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(ABSTRACT)

Smart healthcare is an emerging field with the goal of harnessing technological advances

to enhance healthcare quality. Several research projects in recent years are devoted to

design of electronic devices and networking platforms to facilitate technology-based health

service. One important paradigm in smart healthcare is developing tools for biomedical signal

processing. Biomedical signals can directly reflect the information about patient health and

therefore have been widely investigated by the research community. The essence of most

signal analysis systems is to process a large training dataset and build a reference model

to asses the health status of new patients. While the majority of these methods focus on

improving classification performance on a collection of signals in large datasets, the predictive

modeling of biomedical signals is rarely emphasized. In this work, we go one step beyond the

conventional methods and intend to predict potential upcoming abnormalities before their

occurrence. The approach is to build a patient-specific model and identify minor deviations

from the normal signal, which can be indicative of potential upcoming significant deviations.

To enable an accurate deviation analysis, a controlled nonlinear transformation is proposed

to reshape the feature space into a more symmetric geometry. We applied the developed

algorithms on Electrocardiogram (ECG) signals and the results confirm the effectiveness of

the proposed method in predicting upcoming heart abnormalities before their occurrence.

For instance, the probability of observing a specific abnormality class increases by 10% after

triggering a yellow alarm of the same type. This approach is general and has the potential

to be applied to a wide range of physiological signals.
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Chapter 1

Introduction

1.1 Background and Motivation

Heart-related mortality rate has been recently increasing dramatically due to the aging of

population, chronic cardiovascular diseases and increasing life stress and pace of modern

life [1]. According [2], cardiac diseases are the most common cause of sudden cardiac death

(SCD) with 250 000 to 300 000 mortalities in the U.S. every year accounting for 14.7% of

total deaths [2]. As World Health Organization reported, 31% of global deaths are related to

cardiovascular diseases (CVDs) [3]. These facts fully reflect that heart diseases are threat-

ening the general health of human beings. Since death from CVD can occur in most cases

without prior warning and obvious symptoms, enabling a timely treatment of heart diseases

is very beneficial. For this purpose, prevention principles and guidelines which cover age,

family history and other potential risk factors causing CVD are deployed in most clinical

modeling methods [4]. However, these methods require complex manual analysis by trained

physicians. Taking this issue into consideration, developing a cost-effective automatic anal-

ysis for CVD prevention based on computer is a critical need. More specifically, since most
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CVDs are accompanied with arrhythmia, accurate and timely recolonization of arrhythmia

is a key factor for effective prevention of heart disease.

Electrocardiogram (ECG) is the most common way of monitoring hearth functionality, which

contains abundant physiological and pathological information that reflects the heart rhythm

and status of various parts of the heart. ECG signals are recorded for the first time by

Waller in 1887 [5]. He recorded signals generated by electrical activities of heart as a time

series. As a noninvasive examination method, ECG signals are known to be highly reliable

in reflecting functionality of heart. For this reason, ECG signal processing has become

one of the most conventional technologies for clinical examination, radiation and ultrasonic

inspection in modern hospitals and clinics, serving as an important reference for doctors’

diagnosis of heart disease [6].

The traditional diagnosis based on ECG signal is mainly performed by physicians through

visual observation and interpretation. However, the approach is costly and impractical when

a continuous monitoring of patients is required (e.g. to recognize CVD conditions). There are

tremendous ECG records generated everyday, all demand for timely diagnosis and analysis.

Due to the limitations in the access to experienced physicians, automated ECG classification

systems have been introduced and became popular soon afterwards to generate real-time

analysis result and provide additional information to physicians.

Several computer-based automated classification algorithms have been developed by re-

searchers in the last decades to minimize human intervention or to assist physicians with more

accurate diagnosis by reducing human mistakes [7–17]. Moreover, with the emerging appli-

cations of smart health and smart cities, a constant monitoring and analysis of ECG and

other physiological signals with direct experts’ intervention deems impossible. Therefore,

applying conventional classification algorithms on biomedical signals remains challenging,

especially for applications of spontaneous disease detection.
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Two important properties of cardiovascular disease include the wide range of its causing

factors and the difficulty of recognizing some implicit symptoms before occurrence [18, 19].

Failing to predict life threatening CVDs is the principal cause of high mortality for patients

with heart disease. A timely prediction of hearth abnormalities before their actual occur-

rences would enable a therapeutic intervention before the condition becomes detrimental,

hence it minimizes the risk of mortality. Nevertheless, the majority of developed conven-

tional ECG classification systems are only able to detect abnormalities when they occur. To

the best of our knowledge, no research work is devoted to the prediction of heart abnormal-

ities ahead of time, which is the main focus of this project [20,21].

Another important property of ECG waveforms is their inherent variability among different

individuals under different physical and environmental conditions including but not limited

to gender, age, body-mass index, elevation and air pressure, humidity, temperature, and

etc [22, 23]. Conventional classification algorithms do not easily generalize, when applying

to different patients’ records [14]. Due to the inter-patient variation in ECG signals and the

complexity of cardiac pathological information analysis, most of the existing ECG analysis

software only serve as auxiliary tools for physicians. The final results of diagnosis still

depend on manual labeling by cardiologists. Recently, several novel patient-specific ECG

analysis methods are proposed. Broadly speaking, in these methods, systems parameters

are adaptable to the individual ECG signal properties [12–17]. Some algorithms combine

cardiologists’ manual annotations with automatically generated labels and train personal

classifier with updated labels for each individual [12–14]. This design still requires experts’

assistance in order to accurately classify ECG signals. Another commonly used approach

is to train a patient-specific classifier using only the patient’s ECG signal. However, this

method fails when a certain type of abnormal signal is not included in the limited personal

ECG signal data.
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The automatic analysis of ECG signals includes a wide range of techniques. In this work, we

focus on overcoming the two drawbacks of existing automatic ECG classification systems,

namely the failure in capturing patient-specific variability and the lack of predictive power.

This research aims at improving the inter-patient classification performance and prediction

capability of ECG-based diagnosis methods. Our proposed method can revolutionize the

current practice of healthcare service by enabling early detection of heart abnormalities, with

applications in the remote heart monitoring of high-risk people, senior people, and athletes.

It also can significantly reduce the mortality rate of SCD by enabling time detection of

symptom-free heart abnormalities.

1.2 ECG and Arrhythmia

Electrocardiogram is widely used to monitor the electrical activities of heart and assist

diagnosing fatal cardiac diseases. In order to design algorithms specifically for ECG analysis,

it is important to develop an insightful perception of the functionality of heart and ECG

waveforms.

1.2.1 Characteristics of ECG signal

An ECG signal reflects the properties of periodical electric signals generated by a heart. Fig.

1.1 demonstrates the typical signal waveform for a cardiac cycle (i.e. a heartbeat), which is

usually composed of three main waves including P wave, QRS complexes and T wave. These

waves corresponds to different physiological activities of the heart. P waves are generated

by atrial depolarization which represents the process of pumping blood to ventricles. QRS

complexes as the most significant electric activities are caused by the ventricular contraction,
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Figure 1.1: A typical cardiac cycle in ECG signal with five characteristic waves.

which is the process of pumping blood to lungs and the rest of the human body. Finally, T

waves are the results of ventricular repolarization, which is a required recovery process before

the following cardiac cycle. Accurate detection and segmentation of each wave is necessary

for a profound ECG analysis. The waves are usually represented by their peak locations,

also called fiducial peaks. By detecting the most significant peak within QRS complexes (i.e.

R peak) automatic algorithms are able to discriminate between the two adjacent cardiac

cycles. The interval between two R peaks is called RR interval, which is also the inverse of

heart rate. Fig. 1.1 represents a typical cardiac cycle with the aforementioned intervals.
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1.2.2 MIT-BIH Arrhythmia Database

Arrhythmia is related to various morbid behaviors of heart. Generally speaking, arrhythmias

consist of two main categories: supraventricular and ventricular. Ventricular ectopic beats

imply abnormal activities in the ventricles while supraventricular ectopic beats are related

to the atria [24]. Both categories contain fatal abnormal beats, which may lead to death

[25]. Therefore, in order to help researchers standardize the analysis and research works

related to ECG classifiers, the Association for the Advancement of Medical Instrumentation

(AAMI) has proposed a set of recommendations for reporting ECG classifier performance

[26]. According to these recommendations, MIT-BIH Arrhythmia Database (MITDB) is

regarded as a standard database to train and test ECG classifiers in the last two decades.

MITDB is a public database which is available on Physionet.com [27] since 1997 [28]. There

are 48 records collected from 47 individuals in this database. Each record contains two

channels of ECG raw signals along with annotations for each cardiac cycle. Annotated

labels include 16 types, as shown in Table 1.1. Among these two channels, MLII is more

informative and commonly used in automated ECG analysis systems. We also adopt the

signal from this channel as system input [29]. Cardiac cycles are determined by the locations

of R peaks. The sampling frequency of MITDB is 360Hz and the signal frequency spans from

0.1 to 100 Hz.

Following the recommendations by AAMI, the original annotations of MITDB, consisting of

16 different arrhythmia types, are further grouped into 5 major classes: class N(normal and

bundle branch block beat types) class V(ventricular type), class S(supraventricular type) and

class F(fusion of normal and Ventricular types). The class Q which includes unclassified and

paced beats are discarded due to the limited number of samples. Table 1.1 summarizes the

mapping from 16 original types that include cycles of this type. Therefore, only 4 remaining

types (N, V, S, F) are typically used.
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Table 1.1: Mapping from 16 original types in annotation to the standard 5 types recom-
mended by AAMI

Standard Types by AAMI Original Types in MITDB Annotation
N NOR, LBBB, RBBB, AE, NE
V PVC, VE, VF
S APC, AP, BAP, NP
F VFN
Q PACE, FPN, UN

1.3 Problem Statement

ECG signals are investigated broadly by researchers to design automated non-invasive di-

agnosis methods and real-time monitoring systems [17, 30, 31]. As described in section 1.2,

a majority of current methods suffer from two main challenges: i) failure to capture inter-

patient variability and ii) incapability of early detection and prediction.

In conventional classification systems, the training dataset is typically composed of records

collected from different patients with experts’ annotations per heartbeat. In order to unify

the records from different patients, most of the conventional classification algorithm mix

heartbeat samples from different individual ECG records and cluster the pooled ECG dataset

simply based on the annotations of heartbeats. Since the classification performance is mea-

sured based on the comparison between the predicted labels with the annotate (true) labels

for each sample, the classifiers are trained to improve the performance on pooled ECG data.

While ECG signals shares similar morphologies, the signals from different patients demon-

strate considerable variability as shown in Fig.1.2. Ignoring this difference will lead to incon-

sistent classification performance between patients. Therefore it’s of significant importance

to adjust classifier configuration according to patient-specific characteristics.

In addition to the inter-patient variability, majority of ECG classification algorithms fail to

provide a predictive capability, which refers to the power of triggering corresponding alarms
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Figure 1.2: ECG signals of normal heartbeat from 15 different records in MIT-BIH reflect
the inter-patient variability of ECG signal.

before the occurrence of abnormalities. Typically alarms represent significant distortions

in the ECG morphology which reflect a severe heart abnormality. The rest of heartbeats

considered as normal beats. However, an abnormal beat may include mild distortions that

can be indicative of a problem, while it is not severe enough to call a red alarm. In this

work, we represent these minor deviations with yellow alarm and use them to predict real

abnormalities as red alarms, before their actual occurrence.

Fig. 1.3 illustrates this concept, where observation of minor deviations from the patient-

specific normal trends (yellow alarms ) can be predictors of upcoming severe abnormalities

(red alarms). Supporting results are provided in section 3.4 and section 4.6. Therefore, a

method to quantify the level of signal similarity to abnormalities should be incorporated into

the ECG classification system.
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Figure 1.3: A yellow alarm represents a minor abnormality which can be indicator of an
upcoming severe abnormality of the same type in terms of a red alarm.

1.4 Literature Review

Automatic analysis of ECG signals refers to the entire process spanning from the acquisi-

tion of signals to the classification of samples. This process can be divided into five stages:

ECG signal acquisition, preprocessing, fiducial peak detection and segmentation, feature

extraction and predictive modeling (Fig. 1.4). Different research works focused on one or

multiple stages of the automatic analysis system. Since the main objective of this work

is addressing problems in classification algorithms, the literature review in this section fo-

cuses on studying existing methods proposed for stages before classification, conventional
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classification algorithms along with patient-specific classification systems.

Figure 1.4: General structure of ECG analysis system.

1.4.1 ECG Signal Preprocessing

During data acquisition, the ECG signal may be affected by different kinds of noise including

physiological noise (e.g. myoelectricity noise, breathe interference etc.) and non-physiological

noise (e.g. power-frequency interference and electrode impedance interference) [32]. These

noises often interfere with the informative signals and thus influence the ECG classification

results. Therefore, ECG signal preprocessing mainly focuses on the suppression of noise and

interference terms in the ECG signal.

The ECG signal is in millivolt (mV) level with a central frequency ranging from 0 to 40

Hz [33]. Due to the relatively low signal to noise ratio of ECG signals, signal preprocessing

is a necessary step before classification. Therefore, various methods are proposed to eliminate

noise and other artifacts from the ECG signal [32–39].

Generally speaking, ECG signal preprocessing methods include finite impulse response (FIR)

filtering, adaptive filtering, and modern signal processing filter methods such as wavelet
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transforms and neural networks [32, 35, 36, 39]. YW Bai et al. compared different notch

filters and concluded that equiripple notch filter outperforms other methods in terms of

noise reduction and CPU time [35]. Lian et al. [34] designed a multiplier-free finite impulse

response (FIR) filter to surpress biological and environmental noises with a low power con-

sumption. Sayadi et al. proposed a modified extended Kalman filter with estimated hidden

state variables to perform denoising and compression at simultaneously [36]. Park et al. de-

signed a wavelet-based adaptive filter to reduce S-T segment distortion due to the baseline

drift and compared its performance with general adaptive filters [37]. A general conclusion

is that the performance of wavelet adaptive filtering is usually higher than generic adaptive

filters. In [38], the authors combined wavelet decomposition with Wiener filtering to filter

out the noise by thresholding, which is proved to outperform other thresholding denoising

methods. Regarding various wavelet basis functions, Singh et al. studied an optimal selec-

tion of basis functions for ECG signal denoising [32]. By comparing the classification root

mean square error using the same classifier and different denoising methods, they concluded

that Daubechies filter of order 8 is the best choice for ECG classification systems.

1.4.2 Fiducial Peak Detection and Segmentation

Fiducial Peak Detection and cardiac cycle segmentation are the basis of extracting important

information from ECG signals, since a ECG record is usually a continuous time signal. This

signal can be split into smaller intervals, each of which representing to one cardiac cycle.

Each cardiac cycle can be viewed as an independent signal and is associated with a separate

label to represent the heart function during the corresponding interval. The accuracy and

reliability of this stage directly determine the final performance of the overall diagnosis and

analysis.
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Fiducial peak detection, which is also called ECG signal delineation, aims at localizing five

characteristic peaks within one cardiac cycle. The most significant peak is the QRS complex

consisting of Q, R and S peaks. The other two fiducial peaks include P wave before the QRS

complex and T wave after the QRS complex. As shown in Fig.1.5, these five characteristic

waves along with the onset and offset of the QRS complex are often used to present a cardiac

cycle.

Figure 1.5: Fiducial peaks within one cardiac cycle.

The QRS complex is the most prominent wave and it contains the majority of the information

of a ECG signal; therefore, most of the ECG delineation methods detect QRS complex prior

to the detection of other peaks. Afonso et al. proposed a method using filter banks to

detect QRS complexes [40]. In this method, the signal is decomposed to several frequency

bands. Fiducial peaks are thus detected using its morphological features in the decomposed

signals. Sadhukhan et al. proposed a method of detecting R peak by thresholding the

double difference signal of ECG data and comparing the relative amplitude within QRS

region [41]. The performance of this method is validated using clinical ECG signals and

has been proven to be promising. Some advanced machine (ML) learning techniques are

also deployed to detect QRS complexes. In [42], Support Vector Machine (SVM) is used to

train a predictive model for QRS complex detection and achieved a classification accuracy

of 99.93%. Other ML methods such as Hidden Markov Models (HMM) are also investigated
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and proven to be effecient in modeling and detecting characteritic peaks in ECG signals

[43]. Wavelet decomposition is also frequently adopted for signal delineation due to the

morphological similarity between wavelet basis functions and QRS complexes. As the QRS

complex power spectrum is centered at the range of 5 Hz to 30 Hz, the wavelet coefficients

of the corresponding scale levels are frequently used for delineation purpose. In [44], QRS

complexes are detected by thresholding wavelet coefficients at scales 1 to 4, then onset,

offset and individual waves within QRS complexes are detected using the morphological

characters of coefficient at scale 2. T and P waves are detected at scale 3 with a similar

method approach. In the literature, some improvements have been proposed to eliminate

false detection of R peaks by adding a fixed searching window of 160ms [45].

1.4.3 Feature Extraction and Classification

After localizing the fiducial peaks within a cardiac cycle, we proceed with the next step of

extracting informative features of the signal, which collectively convey meaningful informa-

tion about the signal properties. Since the objective of designing an automatic classification

system is to precisely predict types of sample signals, feature selection is usually performed

to obtain a better performance and reduce the computation cost [7–11].

As the most significant wave within an ECG signal, the information of QRS complexes are

proved to be the most important features for ECG classification systems. Lagerholm et al.

decompose QRS complexes with a set of Hermite basis functions and the decomposition co-

efficient are deplyed as ECG features to train a Self-Organizing Map (SOM), which achieved

an average error rate of 1.5% for 16 ECG types [7]. Prasad et al. used discrete wavelet

transform (DWT) to extract RR intervals between the current beat and the previous or next

beats. The two RR-intervals serve as input for training a neural networks, which achieves
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the average accuracy of 96.77% in classifying 13 different arrhythmia types. De Chazal et

al. proposed two set of features: morphology and heartbeat interval features. They used

different combinations of these features combined with Linear Discriminant Analysis to clas-

sify ECG signals into five arrhythmia types and selected the optimal feature set according

to classification accuracy [9]. The results show that the sensitivity of detecting two major

arrhythmia types can be improved by feature selection. R. Ceylan et al. included RR in-

terval as the only ECG feature to train a fuzzy clustering neural network that achieved an

average detection rate of 98.35% [10] . Osowski et al. proposed two set of features includ-

ing Higher Order Statistics (HOS) and Hermite characterization of QRS complex to classify

ECG signals with Support Vector Machine. Their final average error rate is at 1.82% [11].

1.4.4 Patient-Specific ECG Classification

The main drawback of the majority of aforementioned methods mentioned in the last section

is the lack of inter-patient model adjustment. In order to generalize the ECG classification

systems to clinical applications, several methods which are more robust to inter-patient signal

variation are proposed to address this issue [12–17].

Hu et al. proposed a patient-specific Mixture of Experts (MOE) classifier by incorporat-

ing personalized annotations provided cardiologists in the local classifier [12]. This method

achieves patient-adaption capacity but requires further input from human experts. This

MOE approach achieved an accuracy of 94.0% for distinguishing Ventricular beats from the

other non Ventricular types. Following the design of MOE, de Chazal and B. Reilly proposed

an improved patient-adapting classifier by reducing the requirement of manual annotations

to as few as 10 beats for training adaptive local classifier [13]. And Llamedo et al. designed

an automatic classification system, which uses experts’ assistance, but does not fully depend
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on the experts and can work independently [14]. By implementing a special block-based

neural networks (BbNNs), Jiang et al. achieved accuracies of 98.1% and 96.6% in distin-

guishing Ventricular ectopic beats and supraventricular ectopic beats from other types [15].

In [16], particle swarm optimization (PSO) is combined with a neural network to optimize

the network structure using patient-specific training data. Based on 1-D convolutional neural

networks (CNN), Kiranyaz et al. proposed a flexible algorithm, which adjusts its parameters

using information extracted from individual signals [17]. The classifier demonstrates consis-

tent performance over different ECG records achieving an accuracy between 98% and 99%

for distinguishing ventricular types from non-ventricular types. (Accuracy = 98.9% Sensi-

tivity = 95.9% Specificity = 99.4%). While this approach outperforms the aforementioned

classification algorithms as it does not require expert further annotations, its performance

reduces for some rare abnormal classes.

1.5 Contributions

A crucial drawback of these recently proposed patient-specific classification systems is their

failure in predicting abnormalities in advance. These methods aim at improving classification

performance by comparing generated labels with a ground truth for each beat, hence ignore

the relationship between the generated labels and upcoming abnormalities. While in many

common applications, this approach generates satisfying results, it does not meet the needs

of SCD prediction.

One of the main objectives of this work is to address the problem of forecasting by propos-

ing the concept of yellow and red alarms and proving the fact that yellow alarms can be

indicators of upcoming red alarms. Yellow alarms are defined through a novel deviation

analysis which assesses the tendency of deviant normal alarms to one of the red alarm. In
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order to realize such a deviation analysis, the symmetry of different abnormality classes in

the feature space is desired. We propose a novel controlled nonlinear transformation that

maps the original feature space into a new space that presents the desired symmetry. To

elaborate more on the symmetry of abnormal classes in the feature space, we assume that

there are one normal class and multiple abnormal classes for a signal while latent states exists

for some of the normal samples that represent slight deviations towards abnormalities. By

distinguishing latent states, the designed automated system is capable to generating a yellow

alarm which indicates a high probability of the presence of some upcoming abnormalities

(red alarms) of the same type. Therefore, the contribution of this work can be summarized

as:

• propose a novel self-configuring patient-adaptive framework which incorporates a per-

sonal classifier into the predictive modeling;

• utilize a kernel-based method as a spatial transformation with parameters optimized

using multiobjective particle swarm optimization (MOPSO) for the purpose of devia-

tion quantification;

• design a controlled spatial transformation with deterministic mapping function to op-

timize cluster topology for predictive analysis;

• propose a deviation quantification method based on cosine similarities, which is capable

of generating red alarms for upcoming abnormalities.

1.6 Organization of Thesis

In the following chapters, details of the proposed classification framework are presented af-

ter reviewing the introductory concepts and related works. Chapter 2 provides a general
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information about the utilized ECG dataset and the general framework used in proposed

classification system. Chapter 3 describes the details of nonlinear transformation with ker-

nel methods and presents the experimental results using a kernel transformation. With the

concept of nonlinear transformation, chapter 4 introduces an optimized spatial transforma-

tion with a novel deterministic mapping function. The experimental results for the spatial

transformation method are presented section 4.6. Finally, the experimental results for the

proposed methods in chapter 3 and chapter 4 are studied and compared. More importantly,

the predictive capacity of the proposed system is studied and analyzed in this chapter. Based

on the experimental results, we introduce some potential directions to further improve the

system in terms of classification and predicting accuracy.
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Chapter 2

Patient-Adaptive ECG Classification

Framework

2.1 Introduction

The automatic ECG signal analysis has been a popular research topic for decades. Several

academic research projects have proven that the advanced design and implementation of

automatic ECG analysis methods are beneficial for timely detection and therapeutic inter-

vention of heart disease. However, there are still some major challenges to be resolved, and

automatic ECG analysis should reach a level of maturity and reliability before getting ready

for clinical use. One of the most typical challenges is the inherent inter-patient variation of

ECG waveforms, which leads to the inconsistent performances of ECG classification systems

when applied to different patients under different conditions. In this chapter, the details of

the patient-adaptable ECG classification method, as the core of the proposed framework,

are presented.
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The goal of the automatic ECG analysis is to determine the arrhythmia types for each

signal sample. A continuous ECG signals are firstly segmented into individual intervals,

each of which represents a heartbeat cycle, to be processed by the further stages of the

proposed algorithm. Section 2.2 and section 2.3 in this chapter focus on the data preparation

stage, which includes four steps: signal preprocessing, delineation, segmentation, and feature

extraction. Following the data preparation, section 2.4 elaborates on the details of the

proposed two-stage hierarchical classifier. The proposed classification system includes a novel

method for patient-adaptation by gradually capturing the normal range for each individual.

More specifically, in section 2.4, a dynamic normal cluster shaping method to achieve the

rationalization property is discussed. One feature of this method is that the cluster can

track the trend of a patient’s normal ECG waveforms and dynamically adapt to it. In

many clinical applications, the physicians need to monitor the long-term heart activities in

real time. This dynamic adaptation feature enables the system to address the issue of the

intra-patient temporal variation as well.

2.2 Utilized Dataset

The quality of ECG signals provided by most of the portable ECG measuring instruments

is very unstable and may include transient noises. Furthermore, the signals transmitted

through wireless communication systems also exhibit even more unstable waveforms. These

transient effects appear in the resulting feature vectors, hence they negatively affect the

prediction accuracy of the subsequent ML method. In order to eliminate and smooth out

these transient terms, we use the concept of segmentation here, where each segment includes

multiple cardiac cycles, as shown in Fig. 2.1. Note that the number of cardiac cycles within

each segment is a modeling parameter shown by sw. Also, we can arbitrarily slide segments

19



Figure 2.1: Illustration of the segmentation stage. Each segment consists of sw = 3 cardiac
cycles. We slide segments with ns = 1 to obtain the next segment. Each segment is converted
to a feature vector representing a data sample.

equivalent to ns cycles to generate the new feature vector. The parameters sw and ns can

be tuned to improve the overall performance of the method. We choose sw = 3 and ns = 3,

which yield the best classification accuracy, base on the intensive simulations. In Fig. 2.1,

we have swindow = 3 and nsteps = 1.

For the purpose of training and evaluating classifier, MITDB is split into test (DS2) and

training (DS1) sets by balancing the four classes according to [9].

The ECG signals in MITDB dataset are annotated and labels are provided for each cardiac

cycle. However, we define a segment, which may include more than one cycle, as a sample.

Hence, we need to translate per-cycle labels into per-segment labels. In this regard, a

new label for each segment is generated by integrating all annotations of the beats within

the segment. The segment is labeled as normal, if all member beats are annotated as N;

otherwise, this segment will be labeled as the abnormality type of its member cycles if there

is only one abnormality type. If more than one abnormality types are present within the

same segment, the segment is discarded. For instance, the segments with member cardiac
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Table 2.1: Training and test datasets in MITDB.

Number of segments per AAMI class
Evaluation Dataset N V S F Total

DS1:Training 11721 2356 862 256 15195
DS2:Test 12633 2053 550 121 15357

Total 24354 4409 1412 377 30552

cycles labeled as ”NNN”, ”SSS”, ”NVV”, ”VVV” are respectively mapped to ”N”, ”S”,

”V”, and ”V”, and a segment with member cycels labeled as ”NVS” is discarded. After

segmentation and re-annotation, the total numbers of samples in the training and test set

are obtained as summarized in Table 2.1.

2.3 ECG Signal Processing

2.3.1 Preprocessing

Biomedical signals, such as ECG signals, are composed of a sequence of signal segments, that

can be presented by a set of statistical, morphological, and spectral features. Because of the

time-varying properties of the signals, the traditional Fourier transform, which is unable to

capture the time-varying statistics, is not suitable for this type of non-stationary signals.

Wavelet decomposition solves this problem by scaling and translating the mother wavelet

to constitute its basis functions, which capture both spectral and temporal properties of

the signal. Given a time series, wavelet transformation decomposes the signal into a linear

combination of basis functions. Thus, the basis functions with larger scales are smoother than

those with smaller scales and consequently correspond to lower frequency components of the

signal. Similarly, the decomposition coefficients correspond to higher frequencies when the

scale is smaller. Using wavelet decomposition, we extract both time and frequency features

of ECG signals.
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In this work, the wavelet analysis is applied to ECG signals in MITDB with a sampling

frequency of 360 Hz. Daubechies wavelet of order 8 (db8) is selected as mother wavelet for

denoising stage in this work for its optimal performance in increasing sign-to noise ratio [32].

The decomposition coefficients and their corresponding frequency components are presented

in Fig. 2.2.

The low frequency noise or baseline wander between 0.15 to 1 Hz, caused by respiration and

body movement, can be removed by deducting the approximation coefficient of level 8 (A8)

from the signal. The power of ECG signal is mainly concentrated in the frequency band

spanning from 1 Hz to 40 Hz, hence higher frequency terms are more likely to represent

noise terms including electromyogram induced noise and mechanical forces acting on the

electrodes. These terms can be removed by discarding the detail coefficient of level 1 (D1).

2.3.2 Segmentation

Most machine learning (ML) algorithms operate on input vectors and are not directly ap-

plicable to continuous signals. Therefore, biomedical signals are typically converted to a

representative vector before incorporating to ML algorithms. We follow the common trend

of translating a signal segment into a vector of representative features. In this regard, we

first need to split the signal in time domain into smaller segments. To obtain more relevant

results, we choose the segments as one or multiple consecutive cardiac samples, noting the

fact that each cardiac cycles is associated with a label based on experts observation.

Most existing methods use wavelet analysis to detect the highest peak (R wave) in a cardiac

cycle as a reference point and then use the signal morphology and typical properties of other

waves to determine boundaries between consecutive intervals [20, 45–47]. In this study, we

use this common approach as well. As was mentioned earlier in section 1.4.2, a cardiac
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Figure 2.2: Frequency band of wavelet decomposition coefficients for MITDB signals.

cycle consists of five basic characteristic peaks: P, Q, R, S, and T. Among them, the QRS

complex is the most significant peak in one cycle. The signal energy within one cardiac cycle

is mainly concentrated within the QRS complex. The QRS complex also conveys important

information that reflects the arrhythmia category [46]. An accurate detection of the QRS

complex is of crucial importance for subsequent analysis. The energy of the QRS complex

is generally within the range between 5 Hz and 25 Hz. For the ECG signals with sampling

frequency of 360Hz, the QRS complex can be localized using the detail coefficients of level 5

(D5) and level 6 (D6)

The mother wavelet db4 is utilized at this stage due to its morphological similarity to QRS

complexes [44]. By superimposing D5 and D6, the information of QRS complex in the ECG

signal can be characterized in a one-dimensional recombined signal (QRS DET = D5 +D6).

Other fiducial peaks (i.e. P, QRS onset, Q, S, QRS offset and T waves for each cardiac circle)

are localized according to the algorithm proposed in [46]. The accuracy of peak detection

and its coincidence with the true signal are shown in Fig. 2.3.

With the empirical values described in [46], we use 15% of the highest amplitude within

the signal as the detection threshold. For most of the QRS complexes, their widths do not
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Figure 2.3: (a): the detected R peak locations within the original ECG signal; (b): the
corresponding R peak locations within the signal obtained by adding up the level 5 and level
6 detail coefficients of the wavelet decomposition of the signal (QRS DET = D5 +D6).

exceed 160ms, hence, we use a sliding window with a width of 160ms to detect the peaks in

the QRS DET . The window step size is set to 200ms, given that the time lag between the

two adjacent cardiac cycles does not exceed 200ms [45]. Fig. 2.4 shows a typical QRS DET

waveform along with the corresponding 160ms window. The false peaks are eliminated using

a 160ms time window, as seen in Fig. 2.4.

The T and P waves are outside the QRS window. Through scanning the region spanning

from the end of the precedent QRS window to the beginning of the current QRS window, the

P wave is located as the highest positive peak in this region. Similarly, the position of the

T wave is obtained by finding the maxima of the signal in the region between the end of the

QRS in the current cardiac cycle to the beginning of the next cardiac cycle. In an alternative
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Figure 2.4: Window for detecting R peaks within QRS complexes.

way, the two peaks between the two consecutive QRS windows, respectively represent the T

and P waves. As a result, an ECG signal in one cardiac cycle can be described by 7 fiducial

points: P, QRS on, Q, R, S, QRS off and T.

After localizing the fiducial peaks, we can use the locations of R peaks to determine the

boundaries of every cardiac cycle. By processing a large number of ECG signals, we realize

that R peaks approximately split cardiac cycles into two pieces with 1/3 and 2/3 of the

entire signal [46]. Based on this observation in the morphology of typical ECG signals, we

define the starting point of a cardiac cycle as the point which divides the distance between

the two consecutive R waves into two sections, where the length of the first section is half

the length of the second section, as depicted in Fig. 2.1. In this figure, the average interval

(RR) between the two adjacent R waves is denoted by h, therefore R wave is located in

distance h/3 with respect to the beginning of the cycle. The advantage of this method is

its low computational complexity and easy generalization to different patients, noting that
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a slight change in cardiac cycle boundaries does not significantly alter the properties of a

cardiac cycle as long as T and P waves remain in the correct interval.

2.4 Feature Extraction

The feature extraction step plays a crucial role in the diagnosis of heart disease and has a

great influence on the performance of the subsequent automated classification system. De

Chazal et al. have studied the impact of using morphological features of ECG waveform on

classification results [9]. As discussed in [20], the combination of three types of features (i.e.

temporal, morphology, and spectral features) can provide a better discriminative power for

the classification algorithm to distinguish between different types of arrhythmias.

According to several research works in the literature, different types of ECG samples signif-

icantly differ from each other in the power level of the frequency band between 5 Hz and 15

Hz [44]. Likewise, some other temporal features (such as the duration between the Q wave

and the T wave, the P wave and the R wave, etc.) present different levels of correlation

with the arrhythmia types of the sample [9]. Therefore, we choose to use the combination of

temporal, morphological and spectral features as detailed in Table 2.2. Moreover, to account

for the segment-level as well as the cycle-level characteristics, the extracted features include

both cycle-based features (SET1) and segment-based features (SET2). SET1 includes the

average and standard deviation of the corresponding features of the three cardiac cycles

within a segment, and SET2 contains the overall characteristics of the time signal within a

segment. Hence SET2 is calculated only once per segment. Therefore, we have a total of

8 × 2 + 6 = 22 features per segment as shown in Table 2.2. In other words, each feature

vector is a 221 vector with zero-mean unit-variance elements after a proper normalization. In

Table 2.2, mean(Ri+1−Ri) refers to the mean of the time lag between two adjacent R waves
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Table 2.2: Features extracted from ECG signal

Feature Type SET1 SET2
Temporal Features QRS duration mean(Ri+1 −Ri)

QT duration mean(Ri −Ravg)
PR duration

Morphological Features max positive peak to
second peak ratio

signal average energy
max positive peak
max negative peak
peak to energy ratio

Spectral Features
signal power level at
7.5Hz, 10Hz, 12.5Hz,
15Hz

within a segment and mean(Ri−Ravg) is the mean of differences between the lengths of each

cardiac cycle within the segment and the average cardiac cycle duration of the patient.

From Table 2.2, one may notice that these 22 features are not completely independent of

each other. Also, some of the features may not be as relevant as the others. Therefore, we

reduce the number of features to obtain a more robust predictive modeling [9, 14]. We use

Principal Component Analysis (PCA) as a commonly used the common dimension reduction

method instead of explicit feature selection for its improved performance in biomedical signal

processing [48, 49]. We keep the 8 dominant directions of the signal after PCA as the most

informative 8 features.

2.5 Classification Framework

In this section, we elaborate on the details of the proposed methodology to perform the

classification and prediction tasks using the preprocessed ECG data. Based on our previous

study [30] as well as the similar prior works on developing patient-specific classifiers [12–

14], we propose a two-staged structure which includes a global classifier to capture general
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properties of different classes followed by a personalized classifier to capture patient-specific

properties [12–14, 30]. Moreover, the proposed algorithm incorporates a novel deviation

analysis module with details presented in section 2.5.2.

2.5.1 Global Classifier

The flowchart in Fig. 2.5 presents the overall structure of the proposed system. As the first

step of classification, the global classifier is trained using the whole training dataset. It facil-

itates the subsequent analysis in the system by identifying samples with severe morbidities.

Depending on the application (properties of signals, the utilized labels, and the choice of

features), different classification algorithms can be utilized [12, 14] for this step. Two im-

portant considerations include the classification accuracy and the computation complexity

of the method [14]. Any abnormal label generated by the global classifier is considered as a

red alarm and does not require further processing. However, the samples labeled as normal

go through the subsequent personalized classification step.

2.5.2 Deviation Detection

One objective of this study is to identify the fuzzy states between normality and abnormal-

ities. Therefore, the subsequent analysis focuses on processing samples classified as normal

(N) by distinguishing whether or not they show considerable deviations towards one of the

abnormality classes. For this purpose, an one-layer classifier is not sufficient due to multi-

ple reasons: i) the numbers of samples in the normal and different morbid classes are not

balanced in the training set DS1 as shown in Table 2.1, ii) the patient-specific normal trend

is unknown, iii) detecting yellow alarms requires a new set of decision rules to determine

whether or not the deviations are worthy of calling a yellow alarm. Therefore, a deviation
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Figure 2.5: The general flowchart of proposed framework.

detection module is added after the global classifier to identify fuzzy states between normal-

ity and abnormalities using patient-specific normal cluster. In order to develop a ground for

patient-specific normal functionality and adapt the classifier accordingly, the normal samples

within first 5 minutes’ signal of each patient are selected as the initialization of personalized

dynamic normal cluster N k
0 . As we collect more samples from the patient, the samples which

are newly classified as normal (N) will be used to update the personalized dynamic normal

cluster. Therefore, if a sample xk(i) is classified as N after the deviation detection stage and

the mahalanobis distance between xk(i) and the centroid of the personalized dynamic normal

cluster ckN is less than 2, then xk(i) is included in the updated N k
i . Mahalanobis distance
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quantifies the numbers of standard deviations between xk(i) and ckN , it can be formulated

as follows:

dmahal =
√

(xk(i)− ckN)′S−1(xk(i)− ckN), (2.1)

where S−1 stands for the covariance matrix of N k
i .

To distinguish between normal state and fuzzy states, we use a binary classification of N ver-

sus non-N, where the second includes all abnormal classes. We firstly calculate the following

distance metrics:

Rmax
i = max

xj∈N k
i ,xk∈N k

i

{
√

(xj − xk)2}, (2.2)

DX (xk(i)) = median
x∈X

{
√

(xk(i)− x)2}, (2.3)

Dmax
N (xk(i)) = max

x∈N k
i

{
√

(xk(i)− x)2}. (2.4)

The following conditions in Eq. 2.5 are then examined to verify if the deviation of a sample

is within the range defined by α. Since some rare abnormalities are unlikely to be observed

within the limited initialization period, the abnormal clusters (S,V ,F), which include ab-

normal beats from all patients in DS1, are deployed as the training dataset when calculating

DX (xk(i)) in Eq. 2.3
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Figure 2.6: The deviation analysis boundary restricts on fuzzy states between normality and
abnormalities compared with the global classifier boundary.


Dmax
N (xk(i)) ≤ αRmax

i ,

DN (xk(i)) < DX (xk(i)) for X ∈ {S,V ,F}
(2.5)

If a sample labeled as normal by the global classifier, is again confirmed as N in this module,

it will be used to update the N k
i as mentioned above. Otherwise, the system assumes that

the sample has a considerable deviation towards one of the abnormal clusters and hence will

pass it to the subsequent personalized classifier . The personalized classifier uses controlled

transformation with optimized parameters to discern the deviation to different morbid types

regardless of the cluster topology within the original feature space, as detailed in chapter 3

and chapter 4.

After performing both global and personalized classification steps, a given sample xk(i) of

patient i at time k is mapped to a label ŷk ∈ {N, Vy, Sy, Fy, Vr, Sr, Fr}, where N stands for

the normal state, and Xy and Xr stand for yellow and red alarms of type X.
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2.6 Personalized Classifier

In this section, we provide the core idea behind the design of the personalized classifier,

and the details of implementation will be discussed in chapter 3 and chapter 4. Since the

proposed system aims at predicting the subsequent abnormality by analyzing a sample’s

deviation from the patient’s normal functionality, it is vital to quantify the deviations using

topological characteristics of the training data in the feature space. For most of the ECG

applications, ECG signals are analyzed by their representative feature vectors. A natural

choice for deviation analysis in the high-dimensional feature space is cosine distance (as

defined in Eq. 2.6), which quantifies the distance between two vectors v and w.

d(v,w) = 1− vTw

|v||w|
= 1− vTw√

(vTv)(wTw)
(2.6)

Consequently, relative deviations of a sample from normal cluster (N k
i ) to other abnormal

clusters (S,V ,F) are defined by the cosine distance between the vector vk(i) (defined in

Eq. 2.7) and the three vectors vX (i) = cX − xk(i), where X ∈ {S,V ,F}. In this case, a

smaller cosine distance represents a higher alignment between the vector from the normal

cluster centroid vk(i) to the current sample xk(i) and the reference vector from the normal

cluster centroid to abnormal centroids cX .

vk(i) = xk(i)− ckN(i) = xk(i)−
∑
x∈N k

i

x/|N k
i |, (2.7)

Therefore, the classification result of the personalized classifier ŷ2k(i) is determined as follows:
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ŷ2k(i) = argmin
X∈{S,V,F}

{d(vk(i),vX (i))} (2.8)

The relevance of cosine distance depends on the topology of clusters in the feature space. The

topology in feature space, itself is inherited from the feature extraction and feature selection

methods. For example, as shown in Fig. 2.7, in the original feature space the overlaps and

alignments of abnormal clusters may lead to inaccurate results of deviation detection. In

order to eliminate the deviation analysis errors that arise from the asymmetry in the topology

of clusters, it is desired to transform the original topology into a more symmetric one, where

cosine distances directly reflect the amount of deviations.

Figure 2.7: Left: illustration of the cluster topology in the original feature space; Right: il-
lustration of the cluster topology in the transformed feature space using a nonlinear mapping
function.

For this purpose, two different spatial transformation methods are proposed in the next

chapter 3 and chapter 4.
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Chapter 3

Kernel-Based Nonlinear Spatial

Transformation

3.1 Introduction

As discussed in chapter 2, the main objective of the personalized classifier is to reassess

the normal samples to identify deviation of seemingly normal samples into any of the ab-

normality types. The original geometry of clusters in the feature space Ωd depends on the

choice of features implied by the feature extraction and feature selection stages g(). We

noticed that with the resulting features in this work, the cluster geometry does no exhibit

the necessary symmetric property and thus leads to a poor performance and even failure in

predicting subsequent abnormalities. Therefore, an optimization method based on spatial

transformation is proposed to solve this issue. More specifically, we propose a method to

reshape the clusters such that

• the abnormal clusters surround the normal cluster;
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• a maximal separation among the abnormal clusters are achieved;

• the angles between the vectors connecting the centroid of normal cluster to different

abnormal clusters are equalized.

These properties can be achieved through imposing the following conditions:

• the vectors pointing from the normal centroid to different abnormal centroids present

maximum mutual cosine distances;

• the overlapping parts among all clusters are minimized.

Given that the clusters in the original feature space do not meet these symmetric properties,

developing a spatial transformation is unavoidable. In this chapter, a kernel -based nonlinear

spatial transformation is proposed to reshape the feature space to reach the above-mentioned

required symmetric properties. This reshaping process is part of the personalized classifica-

tion stage (as shown in Fig. 2.5) of the ECG classification system as described in chapter 2.

The nonlinear mapping projects the corresponding feature vector of each sample xk in the

original space Ωd onto a new vector zk in a higher dimensional space denoted by Ωd′ . This is

achieved using a nonlinear mapping function Ψd′ : Ωd → Ωd′ . The resulting vectors are used

by the personalized classifier to identify the minor yellow alarm type out of {S,V ,F}.

3.2 Kernel Method

Kernel method has been widely used in machine learning algorithms. For instance, it is

the integral part of nonlinear support vector machine (SVM), which has been utilized in

numerous applications recently [50]. Nonlinear kernel methods can efficiently improve the

classification performance when there exists a nonlinear relationship between the input and
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output variables. Because of the complexity and diversity of feature vectors used in ECG

analysis, the assumption of nonlinear relationship is considered valid in this work. Therefore,

incorporating the nonlinear kernel method in the ECG analysis system can be beneficial.

In kernel SVM, the nonlinearities are introduced to the model through a kernel function,

which implicitly maps data points xi ∈ X in the input space Ω into a Hilbert space Φ via a

nonlinear function Ψ() [51]. Then the algorithm minimizes the expected error E[L(y, f(x)]

between the true labels y and the predicted labels f(x) for samples in a training dataset,

by finding an optimal classification function f(), which also depends on the choice of Ψ().

L() here is an arbitrary loss function. A popular choice for L() is the least squared errors∑
xi∈X

(yi − f(xi))
2 [52]. Other choices for loss function include Hinge loss, absolute loss, hit

and miss loss, etc. [53, 54].

If there are m observations in the input space, we use notation N to represent the set of

index (i.e. integers from 1 to m). Based on the input space xi ∈ Ω(i ∈ N) and classification

mapping function f , the optimization problem can be written as:

minimize
1

m

∑
i∈N

L(yi, f(xi)) + γ||f ||2, (3.1)

where ||f ||2 is the squared norm of f . For instance, if f is a polynomial function of order p,

(i.e. f(v) = α0 + α1v1 + α2v2 + ...+ αiv
2
1 + αjv1v2 + ...αkv

p
N), the norm of f is defined as:

||f ||2 =

√√√√ k∑
j=0

α2
j . (3.2)

The positive constant γ, also known as the regularization parameter, controls the balance

between training error and the model complexity (smoothness).
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When optimizing the objective function, SVM only requires to calculate the inner products

of the transformed features Ψ(x) in the Hilbert Space Φ. Therefore, a kernel defined as

k(xi,xj) = Ψ(xi)
TΨ(xj) can efficiently substitute the inner product calculation and induce

the necessary nonlinearities into the model [55].

Different kernels represent different nonlinear mapping functions. For ML models, the se-

lection of kernel plays a crucial role. Hence, there is no straightforward method to choose

the best kernel and it is typically chosen by empirical approach and other heuristic model

selection methods. An effective kernel function generally needs to satisfy the Mercer’s con-

dition, so that the inner products can be replaced by kernel functions, as used in SVM [56].

The exhaustive search for all possible kernels is a computationally expensive and unrealis-

tic task [57]. A more efficient way to resolve this issue would be to search for an optimally

weighted combination of a set of base kernels, such as polynomial kernel functions and Gaus-

sian kernel functions [58]. This method has been proven to be robust and efficient since the

base kernels satisfy Mercers condition individually and this property is consistent for different

datasets [59].

The polynomial kernels are usually applied on normalized data for its explicit expression and

steady performance. The polynomial kernels with lower degrees are more commonly used,

since higher degrees tend to overfit the training data [60].

The Gaussian kernel function, denoted by k(v, w) = exp(− ||v−w||
2

σ
) for vectors v and w, is a

very classic robust radial function, which has shown a high robustness in the case of noisy

datasets [61]. However, it is equivalent to the inner product of samples after projecting into

an infinite dimensional space. Therefore it is difficult to visualize the projected observations

Ψ(x) and interpret the results.

Considering the above-mentioned facts, the polynomial kernel is selected in this work for
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the purpose of validating the proposed method and interpreting the effect of an optimized

nonlinear kernel method on feature space reshaping. However, the proposed methodology is

general and applicable to other nonlinear kernels.

The mapping function, which is a weighted combination of polynomial kernels can be ex-

plicitly written in the following format:

zk = Ψw(xk) =



w1

w2

...

wd′


◦



ψ1(xk)

ψ2(xk)

...

ψd′(xk)


, (3.3)

where w is the vector of normalized coefficient.

Instead of selecting kernel, the process of spatial geometry optimization is accomplished by

adjusting the coefficients of fixed polynomial basis functions ψ(). Since the number of free

parameters increases exponentially with the order of polynomial kernel, an exhaustive search

is not practical for parameter optimization. Therefore, it is necessary to implement a heuris-

tic optimization algorithm, in which parameters are obtained by maximizing the designed

objective functions. More specifically, the nonlinear reshaping module in this chapter aims

to adjust mapping coefficients w = [w1, w2, . . . wd]
T to achieve the ideal symmetric geometry

in the reshaped feature space while maintaining the maximal separation between clusters.
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3.3 Multi-objective Optimization

3.3.1 Objective Functions

To elucidate the details of the optimization problem, here we consider an illustrative example,

where the original feature space is a 2-dimensional space Ω2. We also assume for simplicity

that the order of the polynomial function is 2. Therefore, we have:

x = [x1 x2]
T , w = [w1 w2 . . . w5]

T , d = 2, d′ = 5,

ψ1(x) = x1, ψ2(x) = x2, ψ3(x) = x21, ψ4(x) = x22, ψ5(x) = x1x2. (3.4)

The coefficient vector w is a 5 × 1 vector. Therefore, the algorithm needs to search in a

5-dimensional space to find an optimal vector w so that the geometry of feature space after

transformation has the desired properties described in section 3.1. For this purpose, we define

two objective functions to impose the symmetry and separation of different abnormality

clusters. The concepts of Fisher discriminant function and cosine distance are used to

quantify these properties. The objective functions are formulated as follows:

o1(w) =
1

min
c,d=2,...,p and c 6=d

{d(vXc ,vXd
)}

(3.5)

o2(w) =
SW

SB
=

∑C
c=1

∑
z∈Xc

(z− cXc)
T (z− cXc)∑C

c=1

∑C
d=1,d6=c(cXc − cXd

)T (cXc − cXd
)

The maximization of pairwise cosine distance between the vectors vXc , vXd
connecting the

centroid of the normal cluster to the centroids of abnormal clusters Xc and Xd is achieved by
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minimizing o1(w). In fact, this objective function is deduced from discrimination function of

personalized classifier in Eq. 2.8. Cosine distance is defined by Eq. 2.6 and the calculation

of vXc,d
can be written as follows:

vXi
= ckN − cXi

(3.6)

Since for some patients, the total number of a certain type of abnormal samples is very

limited, the abnormal samples in training set DS1 are utilized in calculating the two objective

functions. In Eq. 3.5, the abnormal cluster centroids are calculated using the abnormal

samples in training dataset DS1, while the centroid of the normal cluster is defined by the

preceding normal samples for the same person.

On the other hand, o2(w) represents the ratio of the within-cluster variance to the between-

cluster variance and consequently controls the separation between the clusters. By minimiz-

ing o1(w) and o2(w) jointly, the algorithm eliminates the ambiguity of classification while

improving the predictive power of the personalized classifier due to the symmetric geometry

of clusters.

3.3.2 Multi-objective Particle Swarm Optimization

We notice that o1(w) and o2(w) are not necessarily independent of each other. Thus, the

optimization problem defined above is equivalent to joint minimization of o1(w) and o2(w)

subject to a constraint condition: |w|2 = 1. This constraint is necessary since the first

objective function o1(w) is inversely proposal to |w|2, whereas the second objective function

o2(w) is scale-invariant.
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This problem is a non-convex multi-objective optimization problem. Therefore, neither

closed form solutions nor the optimization methods proposed for convex problems are ap-

plicable to this case. In this work, we utilize the multi-objective particle swarm optimiza-

tion (MOPSO) algorithm to solve this optimization problem and obtain the optimal coeffi-

cients [62].

Particle swarm optimization (PSO) is a heuristic searching algorithm and has the advantage

of fast convergence, and easy implementation [62, 63]. PSO is defined to solve problems

with a single objective function, where closed form solutions are not tractable. Several

research works are devoted in the past decade to extend this method to multi-objective

optimization problems [64, 65]. In the MOPSO framework, the goal is to solve the typical

Pareto optimization problem based on the evolutionary algorithm used in PSO. In other

words, it aims at solving an optimization problem with two or more conflicting objective

functions by approximating the Pareto front.

In order to compare different set of coefficients in this optimization problem, the concept of

Pareto front is briefly introduced in this section. For a multi-objective optimization problem

with two objective functions, if a solution w1 is said to dominate another w2 , the following

two conditions are satisfied:

1. o1(w
1) ≤ o1(w

2) and o2(w
1) ≤ o2(w

2)

2. o1(w
1) < o1(w

2) or o2(w
1) < o2(w

2)

If a solution is not dominated by any other solution in the searching space, then this solution

is an optimal solution for this problem. A Pareto front is defined by the set of Pareto optimal

solutions. However, in non-convex optimization, the Pareto front can not be represented

explicitly by a deterministic function. Therefore, the majority of the optimization methods

use heuristic searching algorithms to approximate the Pareto front [62].
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Figure 3.1: Particles stored in external repository approximate the Pareto front.

Implementation Details of MOPSO

MOPSO is a popular multi-objective optimization algorithm, which uses Pareto dominance

to determine the direction of a particle in each iteration by combining the optimal direction

found by the particle itself and the global optimal direction. Among different implemen-

tations of MOPSO, the algorithm proposed by Coello Coello and Lechug presents a better

performance and lower computational complexity in most applications [62]. Therefore, this

algorithm is implemented and utilized in this work to solve the multi-objective optimization

problem. One special property of this algorithm is the use of external repository, in which

all Pareto optimal particles for every swarm are recorded for each iteration. The solution

represented by repository members are stored and used as an optimal approximation of the

Pareto front because they converge to the actual Pareto front as proved in [62].

Fig. 3.1 presents the results of joint minimization of objective functions o1(w) and o2(w).

42



This figure demonstrates that the repository members are Pareto optimal compared to the

other particles. This figure also confirms that the repository members converge to a uniform

Pareto front.

Using the concept of Pareto optimality, we demonstrate the impact of applying kernel func-

tions in this spatial reshaping problem by comparing the Pareto front of the optimization

problem obtained by using MOPSO for two different scenarios including i) the optimized

coefficients for the linear combination of data in the original feature space (i.e. a linear iden-

tity function) and ii) the transformed samples under polynomial kernel whose coefficients

are optimized using MOPSO. Therefore, we first optimize the coefficients of the third-order

polynomial kernel function, as formulated in Eq. 3.4 and then optimize the coefficients of

linear features in the origin feature space. The purpose of this comparison is to investi-

gate whether or not the objective functions are fundamentally improved by incorporating

nonlinear terms into the feature vectors through the proposed polynomial function.

As shown in Fig. 3.2, the estimated Pareto front of the nonlinear model using the polynomial

kernel dominates the Pareto front of the original linear model. This result is expected since

the transformed samples exhibit a higher degree of freedom by adding new dimensions to

the data in the feature space through the nonlinear mapping. A higher degree of freedom

enables the MOPSO algorithm to tune the optimization parameters and find better solutions

than the best achievable solutions by the original data samples. In other words, the kernel

method combined with multi-objective particle swarm optimization algorithm can improve

the spatial topology of the clusters quantified by the two objective functions.
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Figure 3.2: The Pareto front approximated by MOPSO is significantly shifted when using
the transformed feature vectors. This improvement is due to the increase in the degree of
freedom provided by additional non-linear dimensions added to the samples.

3.4 Experimental Results

As mentioned in section 2.3, a sample segment is represented by an 8-dimensional vector

x = [x1, x2, . . . , x8] after the feature extraction stage and the PCA-based dimension reduction

stage. To specify the nonlinear transformation in Eq. 3.3, a polynomial function of order 3

is applied to the feature vectors. The resulting transformed vectors are as follows:

[x1, x2, . . . , x8, x
2
1, x

2
2, . . . , x

2
8, x

3
1, x

3
2, . . . , x

3
8, x1x2, ....x6x7x8], (3.7)

which include 165 terms and 8 of them are the original features. This high dimensionality

may cause the classifier to be trapped into the overfitting problem. It also significantly

increases the computational complexity of the algorithm. To solve this issue, we discard

some of the induced terms and include only 8 square terms x2i , 8 cubic terms x3i , and 8

cross terms of power two xixj and 8 cross terms of power three xix
2
j . We randomly choose
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these terms after discarding the redundant cross terms. Therefore, the mapped vectors z32×1

include a total of 32 terms as follows:

z = {x2i |i = 1, 2 . . . 8} ∪ {x3i |i = 1, 2 . . . 8}∪ (3.8)

{xixj|i, j = 1, 2 . . . 8, i 6= j} ∪ {x2ixj|i, j = 1, 2 . . . 8, i 6= j}

The performance of the aforementioned kernel -based method is tested on DS2 excluding

record 232, for this record has only 7 normal samples. In total, 21 records are used to

evaluate the performance.

Table 3.1 shows the performance of the proposed method in classifying ECG signal segments.

In order to evaluate the consistency as well as the general classification results over all

recordings, the median, interquartile range (IQR), mean and standard deviation of accuracy

(AC), sensitivity (SE) and specificity (SP) are presented. The results are promising and the

median of the classification accuracy for all classes are in the range of 88%−99%. Sensitivity

and specificity of the proposed method exhibit similar ranges. The mean accuracy is at least

86% except for class V . Therefore, this system is not likely to miss important alarms or to

report false alarms.

More importantly, the predictive capability of the proposed method is worthy of evaluating,

since it is an unique feature provided by the proposed system. In order to quantify the

posterior probability of observing an abnormal signal after a preceding yellow alarm of the

same type in Eq. 2.8, the number of predicted samples are counted as formulated in Eq. 3.9:
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Table 3.1: Classification results of the proposed method.

Class N median(%) IQR(%) mean(%) std (%)
AC 94.8 19.52 86.62 18.55
SE 97.21 17.36 87.47 19.26

class V median(%) IQR(%) mean(%) std (%)
AC 86.11 27.54 76.41 22.81
SP 99.71 11.22 90.18 18.52

class S median(%) IQR(%) mean(%) std (%)
AC 99.28 2.24 98.29 2.57
SP 99.64 22.17 97.56 6.06

class F median(%) IQR(%) mean(%) std (%)
AC 97.91 8.2 93.85 7.84
SP 100.00 0.03 99.12 3.6

P (ŷk+i = Xr|ŷk = Xy) =
# of yk+i = X after ŷk = Xy

# of true alarms after ŷk = Xy

P (ŷk+i = Xr) =
# of true alarm of type X (yk = X)

# of all true alarms
(3.9)

The summary of results for all 21 test records is presented in Table 3.2. The values pro-

vided under the column Probability of subsequent abnormality (%) in Table 3.2 represent the

probabilities of having a subsequent true abnormality of all types after observing a yellow

alarm of all types along with the prior probabilities of observing a certain abnormal type

regardless of the preceding yellow alarm typt in the very last column. These results confirm

the predictive capability of yellow alarms as well as the scientific fact that the yellow alarms

are indicative of upcoming red alarms. This conjecture supported by the fact that at least

some of the heart problems develop over time, although the symptoms may appear suddenly.

For instance, the prior probabilities of observing a sample segment with abnormal types V , S,

and F are respectively 96
96+29+18

= 67%, 29
96+29+18

= 20% and 18
96+29+18

= 13%, based on their

relative frequencies in the dataset. However, the corresponding posterior probabilities after
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Table 3.2: Predictive power of yellow alarms : A yellow alarm increases the chance of ob-
serving a red alarm of the same type.

Count numbers of sub-
sequent abnormality

Probability of subse-
quent abnormality (%)

yellow alarm Vy Sy Fy Total Vy Sy Fy Total
True V 38 23 35 96 75 75 61 67
True S 11 10 8 29 21 29 14 20
True F 2 2 14 18 4 6 25 13

observing a yellow alarm of type Vy, Sy, Fy are respectively 38
38+11+2

= 75%, 10
23+10+2

= 29%

and 14
35+8+14

= 25%. This means that the probability of observing a real abnormal segment

of type V is 75% − 67% = 8% higher than its prior probability. The same trend holds

for other types of yellow alarm as well. The results suggest a more in-depth study of the

concept of yellow alarms for heart monitoring. We conclude this section by stating that a

new methodology provided in chapter 4 to optimize the nonlinear transformation using an

analytical approach, which significantly reduces the computational cost.

3.5 Summary of Contributions

In this chapter, we proposed a novel method which combines kernel-based nonlinear transfor-

mation with MOPSO optimization method. With the concept of kernel method and the loss

function, we implemented a novel method using a weighted combination of base nonlinear

kernels to reshape the input feature space by mapping it to a high-dimensional space. The

coefficients of kernels are optimized according to two conditions, namely, maximum separa-

tion between the clusters and maximum cosine similarities between the abnormal clusters.

By studying kernel methods as well as heuristic optimization methods based on the spatial

topology optimization concept, the outcome of this chapter can be concluded as follows:
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• translate the ideal symmetric geometry of feature space into two objective functions;

• design a kernel-based transformation using weighted combination of base kernels;

• validate that nonlinear transformations are more capable of improving the spatial topol-

ogy than linear transformations.

In order to verify the efficiency of this method, we applied the developped method to test

samples in the MIT-BIH ECG recording database [28]. The experimental results show that

the proposed method has a classification accuracy in the range of 88% − 99% for different

ECG records.

Furthermore, the proposed algorithm demonstrates the potential of assessing a signal’s de-

viation from its patient-specific normal trend in order to indicate the upcoming abnormality

classes. The predictive capacities of the system is tested with ECG signals, but the proposed

method is general and applicable to similar problems beyond the ECG signal processing,

studied in this work. If a biomedical signal has one base class (i.e. normal state) and several

abnormal states, we can deploy the proposed method to trigger yellow alarms and predict

upcoming abnormality classes.
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Chapter 4

Controlled Spatial Transformation

With Deterministic Mapping Function

4.1 Introduction

In chapter 2, we discussed the details of the patient-adaptive ECG classification framework.

An important part of this methodology is to design a personalized classifier with a deviation

analysis module. The performance of the deviation analysis module depends on the geometry

of different clusters of data samples in the feature space. In chapter 3, we proposed a novel

spatial transformation method based on MOPSO to achieve a desired symmetry in the

transformed feature space to boost the performance of the deviation analysis module. This

methodology enables us to further process the normal samples and identify fuzzy states

between the normal and abnormal states. However, the proposed method uses an iterative

optimization which may have high computational complexity. In this chapter, we introduce

another deterministic spatial transformation method to model the fuzzy state of samples

with a more tractable and analytical solution.
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Figure 4.1: Left: illustration of the clustering topology in the transformed feature space
without reducing the within-cluster variance; Right: illustration of the clustering topology
in the feature space transformed with the optimized mapping function, which reduces the
within-cluster variance.

While the method presented in chapter 3 yields the desired capacity of predicting upcoming

abnormalities, the interpretation of the mechanisms of the system is not straightforward

and easily tractable, thus it is not easily generalizable to a broader range of applications

in the biomedical signal processing. The main objective of this chapter is to develop a

deterministic transformation with a stronger prediction power based on a controlled spatial

topology studied in chapter 3. In this method, we further optimize the topology and spatial

geometry of the clusters in the feature space by reducing the within-cluster variance after the

spatial transformation. As shown in Fig. 4.1, through this improvement, the performance

of the personalized classifier in terms of prediction accuracy can be further enhanced with

the proposed method.

4.2 Hyper-Spherical Coordinates

In chapter 3, the spatial transformation module is implemented with a polynomial kernel

function and a heuristic optimization method. The system performance has been proven to

50



be promising. In addition to the general drawbacks of heuristic method, it is not straight-

forward to select an appropriate base kernel as the core of spatial mapping function due to

the high variety of kernel functions.

In order to address this issue, a novel deterministic spatial mapping function is proposed

in this chapter based on hyper-spherical coordinates [66]. Since hyper-spherical coordinates

consist of angles and radius, these parameters in both original feature space and the desired

target space are used to determine the mapping function.

The hyper-spherical coordinate system (n-dimensional spherical coordinate system) and its

mapping to the Cartesian coordinate system are first introduced in [66]. If x is a sample

vector in a n-dimensional feature space, with its Cartesian coordinates (ξ1, ξ2 ...ξn), then

its corresponding hyper-spherical coordinates can be obtained through Eq. 4.1, which is

originally derived through its reverse mapping (Eq. 4.2) using equation: sin(arccos(x)) =
√

1− x2.

r =

√
ξn

2 + ξn−1
2 + · · ·+ ξ2

2 + ξ1
2

θ1 = arccos
ξ1√

ξn
2 + ξn−1

2 + · · ·+ ξ1
2

θ2 = arccos
ξ2√

ξn
2 + ξn−1

2 + · · ·+ ξ2
2

...

θn−2 = arccos
ξn−2√

ξn
2 + ξn−1

2 + ξn−2
2

θn−1 =


arccos ξn−1√

ξn
2+ξn−1

2
ξn ≥ 0

− arccos ξn−1√
ξn

2+ξn−1
2

ξn < 0

(4.1)

51



ξ1 = r cos(θ1)

ξ2 = r sin(θ1) cos(θ2)

ξ3 = r sin(θ1) sin(θ2) cos(θ3)

...

ξn−1 = r sin(θ1) · · · sin(θn−2) cos(θn−1)

ξn = r sin(θ1) · · · sin(θn−2) sin(θn−1), (4.2)

where 0 ≤ θj ≤ π, j = 1, . . . , n− 2; 0 ≤ θn−1 ≤ 2π; 0 ≤ r <∞.

4.3 Orthogonalization

To simplify the algorithm, in this chapter, the topology of clusters in the feature space

is approximated by their centroid locations, denoted by ckN , cV , cS , cF , respectively for the

normal cluster and the three abnormality clusters of type V , S, and F . Furthermore, as

we assume that the samples with fuzzy states deviate from the normal cluster to a specific

abnormal cluster, the spatial topology stays unchanged if the normal centroid is simply

translated to the origin of the Cartesian coordinate system. The clustering topology in the

original feature space can be equivalently represented by the following matrix with three row

vectors:
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C =


cV − ckN

cS − ckN

cF − ckN

 =


vVN

vSN

vFN

 (4.3)

As shown in Fig. 4.1, in order to improve the performance of the personalized classifier and

to avoid ambiguity in quantifying the deviations to different abnormal classes, a topology

with a maximum separation between the three vectors of C is preferred. To achieve a lower

computational complexity in higher order dimensions, the algorithm aims at transforming

vectors in C to orthogonal vectors using a deterministic function. This approach not only

simplifies the transformation derivations, it also ensures a full symmetry among abnormality

clusters. As such, the problem reduces to finding a transformation that maps a set of vectors

to a set of orthogonal vectors in the same space. Therefore, we can use the popular Gram-

Schmidt orthogonalization method explained in [67,68]. Hence, in the first step of this stage,

the three row vectors of C representing the centroids of the three abnormality clusters are

fed to the orthogonalization process as follows:

C⊥ = Gram-Schmidt(C) =


v⊥VN

v⊥SN

v⊥FN ,

 (4.4)

where C⊥ is the matrix of orthogonalized vectors in the Cartesian coordinate system. The

hyper-spherical coordinates C⊥∗ of these orthogonalized vectors are calculated subsequently

using Eq. 4.1. After this step, the orthogonalized vectors in the hyper-spherical coordinate

system are obtained as formulated in Eq. 4.5. The jth angular dimension denoted as θ⊥j and

the radius is noted as r⊥.
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C⊥∗ =


r⊥VN θ⊥1VN . . . θ⊥n−1VN

r⊥SN θ⊥1SN . . . θ⊥n−1SN

r⊥FN θ⊥1FN . . . θ⊥n−1FN

 (4.5)

4.4 Spatial Mapping Function

After obtaining the original hyper-spherical coordinates of [vVN , vSN , vFN ]T and the or-

thogonalized hyper-spherical coordinates [v⊥VN , v⊥SN , v⊥FN ]T , the goal is to design a mapping

function F : Rn → Rn from the original coordinates to the orthogonal ones which exhibit

the desired clustering topology, such that Eq. 4.6 holds.

In the Gram-Schmidt algorithm, the very first vector serves as a reference vector and remains

unchanged in the orthogonalization process, namely vVN = v⊥VN . Therefore the mapping

function F shall satisfy the following equations:

F(vSN − vVN ) = v⊥SN − v⊥VN = v⊥SN − vVN

F(vFN − vVN ) = v⊥FN − v⊥VN = v⊥FN − vVN

(4.6)

Furthermore, since the orthogonality of vectors is independent to their radii r, we only

need to design F for the n − 1 angular dimensions (θ1, . . . , θn−1), and the coordinate r

remains unchanged after the mapping. Consequently, the function F can be decomposed

into n − 1 functions: fi : R → R, i = 1 . . . n − 1 with constraints in Eq. 4.6 as well as

two additional extreme points defining the range of input and output values. We use the

notation vSN − vVN = ∆SV and denote the ith angular dimension of ∆SV as δiSV . We use
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similar notations for the other vector, (i.e. vFN − vVN ). Hence for each angular dimension

i, fi is determined by (δiSV ,δ⊥iSV ) and (δiFV ,δ⊥iFV ), along with the two extreme boundary points

defining the domain and range of the functions.

In order to maintain the simplicity and the linearity of the mapping function, the functions fi

should be continuous and monotonic. For this purpose, the valid range of angular dimensions

(after considering the periodicity of these functions) is used to determine the boundary

constrains; therefore the problem is transformed into a curve fitting problem.

For example, if linking (δiSV ,δ⊥iSV ) and (δiFV ,δ⊥iFV ) results in a monotonically increasing func-

tion, noting the fact that the range of n − 2 first angular dimensions is the interval [0, π],

then the two extreme boundary points would be (0, 0) and (π, π), as depicted in Fig. 4.2.

Conversely, for a monotonically decreasing function, the extreme boundary points would be

(π, 0) and (0, π). These rules apply for the functions defined for the n−2 first angular dimen-

sions. Similar rules apply to the last angular dimension with only one consideration that the

period is 2π instead of π. Since (δiSV ,δ⊥iSV ) and (δiFV ,δ⊥iFV ) represent the orthogonalization

process, they are decisive for this process and will be called as orthogonalization points . So

we call these two points as well as the two extreme boundary points as target points of the

angular dimensions in the following sections.

The simplest candidate function for fi, which connects all the four target points, including

orthogonalization points and extreme boundary points, in the 2-D plane would be a linear

spline as shown in Fig. 4.2.
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Figure 4.2: The simple mapping function for one angular dimension which maps the target
points in the original space to the desired target points. Target points include the two
extreme boundary points (0, 0), and (π, π) as well as (δiSV ,δ⊥iSV ) and (δiFV ,δ⊥iFV ) to yield the
desired mapping.

4.5 Optimized Mapping Function

The mapping function in Fig. 4.2 exhibits the two desired properties of monotonicity and

continuity for an ideal mapping function fi. However, this simple piece-wise linear mapping

function suffers from some drawbacks. Firstly, the function is not differentiable at the orthog-

onalization points (δiSV ,δ⊥iSV ) and (δiFV ,δ⊥iFV ), which can lead to severe cluster deformations.

Secondly, the mapping function is applied to the angular dimensions, the discontinuity of

the derivative of the function can cause the convex-clusters to be mapped into non-convex

clusters in the Cartesian coordinate system. In order to avoid deformations and to preserve

maximal similarity with the original clustering geometry, it is desired to use a more linear

functions with continuous derivatives. Also, in order to provide maximal separation between

clusters and to concentrate clusters into disjoint non-overlapping clusters, it is beneficial to

map the regions between two target points into a region with equal or even smaller range in
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the Cartesian coordinate system. In other words, it is desired to keep the samples close to

the centroids in the mapped space as much as possible. This property is achieved by using

nonlinear functions. However, there is a trade-off between the level of concentration and

the linearity, which needs to be carefully addressed. In order to avoid deformation while

providing maximal separation, an optimized mapping function is proposed in this section.

In order to accommodate the above-mentioned requirements, it is desired to find a function,

which satisfies the following mathematical conditions:

• the function is differentiable everywhere (continuous first derivative);

• the derivative of the function is small at the target points, which correspond to the

centroids of clusters in the original and transformed space, i.e. δiSV and δiFV in Fig.

4.3;

• the derivative of the function is large at the boundaries of two regions (point (εiSV , ε
⊥
iSV

)

in Fig. 4.3);

Therefore, we propose to use the basic function p with adjustable parameters, which satisfies

the aforementioned conditions. Each target point is associated with a basic function. The

function p is composed of two constitutive functions: h(x) and g(x), respectively defined in

two regions: i) from the target point to the upper boundary point, ii) from the lower boundary

point to the next target point. Before defining the two functions h(x) and g(x), we need to

define the boundaries between two consecutive target points (δiSV ,δ⊥iSV ) and (δiFV ,δ⊥iFV ), in

which these functions are defined.We simply choose the midpoint as the boundary points for

simplicity. For instance, we have ε = (δ1 + δ2)/2 as stated in Eq. 4.7. The lower and upper

boundary points are noted respectively as (γ,γ⊥) and (ε,ε⊥). To ensure the continuity of the

mapping function f , the boundaries and target points should satisfy:
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(εiSV , ε
⊥
iSV

) = (γiFV , γ
⊥
iFV

) = (
δiSV + δiFV

2
,
δ⊥iSV + δ⊥iFV

2
) (4.7)

The two piece-wise functions h(x;α, ε, ε⊥, δ, δ⊥) and g(x;α, γ, γ⊥, δ, δ⊥) are developed using

the inverse of logit function, hence they are defined as follows:

Kh =
ε⊥ − δ⊥

eα(ε−δ,0)+ − 1
(4.8)

h(x;α, ε, ε⊥, δ, δ⊥) = Kh[e
α(x−δ,0)+ − 1] + δ⊥

Kg =
γ⊥ − δ⊥

eα(−γ+δ,0)+ − 1
(4.9)

g(x;α, γ, γ⊥, δ, δ⊥) = Kg[e
α(δ−x,0)+ − 1] + δ⊥

In order to investigate the satisfaction of the above-mentioned conditions, we first verify that

these functions pass through the target points. More specifically, g() should pass through

points (γi, γ
⊥
i ), (δi,δ

⊥
i ) and h() pass through (εi, ε

⊥
i ), (δi,δ

⊥
i )

Once we confirm that the basic function h(x) has the desired properties, we fit this function

with appropriate parameters to all regions. The final function is a smooth and continuous

function, which passes through all target points (δiSV ,δ⊥iSV ), (δiFV ,δ⊥iFV ) as well as the two

extreme boundary points as shown in Fig. 4.4.

In the training process, data samples with abnormal labels belonging to all patients in DS1

and the personalized normal cluster for one patient are used to determine the mapping

function for the corresponding patient. In the predicting process, the feature vector of a new
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Figure 4.3: Optimized piece-wise interpolated function p.

ECG sample in the hyper-spherical coordinate system is calculated and the mapping function

is applied on its hyper-spherical coordinates to yield the transformed feature vector. After

this step, we calculate the transformed data samples in the Cartesian coordinate system,

which is further fed into the personalized classification stage defined by Eq. 2.8 to generate

the corresponding type of yellow alarm.

4.6 Experimental Results

In this section, the performance of the proposed method is evaluated in terms of two as-

pects. We first analyze the classification performance of the system and then present the

comparative results with respect to other representative ECG classifiers. Furthermore, the

classification results are partitioned into two sets: red alarms generated by the global clas-

sifier and the final labels by combining the yellow and red alarms. In this way, the impact

of personalized classifier on the final labels can be revealed. Finally, the prediction power
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Figure 4.4: Optimized mapping function f .

of the proposed method in terms of providing precaution hints for upcoming red alarms is

evaluated.

4.6.1 Classification Performance

The experimental results are assessed in terms of classification performance of 4 AAMI ECG

classes using the test subset of MITBIH Arrhythmia DS2. Originally, DS2 contains 15357

samples after feature extraction. While training the personalized classifier, the normal sam-

ples within the first 5 minutes of the signal serve as initialization set for the personalized

dynamic normal cluster. Therefore, we exclude the normal samples in the first 5 minutes of

the signal from each record since they are already included in the training process. Conse-

quently, the actual test set contains 12414 samples in total consisting of 10105 type-N, 1702

type-V, 508 type-S and 99 type-F samples.

To present the result, we select the weighted k-Nearest Neighbors method with k = 10 as our
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Table 4.1: Cumulated Confusion Matrix for All Records in DS2. The numbers are
final label(primary label by global classifier).

Ground Truth

Result

N V S F
N 9255(10076) 21(38) 72(90) 1(5)
V 657(22) 1678(1663) 8(2) 9(7)
S 71(6) 3(1) 417(416) 0(0)
F 122(1) 0(0) 11(0) 89(87)

choice of global classifier because it is one of the low-complexity methods with a relatively

good classification accuracy [69]. The parameter α, used in Eq. 4.8 in the deviation detection

module is set to 1 for test purpose.

Table 4.1 summarizes the cumulated confusion matrix for all records in the test set. In or-

der to compare the result of global classifier (red alarms) and combined results (final labels

including both red and yellow alarms), the sample numbers are presented in the following

format: final label(primary label by global classifier). In order to measure the classifica-

tion performance, we adopt three metrics: accuracy(Ac), sensitivity(Se), specificity(Sp), as

proposed in [12,13,16]. All three metrics are calculated based on the true positive TP , false

positive FP , false negative FN and true negative TN in a binary confusion matrix, where

one class is the specific abnormality class and all other abnormality and normal classes com-

bined into one class. Therefore all four metrics are calculated for each class by converting

the 4x4 matrix to a 2x2 matrix.

While cumulative classification results are demonstrated in Table 4.1, the robustness of the

proposed method should be evaluated based on the performance variation over 22 test records

in DS2. Further, medians and IQRs (interquartile range) for each metric and each class

are included in Table 4.2 to represent the robustness and average performance of proposed

methods. The robustness of the system is assesed in terms of the variation between the

performance of different records. The system is more robust if this variation is lower. In
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Table 4.2: Classification Performance and Within-Set Variation of Proposed System

statistics
N V S F

Ac Se Sp Ac Se Sp Ac Se Sp Ac Se Sp
cumulated 92.4 91.59 95.93 94.38 98.59 93.71 98.67 82.09 99.38 98.85 89.9 98.92

median 94.45 92.21 95.42 96.17 99.55 95.71 99.38 80.65 99.84 99.11 90.91 99.11
IQR 6.33 10.08 11.91 5.17 1.64 8.62 1.76 19.35 0.61 1.58 23.33 1.49

Table 4.3: V and S classification performance compared with five algorithms in literature
using 11 common records in MITDB

Methods
V S

Ac Se Sp Ac Se Sp
Proposed 96.6 98.2 92.4 98.63 88.89 99.41

Hu et al. [12] 94.8 78.9 96.8 N/A N/A N/A
de Chazal et al. [9] 96.4 77.5 N/A N/A N/A N/A

Jiang and Kong [15] 98.8 78.9 96.8 97.5 74.9 98.8
Ince et al. [16] 97.9 90.3 98.8 96.1 81.8 98.5

Kiranyaz et al. [17] 98.9 95.9 99.4 96.4 68.8 99.5

Table 4.2, we observe that among all abnormality classes, the proposed method demonstrates

a stable performance on class V but a lower performance consistency for classes S and F.

As MITDB is widely used to verify ECG classifier performance, we compared the proposed

system with five significant methods proposed in the literature. According to AAMI stan-

dards, the performance of ECG classification should be evaluated over the binary classifiers

applied to Ventricular (V) versus non-V types and Supraventricular (S) versus non-S types.

For methods proposed in the literature, the same evaluation metrics are commonly applied

to records from MITDB. To standardize the metrics, we select 11 ECG records which are

common among all 5 methods and compare the median of each classification metrics over

these 11 records. The comparison results are presented in Table 4.3. Generally speaking, the

proposed method shows a higher sensitivity for both types V and S. Especially for type S,

the proposed method shows an advantage over all three metrics compared to the 5 reference

methods.

62



4.6.2 Prediction Performance

As an important feature of the proposed method, yellow alarms triggered by the personalized

classifier indicate higher probabilities of observing subsequent abnormalities of the same

type. In order to verify this functionality, all beats following a yellow alarm of a specific

type is investigated to asses the chance of upcoming red alarms of different types. This

process is repeated for yellow alarms of all types. We only account for the first abnormality

type which occurs after the yellow alarm. As we used confusion matrix to evaluate the

classification accuracy, the performance of prediction can be summarized by a confusion

matrix with the 3 abnormal types. The probabilities of observing a certain type of abnormal

beat after a yellow alarm is calculated using the prediction confusion matrix and compared

to the prior probability of observing the abnormality of the same type. This process is

formulated in the following two equations:

P (ŷk+i = Xr|ŷk = Xy) =
# of yk+i = X after ŷk = Xy

# of true alarms after ŷk = Xy

P (ŷk+i = Xr) =
# of true alarm of type X (yk = X)

# of all true alarms
(4.10)

The prediction power of each abnormality type is evaluated by comparing P (ŷk+i = Xr|ŷk =

Xy) and P (ŷk+i = Xr). A shown in Table 4.4, the probability of observing a certain type

of abnormalities after a yellow alarm is higher than its prior probability and this fact is

consistent for all abnormality types. For example, without knowing the type of the preceding

yellow alarm, the probability of observing a type V sample is 71.54%, while the probability

of observing a type V sample after observing a yellow alarm of a type V is 77.45% (5.91%

higher than the prior probability). The improvements are consistent among all three types

63



Table 4.4: predictive probability versus prior probability without windowing

# of predicted
ground truth

% of predicted
ground truth

V S F V S F

yellow
alarm

V 467 122 14 77.45 20.23 2.32
S 36 15 0 70.59 28.41 0
F 40 60 5 38.10 57.14 4.76

total 543 197 19 71.54 25.96 2.50

Table 4.5: predictive probability versus prior probability within 10 beats’ window

# of predicted
ground truth

% of predicted
ground truth

V S F V S F

yellow
alarm

V 290 85 12 74.94 21.96 3.10
S 22 13 0 62.86 37.14 0
F 29 37 6 40.28 51.39 8.33

total 341 135 18 69.03 27.32 3.64

of abnormalities but the system shows a stronger prediction power for type S.

In the above analysis we consider the first subsequent red alarm regardless of the time passes

since the preceding yellow alarm. In order to study the impact of the timing window (the

time between the yellow alarm and the subsequent red alarm), we also studied a window of 10

consecutive samples following a yellow alarm. Similarly, the prior and posterior probabilities

are compared to evaluate the performance of the prediction capacity as shown in Table 4.5.

Compared with the result without windowing, the prediction performance within a 10-sample

window shows that the proposed algorithm can better predict the occurrence of abnormalities

if a certain timing window is used. Especially for type S, the probability of observing a sample

of type S within 10 segments after a yellow alarm of type S is 27.32% (i.e. the posterior

probability rises to 37.14%). With almost 10% increase, it is proven that the yellow alarm

types are informative. The results show that same improvements are made within the 10-

sample window as well. In general, the predicting performances are promising, indicating
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the efficiency of personalized classifier and deviation analysis. We believe that this concept

is worthy of further in-depth studies for different physiological signals.

4.7 Summary of Contributions

In this chapter, we proposed a novel deterministic spatial transformation. The purpose of this

method is to reshape clustering geometry in the original feature space so that the clusters

in the transformed feature space demonstrate symmetry and low within-cluster variance.

This analytical method is more tractable than the method proposed in chapter 3. Further,

it eliminates the need to seek for a proper kernel function or to heuristically optimize the

coefficient of the selected function, which may require high computational complexity.

This method utilizes hyper-spherical coordinate system and the orthogonalization concept to

determine the parameters of the basic functions used to implement the nonlinear mapping.

We applied this method to the test dataset, MITDB DS2 and obtained promising results.

Both the classification and prediction performances of the proposed method are analyzed

in this chapter. The algorithm has been proven to be efficient in classifying samples and

predicting upcoming abnormalities as well.
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Chapter 5

Conclusions And Future Works

5.1 Conclusions

In this thesis, we considered an overlooked problem in the biomedical signal processing com-

munity, which is the lack of prediction power of automated biomedical signal processing

methods in predicting severe health abnormalities ahead of time through processing mild

abnormalities in the test signal. Several automated algorithms have been designed by the

biomedical engineering community to process physiological signals to assist health providers

in diagnosing different disorders and making better therapy plans. However, an important

concept of predicting severe heart conditions before their occurrence by processing physiolog-

ical signals is not well studied. In this work, we developed a novel methodology as a primary

step towards developing predictive diagnosis tools. We applied the proposed methodology

into ECG signals to assess the power of the system in predicting upcoming heart problems. In

this regard, we proposed a patient-adaptive ECG classification framework. The system has

a two-staged hierarchical structure including a global classifier and a personalized classifier.

The global classifier is designed to filter out the samples with severe distortions represented
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by their abnormal waveforms by triggering red alarms. The samples classified as “normal”

the by global classifier are delivered to the subsequent deviation detection module. In this

stage, the personalized dynamic normal cluster is constructed and used to specify the normal

range for each patient’s ECG signal. By comparing a sample with its personalized normal

range, we use two joint conditions to decide if the sample is in a fuzzy state between the

normality and abnormality conditions. If the sample fails to meet both of these conditions,

a yellow alarm is triggered to provide predictive information about upcoming abnormalities.

The samples that show considerable deviations from their ground normal are passed to the

personalized classifier to label it as one of the three abnormal types, whichever is more likely.

On the other hand, the samples without considerable deviations are confirmed to be normal

and are further utilized to update the personalized dynamic normal cluster.

In chapter 3, a kernel -based nonlinear transformation is proposed to manipulate the clus-

tering topology in the original feature space. More specifically, a weighted combination of

kernel functions are deployed in this method to implement a spatial transformation function.

The desired topology is formulated in terms of two objective functions, so that the system

is able to find the optimal coefficients of kernels by jointly optimizing these two functions.

This non-convex multi-objective optimization is solved with a method based on MOPSO.

In order to validate the improvement on spatial topology by introducing nonlinearities with

kernels, we compared the Pareto front generated with the linear combination of the original

features and the Pareto front produced in the transformed feature space with the utilized

polynomial kernels. The results confirm that the kernel-based transformation allows more

degree of freedom in optimizing the clustering topology according to the representative ob-

jective functions. Moreover, we applied this method to MITDB test dataset and obtained

similar sensitivity and specificity results as proposed in the literature. More importantly,

the predictive capability of yellow alarms, as a unique feature of the proposed method, is
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analyzed. The performance is quantified by comparing the prior and posterior probabilities

of each abnormality class after observing a yellow alarm of the same type. The comparison

results show that a promising improvement has been achieved by applying the nonlinear

transformation.

While the method in chapter 3 demonstrates a capacity of predicting upcoming abnormalities

of ECG signals, it remains challenging to interpret the mechanisms of the proposed system

and thus hindering the generalization of the proposed predictive warning methodology to

similar biomedical signal processing applications. Therefore, the main objective of chapter 4

is to develop a deterministic spatial transformation function, which is able to achieve the de-

sired spatial topology with a more tractable analytical approach. Thus, we proposed a novel

spatial transformation specifically designed to reshape the feature space according to angles

between cluster centroids using the customized inverse of logit functions. In this method, the

between-cluster cosine distances are optimized through orthogonalization of cluster centroids

using spherical coordinates. Meanwhile, the within-cluster variance is reduced by a piecewise

mapping function consisting of the previously designed basis functions. The basic function

proposed in chapter 4 has the property of saturating at the boundaries, which is similar

to the inverse of logit function but is yet more flexible. An advantage of deploying such

basic functions is that the clustering geometry is preserved after spatial transformation. We

implement this novel transformation in the patient-adaptive classification framework. The

performance of this system is evaluated with classification and prediction results on the

test dataset. The classification results show that by triggering yellow alarms through this

method, the specificity as well as the performance consistency of abnormal types is improved

compared with the method proposed in chapter 3 as we can observe higher specificities and

lower IQRs. The improvement on type V (ventricular) is most notable, as the median of

accuracy is improved from 86.11% to 96.17% and the IQR is lowered 22.37%. Compar-
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ing with the methods in the literature, the proposed method in chapter 4 is remarkable as

well. Especially for the type S (supraventricular), the proposed system performs better in

identifying class S than all 5 similar benchmark methods reported in the literature.

We also studied the impact of the time lag between a yellow alarm and the subsequent

real abnormality in chapter 4. The results show that most of the real abnormalities occur

within 10 samples after a yellow alarm. Overall, the system has been proven to be efficient

both in classification and prediction aspects in this work. In short, this study suggests that

predictive modeling of physiological signals can be used as alarming hints for upcoming health

conditions, which can have a wide range of applications in developing wearable biosensors,

automated diagnosis tools to assist patents and physicians in predicting health problems,

This methodology have a great potential to impact the emerging research fields of smart

health and smart cities.

5.2 Future Works

In this research, we focused on improving two main drawbacks of automated ECG analysis

in the literature, namely, the failure in capturing the inter-patient variability and the incapa-

bility of early detection and prediction. We proposed two methods for improving predictive

capability. While the results show the promising performance of the designed system, fur-

ther investigations can help to improve and generalize the proposed system to other types of

biomedical signals. The following tasks can be considered as some future directions enabled

by this research:

• investigate other kernel functions to improve the transformation for spatial topology

optimization;
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• seek deterministic solutions and develop more systematic performance analysis for the

objective functions used to assess the separability and symmetry of clustering geometry

in transformed feature space;

• assess the performance of the proposed spatial transformation on other biomedical

signals with similar properties, such as EEG, EMG, and EOG;

• improve the deterministic mapping function by including the size of clusters in the

mapping function;

• integrate the measurements from other wearable body sensors (such as accelerometer,

temperature etc.) in the monitoring system to capture the impact of environmental

condition on temporal variation of signals;

• design a mechanism to correct the false red alarms triggered by global classifier and

further improve the classification performance.
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