim (Fig. 3). An exposed section in the wash totaling ~20 m in thickness was studied
during several trips over the course of approximately three weeks in July and August of 2016.

The nearest accessible exposure of Coconino Sandstone is located in Walnut Canyon
(Fig. 3). A research permit was acquired, and a study site ~14 km southwest of Rattlesnake
Crater was chosen. This site is located just east of Santa Fe Dam, and the exposed section of
Coconino Sandstone extends up to ~30 m in thickness. Fracture analysis was limited to the lower
~15 m due to accessibility. The Coconino exposure quickly tapers out to the west of this study
location.

Accessible sedimentary outcrops are scarce near Colton Crater, as the region is generally
capped with lava flows from nearby cinder cones. The nearest exposures of Kaibab Limestone
are located 5.6 km north of Colton Crater, within and around a large N-S-trending graben (Fig.
3). The western graben wall is ~40 m high and entirely Kaibab Limestone, but colluvium covers
much of the slope. The studied sections of continuous Kaibab exposure were ~1-2 m thick. The
nearest exposures of Coconino Sandstone are located within Wupatki National Monument, ~20
km to the east. Because of their distance and consequent lack of contiguity with Colton Crater,
these outcrops were not studied.

A square meter was constructed of 0.75” x 1.5” pieces of poplar framing wood (Fig. 7)
for fracture analysis. The square was placed against selected outcrops to maintain a set area for
fracture measurement. Length and aperture of each fracture within the square was measured by
hand with a measuring tape and ruler, and orientation was determined using a Brunton compass.
All fractures with some measurable aperture were recorded, including those open at the surface
and those partially filled by secondary mineralization or vegetation. Only minimal distinction

between open, water-transmittable fractures and surficial weathering features was possible.
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Effort was made to determine propagation of fractures deeper into the units, but limited exposure
prevented significant investigation. For simplicity, all fractures included in permeability
calculations are assumed to be continuous.

The described method allowed for complete measurement of all fractures in a set unit
area. Permeability of each fracture has been calculated using the parallel plate law k = a”/12,
where a is fracture aperture (Lupi et al., 2011). A minimum, maximum, and average
permeability for each was calculated based on individual fracture aperture range. Permeability

ranges were then applied to system models.

2.3. Modeling

Potential eruption scenarios for each maar were simulated using the simulator TOUGH2
(Pruess et al., 2011) as it is invoked from the iTOUGH2 code, which provides enhanced control
of TOUGH2 runs, among many other advanced features (Finsterle, 2007). TOUGH2 is a
numerical simulator for non-isothermal, multiphase fluid flow in fractured and porous media.
The simulator solves mass and energy balance equations for fluid and heat flow in space- and
time-discretized systems, with the assumption of local thermodynamic equilibrium of all phases.
Capabilities of the software extend to numerous geological and hydrogeological applications
through various equation-of-state (EOS) modules. Modules are representative of specific fluid
mixtures, or components, for which the modules provide the necessary thermophysical properties
for mass and energy balance equations. The EOS3 module represents water and air, both of
which are necessary for modeling shallow volcanic systems, and was therefore chosen for the
scope and purposes of this work. In this module, water properties are calculated using the steam
table equations from the International Formulation Committee, and air is approximated as an

ideal gas (Pruess et al., 2011). Note that TOUGH2/EOS3 does not include the capability to
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represent supercritical water (P > 22 MPa, T > 374 °C). The TOUGH2/EOS1sc module is
designed to model supercritical conditions and would therefore be capable of modeling more
accurate temperatures for a magmatic intrusion; however, this module cannot operate with
ambient air as a component, and instead requires a fully liquid-saturated or high-T vapor-
saturated system (Magnusdottir and Finsterle, 2015; Finsterle, 2007). The EOS1sc module was
tested for the relevant models, but was ultimately determined to be an unreasonable
representation of the real physical systems of concern for this study. Therefore, EOS3 was used
to investigate the relevant hydrologic processes with the understanding that modeled
temperatures are lower than would be realistically expected in typical volcanic eruptions, but that
the processes of vaporization, upward vapor flow, condensation, and downward liquid water
flow would be analogous at higher temperatures.

A second limitation to TOUGH2/EOS3 is the termination of simulations as grid blocks
become fully dried out, e.g., with high heat injection. TOUGH2/EOS3 can simulate single-phase
gas, two-phase, and liquid-saturated conditions, but modeling full dry-out (transition to single-
phase gas) can cause convergence problems, driving down the time-step size to the extent that
the simulation stops progressing significantly in time. At this point the simulator is designed to
stop to avoid unproductive use of computer time. Although some simulations do not run out to
long times, the calculations are correct up until the point where convergence is difficult, time
steps are cut, and the simulator stops.

A computational mesh file representing the discretized physical system to be modeled is
necessary for TOUGH2 simulation. A mesh consists of a specified number of grid blocks, which
are each assigned primary thermodynamic variables (dependent on the chosen EOS module) and

material properties including permeability, porosity, and specific heat capacity. A figure showing
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input file format and a full list of associated variables are included in Appendix C. The primary
variables for EOS3 in two-phase conditions are pressure (P), temperature (7), and gas saturation
(S). The number of mass and energy balance equations to be solved for each grid block
corresponds to the number of primary thermodynamic variables. With execution of the code, sets
of coupled nonlinear equations for all grid blocks are solved simulateously using Newton-
Raphson iteration (Pruess et al., 2011).

For the simulations carried out in this study, all mesh files are two-dimensional and 1-m
thick in the y-direction. Numerous mesh files of varying sizes were created for model
simulations, with the largest extending to 710 m depth and 1,200 m width. The primary mesh
files used are a “zoomed in” view of the upper portion of the aquifer and up to the surface. For
both craters, this mesh is 300 m wide and 425 m deep, extending approximately 80 m below an
approximately 345-m-deep water table. Individual lithologic units are distinguished in the mesh
creation process to assign set volumes to each grid block of that rock type, determined based on
unit thicknesses (i.e., 75 m thick unit = 5 blocks % 15 m). The standard mesh contains a total of
1,260 individual grid blocks. A sample of a mesh file is provided in Appendix C.

Initial model runs were performed to establish gravity-capillary equilibrium in the
subsurface prior to any heat input. Capillary pressure (P.,,) and relative permeability (ki)
conditions were determined using the van Genuchten-Mualem method (Pruess et al., 2011), with
relevant Py, and k. input values selected for each rock unit (Appendix C). All blocks located at
the estimated water table depth were given atmospheric pressure (1.0 x 10° Pa), 50% liquid
saturation and assigned Dirichlet boundary conditions (i.e., very large volumes, ~1.0 x 10*’ m?)
to prevent their thermodynamic conditions from changing. The output data from this simulation

were then used as the initial conditions for a second run, with the water table set to normal grid
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block volumes (active) and the bottom boundary of the mesh set to very large volumes. The
output file from this simulation was then used as the starting run for further simulations with heat
injection.

Subsequent equilibrium files were produced with a 20-m-wide “fracture zone,” or a high-
permeability, high-porosity feature in the center of the model. This zone is intended to represent
the combined effects of numerous smaller fractures likely present in the subsurface units. Some
fractures in the region are contained within individual units, but most faults propagate through
the entire aquifer (Bills et al., 2000). Fracture-zone heights were varied for different models, but
the base-case models were each run at least twice to include (1) a fracture zone that extends from
the Kaibab-Coconino boundary (75 m depth) to 425 m depth, within the saturated Supai
Formation, and (2) a zone fracture that extends from the surface to 425 m depth. In additional
simulations, the fracture zone extends from the Kaibab-Coconino boundary to the top of the
water table, or nearly the total extent of the Coconino Sandstone. The fracture zone was given
the same capillary pressure (P.,,) and relative permeability (k,..;) parameters as the unit in which
it is located. Several additional gravity-capillary equilibrium runs were also created from this
point to represent various starting conditions, including those with the water table set shallower
or deeper, and others with adjusted country-rock permeability, porosity, etc.

With equilibrium conditions set, numerous forward models were produced for each
eruption to understand how specific rock and thermodynamic parameters affect model outcomes.
Ascending magma is modeled as heat injection into specified grid blocks, described only by a
heat rate (J/s). This rate was estimated using the equation:

q = -K(AT/Az)
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where g= heat rate (J/s), K= thermal conductivity (W/m K), and AT/Az = (Trock — Tmagma)/ (Zrock —

Zmagma)- The parameter Az or (Zyock — Zmagma) 18 also called the thermal boundary layer, or Szz;,
calculated using the equation:

Srar = V(xt)
where the thermal diffusivity (k) is defined as ¥ = K/(pC,), and r = time scale. Values for magma
temperature and thermal conductivity were based on properties of a typical tholeiitic basalt melt
(Morrissey et al., 2000), and heat capacity of wet sandstone (C,) was estimated based on
published values (Eppelbaum et al., 2014; Bralower and Bice). The complete calculation of heat
flow rate is presented in Appendix C. A range of heat flow rates was tested in models as
described in Results (Chapter 3).

Simulations were typically run sequentially, adjusting locations of heat injection, or
magma movement, as well as opening up zones of high permeability to represent areas where
MFCI explosions could occur. Values for several country-rock (sandstone, limestone) properties
were based on published values, including density, porosity (Manger, 1963; Ai and Ahrens,
2003), permeability (Bear, 1988), specific heat capacity, and thermal conductivity (Eppelbaum et
al., 2014). Coconino Sandstone permeability was calculated using hydraulic conductivity values
from a well ~21 km to the east (Fig. 3) (Hoffman et al., 2006). A range of fracture permeabilities

was tested based on the described calculations.

2.3.1. Model Data Processing
Total volume of liquid water moved above a depth of 205 m was calculated for some
simulations. The TOUGH2 simulator produces a printout of primary variables (P, T, and S,) for

each grid block at the final time step of each simulation. These data were processed to view only
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grid blocks above 205 m, and liquid saturation of these grid blocks was calculated by subtracting
the gas saturation value from 1 (S; +.5;=1). Total pore space volume (V) of each grid block
was calculated by multiplying porosity (¢) by the total grid block volume (V;4.41) , then the total
volume of pore space occupied by liquid water (V) was calculated by multiplying S; by Vores.
The sum of V)., for all grid blocks above 205 m depth is the total volume of liquid water in the
model above that depth at the final time step. This calculation was initially performed for the
gravity-capillary equilibrium model to determine the total volume of residual water in pores
above this depth prior to any heat injection. This initial total volume of residual liquid water was
then subtracted from the new calculated Viiq after each simulation to determine the total volume
of liquid water brought upward as a result of heat injection. These values, where reported, are
only representative of the volume of liquid water moved above this depth in the modeled two-
dimensional domain that is only 1 m thick and are not representative of the volume that would

realistically be moved in an actual three-dimensional system.
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CHAPTER 3: RESULTS

3.1. Stratigraphy Estimates
Depths and thicknesses of the stratigraphic units beneath each volcano were estimated
based on a series of cross-sections by Bills et al. (2000). None of the transects crosses directly
through either location, so estimates are based on weighted averages of transects that passed

nearest to each. All estimates are shown in Table 1 and Fig. 6B.

Estimated Stratigraphy

Volcano Unit Top depth (m) Base depth (m) Thickness (m)
Kaibab LS 0 75 75
Rattlesnake Crater Coconino SS 75 350 275
Supai Group 350 835 485
Kaibab LS 0 75 75
Colton Crater Coconino SS 75 375 300
Supai Group 375 855 480

Table 1: Approximate depths and thicknesses of uppermost stratigraphic units beneath
Rattlesnake and Colton Craters. Based on data from Bills et al. (2000).

3.2.  Water Table Estimates
Water table depth at each volcano was estimated using data from nearby wells (Figure
3), regional cross-sections, and potentiometric surface maps. Based on data from several wells
near Rattlesnake Crater, primarily four located ~1.5 km SW, ~6.8 km WSW, ~20.8 km ESE, and
~6.5 km N, and estimates from two nearby cross-sections (Appendix A), the water table is
estimated to be currently at a depth of ~315-350 m. This estimate places it in the lower Coconino
Sandstone, or in the very upper part of the Esplanade Sandstone of the Supai Group (Hoffman et

al., 2006; Bills et al., 2000; ADWR). Well data are limited near Colton Crater, and cross-
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sectional interpretations are located too far from the study site to provide a useful estimate. The
potentiometric surface estimate in this area is primarily based on a water-table elevation map that
shows a steep gradient in this region (SGC, 2015). The water table beneath Colton Crater is
estimated to be ~340-380 m depth, roughly in agreement with data from sparse nearby wells,
placing it within the base of the Coconino Sandstone or top of the Upper Supai Formation (Bills
et al., 2000; ADWR).

The water table was likely close to these estimated levels at the time of the eruptions.
Regional topography and elevation of groundwater outflow into the Little Colorado River basin
in the Pleistocene epoch are interpreted to have been similar to present day (Holm, 2001), which
allows the inference that groundwater levels would have also been approximately the same as

they are today.

3.3. Fracture Analysis

The Kaibab Limestone and Coconino Sandstone both contain significant fracturing. The
studied Coconino Sandstone exposure is located in Walnut Canyon, SW of Rattlesnake Crater
(Fig. 3). The sandstone unit is characterized by large fractures, each cutting through meters of the
formation (Fig. 10). Fractures are most commonly subvertical to vertical, but a few subhorizontal
fractures were recorded, and partially open bedding planes may also act as a means of fluid flow
through the unit. Most fractures trend NW-SE to W-E, with the exception of one section of
fractures primarily trending ENE-WSW. The mode of average fracture aperture in the Coconino
outcrops is 2.5 mm, and average is 3.2 cm. Apertures generally range from closed, or less than
0.5 mm, up to ~28 cm. Excluded from this averaging is a large opening, ~6.1 m wide, that is
filled in with sediment and trees. Vegetation cover prevented investigation of the continuity of

this presumed fracture.
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Fracture characteristics in the Kaibab Limestone vary widely even between vertical
sections only meters or tens of meters apart. In general, the uppermost studied sections of Kaibab
are highly weathered and contain abundant small fractures, dissolution channels, and voids (Fig.
8). In deeper sections, such as the base of the exposure in the San Francisco Wash, dissolution is
notably absent and fracturing is dominated by larger-scale features (Fig. 9). Large-scale fractures
typically are nearly vertical and trend NW-SE, while orientation of smaller fractures is highly
variable. Some outcrops have fractures that nearly all trend NW-SE, while others are dominated
by fractures trending NE-SW. The mode of the average fracture aperture in the Kaibab is ~0.5-
1.0 mm, with values ranging from 0 mm to a few as wide as ~8 cm. The largest vertical fractures
identified in the Kaibab exposures trend WNW-ESE to NW-SE (108°-129°) and are ~4.6 m long

with ~3-5 cm apertures (Fig. 8C). All fracture data are in Appendix B.

3.4. Thin Sections

Five thin sections were analyzed from the two volcanoes: three from Colton Crater and
two from Rattlesnake Crater. Samples were taken from the lower, middle, and upper parts of the
exposed ~40-m-thick Colton Crater tuff section (CL, CM, and CU, respectively), and from the
lower and upper ~25-m-thick tuff outcrop at Rattlesnake Crater (RL and RU, respectively. The
purpose of this petrographic analysis was primarily to analyze quartz sand content within the tuff
matrix, in an effort to quantify the relative proportions of Coconino and Supai sand that may be
present at different times of the eruption. While some xenoliths of the underlying sedimentary
units are preserved in deposits, much of the rock surrounding an explosion site could have been
completely disaggregated, resulting in quartz grains becoming entrained in the matrix. These

data can provide depth information for explosion sites.
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The Colton Crater and Rattlesnake Crater tuff thin sections are described in the following
sections (3.4.1. to 3.4.5.). Percentages of each component and mineral type are visually
estimated. Thin sections of the Kaibab Formation, Upper and Lower Coconino Sandstone, and
Supai Formation used for interpretation of quartz grain lithologic origin are briefly described in

Section 3.4.6.

34.1. CL
Total sample: ~22% ash matrix, ~23% matrix minerals, ~55% scoria
Ash matrix: Gray glass, very fine, indistinguishable shards.

Matrix minerals: ~90% quartz (sedimentary), ~6% pyroxene, 2% k-feldspar, <1% sparse

plagioclase feldspar, and minor (<1%) olivine.

Quartz: Rounded to subangular, varying in size from ~0.1 to 0.65 mm. Smaller quartz grains
(~0.1-0.3 mm) are dominantly subrounded to rounded, while larger grains (up to 0.65
mm) are commonly subangular.

Feldspars, pyroxene, olivine: < 3-mm partially resorbed k-feldspar crystals, <0.1-mm to 1.5-

mm anhedral to subhedral pyroxene crystals, sparse <0.1-mm plagioclase laths and <0.2-
mm olivine crystals.
Scoria: Cinders and juvenile basalt clasts ranging from ~3 mm to >1 c¢m. Clasts contain abundant

0.1- to 0.2-mm plagioclase laths and small 0.1-mm subhedral pyroxene crystals (<0.3 mm).
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342. CM
Total sample: ~35% ash matrix, ~10% matrix minerals, ~54% scoria, <1% lithic fragments.
Ash matrix: Very fine dark gray to red-orange glass fragments. High degree of alteration/
oxidation throughout.

Matrix minerals: ~75% quartz (sedimentary), 20% pyroxene, ~3% k-spar, ~1% olivine, and ~1%

plagioclase
Quartz: Crystals range in size from <0.1 mm to 0.8 mm (rare), primarily <0.25 mm. Finer
quartz fragments typically subangular to angular. Subrounded to rounded crystals
notably less abundant than in CL.

Feldspars, pyroxene, olivine: Partially resorbed anhedral to subhedral pyroxene and feldspar

crystals generally ranging from <0.1 mm to ~0.5 mm. Very sparse plagioclase, typically
<0.2 mm. Few large pyroxenes (~5% of total pyroxenes), ~1.0- to 2.0-mm in size, and
one ~4-mm, partially resorbed, subhedral pyroxene present. Sparse olivine crystals up to
~1-mm. Largest crystals typically highly altered.

Scoria: Cinders and basalt clasts generally range from ~0.3 to 1.1 mm and rarely up to 9 mm in
size, some containing abundant plagioclase laths and sparse euhedral pyroxenes (typically
~0.1 to 0.5 mm), possible including sparse olivine crystals. Largest plagioclase in a single
scoria clast ~0.5 mm. Several large orange glassy clasts (up to ~3 mm), highly vesicular,

containing sparse <(0.1-mm pyroxene or olivine crystals.

Lithic fragments: Sparse ~1.5- to 2-mm clasts, possibly limestone (appear to be calcite).
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343. CU
Total sample: ~16% ash matrix, ~20% matrix minerals, ~63% scoria, ~1% lithic fragments.
Ash matrix: Overall poorly welded matrix. Glass shards dominantly very fine, subangular, tinted
brown in PPL. Glass less abundant than in CL and CM.

Matrix minerals: ~80% quartz (sedimentary), ~14% pyroxene, ~4% k-feldspar, ~1% plagioclase,

<1% olivine
Quartz: Abundant 0.1-mm to 0.3-mm subrounded to rounded crystals (~85%). Additional
~15% finer (~0.02 to 0.1 mm), subangular crystals.

Feldspars, pyroxene, olivine: Subhedral pyroxene phenocrysts and sparse plagioclase range

from 0.01 mm to 1 mm. Very sparse <0.01-mm plagioclase laths and large pyroxenes
(up to ~3.5 mm), partially resorbed. Sparse olivine crystals, generally ~0.1-0.2 mm,
partially resorbed.

Scoria: Ranges in size from ~0.1-8 mm, primarily containing <0.1- to 0.2-mm euhedral and
subhedral pyroxenes and very minor olivine. Larger grains up to ~1.5 mm, anhedral. Largest
scoria fragment found composed almost entirely of <0.2-mm plagioclase laths and
pyroxenes;

Lithic fragments: One ~2-mm moderately cemented sandstone xenolith, containing subangular to

subrounded, ~0.02-0.1-mm quartz grains. One ~1-mm sandstone lithic also present,

containing <0.1-mm subangular to rounded quartz crystals.
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344. RL
Total sample: ~22% ash matrix, ~28% matrix minerals, ~50% scoria.
Ash matrix: Gray, very fine glassy matrix. Sparse calcite precipitation.

Matrix minerals: ~80% quartz (sedimentary), ~13% pyroxene, ~5% k-feldspar, ~2% plagioclase

Quartz: Abundant rounded to subrounded quartz grains ranging in size from ~0.1-0.6 mm,
~90% of total quartz. Smaller (<0.1 mm) subangular grains ~10% of total quartz.

Feldspars & pyroxene: Subhedral pyroxene crystals, minor potassium feldspar (mainly

orthoclase), and small plagioclase laths (all <0.3-mm). Few large (up to ~2 mm)
pyroxene and orthoclase crystals. Little alteration on minerals.
Scoria: Clasts generally range from ~0.5- to 4 mm, generally consisting of ~50-60% plagioclase
laths (~0.1- to 1.2 mm) and 40-50% euhedral pyroxenes (~0.1- 1.5 mm). Typically highly
vesicular. Four large ~8 mm clasts present in sample, one of which contains ~70%

plagioclase, 30% pyroxene.

3.4.5. RU
Total sample: ~19% ash matrix, ~25% matrix minerals, ~5% secondary calcite, ~50% scoria,
<1% lithic fragments.
Ash matrix: Gray to black, very fine glassy matrix, voids infilled with significant secondary

calcite.

Matrix minerals: ~88% quartz (sedimentary), ~8% pyroxene, 3% k-feldspar, 1% plagioclase
Quartz: Range in size from ~0.01 to 0.6 mm, generally rounded to subrounded, although

smallest fragments may be subangular.
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Feldspars & pyroxene: Sparse loose plagioclase (~0.2-mm) and subhedral to euhedral

pyroxene crystals (typically ~0.1-0.3 mm). Sparse large (up to ~2 mm) pyroxene and
highly altered, possible orthoclase crystals.
Scoria: Average ~0.1- to 1.0 mm and as large as 0.8 mm. Plagioclase in clasts typically ~0.2 to
0.5 mm, few up to ~1.0 mm. Subhedral to euhedral pyroxenes ~0.1 to 0.2 mm in size, often
significantly altered. Significantly fewer juvenile clasts overall than RL.

Lithic fragments: Very sparse <2-mm lithic clasts, dominantly appear to be sandy limestone.

Composed of rounded quartz grains (<0.1 mm) within calcite cement.

3.4.6. Paleozoic Sedimentary Units

Kaibab Formation: Calcite with sparse ~0.1 to 0.16-mm subangular to subrounded quartz grains.

Upper Coconino Sandstone: Bands of ~0.25 to 0.7-mm, primarily rounded to subrounded quartz

(some subangular), and ~0.5 to 0.2-mm subrounded quartz grains.

Lower Coconino Sandstone: Rounded to subrounded quartz grains, ~0.1-0.2 mm.

Upper Supai Formation: Dominantly ~0.01 to 0.1-mm angular to subrounded quartz grains.

3.5. Modeling
3.5.1. Model Setup
Colton Crater’s and Rattlesnake Crater’s underlying stratigraphy are very similar and, for
this reason, the same mesh setups were used to represent both volcanoes. Estimated thickness of
the Coconino Sandstone varies by ~25 m, within a reasonable uncertainty range for the method
of estimation. Water-table depth estimates are also varied, but both average between ~330-360

m. The same models were tested with a range of water table depths to account for this variation.
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Rattlesnake Crater’s depth to groundwater is likely closer to ~315 m based on the closest well;
however, this well data was discovered late in the modeling and writing process. The base case
depth of ~350 m is therefore considered an upper limit for the modeled processes at Rattlesnake
Crater.

Based on estimated hydraulic conductivity values for each of these units from nearby
wells, permeability of the Coconino Sandstone is estimated to be ~1.01 x 10" m* and
permeability of the Upper Supai Formation is calculated to be ~1.13 x 10> m?. All estimated
country-rock properties and initial conditions are given in Tables 2 and 3.

Figures produced for each model show pressure (Pa), temperature (°C), and gas
saturation (%) at the final time step of the simulation. Note that the figures do not show the
outermost 10 m of the models as a result of the figure creation process, but this space is included
in the simulations. Gas saturation plots are overlain with gas flow vectors, which are scaled

according to relative magnitude.

3.5.2. Gravity-Capillary Equilibrium

To simulate the various cases of thermal perturbation and associated heating and water
re-distribution (e.g., upward convection of vapor with or without condensation, and downward
water flows) caused by magma intrusion at the base of the model domain, a static gravity-
capillary equilibrium is needed as an initial condition. The gravity-capillary equilibrium is a state
of a hydrologic system in which the downward gravity forces are balanced by the capillary
forces of the porous medium such that the liquid (aqueous) and vapor (gaseous) phases of water
and the air gas phase are all at a static equilibrium. In this condition, the gas phase (where
present) attains a gas-static pressure gradient, and regions of the system that are fully liquid-

saturated (no gas present) attain a hydrostatic pressure profile. Two-phase regions are at gravity-
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capillary equilibrium. This is a necessary initial condition to avoid simulating a system in which
both a gravity-capillary equilibration process may be going on at the same time as a thermal
perturbation associated with magma intrusion. In short, to focus the simulations on the magmatic
heating process, we utilize a plausible long-term static steady state as an initial condition.

The standard gravity-capillary equilibrium (Case 0) was first constructed for a steady-
state, non-fractured, non-heated subsurface with standard rock properties (Table 2), initial
temperatures from 10-20 °C, and initial liquid saturations (Table 3), and hydrostatic pressure at
the water table set to standard atmospheric pressure. The results of this simulation are shown in
Fig. 11. This simulation produces a gas-static pressure from the surface to the water table at 345
m depth, which is held at standard atmospheric pressure, and a steadily increasing pressure
gradient from the water table down to the base of the model. Although a temperature gradient
may be expected from the surface to 425 m depth, we assume isothermal conditions in the entire
model at ~20°C. This assumption is justified by the observation that this falls within the range of
shallow spring waters (~13-17°C) and deeply derived spring waters (22-31°C) in the Grand
Canyon (Crossey et al., 2006), and reported temperatures for nearby wells range from ~16-
18.7°C (Hoffman et al., 2006; Bills and Flynn, 2002). Furthermore, the thermal perturbation
associated with the magma is much larger than 20°C, making small variations around 20°C
negligible. Gas saturation is initially set at 80% in the Kaibab Limestone and 70% in the
Coconino Sandstone, making these units part of a deep unsaturated zone. An ~60-m-thick
unsaturated zone of gradually decreasing gas saturation and increasing liquid saturation (as depth
increases) forms above the 345-m-deep water table in the lower Coconino Sandstone, below
which all blocks are fully liquid-saturated. The presence and location of the fracture zone does

not make a noticeable impact on the equilibrium conditions of the model.
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Table 3a

Initial Conditions for Gravity-Capillary Equilibrium

Unit code Pressure (Pa) Gas Saturation (%) Temperature (°C)
KLIME 80 10
CSAND 70 20
WATBL 1.00E+05 50 20
AQUIF 1.00E-05 20
BOUND 1.00E-05 20

Table 3b

Initial Conditions for Large Model Gravity-Capillary Equilibrium

Unit code Pressure (Pa) Gas Saturation (%) Temperature (°C)
KLIME 80 10
CSAND 70 20
WATBL 1.00E+05 50 20
UPSUP 1.00E-05 20
SUPAI 1.00E-05 20
BOUND 1.00E-05 20

Table 3: Initial conditions for small models (3a) and large-scale models (3b).

3.5.3. Rapid Timed Heat Injection

Numerous models were run with timed heat injection moving upward from the bottom
boundary of the model toward the surface, imitating the movement of magma. The timing of heat
injection progressively upward was determined based on a magma rise rate that correlates with a
volumetric injection rate of 0.5 m’/s. This rate is considered an approximate minimum magma
ascent rate based on estimates of effusion rates from several mostly basaltic eruptions (Walker,

1973). This heat injection schedule and location variation is a feature of TOUGH?2 through the
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input file (GENER block) and is modeled using both the smaller and larger meshes. A table of
injection times with depth is presented in Appendix C. In the smaller models (425 m depth),
rapid heat injection is shown both as reaching up to 100 m depth and up to the surface (Fig. 12).
In models with varied parameters (permeability, porosity, etc.) and large models (710 m depth),
the specified heat injection only extends upward to 95 m depth. Although this setup is intended
to mimic an active eruption with magma reaching the surface, the models showing heat reaching
the top boundary terminate after a very short time due to TOUGH2/EOS3 failing to converge
when blocks become completely unsaturated, or “dry.” For this reason, the models with heat
injection only up to 95 m in depth represent a system early in its eruption process as magma is

ascending, but over a longer period of time than would likely elapse in an actual eruptive event.

3.5.3.1.  Small Models at Standard Conditions

Case 1.1 shows rapid timed heat injection into a mesh with a fracture zone extending
from the ground surface to 425 m depth, within the saturated Supai Formation. Heat is injected
up to 95 m depth over the course of 660 seconds, or eleven minutes. The setup for Case 1.2 is
identical, but the fracture zone extends only up to the Kaibab-Coconino boundary from 425 m
depth. Both models are run for ~3.1 days, and pressure, temperature, and gas saturation at the
final time step for each model run are shown in Fig. 13. The highest pressure zones (up to 2.2 X
10° Pa) form around either side of the fracture-zone pathway within the liquid-saturated base of
the models, while the fracture-zone pathway itself has a significantly lower pressure. The
maximum temperatures occur within the middle to upper part of the fracture zone, reaching
~500°C, but temperatures within the aquifer do not exceed ~220°C. The gas saturation plot
shows how the water has moved as a result of the injected heat. Around the heat injection in the

saturated base and up into the fracture zone, the pore space reaches 90-100% heated vapor by
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volume (i.e., grid block gas saturation equals 90-100%). In the center of the model, the original
water table is now raised, with grid blocks with 90-100% liquid-saturation now reaching upward
to a depth of ~300 m. Grid blocks containing up to ~60% liquid saturation are now present on
either side of the fracture zone and into the base of the Kaibab Limestone. Vectors show strong
upward vapor flow through the fracture zone, while smaller magnitude vapor flows are seen on

either side of the fracture pointing outward.

3.5.3.2.  Large Model at Standard Conditions

Heat is injected into the large model (Case 1A) at the same rate corresponding to 0.5 m’/s
of magma over 1,150 seconds (>19 minutes) up to 95 m below the surface. The bottom four
rows, or 45 m, of the model are set to have constant heat injection in an area 600 m wide from
the beginning of the run. Step-wise heat injection then begins at 665 m depth at 30 seconds. At
the water table, the injection has tapered to a width of 60 m. This model continued for a
maximum of 2.4 days, and final conditions are shown in Fig. 14.

Results of this setup show maximum pressure of >3.5 x 10° Pa at the base of the aquifer,
gradually decreasing upward in the zone of heat injection. Fracture-zone pressure within the
aquifer ranges from ~1.6 x 10° to 1.0 x 10° Pa, immediately surrounded by pressures up to ~2.67
x 10° Pa in the lower permeability Supai Formation. The maximum temperature reached in this
model is just above 200 °C in the upper aquifer, dropping to less than 130 °C high in the fracture
zone. The plot of gas saturation shows that the blocks in the zone of high T at the top of the
aquifer consist of increased vapor saturation; just above this, several blocks of increased liquid

saturation (>~70%) are seen as high as 285 m depth. Zones of increased liquid saturation extend
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up to 40 m laterally away from the fracture zone within the unsaturated Coconino Sandstone.

Near the Kaibab-Coconino boundary, liquid saturation reaches ~50%.

3.5.3.3.  Sensitivity Analysis

Sensitivity analysis involves studying changes to model outcome arising from variation
of individual parameters, or testing to see how dependent the simulated model results are on each
of the input parameters. Several parameter variations were applied to the rapid heat injection
models. These variations include: high-permeability rock units (Case 1B), low-permeability rock
units (Cases 1C and 1D), high-permeability and porosity fracture zone (Case 1E), anisotropic
permeability rock units (Case 1F), high-porosity (Case 1G), low porosity (Case 1H), high heat
rate (Case 1J), low heat rate (Case 1K), a high water table (Case 1L), a low water table (Case
IM), and doubled fracture zone width (Case 1N). Those with the highest degree of variability are
described below and summarized in Table 4. Pressure, temperature, and gas saturation plots for

all others are presented in Appendix C.

Permeability and Porosity

A range of high and low permeabilities was tested. Case 1A shows the base case with
increased country-rock permeability. Coconino Sandstone permeability is increased to
8.97 x 10" m* (from 1.01 x 10" m?), and the same permeability and density are given to the
Supai Formation. Boundary blocks have also been given the same density as the Coconino
Sandstone and aquifer of 2,450 kg/m’ (decreased from 2,500 kg/m?), and a porosity of 15%
(decreased from 25%). All other parameters remain unchanged. Final conditions of this

simulation at 2.1 days are shown in Fig. 15 alongside those for the base case (Case 1.1) at the
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same time (2.1 days). The high-permeability model shows a wider area of impact around the heat
injection. A pressure gradient is seen within the aquifer, and changes are widespread around the
intersection of the fracture zone and water table. Total pressure is generally lower in the model
of high permeability, reaching a maximum of ~8.55 x 10° Pa vs >1.8 x 10° Pa in the base case.
Temperature is also generally kept lower, reaching a maximum of ~170°C, and the plot of gas
saturation shows vapor and associated condensation reaching outward 40 m laterally from the
fracture zone up to nearly 100 m depth.

Permeability is decreased in Cases 1C and 1D. Case 1C has adjusted Coconino Sandstone
and Supai Formation permeabilities calculated using low hydraulic conductivity values from
nearby wells. Coconino permeability is decreased to 6.3 x 10™*m? and Supai permeability is
decreased to 1.8 x 10™"* m”. This model runs for 1.4 days (Fig. 16). In general, heat and fluid
flow effects are restricted to within the fracture zone and the two immediately adjacent grid
block columns. A pressure increase seen in the Coconino Sandstone surrounding the fracture
zone in the base-case model is nonexistent, but instead the pressure within the fracture zone is
increased up to <100 m depth. Maximum T within the fracture zone reaches over 450°C (more
than double that of the base case), and vapor formation is nonexistent within the aquifer itself,
but rather is confined to the fracture zone. Condensed water does, however, appear as high as
~60 m depth within the Kaibab. Case 1D utilizes an average permeability between the base case
conditions and the 1C models. Conditions at 1.4 days are very similar to the base case, but the
higher-pressure field within the Coconino sandstone is slightly larger and overall temperatures
are slightly increased.

In Case 1E, fracture zone permeability has been increased by two orders of magnitude

and porosity is increased 10% (absolute increase). With heat injection up to 95 m, this model
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runs for a maximum of ~1.2 days. In general, results are very similar to base case conditions at
the same time step. The region of increased pressure and temperature in and around the fracture
zone extends slightly farther into the Kaibab Limestone, temperatures are slightly higher, and gas
saturation around the fracture zone is slightly increased. Results and figures are presented in
Appendix C.

Anisotropic permeabilities in the Coconino Sandstone and Supai Formation are modeled
in Case 1F, shown in Fig. 17 at ~2.7 days. Permeability for both units has been increased by an
order of magnitude in the x-direction. The zone of vapor transport and condensation is broader
than in the base-case model, extending 80 m laterally from the fracture zone above the water
table, but only a small amount of vapor reaches the Kaibab Limestone. The water table is raised
by ~20-30 m. Maximum pressures are lower and general temperatures are similar, but 7,
reaches ~500°C.

Increased and decreased country-rock porosity are modeled in Cases 1G and 1H,
respectively. An absolute 10% increase of porosity has little visible impact on pressure and
temperature, but decreases vapor formation within the aquifer and condensation around the
fracture zone. By contrast, decreasing porosity 10% produces higher pressures, temperatures, and

gas saturation throughout (Appendix C).

Heat Rate

Heat rate is increased and decreased by 4.5 x 10° J/s to 1.0 x 10° J/s and 1.0 x 10° J/s in
Cases 1J and 1K, respectively. Increasing heat rate (Case 1J) accelerates the evolution of the
system and very similar conditions in 1.8 days are produced in the base case at 3.1 days.

Compared to the base case at the same time step, increased heat rate causes significantly higher
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P and T, and a much greater quantity of vapor and liquid water are moved upward (Fig. 18).
Compared to the base case at 3.1 days, however, the only notable difference of the increased
heat-rate run at 1.8 days is a slightly higher Ppay, reaching >3.0 x 10° Pa. Decreasing heat rate
(Case 1K) shows sharp contrast to the base case and runs for 13 days (Fig. 19). Maximum
pressure around the fracture zone within the aquifer reaches only ~11.5 x 10° Pa, temperature in
the fracture zone does not exceed ~220°C, and S, reaches 100% only within the fracture zone.
Cooler temperature allows liquid saturation to remain within the aquifer, even in the zone of

direct heat injection.
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Water Table Depth

Adjusting water table depth shows similar results in the total amount of transported vapor and
condensing water around the fracture zone. Relative to the base case at ~2.6 days, raising the
water table by 30 m (Case 1L) produces minor increases in pressure and temperature, and very
slight decreases in gas saturation (or increases in liquid saturation) in grid blocks reaching the
ground surface (Fig. 20). Lowering the water table by 30 m (Case 1M) has a similarly minor
effect on the grid blocks immediately surrounding the fracture zone, but produces a smaller
“rise” in the water table over the heat injection. With the 315-m-deep water table, grid blocks of
~70% liquid saturation are driven up as high as 265 m, while the simulation with a 375-m-deep

water table shows this high liquid saturation only reaching ~345 m depth.

Double Fracture Zone

Fracture zone width is doubled to 40 m in Case 1N, producing a simulation that runs for
2.1 days (Fig. 21). Increasing fracture-zone width produces a region of ~40-60% vapor, or ~60-
40% liquid water, in the grid blocks located 20-40 m away from the fracture zone. In the base
case, the fracture-zone-adjacent grid blocks generally maintain a vapor saturation of ~70% at this
time step. Overall pressure is affected very little, while maximum temperature reaches over

400°C within the fracture zone.

3.5.4. Slow Heat Injection
The slow heat injection models are set up with a dome-shaped heat source, or magma
injection that reaches from the base of the model to the water table. In general, the heat injection

for each model is 360 m wide at the bottom boundary and tapers to 60 m at the water table (Fig.
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22). The heat source does not move and injection rate is continuous throughout the duration of

each model.

3.5.4.1.  Small Models at Standard Conditions

The small models with base-case initial conditions showing slow heat injection are
named Case 2.1 and 2.2. These models are identical, with the exception of the center fracture-
zone length: in Case 2.2, the fracture zone extends from the Kaibab-Coconino boundary to 425
m depth, and in Case 2.1, the fracture zone extends to this depth from the surface. Each model
runs for ~4.4 days.

Pressure, temperature, and gas saturation (Fig. 23) show that fracture zone extent causes
virtually no differences between the two setups. As in the rapid heat injection models, the highest
pressure zones (>1.2 x 10° Pa) are focused around either side of the fracture zone within the
aquifer. The center of the direct heat injection zone is primarily ~350-450°C, with one block
within the fracture zone at the depth of the original water table reaching ~500°C. Gas saturation
shows a zone of heated vapor in the center of the injection, with liquid water, some of which is
barely heated above equilibrium temperature, being driven upward. On either side of the fracture
zone at a depth of 290 m, grid blocks previously at residual saturation reach a liquid saturation of
~65%, and condensed water is present as far as 40 m away from the fracture zone. Vectors show

strong vapor flow toward the surface through the fracture zone.

3.5.4.2. Large Model at Standard Conditions
The large model of slow heat injection at standard conditions (Case 2A) is set up with
heat injection up to 530 m in a dome-like shape (Fig. 24), with the base of the injection set with a

width of 600 m tapering upward to 200 m. Heat is injected at a constant rate in the entire dome
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from the beginning to end of the simulation. The model runs to ~8.1 days before terminating due
to convergence failure. The parameters at the final time step are plotted in Fig. 25. Pressure
reaches a maximum of nearly 4.0 x 10° Pa within the central and lower heated regions,
surrounded by a gradual pressure gradient up to the top of the saturated zone. Temperature
within the injection region reaches nearly 500°C. The gas saturation plot shows a result similar to
that in the small model, but on a much larger scale. The water table, though initially 180 m above
the injection zone, now has shifted upward. The peak in the center of the model corresponds to
the location of the fracture zone. Grid blocks with as much as 50% liquid water are raised as high
as 275 m depth, decreasing to <30% liquid by 245 m. At the farthest modeled extents of the
1200-m-wide system, blocks containing at least ~35% liquid are now located at 320 m depth.
The heat injection region itself is entirely vapor at ~8.1 days, surrounded by a thin rim of two-

phase liquid and vapor.

3.5.43.  Sensitivity Analysis

The same parameter variations for sensitivity analyses applied to the rapid heat injection
models were also applied to the stalled heat injection models. Models were run with high-
permeability rock units (Case 2B), low-permeability rock units (Cases 2C and 2D), high-
permeability and porosity fracture zone (Case 2E), anisotropic permeability rock units (Case 2F),
high porosity (Case 2G), low porosity (Case 2H), high heat rate (Case 2J), low heat rate (Case
2K), a high water table (Case 2L), a low water table (Case 2M), doubled fracture-zone width
(Case 2N), and no fracture zone (Case 2P). Models with significant variability from the base case
are described below and summarized in Table 5. Pressure, temperature, and gas saturation plots

for each of these models are presented in Appendix C.

40



Permeability and Porosity

As in the rapid heat injection models, permeability was increased for the Coconino
Sandstone and saturated Supai Formation to 8.97 x 10™'! m?. High permeability was tested using
a model with a fracture zone that extends from the ground surface to a depth of 425 m (Case 2B),
and conditions at 4.4 days and 5.6 days are shown in Fig. 26. At 4.4 days, a large tear-drop-
shaped zone of vapor and associated condensed water is present within the Coconino Sandstone,
affecting grid blocks as high as ~95 m depth. Just above the water table, the zone extends ~420-
460 m wide. Most of the affected grid blocks contain less than ~75% vapor saturation, or greater
than 25% liquid water saturation, and most of the model remains below 200°C, with only a few
blocks within the aquifer reaching temperatures >250°C. At 5.6 days, the growing region of
vapor and fluid extends into the base of the Kaibab Limestone, above 75 m depth, and extends
~400 m wide just above the water table. Most grid blocks remain around or below 200°C, but the
hottest blocks in the aquifer are heated to over 400°C. A region of increased pressure grows
corresponding with high 7" and S, though overall pressures remain relatively stable.

Lower permeabilities were tested in Cases 2C and 2D (Table 5). Permeabilities of the
Coconino Sandstone and Supai Formation are lowest in Case 2C, calculated using the lower
values of estimates of hydraulic conductivity of nearby wells. The simulation runs just under 4
days (Fig. 27). Similar to what is seen in the equivalent rapid heat injection simulation, heat and
fluid flow are largely restricted to the fracture zone itself. However, vapor does form within the
aquifer and a small area of rising saturation is seen around the fracture zone just above the water
table. The temperature maximum exceeds 350°C, and the highest pressures are more than an
order of magnitude greater than under base case conditions. Water begins condensing around the

fracture zone, but blocks do not exceed 50% liquid saturation above ~100 m depth.
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Permeabilities for Coconino Sandstone and the Supai Formation in Case 2D are an average of
the base case and 2C permeabilities. Results of this simulation at ~4 days vary little from the
base case, but heat effects reach ~10 m higher within the fracture zone than in the base case (Fig.
27).

Fracture-zone permeability is increased to 1.0 x 10" m? and porosity to 80% in Case 2E.
Compared to the base case model at ~2.3 days, introducing variability to fracture-zone properties
shows very little impact on general aquifer conditions, but the fracture zone within the aquifer
becomes almost entirely liquid-saturated. Heat and vapor now reach ~105 m depth in the fracture
zone, compared to only ~235 m depth in the base case, and vapor extends into the fracture-zone-
adjacent grid blocks up to ~115 m depth. All blocks above ~285 m maintain ~60% or more
vapor saturation (Appendix C).

Anisotropic permeabilities for the Coconino Sandstone and Supai Formation were tested
in Case 2F (Fig. 28). In this model, permeability for both units was increased by an order of
magnitude in the x-direction. Compared to the base case at ~4.4 days, this simulation shows
pronounced differences in fluid and vapor flow. With increased permeability in the x-direction,
the zone of vapor formation and condensation is wider and shorter, only reaching a depth of
~125 m, increased permeability caused the entire water table to rise ~20 m. Heat effects within
the aquifer are also extended laterally, and overall P and T are slightly lower.

Additional tests were run independently increasing and decreasing country-rock porosity
(Cases 2G and 2H, respectively). An absolute 10% increase of porosity produces a similar result
to the base case at 4.4 days with slight increases in all plotted parameters, while decreasing

porosity has the opposite effect to a similar degree (Appendix C).
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Heat Rate

Heat rate is increased in Case 2J to 1.0 x 10° J/s, and decreased in Case 2K to 1.0 x 10°
J/s, as in the rapid heat injection models. Increasing heat rate produces a simulation that runs for
~2.3 days, and final parameters are shown alongside base case conditions at the same time step
in Fig. 29. The region of grid blocks with increased pressure and temperature is much larger than
in the base case model, but overall pressures are lower. Maximum temperatures are increased
with a higher heat injection rate, with blocks of direct heat injection within the aquifer now
exceeding 300°C, and T, up to 500°C. The bump of saturated blocks above the initial water
table depth in the center of the model occurs rapidly, with blocks of >80% liquid saturation up to
285 m depth. Grid blocks experiencing increased liquid saturation extend as high as 115 m
depth.

The model using a decreased heat rate (Case 2K) creates virtually no change to the
equilibrium conditions by ~4.4 days, with the exception of a very small zone of heated vapor
forming within and around the fracture zone near the top of the aquifer. The model runs for a
total of ~24 days, and by this time produces a large zone of vapor and fluid surrounding the
fracture zone, reaching nearly 15 m from the surface (Fig. 30). Outside of this zone, the

saturation bump above the water table is gradual, but extends to the edges of the model.

Water Table Depth

A higher and lower water table are modeled in Cases 2L and 2M, respectively.
Conditions for the high, standard, and low water table models at ~4.0 days are shown in Fig. 31.
In this sequence, depth to water shows a clear influence on the timing of vapor and liquid

transport, as well as the volume that is moved upward in a short amount of time. With a higher
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water table (315 m), the “plume” of vapor and liquid that is driven up reaches into the Kaibab
Limestone to a depth of 45 m or less, and outside of this region, the bump of saturated blocks
above the equilibrium water table reaches as high as 265 m. Base case water table depth (345 m)
brings the plume down to a peak of ~95 m, and the bump down to ~285-295 m outside this
region. Finally, the lowest tested water table (375 m) only brings the plume to ~185 m depth and
the surrounding bump reaches only ~335 m. From the highest to lowest water table depths, P,
decreases by ~1.5-2.0 x 10° Pa with each model. Maximum 7 decreases with a deepening water
table from ~500°C to ~350°C, but general temperatures throughout the setup appear to only

decrease by ~25-40°C between each model.

Double Fracture Zone

Fracture-zone width is doubled to 40 m in Case 2N, and parameters for this model at ~4.4
days are shown in Fig. 32. Doubling the size of the fracture zone has little effect on general
pressure and temperature conditions, though 7, is dropped to below 400°C. The largest impact
of fracture-zone size is in volume and rate of vapor and liquid transport. In ~4.4 days, a column
of two-phase fluid 120 m wide (including the fracture zone) reaches the Kaibab-Coconino
boundary at 75 m, and a narrowing column continues into the Kaibab up to ~15 m depth. A total
of 1,560 m® of liquid water is brought up above 205 m depth (in the two dimensional space).
Allowing the simulation to continue to ~5.3 days shows a total of 1,780 m’ of liquid water

brought to this depth, or an additional 220 m’ in less than a day.
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No Fracture

Model Case 2P shows slow heat injection into a model with no fracture zone at all. After
~4.4 days, the injection has produced a pronounced bulge in the water table reaching at least 265
m depth. Groundwater in the region of the heat injection itself is completely vaporized, with a
maximum temperature of ~375°C and pressure exceeding 1.2 x 10° Pa. When the simulation is
allowed to continue to ~5.3 days, little to no growth of the saturation dome is seen, but vapor

continues to develop within the aquifer above the injection.
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CHAPTER 4: DISCUSSION

4.1. Rapid vs Slow Heat Injection

The rapid-heat-injection scenarios are designed to show how water and vapor may move
around a super-heated fracture zone, or conduit, during the earliest stages of an eruption. Magma
rise 1s modeled using timed heat injection at high rates into the central high-permeability feature.
If heat is injected all the way to the surface, the TOUGH2/EOS3 simulation terminates after a
very short time as grid blocks dry out and the simulator has trouble converging. In order to
overcome this convergence problem and make the simulator run further in time to show
progressive phase changes and related fluid movement, the model was adjusted to only have heat
injection up to 95 m depth. Note that TOUGH?2 simulations are valid, coupled mass-conserved
solutions for as long as the code converges to the specified convergence criterion. Although
simulations for this study end with failures to converge at different end times, the outputs up to
and at those end times are valid and useful for comparing behavior and understanding processes
of water re-distribution relevant to magma intrusion.

The slow heat injection models are designed to demonstrate thermohydrologic processes
that may occur with the presence of a hot magmatic body in an aquifer, particularly when the
magma approaches and reaches the water table. The modeled water table in the SFVF is
considered deep at ~345 m, but this is shallow in terms of total crustal depth. Most magma
storage chambers are located between ~3-15 km depth, with some identified as shallow as ~2 km
(Browne and Szramek, 2015). It is unlikely that a magma body at a shallow depth of <0.5 km
under low lithostatic pressure would simply stall for a few days without cooling or erupting. It is
therefore necessary when analyzing these non-erupting models to consider that the magma itself

could be stalled much deeper than the maximum depth of this model domain, and that the rate of
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heat injected into the modeled blocks could reflect heat from the magma reaching the shallow
aquifer even if magma is much deeper. These models may also be informative about
thermohydrologic processes at the water table and above during an eruption as magma itself
travels to the surface. None of the associated geomechanical processes are modeled in these
simulations; these processes would produce another set of changes in properties of the country
rock-magma-hydrologic system and should be modeled in future studies.

Rapid-heat-injection models show that liquid water, driven upward as heated vapor, can
quickly condense around the outside of a permeable fracture zone or potential magma conduit
during an eruption. Using the base-case setup for Rattlesnake and Colton Craters, a zone of
condensation reaches 40 to 60 m outside of the 20-m-wide conduit after only ~3 days, and a
region of increased saturation surrounding the fracture zone reaches ~300 m depth, or 50 m
above the equilibrium water table. As eruptions often last days to weeks, or even months, it is
likely that these processes would continue at a similar rate to drive even greater quantities of
water above 200 m depth. The models do not progress further in time due to drying out of grid
blocks and related convergence limitations of the simulator used. Note that these grid blocks
would be filled with magma in the actual system and therefore would not be subject to the “dry
out” condition in an eruption as they are in the modeled system, but would, of course, be the
subject of other dynamic thermo-hydro-mechanical processes.

Slow-moving or stalled magma simulations show similarities to the rapid heat injection
models and are generally able to continue slightly further in time as fracture zone grid blocks are
not dried out as quickly. After only 4-5 days, models with standard initial conditions show that
significant quantities of vapor may be heated and driven upward, with or without the presence of

a fracture zone, to shallower and cooler areas where the vapor is then able to condense. In the
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equivalent large-scale models, a larger heat-injection area at greater depth in the subsurface
produces a visible rise in the level of saturation above the equilibrium water table in just over 8
days, and increased liquid saturation is seen in blocks higher than ~250 m depth. As magma
moves closer to the top of the aquifer in this model, saturation would presumably reach even
higher.

These models are interpreted as providing one possible mechanism for large-scale fluid
transport through the subsurface in areas with a deep water table. Given enough time, magma
rising through the aquifer may drive significant quantities of water to shallow depths in the vapor
phase, where it then condenses and can be temporarily held by capillary forces or within
fractures and voids. When magma then rises quickly toward the surface and erupts, a potentially
large quantity of liquid water may be available at shallow enough depth to produce a sustained,
explosive phreatomagmatic eruption.

The two primary model setups showing rapid heat injection vs slow heat injection are not
necessarily separate processes, and are likely both occurring in a single eruption. The slow
injection setup may occur prior to the first magma reaching the surface, as described, or it could
be an ongoing process that occurs simultaneously with magmatic eruption, with sill and dike
intrusion in the shallow subsurface. While a narrow dike travels through a fracture or conduit to
the surface, the larger rising or stalled magma body at depth can continue to transfer heat to the
surrounding country rock and groundwater. The presented models show that, in many settings,
this can lead to small- to large-scale vapor transport through the subsurface, where water may
condense at cooler temperatures. At any time in an eruption, dikes may branch from the main
conduit through pre-existing or newly opened fractures, where magma may then come into

contact with this transported groundwater and induce MFCI.
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The described thermohydrologic processes are not limited to the specific setup
representing the SFVF. Models show these processes can occur in a range of settings and
subsurface conditions, largely dependent on permeability, fracturing, and time. In general, it
appears that the magmatic heat source must be present near the water table for at least a time of
~3 days to drive significant quantities of water toward the surface. In the rapid heat
injection/ongoing eruption cases, this process is shown as occurring during the eruption and
therefore a “pre-heating” of the subsurface, corresponding to a stalled magma body, is not
considered a necessity. However, the large-scale stalled heat injection model shows that, given
enough time (~8 days in fractured sandstone), a larger and deeper stalled magma body can drive
a much greater quantity of water upward than is seen in the small models. Variations to the

model setups are discussed in detail in the following section.

4.2. Model Variations

Several parameters, including country rock and fracture-zone permeability and porosity,
water table depth, heat rate, and fracture-zone width, were adjusted in the models. Results of
these sensitivity analyses provide insight into how different environments and subsurface

conditions may affect these processes.

4.2.1. Country-rock permeability & porosity

Country-rock parameters for the base case models were chosen based on best estimates or
calculations for the specific units beneath Colton and Rattlesnake Craters. Higher porosity allows
heat and vapor to travel farther up toward the surface in the model, while decreasing porosity
results in overall higher pressure and temperature, containing vapor and heat flow within a

smaller area around the heat injection.
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The calculated Coconino Sandstone permeability is notably high when compared to other
published sandstone permeabilities (Bear, 1988), likely because of its significant fracturing in the
study area. Permeability and porosity values were varied within the base-case model setups to
determine how these parameters influence the observed thermal and hydrologic processes. The
tested “low” permeability values for the Coconino Sandstone and Supai Formation (Cases 1C
and 2C) were calculated using the lower values of hydraulic conductivity reported from nearby
wells. The moderately low permeabilities for these units (Cases 1D and 2D) are the average
between the standard and Cases 1C and 2C permeabilities. These low-end values are most
comparable to moderately fractured or non-fractured sandstone. The tested higher-permeability
values (Cases 1B and 2B) are most similar to a very fine, unconsolidated sand (Bear, 1988).

Country-rock permeability appears to be one of the most important factors in determining
efficiency of the vaporization and water redistribution processes. Increasing permeability by less
than an order of magnitude showed a noticeable effect on the area over which vapor is
transported, producing a much larger “plume” of vapor and condensed liquid than base-case
conditions (Figs. 15 and 26). Decreasing permeability does not produce a substantial vapor
plume at all, but instead results in fluid flow dominantly becoming focused within the fracture
zone, presumably resulting in significantly less liquid water being effectively redistributed to the
shallow subsurface (Figs. 16 and 27).

For a slow-heating scenario, these models suggest that significant water vapor water can
be driven toward the surface prior to or during eruption through a range of highly to moderately
permeable and porous country rocks. The extent of the ascending vapor “plume” decreases with
permeability and porosity, while the amount of time it takes for the plume to be driven upward is

inversely related to these parameters. In highly permeable material like oil reservoir rocks or
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unconsolidated sand and gravel, vapor-flow processes may be greatly increased throughout the
matrix itself. In relatively low-permeability rocks such as fresh (unweathered) sandstone,
limestone, or crystalline rocks, the matrix is likely a poor fluid transmitter. In regions of low-
permeability country rock, the presence of a fracture zone or an otherwise high-permeability
feature appears necessary to allow vapor and water to be driven toward the surface.

In all cases, the presence of fractures can be a major determining factor for volume and
efficiency of fluid flow. In the rapid heat injection models, vapor appears to move through and
condense around the fracture zone itself and within the higher-permeability and porosity country
rocks. In these settings, these processes are assumed to continue within the country rock as the
eruption progresses. Note that the “fracture zone” in these models is conceived as being the
conduit for an eruption that is just beginning or that is ongoing; be it a pre-existing feature or an
opening created by the dike injection itself, it is present in an eruption. Results show that, even in
some regions with low-permeability and porosity country rock, heated vapor may still be driven
upward (at least in the very early stages of an eruption) to possibly condense in cooler regions
outside of the conduit.

The models do not account for the possibility of phase changes or formation of glassy
“chilled margins” along the conduit walls, which could result in a nearly impermeable barrier
between the magma and country rock (Tarff and Day, 2013). While these chilled margins would
likely hinder continued condensation outside the conduit during the eruption, they could be an
effective means for allowing liquid water to exist near the conduit. If the glassy margins are
cooled quickly or if magma recedes, they can then fracture and allow any stored liquid water to

reach the vent.
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With onset of the very first explosions, permeability and porosity conditions in the
subsurface will change significantly. Explosions occurring at any depth brecciate surrounding
country rock, increasing its permeability and porosity. Processes of vapor and fluid transport

would likely also increase in rate and extent as explosions continue.

4.2.2. Fracturing

Fracture-zone permeability was varied based on calculations from field fracture
measurements. Calculated average permeabilities for measured fractures ranged from 10°- 107
m®, using the parallel plate law as previously described. This calculation assumes surficial
fracture aperture is representative for the entirety of its length, and that the fracture is completely
open (no asperities) and free of sediment infilling. Field observation of these fractures showed
that this is very rarely, if ever, the case. For this reason, a maximum permeability of 10”7 m” was
tested for the fracture zone, though this is still considered to be unrealistically permeable.
Porosity was increased to 80% to reflect this increased permeability and/or decreased fracture
fill. When fracture permeability and porosity are increased, the rapid heat simulation only
reaches ~1.2 days before some grid blocks are completely dried out, but results are not
remarkably different from the base case at the same time step.

For simplicity, only a single, central fracture zone was defined in these models. In the
base case, the fracture zone is 20 m wide in the x-direction and the model is 2D; however, the y-
direction is still formally 1 m wide. The fracture zone is generally set up to extend from the top
of the Kaibab Limestone to 425 m depth, within the Supai Formation. As described, fracture
analysis of the Coconino Sandstone and Kaibab Limestone showed significant fracturing in both

units, with larger, vertical fracture apertures typically on the cm-scale. The lateral extent of these
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fractures was impossible to determine or even estimate, but regional mapping of faults and
fractures in the area shows some large-scale features exceeding 20 m (Appendix A); regardless,
the fracture zone in these models is intended to be representative of multiple smaller fractures.
Determining vertical extent of fractures across the contacts between different units was also
problematic, as exposures of Kaibab Limestone and Coconino Sandstone were viewed
separately.

Various fracture-zone heights through and into the different units were tested with several
models, but these did not show significant differences and were therefore not included for
comparisons (e.g., Fig. 13). Fracture zone width was increased to 40 m in simulations for both
heat-injection setups, producing notable results. The slow-heat-injection model with a 40-m-wide
fracture zone shows more than 3x the amount of water brought above 205 m than in the base
case, with vapor reaching as high as 15 m from the surface. These models highlight the
significant effect of having fractures or some high-permeability feature(s) in the subsurface to
increase vapor and fluid flow.

The fracture zone was also excluded altogether in a slow-heat-injection setup, showing an
equally interesting result. Heat injection continued to produce vapor within the aquifer, driving
up the surrounding liquid water and vapor to nearly 250 m depth by ~4.4 days. At the end of the
simulation at ~5.3 days, the vapor-filled region had begun to grow upward, reducing liquid
saturation in the overlying blocks. Though this model did show vapor and fluid movement
toward the surface, continuation of the model likely would have produced a largely vapor-filled

region in the overlying Coconino Sandstone.
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4.2.3. Heat rate

Heat rate (J/s) has been calculated using a number of estimated or averaged variables, and
therefore includes significant uncertainty. Heat rate from magma to country rock is also
presumed to vary during eruption and between different rock types. The calculated “base-case”
heat rate used herein is assumed to be relatively reasonable for these simplified models, but
considering that magma injection is only described by this rate, this parameter is open to
variation.

Increasing and decreasing heat rate by nearly half an order of magnitude produces similar
results to the base case, but at much different rates. A lower heat rate, or what might be more
representative of heat from depth, may take ~2 weeks or more to produce a result similar to what
is seen in ~3-4 days at the base-case heat rate. Conversely, increasing the heat rate by the same
magnitude brings about similar or nearly identical results to what is seen in the base-case models
in ~1.5-2 fewer days. The models with a higher heat rate are probably most similar to actual
direct heat from magma at very shallow depth immediately prior to eruption, while lower heat

rates are likely most comparable to a magma body at depth.

4.2.4. Water-table depth

Depth to the water table was tested based on the ranges of estimated water-table depths
for both Rattlesnake and Colton Craters (~315-375 m). Results of these simulations showed that
the same vapor transport and condensation processes can still occur over a range of water-table
depths, but over much different time scales. These processes are best observed in the slow heat
injection models (Fig. 31). Raising the water table produces a larger plume of vapor and fluid

transport in just 3.9 days than the base case model does in nearly 4.5 days, while vapor in the

55



lower water-table model only just starts to exceed 200 m depth after the same amount of time.
Based on these results, areas with even deeper aquifers are likely to only experience sustained
phreatomagmatic eruptions if a heat source is present for a long period of time, or if permeability
and porosity are at least as high as the base case setup for modeling the SFVF. By contrast, these
methods could provide another explanation for prolonged phreatomagmatic eruptions in areas

with shallower aquifers.

4.3. Colton and Rattlesnake Craters: Eruptive Scenarios

4.3.1. Colton Crater

The eruption of Colton Crater was dominated by Strombolian activity, producing a large
cinder cone. At some point late in the eruption, this dry eruptive activity was interrupted when
magma encountered a source of liquid water, and the resulting large explosions blew away much
of the existing cinder cone. The eruption then quickly dried out again following this activity,
producing a small cinder cone inside the crater.

The source of the water and how it reached the magmatic vent remains uncertain.
Evidence of northeastward vent migration is preserved in the deposits, suggesting that perhaps
the vent intersected a water-filled fracture in the Kaibab or Coconino Formations. The
phreatomagmatism was near the end of the eruption, so it is also possible that magma flux had
begun to wane and allowed water in the country rock to flow toward the vent rather than driving
it away as vapor during eruption. For either scenario, the water could have either been driven
upward by the processes described in these models, or it could have been existing perched water

in the Kaibab Limestone.
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Thin-section analysis may provide clues to determining explosion depths, but
interpretation is based on size and rounding of quartz grains and includes significant uncertainty.
The sample from the lowest studied portion of the tuff deposit (CL) contains the highest
percentage of quartz grains of the three samples, interpreted as primarily Coconino Sandstone.
Thin section CM contains significantly less quartz in general, but grains are interpreted as
primarily Coconino Sandstone with a minor amount of finer grains that may be from the Upper
Supai Formation or the Kaibab Limestone. The uppermost section again appears to contain a
high proportion of grains from the Coconino Sandstone and above, as well as a significant
portion from the Supai Formation (including a single lithic fragment). These interpretations
suggest that first explosions occurred in the Upper Coconino or higher and progressively
deepened into the Supai Formation, but this interpreted increase in abundance of deeper grains in
later deposits could also be a result of material recycling within the diatreme taking time to bring
them up.

The rapid heat injection models are designed to be most representative of Colton Crater’s
eruption. In this model, heat is shown traveling through an existing conduit, imitating an ongoing
eruption. Cutting off the heat injection at 95 m depth is not representative of realistic eruptive
behavior, but was implemented to allow the simulation to continue further in time. The focus of
the simulation is observing fluid motion and thermohydrologic processes beneath the surface; of
less importance is the observation of magma reaching the surface without interaction with water.
Therefore, we assume the “magma,” or heat source, is continuing to the surface in these models.

Using standard parameters to represent the subsurface beneath Colton Crater, rapid heat
injection models show water vaporizing and moving around the heat source in just over three

days. Above the heat source, a bulge of liquid water is driven upward by vaporization,
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mimicking the shape of the intrusion. Water also condenses around the conduit throughout
“eruption.” Heat within the aquifer vaporizes water, which then rises through the conduit or
permeable country rock and condenses at some distance away from the heat source (in this case,
only 10-20 m distant). Considering the abundance of fractures throughout the Coconino and
Kaibab Formations, it stands to reason that even larger quantities of vapor and liquid water could
be transported and stored at shallow depth than is seen in the idealized model scenarios.

If the models were continued further out in time with no changes to the setup, these
processes would presumably continue to drive even greater quantities of water upward to
shallow depths. The observed processes may therefore provide one possible mechanism for
providing shallow liquid water for the Colton Crater eruption (Fig. 33). The limited volume of
phreatomagmatic tephra present in the Colton Crater deposits suggests this period of activity
likely did not involve a large quantity of liquid water, and it is also possible that pre-existing
meteoric water was stored in fractures or voids within the Kaibab Limestone. If Colton Crater’s
phreatomagmatism happened coevally with vent migration, this could have led to magma
intersecting with either source of water. If not concurrent with vent migration,
phreatomagmatism may have occurred as a result of waning or stalled magma flux, or even
descending magma, permitting water flow toward the vent. In either case, the interacting water
could have been present in a perched aquifer prior to the eruption or it could have been driven up
during the eruption. Rather than answering with any certainty the question of where the liquid

water in the Colton Crater eruption came from, the models instead provide another possibility.
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4.3.2. Rattlesnake Crater

The Rattlesnake Crater eruption appears to have started with a brief period of dry
Strombolian activity, but little of the initial cinder cone remains. Most of the eruption involved
repeated phreatomagmatic explosions over a period possibly lasting weeks to months, followed
by another dry stage that built a small cinder cone on the southeastern crater rim. The crater and
scoria cone sequence is elongated NW-SE, consistent with regional faulting.

The two analyzed sections from Rattlesnake Crater deposits are very similar. Both are
interpreted as containing primarily quartz grains from the Coconino Sandstone and Kaibab
Limestone, with smaller proportions of grains from the Upper Supai Formation. Calcite grains
may be interpreted as Kaibab Limestone, but most of the calcite appears to be secondary
precipitation. Of particular interest in each of these thin sections is the size of plagioclase and
pyroxene crystals in juvenile clasts. In RL, these plagioclase and pyroxene phenocrysts are as
large as 1.2 mm and 1.5 mm, respectively. These crystals could indicate a period of shallow
magma residence prior to eruption.

Rattlesnake Crater’s eruption might have begun similarly to either model scenario, or
could have been more of a combination of the two. With the onset of a dry eruption, behavior
was likely most similar to the rapid heat injection model with magma rising quickly to the
surface and driving away water as steam, rather than interacting with it. The presence of magma
below the water table for a prolonged period likely vaporized aquifer water, which moved
toward the surface to condense at shallow depths around the conduit. When the eruption
transitioned to phreatomagmatic activity after a short time, a significant quantity of water would
have been emplaced in the shallow subsurface and available for sustained, efficient MFCI (Fig.

34).
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It is impossible to know the sequence of these events, i.e., whether or not the water was
being transported before or after first eruptive activity. It is plausible that the magma stalled at
some depth before eruption and began the vapor-transport processes early on, but that magma
found a fracture and a small volume quickly ascended without interacting with water to begin the
dry eruption. A non-erupting crustal dike injection like this may not be unrealistic for the SFVF;
analysis of a 2009 seismic swarm near Sunset Crater, for example, suggested possible mid- to
lower crustal magma movement in this area (Brumbaugh et al., 2014). As magma continued
heating the aquifer below during eruption, it could have driven greater and greater volumes of
vapor and water upward to condense at shallower depths. Any branching dike or vent migration
could have resulted in magma intruding into the now partially saturated Coconino Sandstone,
producing MFCI and beginning the phreatomagmatic activity. Considering that the
phreatomagmatic phase of the eruption continued for a long period of time, and thus required a
large volume of shallow water, this seems to be the more likely sequence of events.

Data for the nearest well to Rattlesnake Crater was discovered late in the writing stage of
this thesis. Based on these data, the water table beneath Rattlesnake is estimated to be ~315 m
deep. The base-case groundwater depth of 345 m is therefore considered to be an upper limit for
Rattlesnake Crater during its eruption, while the simulations using a “high” water table at 315 m
(Cases 1L and 2L) are likely the most representative of actual conditions. As shown in these
simulations, a higher water table produces more rapid and widespread vapor transport and
condensation throughout the subsurface units. This could also help to explain how a seemingly
larger amount of water was made available for this eruption as compared to Colton Crater.

As first explosions occurred, country rock would have been brecciated and mixed with

juvenile material and condensed water. Repeated explosions created a diatreme and feeder dikes

60



probably deviated many times within the permeable diatreme fill, which led to repeated
explosions from many locations within the diatreme. For a simplified demonstration of this
process, the formation of the diatreme is modeled to a depth of 710 m, using a growing region of
high permeability to demarcate the diatreme shape (Fig. 35). This is not considered
representative of the entire diatreme beneath Rattlesnake Crater, as geophysical analysis
indicates that it extends to at least 800 m and possibly as deep as ~3 km (Marshall et al., 2015).

The diatreme growth model does not progress very far in time, but shows that water and
vapor can quickly move around the high-permeability diatreme structure. The first model (Case
3A) shows heat injection from the base of the large model up to 95 m depth within the fracture
zone. The subsequent model includes a zone of high permeability in the center of the model up to
the new saturation limit (Case 3B), representing a region of brecciated country rock where first
explosions might have occurred, and the last step shows a large, high-permeability diatreme
structure (Case 3C).

After just over 20 minutes in the final simulation, vapor and liquid water have begun to
spread out to the walls of the diatreme and to the surface. With water quickly placed in many
locations throughout the permeable diatreme fill, deviating dikes can continue to produce
explosions and enlarge the structure. This model suggests that, once explosions begin, magmatic
heat may then help perpetuate phreatomagmatic eruptions by driving large volumes of water
vapor to shallow locations for strong explosions. Rather than explosions simply depleting the
water source, they may help to increase the volume of available water by increasing rock
permeability. This concept should be explored further; these models do not account for water
physically moved around in explosions, nor do they model any geomechanical deformation or

fracturing processes.
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4.4. Application

The observed results of these modeled scenarios may help to explain different eruptive
behaviors that have been recorded in eruptions around the world. As described, the process of
vaporization and related upward transport and condensation could provide shallow water to
phreatomagmatic eruptions in locations similar to the SFVF, where the water table is deep and
well below the estimated ideal depth for tephra-producing explosions. Areas with moderately
permeable and/or highly fractured country rock may be particularly susceptible to the
development of phreatomagmatic activity where otherwise dry eruptions may be typical.

These processes are likely also at work in locations where the water table is not
considered deep, and may be partly responsible for perpetuating eruptions that would otherwise
“dry out” relatively quickly. Conceptual models of maar-diatreme formation often show a
depleting water source or a cone of depression in the water table that forms within the diatreme
as explosions continue to use up water (Lorenz, 1986). This scenario may occur in locations
where country-rock permeability prevents rapid groundwater recharge to the diatreme. However,
the TOUGH2 models show that movement of vapor and liquid water within and around the
permeable diatreme, driven by the heat itself, could prevent rapid drying out by providing water
to many locations throughout the subsurface (Fig. 36). If a “plume” of heated vapor is able to
infiltrate the shallow subsurface, associated condensing water may become stored in pore spaces
and fractures at shallow, cooler depths. As explosions occur and a high-permeability diatreme
grows, vapor transport and condensation processes occur would much more rapidly and
potentially throughout the entire permeable area. In this way, liquid water may then become
stored in many locations within and surrounding the diatreme, where explosions can then occur

with the rapid ascent and intrusion of intra-diatreme dikes. Upward movement of water within
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the diatreme has often been attributed to debris jets and recycling of material with explosions,
processes that certainly occur and likely provide some shallow water for explosions. The amount
of water capable of being moved around via explosive transport is difficult to quantify and
presumably somewhat small. The modeled processes appear to be capable of larger-scale liquid
and vapor transport during and prior to eruption than would be expected by these methods,
especially in situations where magma may reside at a shallow depth for days to weeks. In this
way, phreatomagmatic explosions may be perpetuated for a longer period of time than would be
possible if the water source simply dried out.

The models may also explain phenomena like what occurred in 1759 in the first few
weeks of the El Jorullo eruption, where hot mud poured out of springs and hillsides as phreatic
and phreatomagmatic explosions occurred at the vent (Gadow, 1930). In models with highly
permeable subsurface material, the wide plume of vapor and water reaches shallow depths in just
a few days even with a deep water table. If groundwater depth is ~100-200 m deep, this time
could be reduced to less than a day—especially if water and vapor follow fractures and springs
(Fig. 36). The mud flows at El Jorullo started at approximately the same time as explosions at the
vent, suggesting that the presence of magma in the shallow subsurface even during eruption was
enough to continue heating groundwater and driving it toward the surface; this behavior is
essentially represented by a combination of the two primary model setups presented. Locations
with a comparable subsurface to that below El Jorullo could likely experience similar hazards
prior to or early on in an eruption. The occurrence of this type of phenomena could also provide

clues about the size of the shallow magma source in an eruption
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4.4.1. Limitations and further questions

The application of iTOUGH2/EOS3 (as a means of running the forward model
TOUGH2/EOS3) in studying pre- and syn-eruptive processes of shallow volcanic systems is not
common. The software is uniquely capable of providing detailed simulations of thermohydologic
processes, but is not optimized to model the flow processes of heat and “dry” air; i.e., when grid
blocks of the mesh are superheated to the point of losing all liquid and water vapor, the software
often begins to converge poorly, resulting in very small time steps, and ultimately the simulation
cannot continue further in time. This is a limiting factor in progressing eruption simulations far
beyond the point of magma first reaching the surface or beyond the development of brecciated,
high-permeability zones in the country rock as a result of MFCI explosions. Continuation of the
models could be beneficial in understanding the situations at hand, but the models shown are
considered to be informative in demonstrating possible scenarios for moving liquid water closer

to the surface prior to eruption with the presence of a large heat source within the deep aquifer.
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CHAPTER 5: CONCLUSIONS

A series of pre-eruptive and early eruption simulations created using TOUGH2/EOS3
shows two possible scenarios for producing phreatomagmatic activity at Colton Crater and
Rattlesnake Crater in the SFVF of northern Arizona. Each volcano is underlain by fractured,
permeable Permian sedimentary units, and the current water table at each is estimated to be
~315-380 m deep. This groundwater depth is far below the ideal depth of <100 m and the typical
maximum depth of ~200 m for large, tephra-producing phreatomagmatic explosions. The water
table is interpreted to have also been deep and close to the current level at the time of the
eruptions.

Two-dimensional models produced using estimated country-rock parameters appropriate
to the two study sites and a single 20-m-wide high-permeability fracture zone show that stalled
or slow magma ascent prior to eruption can drive a significant quantity of water toward the
ground surface as heated vapor, which then condenses to liquid water upon reaching cooler
temperatures at shallower depths. In just over 4 days, an additional ~270 m® of liquid water is
emplaced above a depth of 205 m in this two-dimensional scenario. This volume is specific to
the 1-m-wide 2D system simulated here, and actual volumes of mobilized water in natural 3D
systems could be 2-3 orders of magnitude larger. With liquid water placed in the shallow
subsurface, rapidly ascending magma at the onset of eruption can initiate explosive MFCI to
drive a phreatomagmatic eruption.

Rapid heat-injection models intended to imitate an initially dry eruption show that,
immediately prior to and in the very early stages of an eruption, vapor can quickly be brought up
and condense just outside the conduit. Any branching dike or vent migration could then initiate

MEFCI explosions. These model simulations terminate in ~3.3 days due to poor convergence of
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the simulator, but these processes likely continue to occur and drive greater amounts of water
toward the surface throughout an eruption.

In both modeled scenarios, increasing permeability, porosity, and/or fracture density can
increase the rate at which these processes occur, as well as the total volume of transported fluid.
A higher water table has the same effect, while a lower water table requires more time to produce
similar results. Large-scale models with stalled heat injection in the bottom portion of the aquifer
show that saturation can be driven up to ~250 m within only ~8 days; with subsequent magma
ascent, this saturation would likely be driven even higher.

Rattlesnake Crater’s eruptive activity may have been driven by a combination of the two
model scenarios. Stalled magma at depth could have driven a large volume of liquid water into
the shallow subsurface prior to eruption and/or simultaneously with the small-volume dry
eruption. Slight vent migration or a branching dike could have then interacted with this shallow
water, producing explosions. As repeated explosions continue to brecciate country rock and
increase subsurface permeability, vapor and fluid transport processes likely continue to occur
even more rapidly throughout the growing diatreme. Debris jets and recycling within the
diatreme may also contribute to the continued supply of liquid water for MFCI. The eruption
appears to have eventually dried out, possibly due to exhaustion of the water source or vent
migration away from perched water.

The eruption of Colton Crater probably looked similar to the rapid heat injection
scenarios. The eruption began with sustained Strombolian activity, interrupted by brief, late-
stage phreatomagmatic explosions. Throughout the dry eruptive activity, vapor water could have
been driven up nearer to the surface to condense outside of or away from the main conduit. Vent

migration to the northeast may have resulted in MFCI if magma intersected this transported
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liquid water, or explosions may have occurred as a result of decreased magma flux allowing
water to flow toward the vent. The brief nature of this phreatomagmatic stage suggests that only
a small amount of liquid water was available to interact with the magma in this location, and the
eruption again dried out in its final stage.

The described models are not intended to conclusively describe the sequence of events
for either the Rattlesnake or Colton Crater eruption, but to provide one possible mechanism for
producing phreatomagmatic eruptions in areas with deep aquifers. Colton Crater’s wet activity
might have instead been driven by perched water already present in the shallow limestone,
providing another set of possibilities for its eruption. Rattlesnake Crater’s eruption could have
also been partially driven by water from perched aquifers, or the water table could have been
somewhat higher at the time of eruption than it is today (though a significant increase is not
believed to be likely).

This study not only shows how maars may form in areas with initially deep water tables,
but the same processes demonstrated in the models can also help explain how water is
continually supplied to the upper diatreme in locations with relatively shallow groundwater, but
where a cone of depression forms in the water table throughout an eruption. Rapid, large-scale
vapor transport and condensation can also explain the voluminous outpouring of hot, muddy
water that occurs with eruptions at some volcanoes. Future investigation of these processes in
locations of interest could be bolstered by experiments, geophysical analysis of subsurface
fracturing and structure, and/or detailed larger-scale modeling including geomechanical

processes and potentially eruption processes.
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FIGURES

Post-eruptive diatreme sequence

Maar rim

Vent fill

Bedded upper diatreme
deposits

Mixed diatreme fill

Intra-diatreme dikes

Country rock breccia

Figure 1: Schematic diagram of common post-eruptive diatreme sequence. Poorly-sorted

diatreme fill consisting of country rock, pyroclastic deposits, and magma fills much of the

diatreme, possibly overlain by bedded, slumped pyroclastic deposits in the upper diatreme.
Deeper explosions brecciate country rock around the base of the diatreme.
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Figure 2: Modern conceptual model of maar-diatreme formation from Valentine and White
(2012). Explosions may occur at any depth below the critical pressure of water, though shallower
explosions are generally most efficient. The water table is probably maintained at a constant
level throughout eruption, but debris jets and upward recycling within the diatreme may also
assist in moving water through diatreme fill. MFCI = molten fuel-coolant interaction.
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Figure 3: Study area map showing the locations of Colton Crater and Rattlesnake Crater within
the northeastern San Francisco Volcanic Field, northern Arizona. Locations of Kaibab Limestone
and Coconino Sandstone outcrops where fracture measurements were taken are also identified,
as well as locations of nearby wells. Image: Google Earth.
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Figure 7: Wooden tool measuring 1 m* constructed for fracture analysis, pictured against an
outcrop of Kaibab Limestone. All fractures within the square were measured.
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Figure 8: Field sites for fracture measurements. (A) San Francisco Wash, north wall; (B)
Farthest north study site, near Colton Crater; (C) San Francisco Wash, south wall; (D) Inner
graben north of Colton Crater.
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Figure 9: Selected fracture measurement outcrops showing variability within the Kaibab
Formation. Some sites are dominated by small-scale fractures and dissolution features, while
others primarily contain larger fractures and partially open bedding planes. (A) Site RK10 in a
shallow wash SSE of Rattlesnake Crater; (B) Site RK1, the uppermost studied section on the
south side of San Francisco Wash; (C) Site CK3 at the far north end of the graben north of
Colton Crater; (D) Site RK8 on the south wall of San Francisco Wash. Voids are common within
the formation.
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Figure 10: Field photographs of Coconino Sandstone in Walnut Canyon. (A) Section containing
large-scale vertical fractures; (B) Closer view of the left-most vertical fractures in A (outlined),
Brunton compass for scale; (C) View of a large-scale vertical fault; (D) Uppermost studied
section of Coconino. Some subhorizontal bedding planes may be sufficiently open to serve as
fluid conduits.
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Surface

Kaibab

75 m

350 m

425m

Y
600 m

Figure 12: Schematic diagram showing the setup for rapid timed heat injection. The magma at
the base is approximately 360 m wide, tapering up to 60 m wide at the water table, and 20 m
wide within the fracture. In most models, heat injection is terminated at 100 m depth, though

some extend to the surface (light orange).
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Surface

Kaibab
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Y
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Figure 22: Schematic diagram showing the standard setup for constant-rate, slow heat injection
models. In the small models, the magma source is 360 m wide at the base and 60 m wide at the
water table.
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Ground
Surface

Kaibab
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Figure 24: Schematic diagram showing the large mesh, slow heat injection setup. (a) indicates
the area of direct heat injection for the model at standard conditions and the first step of the
series of injections at a decreased heat rate. (b) is the added zone of heat injection in the second

step of the low heat model, and (c) is added in the final step. Fracture extent is indicated by the
dashed gray line into zone (c¢).
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Stage 1 Stage 2a Stage 2b

Cinder cone : Phreatomagmatic
formation explosions

Figure 33: Schematic diagram showing possible scenarios for the eruption of Colton Crater. The
eruption started with Strombolian activity, building a large cinder cone (Stage 1).
Phreatomagmatic explosions may have been caused by vent migration meeting pre-existing
perched water (Stage 2a) or water that had been driven up as vapor throughout eruption (Stage 2b).
Water from either source could have also flowed into the vent as a result of declining or stalled
magma flux.
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Stage 1 Stage 2 Stage 3

Possible brief
pre-heating
Small cinder -

-
cone formation -

Phreatomagmatic
explosions

Kaibab LS

Figure 34: Schematic diagram showing possible eruptive activity of Rattlesnake Crater. The
eruption began with a brief dry period (Stage 1). The presence of a magma body near the water
table may have driven up a large quantity of vapor and condensed water prior to or during eruption
(Stage 2), which could then interact with branching dikes to begin phreatomagmatic explosions
(Stage 3).

107



35A

Surface D W W)
N, 7’
Kaibab
\\
75 m \\ = /'
N, ’
. F V4
ractur 2 .
™., acture " Coconino
. zone — > &
N\, 7’
3A ) 3¢/
i S T T High-k zone
Equilibrium \\ L 3B e //
N, Pt . S~
N <] High-k zone>> S
350m CHe S A4

710 m

1
1200 m

Figure 35: (A) Simplified schematic diagram showing changes to initial conditions of each step
of the progressive diatreme growth simulation. Case 3A is started at equilibrium (B) Pressure,
temperature, and gas saturation for a simplified model of progressive diatreme growth. Case 3A
(top) shows magma injection up to 100 m depth after ~4.4 days. Case 3B (middle) is a
continuation of Case 3A, but with a zone of high permeability added to represent explosions
occurring near the raised water table. Case 3C (bottom) is a continuation of Case 3B with a
large-scale, high-permeability diatreme structure.
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El Jorullo Cone of depression

Phreatic and
phreatomagmatic
explosions -

-

Figure 36: (Left-hand side) Schematic demonstrating possible syn-eruptive vapor and liquid
water transport driving the surficial mud flows around El Jorullo. A plume of heated vapor and
associated condensing water could saturate permeable subsurface material prior to and during an
eruption, forming mud that is then driven out of the ground through fractures and springs.
(Right-hand side) The modeled processes may help drive shallow explosions in locations where
the water table itself is depleted throughout an eruption. Upward vapor transport may provide
shallow liquid water to many locations throughout the diatreme and surrounding area, which can
then interact with intra-diatreme dikes and produce explosions.
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Figure A-1: Geologic cross sections near Flagstaff, AZ. From Bills et al. (2000).
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Water-level data for wells near Flagstaff, Arizona
[Wells are in order by well-reference number. Dashes indicate no data]
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Estimated hydraulic properties from numerical-model simulations at test-well sites 1, 2, and 3 near Leupp, Arizona

[(gal/min)/ft, gallons per minute per foot of drawdown; ft*/d, foot squared per day; ft/d, foot per day; NC, not calculated; ft-1, per foot. Specific-capacity values
were determined during constant-rate aquifer test]

Hydraulic property Site 1 Site 2 Site 3
Specific capacity, (gal/min)/ft 2 75 24
Transmissivity, ft*/d 7,000 18,000 5,400
Hydraulic conductivity of Coconino Sandstone, ft/d 28 42 11
Hydraulic conductivity of Schnebly Hill Formation, ft/d NC S5 2
Hydraulic conductivity of interfingered of the 8 .04 9

Coconino Sandstone/Schnebly Hill Formation, ft/d

Hydraulic conductivity of Upper Supai Formation, ft/d 'l NC 2
Specific yield, dimensionless .06 .08 .05
Specific storage, ft-1 2x10° 2x10° 2x10°
Vertical-to-horizontal anisotropy, dimensionless 5 12 17

'Estimated on the basis of results from site 3.

Table A-3: Estimated hydraulic properties from numerical-model simulations for wells near
Leupp, Arizona. From Hoffman et al. (2006).
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Arizona GroundWater Monitoring Site Hydrograph

Longitude  Alt. (ft Well Case Latest WL DTW

Local ID Site ID Registry ID Latitude NAD27 NAD27 amsl) Water Use Depth (ft) Dia.(in) Drill Date Date () WL Elv. (ft)
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GWSI is ADWR's technical database of well locations, construction data, and water levels. Created on 10/12/2017

Figure A-2: Hydrograph showing depth to groundwater at a well ~12.5 km west of Colton
Crater. From ADWR (2017).
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Arizona GroundWater Monitoring Site Hydrograph

Longitude  Alt. (ft Well Case Latest WL DTW

Local ID Site ID Registry ID Latitude NAD27 NAD27 amsl) Water Use Depth (ft) Dia.(in) Drill Date Date () WL Elv. (ft)
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GWSI is ADWR's technical database of well locations, construction data, and water levels. Created on 10/12/2017

Figure A-3: Hydrograph showing depth to groundwater for a well ~12.9 km WSW of Colton
Crater. From ADWR (2017).
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Arizona GroundWater Monitoring Site Hydrograph

Longitude  Alt. (ft Well Case

5 - . , Latest WL DTW
Local ID Site ID Registry ID Latitude NAD27 NAD27 amsl) Water Use Depth (ft) Dia.(in) Drill Date Date () WL Elv. (ft)
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GWSI is ADWR's technical database of well locations, construction data, and water levels. Created on 10/12/2017

Figure A-4: Hydrograph showing depth to groundwater for a well ~11.3 km ENE of Colton
Crater. From ADWR (2017).
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DEPARTMENT OF WATER RESOURCES
99 EAST VIRGINIA AVENUE
PHOENIX, ARIZONA 35004

REGISTRATION OF EXISTING WELLS

READ INSTRUCTIONS ON BACK OF THIS FORM BEFORE COMPLETING
PRINT OR TYPE — FILE IN DUPLICATE

I3
FOR OFFICE USE ONLY
S0/678
REGISTRATION FEE (CHECK ONE) RECISTRATION No. Pt I
FILE No.f/ﬂ/““/p) é 50(7
EXEMPT WELL (NO CHARGE) ] FiLeD. é/f’z/ ar /‘W
NON-EXEMPT WELL — $10.00 O oATE) (i)
N —
“\Tr rre qnnq M -
1. “Name of Rgglstrant i )
Cotllian  F 1900y
/398 & Sdcovies PHy A2 gS0/¢
(Address) (City) (State) (Zip)
2. File and/or Control Number under previous groundwater law:
35-
(File Number) (Control Number)
3. a The well is located within the S % S& % NWw %, Section __ /6

of Township 2 N/, Range /& EA% G & SRB & M, in the

County of _CoCom a0

b. If in a subdivision: Name of subdivision
Lot No. , Address

4. The principal use(s) of water (Examples: irrigation - stockwater - domestic - municipal - industrial)
StTocK waTsR &  DoriessT /e

5. If for irrigation use, number of acres irrigated from well

6. Owner of land on which well is located. If same as Item 1, check this box w

(Address) (City) (State) (Zip)

7. Well data (If data not available, write N/A)

a. Depth of Well /) O%0 feet
b. Diameter of casing 8 inches
c. Depth of casing MNA feet
d. Type of casing NV A .
e. Maximum pump capacity ng /'U";) gallons per minute.
f. Depth to water 10496 feet below land surface.
g. Date well completed MA
TMonthi " (Day) ~(Year)

8. The place(s) of use of water. If same as item 3, check this box m
% % %, Section Township Range

Y Y% %, Section Township Range

Attach additional sheet if necessary.

9. DATE ?A] /€4  SIGNATURE OF REGISTRANT %% %/

Figure A-5: Registration form showing depth to groundwater at a well <1.5 km SW of
Rattlesnake Crater.
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Table B-2: Fracture measurement data for Kaibab Limestone outcrops near Colton Crater,
Arizona. Gray indicates uncertainty in measurement or recording.

Fracture Data: Kaibab Limestone near Colton Crater

. . Aperture (cm Fracture Permeability
Quicrop Strike Dip Length (em) Min Max Avg Min (cm) [Max (cm) Avg (cm”2) Avg (m”2) Notes
CK1 131 SV 254 0.6 0.8 0.7 0.03 0.05 0.04 4.08E-06
7/22/16 - - 33.02 - - 9 - - - - void
SP Graben-outer |- -- 254 1.2 1.2 1.2 0.12 0.12 0.12 1.20E-05
- - 10.16 1.5 1.5 1.5 0.19 0.19 0.19 1.88E-05
First measurements |-- - 6.99 2 2 2 0.33 033 033 3.33E-05
No Brunton - - 8.89 7.5 7.5 7.5 4.69 4.69 4.69 4.69E-04
- - 9.4 0.6 0.6 0.6 0.03 0.03 0.03 3.00E-06
- - 6.35 0.7 0.7 0.7 0.04 0.04 0.04 4.08E-06
- - 13.72 2 2 2 033 033 033 3.33E-05
- - 432 0.2 0.9 0.55 0.00 0.07 0.03 2.52E-06
- H 55.25 0.5 0.7 0.6 0.02 0.04 0.03 3.00E-06
- v 54.61 0.1 0.3 0.2 0.00 0.01 0.00 3.33E-07
- - 9.53 0 0.1 0.05 0.00 0.00 0.00 2.08E-08
- - 10.8 0.1 0.1 0.1 0.00 0.00 0.00 8.33E-08
- - 5.72 0.1 0.1 0.1 0.00 0.00 0.00 8.33E-08
- - 4.47 0 0.1 0.05 0.00 0.00 0.00 2.08E-08
-- - 4.19 0 0.1 0.05 0.00 0.00 0.00 2.08E-08
- - 8.89 0 0.1 0.05 0.00 0.00 0.00 2.08E-08
- - 8.89 0 0.1 0.05 0.00 0.00 0.00 2.08E-08
- - 8.89 0 0.1 0.05 0.00 0.00 0.00 2.08E-08
- - 14.61 0.4 0.4 0.4 0.01 0.01 0.01 1.33E-06
- - 10.16 0.4 1.76 1.08 0.01 0.26 0.10 9.72E-06
Strike/Dip min: -- - Aperture min: 0.00 Average k min: 2.08E-08
Max: -- -- Max (excluding voids): 7.50 Max: 4.69E-04
Average: -- - Average: 0.93 Average: 2.83E-05
Mode: -- -- Mode of averages: 0.05 Mode: 2.08E-08
CK2 - 8 100 0.70 0.8 0.75 0.04 0.05 0.05 4.69E-06  [Primarily vertical/ subvertical fractures
7/22/16 - - 51.435 0.7 0.9 0.80 0.04 0.07 0.05 5.33E-06 |Highly weathered, surface exposure
SP Graben-inner ~ |-- - 12.065 0.7 0.7 0.70 0.04 0.04 0.04 4.08E-06 |3
- - 100 1.7 1.7 1.70 0.24 0.24 0.24 241E-05 |4
- - 16.51 0.7 0.7 0.70 0.04 0.04 0.04 4.08E-06 |4a
- - 6.604 1 1 1.00 0.08 0.08 0.08 8.33E-06 |5
- H 100 2.5 35 3.00 0.52 1.02 0.75 7.50E-05 |6
- - 17.78 0.7 0.7 0.70 0.04 0.04 0.04 4.08E-06 |7
- - 39.37 0.4 0.4 0.40 0.01 0.01 0.01 1.33E-06 |8
- - 10.16 0.3 03 0.30 0.01 0.01 0.01 7.50E-07 (9
- - 10.795 0.2 0.2 0.20 0.00 0.00 0.00 3.33E-07 |10
- - 10.795 0.1 0.1 0.10 0.00 0.00 0.00 8.33E-08 (11
- - 10.16 0.4 0.4 0.40 0.01 0.01 0.01 1.33E-06 |12
- - 7.62 0.05 0.05 0.05 0.00 0.00 0.00 2.08E-08 |13
- - 5.588 0.05 0.05 0.05 0.00 0.00 0.00 2.08E-08 |14
- - 14.605 0.05 0.05 0.05 0.00 0.00 0.00 2.08E-08 |15
- - 5.08 0.05 0.05 0.05 0.00 0.00 0.00 2.08E-08 |16
- - 6.985 0.05 0.05 0.05 0.00 0.00 0.00 2.08E-08 |17
- - 5.08 0.05 0.05 0.05 0.00 0.00 0.00 2.08E-08 |18
- - 5.08 0.05 0.05 0.05 0.00 0.00 0.00 2.08E-08 |19
- - 9.525 0.05 0.05 0.05 0.00 0.00 0.00 2.08E-08 |20
Strike/Dip min: -- - Aperture min: 0.05 Average k min: 2.08E-08
Max: -- - Max (excluding voids): 3.50 Max: 7.50E-05
Average: -- - Average: 0.53 Average: 6.37E-06
Mode: -- -- Mode of averages: 0.05 Mode: 2.08E-08
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Table B-2 (cont.)

. . (cm) Aperture (cm) Fracture Permeability
Quicro Sirike Dip Length (em Min Max Avg Min (cm) |Max (cm)  Avg (cm”2) Avg (m"2) Notes
CK3 300 86 55.5 5.5 8 6.75 2.52 5.33 3.80 3.80E-04 |I1-- see image
8/8/16 300 86 12 0.1 0.1 0.1 0.00 0.00 0.00 8.33E-08 |la
North Graben 298 SV 70 0.1 0.3 0.2 0.00 0.01 0.00 3.33E-07 |Ib
300 sV 13 0.1 0.1 0.1 0.00 0.00 0.00 8.33E-08 | lc-- discontinuous
290 67 35 0.1 0.2 0.15 0.00 0.00 0.00 1.88E-07 [1d
285 72 15 0.1 0.1 0.1 0.00 0.00 0.00 8.33E-08 |2
283 \ 13.5 0.2 0.5 0.35 0.00 0.02 0.01 1.02E-06 (3
302 \ 7 0.1 0.2 0.15 0.00 0.00 0.00 1.88E-07 |4
308 v 10 0.2 0.2 0.2 0.00 0.00 0.00 3.33E-07 |5
305 \% 15.5 0.2 0.2 0.2 0.00 0.00 0.00 3.33E-07 |6
312 74 10.5 0.1 0.1 0.1 0.00 0.00 0.00 8.33E-08 |7
312 74 4 0.1 0.1 0.1 0.00 0.00 0.00 8.33E-08 |7b
308 A% 11 0.1 0.2 0.15 0.00 0.00 0.00 1.88E-07 (8
326 Vv 86 0.2 0.3 0.25 0.00 0.01 0.01 5.21E-07 |9
292 sV 15 0.3 0.9 0.6 0.01 0.07 0.03 3.00E-06 |10
286 \Y% 11 0.2 0.3 0.25 0.00 0.01 0.01 5.21E-07 |11-- Part <0.1 aperture
300 \ 53 0.1 0.5 0.3 0.00 0.02 0.01 7.50E-07 |12
304 \4 45.5 0.05 0.1 0.075 0.00 0.00 0.00 4.69E-08 (13
294 \% 20 0.1 0.2 0.15 0.00 0.00 0.00 1.88E-07 (14
292 \ 27 0.05 0.1 0.075 0.00 0.00 0.00 4.69E-08 (15
295 H 27 1 15 1.25 0.08 0.19 0.13 1.30E-05 [16
Strike/Dip min: 283 - Aperture min: 0.05 Average k min: 4.69E-08
Max: 326 - Max (excluding voids): 8.00 Max: 3.80E-04
Average: 299.6 - Average: 0.55 Average: 1.91E-05
Mode: 300.0 - Mode of averages: 0.10 Mode: 8.33E-08
CK4 215 84 29 0.1 0.1 0.1 0.00 0.00 0.00 8.33E-08 |1--Max 1.3x 7.0 cm
8/16/16 150 35 47 0.05 0.05 0.05 0.00 0.00 0.00 2.08E-08 |la
Wash W of graben |215 39 20.5 0.05 0.05 0.05 0.00 0.00 0.00 2.08E-08 [1b
136 50 33 0.5 1 0.75 0.02 0.08 0.05 4.69E-06 |2
147 42 55 0.1 0.1 0.1 0.00 0.00 0.00 8.33E-08 |3-- offshoot=11 x 0.1
176 64 20 0.3 15 0.9 0.01 0.19 0.07 6.75E-06 |4
150 60 36 0.05 0.05 0.05 0.00 0.00 0.00 2.08E-08 |5
183 1 100 0.1 0.1 0.1 0.00 0.00 0.00 8.33E-08  |6-- 3 layers-- bedding plane
208 65 23 0.2 0.3 0.25 0.00 0.01 0.01 5.21E-07 |7
193 1 83 0.1 0.2 0.15 0.00 0.00 0.00 1.88E-07 (8
219 34 12 0.05 0.05 0.05 0.00 0.00 0.00 2.08E-08 |9
203 32 9 0.05 0.1 0.075 0.00 0.00 0.00 4.69E-08 (10
177 sV 21 0.05 0.1 0.075 0.00 0.00 0.00 4.69E-08 [11-- +3 cm offshoot
186 14 12 0.05 0.05 0.05 0.00 0.00 0.00 2.08E-08 (12
165 66 12 0.05 0.1 0.075 0.00 0.00 0.00 4.69E-08 [13
Strike/Dip min: 136 1 Aperture min: 0.05 Average k min: 2.08E-08
Max: 219 84 Max (excluding voids): 1.50 Max: 6.75E-06
Average: 181.5 419 Average: 0.19 Average: 8.43E-07
Mode: 215.0 1.0 Mode of averages: 0.05 Mode: 2.08E-08
CKS5 284 89 31 0.2 0.5 0.35 0.00 0.02 0.01 1.02E-06 |1
8/16/16 305 52 6 0.7 0.7 0.7 0.04 0.04 0.04 4.08E-06 |[la
Wash W of graben (304 v 17 0.05 0.1 0.075 0.00 0.00 0.00 4.69E-08 |2
300 \% 29 0.1 15 0.8 0.00 0.19 0.05 5.33E-06 |2a-- 6 cm long max
269 90 45.5 5 5 5 2.08 2.08 2.08 2.08E-04 |3
310 80 41 1 1 1 0.08 0.08 0.08 8.33E-06 |3a
314 79 29 0.2 0.7 0.45 0.00 0.04 0.02 1.69E-06 |3b
305 75 28 1 1 1 0.08 0.08 0.08 8.33E-06 |3c
274 75 31 1 1 1 0.08 0.08 0.08 8.33E-06 |3d
305 v 26 0.2 0.7 0.45 0.00 0.04 0.02 1.69E-06 |4
302 12 6 1.5 1.5 1.5 0.19 0.19 0.19 1.88E-05 |4b
271 V-30 19.5 0.05 0.5 0.275 0.00 0.02 0.01 6.30E-07 |5
291 42 7 0.1 0.3 0.2 0.00 0.01 0.00 3.33E-07 |6
226 20 35 0.1 0.2 0.15 0.00 0.00 0.00 1.88E-07 |7
312 20 30.5 0.05 0.1 0.075 0.00 0.00 0.00 4.69E-08 (8
272 1 24 0.1 0.3 0.2 0.00 0.01 0.00 3.33E-07 |9
310 4 100 3 4 35 0.75 1.33 1.02 1.02E-04 |10
308 3 100 0.1 0.5 0.3 0.00 0.02 0.01 7.50E-07 |11
311 2 100 0.05 0.1 0.075 0.00 0.00 0.00 4.69E-08 [12
Strike/Dip min: 226 1 Aperture min: 0.05 Average k min: 4.69E-08
Max: 314 90 Max (excluding voids): 5.00 Max: 2.08E-04
Average: 293.3 429 Average: 0.90 Average: 1.95E-05
Mode: 305.0 75.0 Mode of averages: 0.08 Mode: 4.69E-08
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Table B-3: Fracture measurement data for Kaibab Limestone outcrops near Rattlesnake Crater,

Arizona. Gray indicates uncertainty in measurement or recording.

Fracture Data: Kaibab Limestone near Rattlesnake Crater
. . Aperture (cm) Fracture Permeability
Quicrop Strike Dip Length (cm) Min Max Avg min (cm"2) |max (cm’2) avg (cm™2) avg (m2) Notes
RK1 - SH 34.54 0.20 0.20 0.20 0.00 0.00 0.00 3.33E-07 |1
7/24/16 - SV 22.86 2.50 2.50 2.50 0.52 0.52 0.52 5.21E-05 (2a
San Franisco Wash |- SV 21.59 0.70 0.80 0.75 0.04 0.05 0.05 4.69E-06 (2b
S: 300, D: 80 - SH 59.69 1.20 2.00 1.60 0.12 0.33 021 2.13E-05 |3
- SH 34.29 12.07 12.07 12.07 -- -- - -- 4-- Hole
24 75 23 - - 1.50 -- -- 0.19 1.88E-05 |la
- - 24 - - 0.70 -- -- 0.04 4.08E-06 [1b
- - 49 3.00 3.50 3.25 0.75 1.02 0.88 8.80E-05 |lc
30 7 345 1.00 2.00 1.50 0.08 0.33 0.19 1.88E-05 |2
19 2 38 0.05 0.70 0.38 0.00 0.04 0.01 1.17E-06 |3
26 SH, variable |40 1.00 3.00 2.00 0.08 0.75 0.33 3.33E-05 |4
20 SH, variable (23 3.00 3.50 3.25 0.75 1.02 0.88 8.80E-05 (5a
- - 15 - - 20.00 -- -- - -- 5b-- Void
12 0 22.5 1.00 1.50 1.25 0.08 0.19 0.13 1.30E-05 |6a
- - 9 0.40 0.50 0.45 0.01 0.02 0.02 1.69E-06 [6b
15 10 41 1.50 2.00 1.75 0.19 0.33 0.26 2.55E-05 |7a
- - 8 - - 0.20 -- -- 0.00 3.33E-07 |[7b
19 SH 9.5 3.00 0.00 0.00 0.75 7.50E-05 (8
20 22 52 6.00 8.00 7.00 3.00 5.33 4.08 4.08E-04 |9
25 0 70 1.00 2.00 1.50 0.08 0.33 0.19 1.88E-05 |10a
- - 315 1.50 10.00 5.75 -- -- - -- 10b-- Void
26 SH 24 2.00 3.00 2.50 0.33 0.75 0.52 5.21E-05 |[lla
- - 15 3.00 3.50 3.25 -- -- - -- 11a Void
- - 9 - - 0.10 -- -- 0.00 8.33E-08 |[11b
- - 35 - - 0.05 -- -- 0.00 2.08E-08 |llc
- - 5 - - 0.05 -- -- 0.00 2.08E-08 |11d
- - 7 - - 0.05 -- -- 0.00 2.08E-08 |lle
- - 145 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |11f
- - 4 - - 0.30 -- -- 0.01 7.50E-07 |[11g
- - 354 15.00 51.00 33.00 -- -- - -- 11h-- Void, 35 cm depth
37 70 3.75 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |12a
1 68 42 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |12b
6 69 14.5 0.05 0.10 0.08 0.00 0.00 0.00 4.69E-08 |12c
27 80 9.5 0.05 0.20 0.13 0.00 0.00 0.00 1.30E-07 |12d
43 85 6.5 - - 0.10 -- -- 0.00 8.33E-08 [12¢
21 SH 31 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |13a
24 SH 17.5 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |13b
19 SH 16 0.10 0.25 0.18 0.00 0.01 0.00 2.55E-07 |13c
11 SH 22 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |13d
12 SH 55 0.10 0.30 0.20 0.00 0.01 0.00 3.33E-07 |[13e
48 \4 10 - - 0.20 -- -- 0.00 3.33E-07 (14
38 \4 55 - - 0.10 -- -- 0.00 8.33E-08 (15
35 19 16.5 0.05 0.30 0.18 0.00 0.01 0.00 2.55E-07 |l6a
28 5 11.75 0.05 0.30 0.18 0.00 0.01 0.00 2.55E-07 |16b
27 19 26.25 0.05 0.30 0.18 0.00 0.01 0.00 2.55E-07 |l6¢c
27 30 33.25 0.05 0.15 0.10 0.00 0.00 0.00 8.33E-08 |16d
21 V-99 24.75 -- - 0.20 -- -- 0.00 3.33E-07 (17a
11-330 \4 20 0.20 0.50 0.35 0.00 0.02 0.01 1.02E-06 |17b
5 \4 21 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 [17c
5 \4 8 -- - 0.10 - -- 0.00 8.33E-08 [17d
6 - 45 -- - 0.10 - - 0.00 8.33E-08 [18a
- - 3 -- - 0.10 - -- 0.00 8.33E-08 [18b
- - 2 0.05 0.10 0.08 0.00 0.00 0.00 4.69E-08 |18c
- - 5.5 -- - 0.10 -- -- 0.00 8.33E-08 [18d
- - 9 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |[18e
- v 6.75 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 [19a
- H 73 0.05 0.10 0.08 0.00 0.00 0.00 4.69E-08 |19
- \4 7.5 0.05 0.10 0.08 0.00 0.00 0.00 4.69E-08 |19c
- H 7.5 0.10 0.00 0.00 0.00 8.33E-08 [19d
- Sv 9.5 0.05 0.10 0.08 0.00 0.00 0.00 4.69E-08 |19
- \4 25 -- - 0.05 -- -- 0.00 2.08E-08 |20a
- \ 13 0.05 0.10 0.08 0.00 0.00 0.00 4.69E-08 |20b
- - 145 0.10 0.90 0.50 0.00 0.07 0.02 2.08E-06 |20c
- - 11 -- - 0.10 -- -- 0.00 8.33E-08 [20d
- H 23 0.05 0.10 0.08 0.00 0.00 0.00 4.69E-08  |20e
Strike/Dip min: 1 0 Aperture min: 0.05 Average k min: 2.08E-08
Max: 48 99 Max (excluding voids): 7.00 Max: 4.08E-04
Average: 21.8 35.1 Average: 0.68 Average: 1.56E-05
Mode: 19.0 0.0 Mode of averages: 0.10 Mode: 8.33E-08
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Table B-3 (cont.)

- . Aperture (cm) Fracture Permeability
Qutcrop Strike Dip Length (e Min Max Avg min (cm”"2) |max (cm”"2) avg (cm”™2) avg (m"2) Notes
RK2 104 75 55 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |la
7/26/16 - - 35 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |[1b
SF Wash 105 88 28 - -- 0.30 - - 0.01 7.50E-07 |2
S:122,D: 0 115 6 40.5 -- - 0.10 - - 0.00 8.33E-08 |3-- Appears filled- weathering feature?
150 v [3 - -- 0.10 -- - 0.00 8.33E-08 |4
114 v 14.5 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |5
116 v 215 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |6a
- - 9.5 0.05 0.10 0.08 0.00 0.00 0.00 4.69E-08 |6b
115 85 17.5 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |7a
- - 8 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |7b
- - 10.5 1.50 6.00 3.75 0.19 3.00 1.17 1.17E-04 |7c
119 H 36.5 - -- 0.20 - - 0.00 3.33E-07 |8
139 v 46 0.20 0.60 0.40 0.00 0.03 0.01 1.33E-06 |9a
- - 5 - -- 0.05 - - 0.00 2.08E-08 |9b
- - 9 - -- 0.05 - - 0.00 2.08E-08 |9¢c
- - 2.5 - -- 0.10 - - 0.00 8.33E-08 |9d
- - 10 - -- 0.10 - - 0.00 8.33E-08 |%
- - 15 - -- 0.10 - - 0.00 8.33E-08 |9f
90 76 23 0.40 0.60 0.50 0.01 0.03 0.02 2.08E-06 (10
344 50 17.5 0.30 0.60 0.45 0.01 0.03 0.02 1.69E-06 (11
100 67 8 - -- 0.10 -- - 0.00 8.33E-08 |12
332 66 135 0.20 0.40 0.30 0.00 0.01 0.01 7.50E-07 |13a
- - 4 - -- 2.50 - - 0.52 5.21E-05 |13b-- Void
95 74 16 0.05 0.10 0.08 0.00 0.00 0.00 4.69E-08 |14
90 v 19 - -- 0.01 - - 0.00 8.33E-10 |15
89 v 12.5 - -- 0.10 - - 0.00 8.33E-08 |16a
- - 18 - -- 0.05 - - 0.00 2.08E-08 |16b
122 85 19 1.00 2.25 1.63 0.08 0.42 0.22 2.20E-05 (17
100 Y% 55 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 (18a
- - 4.5 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 [18b
Strike/Dip min: 89 6 Aperture min: 0.05 Average k min: 8.33E-10
Max: 344 88 Max (excluding voids): 6.00 Max: 1.17E-04
Average: 135.5 67.2 Average: 0.34 Average: 6.68E-06
Mode: 115.0 85.0 Mode of averages: 0.15 Mode: 1.88E-07
RK3 Unfractured ~2.5m thick
7/30/16 - - - -- - - - - - - Spalling present
SF Wash
RK4 320 60 235 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07
7/30/16 320 H 29 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |2a
SF Wash 348 23 55 0.50 0.60 0.55 0.02 0.03 0.03 2.52E-06 (2b
335 68 38 0.10 0.30 0.20 0.00 0.01 0.00 3.33E-07 |3a
291 22 9 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |[3b
350 Y% 185 0.50 2.00 1.25 0.02 0.33 0.13 1.30E-05 |3c
312 H 100 - -- 2.20 - - 0.40 4.03E-05 |4a
312 9 21 - -- 1.00 - - 0.08 8.33E-06 |4b
312 SH 100 0.02 0.05 0.04 0.00 0.00 0.00 1.02E-08 |5
345 v 22 - -- 0.10 -- - 0.00 8.33E-08 |6a
284 78 26 0.05 1.00 0.53 0.00 0.08 0.02 2.30E-06 |6b
312 H 26 - -- 0.05 - - 0.00 2.08E-08 |7
305 83 29 0.02 0.05 0.04 0.00 0.00 0.00 1.02E-08 |8
- - - - -- - - - -- -- 9: Void-area
330 SH 17 0.05 1.00 0.53 0.00 0.08 0.02 2.30E-06 [9a
330 SH 26 1.30 3.60 2.45 0.14 1.08 0.50 5.00E-05  |9b
Strike/Dip min: 284 9 Aperture min: 0.02 Average k min: 1.02E-08
Max: 350 83 Max (excluding voids): 3.60 Max: 5.00E-05
Average: 320.4 49 Average: 0.62 Average: 7.99E-06
Mode: 312.0 - Mode of averages: 0.15 Mode: 1.88E-07
RKS 340 71 61 0.30 0.40 0.35 0.01 0.01 0.01 1.02E-06 |la
7/30/16 - - 29 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |1b-- Overhang
SF Wash 17 \% 30.5 0.20 0.30 0.25 0.00 0.01 0.01 521E-07 |2
341 62 27 0.20 120 0.70 0.00 0.12 0.04 4.08E-06 |3
350 60 18 0.10 0.90 0.50 0.00 0.07 0.02 2.08E-06 |4
330 75 16.2 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 [5- 5&6 parallel; both listed as 5
330 75 35 - -- 0.10 - - 0.00 8.33E-08 |6
~330 (est) [~H 21 0.01 0.05 0.03 0.00 0.00 0.00 7.50E-09 |7
" " 15 0.01 0.05 0.03 0.00 0.00 0.00 7.50E-09  |8-- All horizontal hairline fractures
" " 7.5 0.01 0.05 0.03 0.00 0.00 0.00 7.50E-09 |9
" " 10 0.01 0.05 0.03 0.00 0.00 0.00 7.50E-09 (10
" " 11 0.01 0.05 0.03 0.00 0.00 0.00 7.50E-09 |11
" " 11 0.01 0.05 0.03 0.00 0.00 0.00 7.50E-09 |12
Strike/Dip min: 17 60 Aperture min: 0.01 Average k min: 7.50E-09
Max: 350 75 Max (excluding voids): 1.20 Max: 4.08E-06
Average: 284.7 68.6 Average: 0.18 Average: 6.32E-07
Mode: 330.0 75 Mode of averages: 0.03 Mode: 7.50E-09
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Table B-3 (cont.)

. . Aperture (cm) Fracture Permeability
Quicrop Strike Dip Lanaih feny) Min Max Avg min (cm"2) |max (cm”2) avg (cm”™2) avg (m"2) Notes
RK6 180 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |1- Mineralized, discontinuous
7/31/16 100 0.60 0.70 0.65 0.03 0.04 0.04 3.52E-06 |2
SF Wash Largely unfractured, massive 2.5-3 m thick
Highly weathered
RK7 311 90 130 0.00 0.10 0.05 0.00 0.00 0.00 2.08E-08 |1
7/31/16 - -- 6.2 - -- 2.50 - - 0.52 5.21E-05 |la
SF Wash 288 0 26 - -- 2.00 - - 0.33 3.33E-05 |2
288 0 17 0.05 0.10 0.08 0.00 0.00 0.00 4.69E-08 |3
288 0 215 - -- 0.10 - - 0.00 8.33E-08 |4
290 6 17 - -- 0.05 - - 0.00 2.08E-08 |5
290 0 30 0.05 0.10 0.08 0.00 0.00 0.00 4.69E-08 (6
341 irregular 36 - - 0.10 - - 0.00 8.33E-08 |7
349 irregular 11 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 (8
295 ? 10 - -- 0.00 - - 0.00 0.00E+00 |9
297 0 13 0.00 0.50 0.25 0.00 0.02 0.01 5.21E-07 |10
240 50 32 - -- 0.10 - - 0.00 8.33E-08 |11
275 90 40 0.00 0.10 0.05 0.00 0.00 0.00 2.08E-08 (12
300 0 215 - -- 0.10 - - 0.00 8.33E-08 |13
272 0 135 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 (14
- -- 125 0.20 0.50 0.35 0.00 0.02 0.01 1.02E-06 (15
273 90 4.5 - -- 0.30 - - 0.01 7.50E-07 |16
Strike/Dip min: 240 0 Aperture min: 0.00 Average k min: 0.00E+00
Max: 349 90 Max (excluding voids): 0.50 Max: 5.21E-05
Average: 293.1 272 Average: 0.38 Average: 5.21E-06
Mode: 288.0 0 Mode of averages: 0.10 Mode: 8.33E-08
RK& 87 0 112 0.30 0.60 0.45 0.01 0.03 0.02 1.69E-06 |1
7/31/16 - -- 19 1.00 7.80 4.40 0.08 5.07 1.61 1.61E-04 |[la-- void
SF Wash - -- 22 2.00 11.80 6.90 0.33 11.60 3.97 3.97E-04 |1b-- void
- -- 6.5 2.00 5.00 3.50 0.33 2.08 1.02 1.02E-04 |lc-- void
- -- 29 0.10 0.30 0.20 0.00 0.01 0.00 3.33E-07 |2-- calcite infills from 1.0-1.5
92 0 100 - -- 0.20 - - 0.00 3.33E-07 |3
92 12 - -- 0.10 - - 0.00 8.33E-08 |4
92 30 - -- 0.10 0.00 8.33E-08 |5
92 66 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 (6
92 9 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 (7
92 20 0.05 0.10 0.08 0.00 0.00 0.00 4.69E-08 |8
92 315 - -- 0.10 - - 0.00 8.33E-08 |9
92 16 - - 0.10 - - 0.00 8.33E-08 |10
- - 7 - -- 0.10 - - 0.00 8.33E-08 |11
- -- 55 - -- 0.10 - - 0.00 8.33E-08 |12
- -- 38 0.05 0.10 0.08 0.00 0.00 0.00 4.69E-08 (13
- -- 66 - -- 0.10 - - 0.00 8.33E-08 |14
- -- 22 - -- 0.10 - - 0.00 8.33E-08 |15
- -- 45 0.05 0.10 0.08 0.00 0.00 0.00 4.69E-08 (16
- -- 5 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 (17
- -- 20 0.05 0.10 0.08 0.00 0.00 0.00 4.69E-08 (18
- -- 10.5 - -- 0.10 - - 0.00 8.33E-08 |19
- -- 6 - -- 0.05 - - 0.00 2.08E-08 |20
- -- 19.5 - -- <0.05 |- - - - 21
- 19 3 - - 2.00 - -- - - 1a- All ~half circle voids
- 22 2 - - 7.80 - - - - 1b
- 6.5 2.5 - - 11.80 - - - - 1c
Strike/Dip min: 87 0 Aperture min: 0.05 Average k min: 2.08E-08
Max: 92 - Max (excluding voids): 11.80 Max: 3.97E-04
Average: 91.4 - Average: 1.54 Average: 2.89E-05
Mode: 92.0 -- Mode of averages: 0.10 Mode: 8.33E-08
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Table B-3 (cont.)

. . Aperture (cm) Fracture Permeability
Qutcrop Strike Dip Length (em) Min Max Avg min (cm"2) |max (cm”2) avg (cm”2) avg (m"2) Notes
RK9 68 80 68.5 0.40 0.50 0.45 0.01 0.02 0.02 1.69E-06 |1
8/13/16 48 84 79.5 0.05 0.20 0.13 0.00 0.00 0.00 1.30E-07 |2
West of RC 60 sV 26 0.05 0.20 0.13 0.00 0.00 0.00 1.30E-07 |2a
60 sV 14 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |(2b
58 ~45 28 0.20 0.30 0.25 0.00 0.01 0.01 5.21E-07 |1b
- - 22 - - 0.10 - - 0.00 8.33E-08 |2a
40 sV 15 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |2¢
18 H 17 0.05 0.10 0.08 0.00 0.00 0.00 4.69E-08 (2d
338 sV 14 0.20 0.30 0.25 0.00 0.01 0.01 5.21E-07 |2e
40 64 5.5 - - 0.10 - - 0.00 8.33E-08 |2f
40 NY% 13 - - 0.10 - - 0.00 8.33E-08 |3
40 sV 4 - - 0.05 - - 0.00 2.08E-08 |4
5 40 38 0.05 0.20 0.13 0.00 0.00 0.00 1.30E-07 |5-- Filled portions
349 80 22 0.30 1.30 0.80 0.01 0.14 0.05 5.33E-06 |6
338 sV 12 - - 0.10 - - 0.00 8.33E-08 |7
48 N\ 38 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |8
5 H 55 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 (9a
5 H 335 0.60 1.00 0.80 0.03 0.08 0.05 5.33E-06  |9b-- Seems filled
30 SV 30 0.20 0.50 0.35 0.00 0.02 0.01 1.02E-06 (10
1 NY% 27 0.05 0.30 0.18 0.00 0.01 0.00 2.55E-07 |11
42 sV 19 0.05 0.20 0.13 0.00 0.00 0.00 1.30E-07 (12
40 sV 50 - - 0.20 - - 0.00 3.33E-07 |13
6 v 16.5 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 (14
339 sV 15 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 (15
350 Trregular 44 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |16
28 8% 17 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |16a
355 Irregular 235 0.05 0.10 0.08 0.00 0.00 0.00 4.69E-08 |16b
5 SV 34 0.30 0.60 0.45 0.01 0.03 0.02 1.69E-06 |17a-- Most closed
78 NY% 20 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 [17b-- Closed
42 sV 15 - - - - -- - -- 18-- More vuggy, less fractured
3 sV 25 0.05 0.20 0.13 0.00 0.00 0.00 1.30E-07 (19
44 sV 26 0.10 0.30 0.20 0.00 0.01 0.00 3.33E-07 |20
48 sV 10 0.05 0.20 0.13 0.00 0.00 0.00 1.30E-07 |21
- - 26 - - 13.00 |- - 14.08 1.41E-03 |Vl
- - 5 - - 5.00 - - 2.08 2.08E-04 |V2
- - 4 - - 4.00 - - 1.33 1.33E-04 |V3
- \% -- - -- 0.10 - -- 0.00 8.33E-08 |x20 fractures... all appear mostly surficial
- - - - - 0.10 -- - 0.00 8.33E-08
- - - - - 0.10 - - 0.00 8.33E-08
- - - - - 0.10 - - 0.00 8.33E-08
- - - - - 0.10 - - 0.00 8.33E-08
- - - - - 0.10 - - 0.00 8.33E-08
- - - - - 0.10 - - 0.00 8.33E-08
- - - - - 0.10 - - 0.00 8.33E-08
- - - - - 0.10 - - 0.00 8.33E-08
- - - - - 0.10 - - 0.00 8.33E-08
- - - - - 0.10 - - 0.00 8.33E-08
- - - - - 0.10 - - 0.00 8.33E-08
- - - - - 0.10 - - 0.00 8.33E-08
- - - - - 0.10 - - 0.00 8.33E-08
- - - - - 0.10 - - 0.00 8.33E-08
- - - - - 0.10 - - 0.00 8.33E-08
- - - - - 0.10 - - 0.00 8.33E-08
- - - - - 0.10 - - 0.00 8.33E-08
Strike/Dip min: 1 40 Aperture min: 0.05 Average k min: 2.08E-08
Max: 355 84 Max (excluding voids): 1.30 Max: 1.41E-03
Average: 92.8 69.6 Average: 0.57 Average: 3.34E-05
Mode: 40.0 80.0 Mode of averages: 0.10 Mode: 8.33E-08
RK10 180 4 100 6.00 8.00 7.00 3.00 5.33 4.08 4.08E-04 |1-- some spots 2.5 cm
8/13/16 203 79 ~8.5 0.80 1.00 0.90 0.05 0.08 0.07 6.75E-06 |2
SSE of RC 195 85 7.5 - - 4.00 - - 1.33 1.33E-04 |3
186 0 36 - - 0.05 - - 0.00 2.08E-08 [4--0.05 cm to closed
176 0 95 0.30 0.70 0.50 0.01 0.04 0.02 2.08E-06 |[5-- some closed
180 2 10 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |6
Strike/Dip min: 176 0 Aperture min: 0.10 Average k min: 2.08E-08
Max: 203 85 Max (excluding voids): 8.00 Max: 4.08E-04
Average: 186.7 283 Average: 2.10 Average: 9.18E-05
Mode: 180.0 0.0 Mode of averages: #N/A Mode: #N/A
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Table B-3 (cont.)

; . Aperture (cm) Fracture Permeability
Quicrop Strike Dip Length tem) Min Max Avg min (cm”2) |max (cm”2) avg (cm”2) avg (m"2) Notes
RK11 203 2 102 - - 1.50 - - 0.19 1.88E-05 |1-- average aperture msmt
8/13/16 201 89 36 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07  [2-- discontinuous ~17cm
SSE of RC 199 9 113 - -- 0.10 - - 0.00 8.33E-08 |3-- 1.5 cm aperture where broken
226 \Y% 21 0.05 1.00 0.53 0.00 0.08 0.02 2.30E-06 |4-- filled with vegetation
230 73 9.5 - - 0.20 -- - 0.00 3.33E-07 |4a
236 80 9 0.20 1.00 0.60 0.00 0.08 0.03 3.00E-06 |(4b
227 75 15 0.10 0.30 0.20 0.00 0.01 0.00 3.33E-07 |5
238 85 18 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 (6
238 85 3 - - 0.10 -- - 0.00 8.33E-08 |6a
218 NY 40 1.00 1.20 1.10 0.08 0.12 0.10 1.01E-05 |7--filled in
140 65 33 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 (8
160 NY% 16 0.50 0.60 0.55 0.02 0.03 0.03 2.52E-06  |9-- broken rock chunk
209 SV 16 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07 |10
- - 85 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07  [underside of #5 shelf
- - 4 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07
- - 8 0.10 0.20 0.15 0.00 0.00 0.00 1.88E-07
Strike/Dip min: 140 2 Aperture min: 0.05 Average k min: 8.33E-08
Max: 238 89 Max (excluding voids): 1.20 Max: 1.88E-05
Average: 209.6 62.6 Average: 0.37 Average: 2.42E-06
Mode: 238.0 85.0 Mode of averages: 0.15 Mode: 1.88E-07
RK12 117 \Y% ~4.6 3.00 5.00 4.00 0.75 2.08 133 1.33E-04 |1-- Large scale vertical fractures
SF Wash 122 \Y% ~4.6 3.00 5.00 4.00 0.75 2.08 1.33 1.33E-04 (2
108 \% ~4.6 3.00 5.00 4.00 0.75 2.08 1.33 1.33E-04 |3
129 v ~4.6 3.00 5.00 4.00 0.75 2.08 1.33 1.33E-04 |4
117 \Y ~4.6 3.00 5.00 4.00 0.75 2.08 1.33 1.33E-04 |5
Strike/Dip min: 108 - Aperture min: 3.00 Average k min: --
Max: 129 - Max (excluding voids): 5.00 Max: --
Average: 118.6 - Average: 4.00 Average: --
Mode: 117.0 -- Mode of averages: 4.00 Mode: --
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Sample Name: CL
Description: Lower Colton Crater Tuff 4X Magnification

§ o Phe
rich  pyx
basalt

Figure B-1: Annotated photographs of thin section CL in XPL and PPL under 4x magnification.

Sample Name: CM
Description: Middle Colton Crater Tuff 4X Magnification

Scoria

Y matrix

Figure B-2: Annotated photographs of thin section CM in XPL and PPL under 4x magnification.
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Sample Name: CU
Description: Upper Colton Crater Tuff 4X Magnification

Scoria s -
Sandstone
lithic

Figure B-3: Annotated photographs of thin section CU in XPL and PPL under 4x magnification.
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Sample Name: RL
Description: Lower Rattlesnake Crater Tuff 4X Magnification

Plag & pyx- O, PR W Quartz

Pl o
rich basalt e o ag & pyx

rich basalt

§ = 2PN
af ;“\\ Scoria

Figure B-4: Annotated photographs of thin section RL in XPL and PPL under 4x magnification.

Sample Name: RU
Description: Upper Rattlesnake Crater Tuff 4X Magnification

Plag & pyx- i B o o Plag & pyx-
rich basalt P> rich basalt

Scoria

Figure B-5: Annotated photographs of thin section RU in XPL and PPL under 4x magnification.
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TOUGH2 INPUT FORMATS
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Figure C-1: TOUGH2 Input Formats. From Pruess et al. (2011).
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TOUGH?2 INPUT FORMATS (continued)
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