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ABSTRACT 

Natural convection in a two-dimensional rectangular domain heated at the bottom and cooled at 

the top with perfectly insulated sidewalls is the topic of interest for this research. For Rayleigh 

numbers less than the critical value, 𝑅𝑎𝑐𝑟, any disturbances will decay to a motionless solution 

and heat transfer will occur via conduction only. Above 𝑅𝑎𝑐𝑟, natural convection develops in the 

domain. At some second critical Rayleigh number, 𝑅𝑎𝑡, the steady convection cells lose stability 

and the solution transitions to a weakly turbulent (chaotic) state. The Lorenz system was 

previously derived from the governing equations using a truncated Galerkin expansion. This 

research investigates the validity domain of the Lorenz system as a model for natural convection 

in porous media. The temperature and velocity fields given by the Lorenz system are compared 

to a numerical solution for the temperature and velocity fields for increasing Rayleigh numbers. 

Results show that near 𝑅𝑎 =  80 the number of convection cells predicted by the numerical 

solution increases from two to three as a result of the chosen wavenumber becoming unstable. 

The result is a significant difference between the Lorenz system and the numerical solution. To 

provide a comparison between the Lorenz solution and the numerical solution that is global in 

scale relative to the problem domain, we compared the Nusselt numbers resulting from each 

solution to experimental data. 
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Chapter 1 Introduction 1 

1  INTRODUCTION 

Porous media is used extensively to control heat flow, with porous media heat exchangers and 

clothing being notable examples [1]. Analysis of convection in porous media is also essential 

when predicting the output of geothermal systems [2].  Since porous media is often used to 

control heat and energy transfer, understanding the underlying processes governing heat transfer 

in porous media is of significant engineering interest. 

It is well known that fluid flow in porous media for low Reynolds numbers is governed by 

Darcy’s Law – a volumetric averaged version of Navier-Stokes. This was first established 

experimentally by Darcy [3] and the conservation equations for porous media are known as 

Darcy’s Law. Although Darcy’s Law was first established in 1856, the relationship between 

conductive and convective heat transfer in porous media is still an ongoing topic of research. 

Vadasz and Olek [4] used a Galerkin expansion to derive an analytical solution to the equations 

governing natural convection in porous media. In their research, Vadasz and Olek [4] showed 

that this solution was equivalent to the Lorenz equations, which were first derived as a simplified 

model of atmospheric convection [5]. The purpose of the present research is to determine the 

range of Rayleigh numbers for which this solution is valid. This is done in the following ways:  

1. The general governing equations from which the Lorenz equations were derived are 

solved using a finite difference scheme. The results for the stream function and 

temperature from the Lorenz equations are directly compared to the results from the 

numerical solution for 40 ≤ 𝑅𝑎 ≤ 100. 

2. The Nusselt number (dimensionless heat flux) is calculated, using the results from both 

solutions. These results are compared to existing experimental data. 
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Background 

To provide the reader with sufficient background information, the key assumptions used when 

deriving the governing equations, which are specific to natural convection in porous media are 

outlined in this section. Sufficient information is provided so that a reader with a background in 

fluid mechanics and heat transfer can extend the necessary principles to porous media. 

A material with solid phase and a fluid phase where both phases are interconnected is considered 

a porous media. Examples of porous media range from soil and gravel to clothing and hair. The 

individual pores can take on virtually any combination of shapes and sizes, from highly 

structured configurations with uniform pores to unstructured configurations with a range of pore 

sizes. A specific porous media is described in terms of its porosity and permeability. Porosity, Φ 

is defined as the ratio of the total pore volume to the total overall volume of the porous structure. 

It is a non-dimensional value which describes the overall relative volume of the pores. 

 𝛷 =
𝑉𝑝𝑜𝑟𝑒𝑠

𝑉𝑡𝑜𝑡𝑎𝑙
 (1.1) 

 

Permeability, 𝑘 describes how well a fluid is able to move through a porous domain and has 

units of [m2]. The permeability of a porous structure depends not only on how large the pores are 

but also on the shape and configuration of those pores. If 𝑘 varies over the domain, i.e. 𝑘 =

𝑘(𝑥, 𝑦, 𝑧) the porous structure is heterogeneous. If 𝑘 is constant over the domain the porous 

structure is homogeneous. For this research, it is assumed that the porous structure is 

homogeneous. 
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Thermal properties 

The thermal characteristics of a porous structure saturated with fluid are described as a 

combination of the thermal properties of the solid material which forms the structure and the 

thermal properties of the saturating fluid. The saturated porous structure consists of both a solid 

and fluid part, and the effective heat capacity of the overall structure, 𝛾𝑒 is defined as follows: 

 𝛾𝑒 = (1 − 𝛷)𝜌𝑠𝐶𝑃,𝑠 + 𝛷𝜌𝑓𝐶𝑝,𝑓 (1.2) 

 

The (1 − Φ) term represents the fraction of the volume consisting of the solid structure, and Φ 

represents the fraction of the volume consisting of the saturating fluid. Similarly, the effective 

thermal conductivity and the effective thermal diffusivity, 𝐾𝑒 and 𝛼𝑒 respectively, are defined as 

 𝐾𝑒 = (1 − 𝛷)𝐾𝑠 + 𝛷𝐾𝑓 (1.3) 

 

𝛼𝑒 =
𝐾𝑒

𝛾𝑒
 

(1.4) 

 

Describing heat transfer in porous media is somewhat more complex when the saturating fluid is 

moving, as the temperature of the solid structure and the saturating fluid must be tracked, as well 

as the heat transfer that occurs between the two. If the fluid motion is sufficiently slow, and the 

average pore size of the porous medium is sufficiently small, it can be assumed that the average 

local temperature of the solid porous structure is equal to the local average temperature of the 

saturating fluid for a representative elementary volume (REV). This approximation is called 

“local thermal equilibrium” and is one assumption used for this research. This allows the 

analysis to be substantially simplified, and then the energy balance equation emerges 
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𝜕𝑇

𝜕𝑡
+ 𝑀𝑓𝑽 ⋅ 𝛻𝑇 = 𝛼𝑒𝛻2𝑇 (1.5) 

 

This research specifically explores the characteristics of natural convection in porous media. 

Natural convection occurs when density variations in a fluid subject to gravity, usually caused by 

uneven heating or cooling, cause fluid motion. Forced convection occurs when the fluid motion 

is the result of some outside force and is not considered here. 

Non-Dimensional Parameters 

Natural convective flow is driven by the buoyancy forces that develop when a fluid is heated 

from below. The Rayleigh number represents the ratio of buoyancy forces to viscous forces and 

is the most important non-dimensional parameter for determining the nature of natural 

convective flow. For natural convective flow in porous media the Rayleigh number is modified 

to include porosity. 

 𝑅𝑎 =
𝛽𝛥𝑇𝑔𝐻𝜅𝑀𝑓

𝛼𝑒𝜈
 (1.6) 

 

The Rayleigh number determines whether buoyancy forces or viscous forces will dominate the 

fluid flow. Below the critical Rayleigh number, 𝑅𝑎𝑐𝑟, no convection will occur. The critical 

Rayleigh number for natural convection in porous media is 𝑅𝑎𝑐𝑟 = 4 ⋅ 𝜋2. Weak non-linear 

analysis of the equations governing natural convection in porous media show that when the 

Rayleigh number reaches the critical value, a pitchfork bifurcation occurs. At this point, 

depending on the initial conditions, natural convection occurs with either clockwise or 

counterclockwise rotation of convection cells. Chapter 4 describes this phenomenon in detail. 
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Convection motion results in an overall increase in average heat transfer. The Nusselt number is 

a non-dimensional number which represents the ratio of convective heat transfer to conductive 

heat transfer. 

 𝑁𝑢 =
ℎ̅ ⋅ 𝐿

𝐾𝑒
  (1.7) 

 

As convection in a fluid becomes more dominant, the Nusselt number increases. A system 

characterized by a sudden onset of natural convection will have a Nusselt number of one up to 

the point when natural convection occurs, at which point the Nusselt number rises steadily with 

the Rayleigh number. After the onset of convection, it has been shown analytically and 

experimentally that the Nusselt number is a function of the Rayleigh number [2], [6]–[8].  

It was shown [4], [9], [10] that when investigating wave phenomena, the time derivative term 

which is typically ignored in Darcy’s equation cannot be neglected. This term is expressed in 

dimensionless form as  
ΦPrD

𝐷𝑎
 and is now known as the Vadasz number. 

 𝑉𝑎 =
𝛷𝑃𝑟𝐷

𝐷𝑎
=  

𝛷𝐻2𝜈

𝛼𝑒𝜅
 (1.8) 

 

Convective cell patterns 

Chandrasekhar [11] described two distinct behaviors often arise when studying natural 

convection in a pure fluid: Longitudinal rolls, shown in Figure 1.1, and polyhedral convective 

cells, shown in Figure 1.2. Longitudinal rolls are 2D convective cells. The aspect ratio of these 

type of cells is 𝑙
∗

ℎ∗⁄ = 1. Polyhedral convective cells may also form when the Rayleigh number 
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is close to the critical Rayleigh number. This type of convection cell has an aspect ratio of 

𝑙∗

ℎ∗⁄ = 1.33. As the Rayleigh number increases, the length of the convection cells will decrease 

slightly. Combarnous and Borries [8] showed that the same principles apply for natural 

convection in porous media. 

 

LONGITUDINAL CONVECTION CELLS 

 

 

Figure 1.1: Longitudinal convective cells.  

 

 

POLYHEDRAL CONVECTION CELLS 

 

 

Figure 1.2: Polyhedral convective cells.  

 

Strauss [12] showed that 2D convection is stable for Rayleigh numbers 𝑅𝑎𝑐𝑟 < 𝑅𝑎 < 9 ⋅ 𝑅𝑎𝑐𝑟. 

Thus, for the purposes of this research, it is assumed that 2D longitudinal rolls occur. 
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2  PROBLEM FORMULATION 

Overview 

A porous layer saturated with a stationary fluid is heated from below and cooled from above, as 

presented in Figure 2.1. The layer is subject to gravity, which is in the 𝑧-direction only, i.e. 𝒆̂𝑔 =

−𝒆̂𝑧, where 𝒆̂𝑔 is a unit vector in the direction of the acceleration of gravity and 𝑒̂𝑧 is the unit 

vector in the z-direction. It is assumed that Darcy’s law governs the flow except that the time 

derivative term is not neglected. This was shown to be necessary by Vadasz and Olek [4], [9], 

[10] when studying wave phenomena and is known as the extended Darcy equation. The fluid is 

assumed to be incompressible, and the Boussinesq approximation is applied to account for the 

effects of density variations, which means that the density is assumed to be constant everywhere 

except in the gravity term in the extended Darcy equation. 

Governing Equations 

The system described above is governed by the following set of non-dimensional equations: 

Continuity Equation 𝛻 ⋅ 𝑽 = 0 (2.1) 

Conservation of Momentum 

(Extended Darcy’s Law) 
1

𝑉𝑎

𝜕𝑽

𝜕𝑡
+  𝑽 = −𝛻𝑝𝑟 + 𝑅𝑎𝑇𝒆̂𝑧 (2.2) 

Conservation of Energy 𝜕𝑇

𝜕𝑡
+ 𝑽 ⋅ 𝛻𝑇 = 𝛻2𝑇 (2.3) 

 

Where 𝑽 = 𝑢𝒆̂𝑥 + 𝑣𝒆̂𝑦 + 𝑤𝒆̂𝑧 and 𝒆̂𝑥, 𝒆̂𝑦, 𝒆̂𝑧 are unit vectors in the x, y, and z directions, 

respectively, and 𝑝𝑟 is the reduced pressure. The non-dimensional terms are defined as follows: 
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Darcy Number 
𝐷𝑎 =

𝑘

𝐿2
 (2.4) 

Prandtl Number 𝑃𝑟𝐷  =
𝜈

𝛼𝑒
 (2.5) 

Vadasz Number 
𝑉𝑎 =

𝛷𝑃𝑟𝐷

𝐷𝑎
 (2.6) 

Rayleigh Number 𝑅𝑎 =
𝛽𝛥𝑇𝑐𝑘𝐻𝑀𝑓

𝜈𝛼𝑒
 (2.7) 

 

 

PROBLEM DOMAIN 

 

 

Figure 2.1: The problem domain for which the governing equations are solved, with 

boundary conditions. 

 

 

It is assumed that the flow pattern will be 2-dimensional longitudinal rolls. Consequently, a 2D 

flow simplification is applied and the stream function is introduced, which can be applied to any 

2D incompressible flow. 

𝑒̂𝑔 
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Assumptions 

No flow in y-

direction 𝑣 = 0 (2.8) 

𝜕(⋅)

𝜕𝑦
=

𝜕2(⋅)

𝜕𝑦2
= 0 (2.9) 

Definition of 

Stream Function 𝑢 =
𝜕𝛹

𝜕𝑧
 (2.10) 

𝑤 =  −
𝜕𝛹

𝜕𝑥
 (2.11) 

 

The stream function identically satisfies the continuity equation. 

Initial and boundary conditions 

As shown in Figure 2.1, the problem domain is a rectangular porous domain with dimensionless 

height 𝐻 = 1 and dimensionless length 𝐿 (aspect ratio). The top and bottom are kept at constant 

temperatures, 𝑇 = 0 and 𝑇 = 1, respectively. The side walls are insulated, so that there is zero 

heat flux through the side walls. The impermeability condition is applied at the walls, so that the 

filtration velocity perpendicular to the walls is zero, i.e. 𝑢 = 0 at the vertical walls and 𝑤 = 0 at 

the horizontal walls. 

𝑥 = 0: 
𝑢 = 0 ⇒ 𝛹 = 0 (2.12) 

𝑑𝑇

𝑑𝑥
= 0 (2.13) 
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𝑥 = 𝐿: 
𝑢 = 0 ⇒ 𝛹 = 0 (2.14) 

𝑑𝑇

𝑑𝑥
= 0 (2.15) 

𝑧 = 0: 
𝑤 = 0 ⇒ 𝛹 = 0 (2.16) 

𝑇 = 1 (2.17) 

 
 

 

𝑧 = 1: 
𝑤 = 0 ⇒ 𝛹 = 0 (2.18) 

𝑇 = 0 (2.19) 

 

The fluid inside the porous domain is initially stationary at all points with a temperature of 𝑇 = 0 

at all points except at 𝑧 = 0. 

𝑡 = 0: 
𝑧 = 0: 𝑇 = 1 (2.20) 

0 ≤ 𝑧 ≤ 1: 𝑢 = 𝑤 = 0 ⇒ 𝛹 = 0 (2.21) 

 

Simplification of governing equations 

Conservation of Mass 

The 2D flow assumption and stream function simplification are applied to the continuity 

equation by substituting equations (2.10) and (2.11) into (2.1),  

 
𝜕2𝛹

𝜕𝑥𝜕𝑧
−

𝜕2𝛹

𝜕𝑥𝜕𝑧
= 0 (2.22) 
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Equation (2.22) shows that the equation representing conservation of mass is identically satisfied 

by the definition of the stream function. This reduces the number of equations that need to be 

solved. 

Extended Darcy’s Law 

Equation (2.2) is in vector form and can be broken into x, y, and z components, 

x-direction 1

𝑉𝑎

𝜕𝑢

𝜕𝑡
+ 𝑢 = −

𝜕𝑝𝑟

𝜕𝑥
 (2.23) 

y-direction 1

𝑉𝑎

𝜕𝑣

𝜕𝑡
+ 𝑣 = −

𝜕𝑝𝑟

𝜕𝑥
 (2.24) 

z-direction 1

𝑉𝑎

𝜕𝑤

𝜕𝑡
+ 𝑤 = −

𝜕𝑝𝑟

𝜕𝑧
+ 𝑅𝑎 ⋅ 𝑇 (2.25) 

 

The 2D flow assumption and introduction of the stream function are applied to the extended 

Darcy’s Law by substituting equations (2.8) through (2.11) into equations (2.23), (2.24), and 

(2.25), 

x-direction 1

𝑉𝑎

𝜕2𝛹

𝜕𝑡𝜕𝑧
+

𝜕𝛹

𝜕𝑧
= −

𝜕𝑝𝑟

𝜕𝑥
 (2.26) 

y-direction 0 = 0 (2.27) 

z-direction 
−

1

𝑉𝑎

𝜕2𝛹

𝜕𝑡𝜕𝑥
−

𝜕𝛹

𝜕𝑥
= −

𝜕𝑝𝑟

𝜕𝑧
+ 𝑅𝑎 ⋅ 𝑇 (2.28) 

 

It is advantageous to combine equations (2.28) and (2.26), which can be done as follows, 
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𝜕

𝜕𝑧
(2.26) ⇒

1

𝑉𝑎

𝜕3𝛹

𝜕𝑡𝜕𝑧
+

𝜕2𝛹

𝜕𝑧2
= −

𝜕2𝑝𝑟

𝜕𝑥𝜕𝑧
 (2.29) 

 
𝜕

𝜕𝑥
(2.28) ⇒

1

𝑉𝑎

𝜕3𝛹

𝜕𝑡𝜕𝑥2
+

𝜕2𝛹

𝜕𝑥2
= −

𝜕2𝑝𝑟

𝜕𝑧𝜕𝑥
+ 𝑅𝑎 ⋅ 𝑇 (2.30) 

 (2.29) − (2.30) ⇒
1

𝑉𝑎

𝜕

𝜕𝑡
(

𝜕2𝛹

𝜕𝑥2
+

𝜕2𝛹

𝜕𝑧2
) + (

𝜕2𝛹

𝜕𝑥2
+

𝜕2𝛹

𝜕𝑧2
) = −𝑅𝑎

𝑑𝑇

𝑑𝑥
  (2.31) 

 

Equation (2.31) is the final simplified form for the extended Darcy’s Law. 

Conservation of Energy 

The 2D flow assumption and the introduction of the stream function are applied to the continuity 

equation by substituting equations (2.8) through (2.11) into (2.3),  

 
𝜕𝑇

𝜕𝑡
+

𝜕𝛹

𝜕𝑧

𝜕𝑇

𝜕𝑥
−

𝜕𝛹

𝜕𝑥

𝜕𝑇

𝜕𝑧
=

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑧2
  (2.32) 

 

Equation (2.32) is the final simplified form of conservation of energy. 

Summary 

The resulting system consists of two equations with two unknown variables, temperature (𝑇) and 

the stream function (Ψ). The equations vary in two spatial dimensions, 𝑥 and 𝑧, and are time 

dependent. The two equations are also coupled, which means that one equation cannot be solved 

without the solution to the other for any point in space and time. 
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Governing Equations 

 1

𝑉𝑎

𝜕

𝜕𝑡
(

𝜕2𝛹

𝜕𝑥2
+

𝜕2𝛹

𝜕𝑧2
) + (

𝜕2𝛹

𝜕𝑥2
+

𝜕2𝛹

𝜕𝑧2
) = −𝑅𝑎

𝑑𝑇

𝑑𝑥
 (2.33) 

 𝜕𝑇

𝜕𝑡
+

𝜕𝛹

𝜕𝑧

𝜕𝑇

𝜕𝑥
−

𝜕𝛹

𝜕𝑥

𝜕𝑇

𝜕𝑧
=

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑧2
  (2.34) 

 

Initial Conditions 

𝑡 = 0: 
𝑇 = 0 (2.35) 

 

Boundary Conditions 

𝑥 = 0: 
𝛹 = 0 (2.36) 

𝑑𝑇

𝑑𝑥
= 0 (2.37) 

 
  

𝑥 = 𝐿: 
𝛹 = 0 (2.38) 

𝑑𝑇

𝑑𝑥
= 0 (2.39) 

 
  

𝑧 = 0: 
𝛹 = 0 (2.40) 

𝑇 = 1 (2.41) 
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𝑧 = 1: 
𝛹 = 0 (2.42) 

𝑇 = 0 (2.43) 
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3  LITERATURE REVIEW 

Much work has been done to obtain an analytical solution for natural convection in porous 

media. When the assumption is made that 2D longitudinal convective rolls will form, the 

governing equations can be presented in terms of a stream function. The following system of 

equations results 

 1

𝑉𝑎

𝜕

𝜕𝑡
(

𝜕2𝛹

𝜕𝑥2
+

𝜕2𝛹

𝜕𝑧2
) + (

𝜕2𝛹

𝜕𝑥2
+

𝜕2𝛹

𝜕𝑧2
) = −𝑅𝑎

𝑑𝑡

𝑑𝑥
 (3.1) 

 𝜕𝑇

𝜕𝑡
+

𝜕𝛹

𝜕𝑧

𝜕𝑇

𝜕𝑥
−

𝜕𝛹

𝜕𝑥

𝜕𝑇

𝜕𝑧
=

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑧2
  (3.2) 

 

The Vadasz number is defined as  

 𝑉𝑎 =
𝛷𝑃𝑟𝐷

𝐷𝑎
 (3.3) 

 

This number is typically very large due to Φ 𝐷𝑎⁄  typically being on the order of 10 to 1020. 

Because of this, the time derivative term was generally neglected. However, Vadasz and Olek 

[4], [9], [10] showed that this term should not be neglected when studying wave phenomena. 

From this set of equations, a simplified set of equations can be derived by representing the 

stream and temperature functions (𝑇 and Ψ, respectively) in terms of a truncated Galerkin 

expansion, where 𝐴11, 𝐵11, and 𝐵02 represent the amplitudes of each term and are unknown and 

time dependent. 
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 𝛹 = 𝐴11 𝑠𝑖𝑛(𝜅𝑥𝑥) 𝑠𝑖𝑛 (𝜅𝑧𝑧) (3.4) 

 𝑇 = 1 − 𝑧 + 𝐵11 𝑐𝑜𝑠(𝜅𝑥𝑥) 𝑠𝑖𝑛(𝜅𝑧𝑧) + 𝐵02 𝑠𝑖𝑛(2𝜅𝑧𝑧) (3.5) 

 

𝜅𝑥 and 𝜅𝑧 are the wave numbers of the convection in the 𝑥 and 𝑧 directions, respectively. These 

numbers are derived by examining the transition from the motionless solution to the convective 

solution. For the boundary conditions of the problem domain to be satisfied, 𝜔𝑧 must be in the 

form 𝜅𝑧 = 𝑛𝜋, where 𝑛 = 1, 2, 3, …. 𝜅𝑥 must also be in the form 𝜅𝑥 = 𝑚𝜋, where 𝑚 = 1, 2, 3, … 

for the same reason. Linear stability analysis shows that at the critical Rayleigh number, 𝑅𝑎𝑐𝑟 

perturbations of a certain wavenumber will grow exponentially, which causes the motionless 

solution to become unstable. The relationship between 𝑅𝑎𝑐𝑟 and 𝜅𝑥 is shown by linear stability 

analysis to be 

 
𝑅𝑎𝑐𝑟 = 𝜅𝑥

2 + 2𝑛𝜋 +
𝑚4𝜋4

𝜔𝑥
2

 (3.6) 

The motionless solution will become unstable at the minimum value for 𝑅𝑎𝑐𝑟 which occurs. 

Clearly this minimum will occur when 𝑛 = 1, resulting in 𝜅𝑧 = 𝜋. The minimum value of 

equation (3.6) is found by taking the derivative with respect to 𝜅𝑥 and equating it to zero, 

 𝜕𝑅𝑎𝑐

𝜕𝜔𝑥
2

= 0 =
(𝜅𝑥

2 + 𝑚2𝜋2)[2𝜅𝑥
2 − (𝜅𝑥

2 + 𝑚2𝜋2)]

𝜅𝑥
2

 (3.7) 

 ⇒ 𝜅𝑥
2 = 𝜋2 (3.8) 

 

Figure 3.1 shows equation (3.6). The values which result in the minimum are shown in the plot 

as the critical Rayleigh number and the critical wavenumber, 𝑅𝑎𝑐𝑟 and 𝜅𝑐𝑟, respectively. When 

𝑅𝑎 = 𝑅𝑎𝑐𝑟, the perturbations with the wavenumber 𝜅𝑐𝑟 = 𝜋 will grow exponentially and cause 
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the motionless solution to become unstable. As a result, this value is called the critical 

wavenumber, 𝜅𝑐𝑟. Near the transition from the motionless solution to the convective solution this 

wavenumber dominates. As a result, the critical wavenumber is used in the derivation of the 

Lorenz system of equations. This assumption dictates that two convection cells will form for all 

Rayleigh numbers. 

 

                        RAYLEIGH NUMBER VS WAVENUMBER

 
 

 

 

Figure 3.1: The relationship between the Rayleigh number and the critical 

wavenumber, derived using linear stability analysis. The minimum of this line is the 

point at which the motionless solution becomes unstable, and perturbations of 

wavenumber 𝜅𝑐𝑟 grow exponentially. Graph used with permission [13]. 

 

Substituting the critical wavenumber for 𝜅𝑥 and 𝜅𝑧 into equations (3.4) and (3.5) results in the 

following system, 

𝑥 
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 𝛹 = 𝐴11 𝑠𝑖𝑛(𝜋𝑥) 𝑠𝑖𝑛 (𝜋𝑧) (3.9) 

 𝑇 = 1 − 𝑧 + 𝐵11 𝑐𝑜𝑠(𝜋𝑥) 𝑠𝑖𝑛(𝜋𝑧) + 𝐵02 𝑠𝑖𝑛(2𝜋𝑧) (3.10) 

 

𝐴11, 𝐵11, and 𝐵02 are found by substituting (3.9) and (3.10) into (3.1) and (3.2). After 

considerable simplification, the details of which are outlined in Vadasz and Olek [4], [9], [10] 

the following system of ordinary differential equations results 

 
𝑑𝐴11

𝑑𝑡
= −

𝑉𝑎

2𝜋2
[𝐴11 +

𝑅𝑎

2𝜋
𝐵11] (3.11) 

 
𝑑𝐵11

𝑑𝑡
= −𝐵11 −

1

2𝜋
𝐴11 −

1

2
𝐴11𝐵02 

(3.12) 

 
𝑑𝐵02

𝑑𝑡
= −2𝐵02 +

1

4
𝐴11𝐵11 

(3.13) 

 

The amplitude equations are rescaled relative to the critical Rayleigh number by making the 

following substitutions 

 𝑅 =
𝑅𝑎

4𝜋2
→ 𝑅𝑎 = 4𝜋2𝑅 (3.14) 

 

𝛼 =
𝑉𝑎

2𝜋2
→ 𝑉𝑎 = 2𝜋2𝛼 

(3.15) 

 

The system of equations is additionally scaled relative to the fixed points, which can be found by 

setting the left hand side of equations (3.11), (3.12), and (3.13) equal to zero and solving for 𝐴11, 

𝐵11, and 𝐵02. 
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 0 = −
𝑉𝑎

2𝜋2
[𝐴11 +

𝑅𝑎

2𝜋
𝐵11] (3.16) 

 

0 = −𝐵11 −
1

2𝜋
𝐴11 −

1

2
𝐴11𝐵02 

(3.17) 

 

0 = −2𝐵02 +
1

4
𝐴11𝐵11 

(3.18) 

 

The fixed points are found to be 

 𝐴11,𝑓 = −4√𝑅 − 1 (3.19) 

 

𝐵11,𝑓 =
2√𝑅 − 1

𝜋𝑅
 

(3.20) 

 

𝐵02,𝑓 = −
𝑅 − 1

𝜋𝑅
 

(3.21) 

 

Equations (3.11), (3.12), and (3.13) are scaled relative to the fixed points by defining 𝑋, 𝑌, and 𝑍 

as follows 

 𝑋 = −
𝐴11

4√𝑅 − 1
→ 𝐴11 = −4√𝑅 − 1𝑋 (3.22) 

 

𝑌 =
𝜋𝑅𝐵11

2√𝑅 − 1
→ 𝐵11 =

2√𝑅 − 1

𝜋𝑅
𝑌 

(3.23) 

 

𝑍 = −
𝜋𝑅

𝑅 − 1
𝐵02 → 𝐵02 = −

𝑅 − 1

𝜋𝑅
𝑍 

(3.24) 
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This re-scaling removes the explicit dependence on the fixed points so that the new convective 

fixed points are 𝑋𝑓 = ±1, 𝑌𝑓 = ±1, and 𝑍𝑓 = 1. The final form of the ordinary differential 

equations is 

 𝑋̇ = 𝛼(𝑌 − 𝑋) (3.25) 

 
𝑌̇ = −𝑌 + 𝑅𝑋 − (𝑅 − 1)𝑋𝑍 (3.26) 

 
𝑍̇ = 2(𝑋𝑌 − 𝑍) (3.27) 

 

This system is equivalent to the Lorenz system of ordinary differential equations (with different 

coefficients) and is an approximation for (3.1) and (3.2). 

This system has been solved computationally by Vadasz and Olek using Adomian’s 

decomposition method in [4], [9], [14]–[19] and analytically using weak nonlinear analysis in 

[14], [16], [17], [19], [20]. These results (computational and analytical) have been used to study 

the transition from steady convection to chaos and have been shown to generally agree for 

Rayleigh numbers close to the transition point [19]. Analytical and numerical comparisons have 

not yet been made near the critical Rayleigh number. 

Previous analysis of this system of equations focused on studying the transition to chaos for 

natural convection in porous media. However, the solution of these equations has not been 

compared to the solution of the original equations from which they were derived. As a result, the 

range of Rayleigh numbers for which the Lorenz equations agree with the original equations 

governing natural convection in porous media is not known. 
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4  METHODS 

Experimental data analysis 

Natural convection in porous media has been studied extensively in the laboratory, especially for 

the range of Rayleigh numbers 40 < 𝑅𝑎 < 100. A convenient overview of the experimental and 

theoretical work done on the topic was done by Cheng [2]. Investigation of the original 

publications compiled by Cheng revealed that two types of experimental setups were used in the 

experiments. Firstly, a rectangular domain, where the top and bottom boundaries were kept at a 

constant temperature, with insulated sides. Secondly, a cylindrical domain, with the outside of 

the cylinder insulated and the top and bottom kept at constant temperature. 

The problem formulation describes a rectangular domain with top and bottom boundaries kept at 

constant temperatures and with insulated sides. As a result, the cylindrical experimental setup is 

not sufficiently close to that of the present numerical and Lorenz system problem domain and is 

not considered in this analysis. The resulting reduced data set contains data from two 

publications: Kaneko et al [6] and Combarnous and Bories [8]. The data was pulled from the 

plots of the original publications with a tool called ‘Data Thief III’ [21]. 

The original data set compiled by Cheng and the reduced data set both show a wide dispersion of 

data, indicating that the dispersion is likely not the result of dissimilar experimental setups. A 

theoretical explanation of this wide dispersion was presented by Vadasz [7]. By deriving an 

analytical relationship between the Nusselt number and the Rayleigh number via a weak 

nonlinear solution, Vadasz showed that the resulting system was extremely sensitive to the initial 

conditions and the boundary imperfections of the experimental setup, neither of which can be 
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predicted nor controlled. The upper and lower bounds on the weak nonlinear solution agree with 

the upper and lower bounds on the experimental data. 

The reduced data set, which is used to compare the Nusselt numbers for the Lorenz system and 

numerical results with experimental data, is presented below in Figure 4.1. The details of the 

porous structure and saturating fluid for each experimental run are shown in Table 4-1. 

𝑁
𝑢

 

EXPERIMENTAL RESULTS 

 

 

𝑅𝑎 

Figure 4.1: The raw experimental data for Nusselt vs. Rayleigh number with error bars 

representing a 95% confidence interval. 

 

The error bars were calculated by dividing the data set into bins of length 𝑅𝑎 = 10, with the bins 

centered at 𝑅𝑎 = 10, 20,30, … ,100. The 95% confidence interval was used to calculate the error 

bars, and each bar is centered at the mean of the data at each bin. 
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Table 4-1: Experimental details of each data set from Figure 4.1. 

 Author Porous structure Saturating fluid 

Data Set 1 

Kaneko et al 

12/14 mesh sand Heptane 

Data Set 2 14/16 mesh sand 

Ethanol 

Data Set 3 12/14 mesh sand 

Data Set 4 

Combarnous and 

Bories 

Polypropylene beads, 𝐷 = 4𝑚𝑚 Water 

Data Set 5 Glass beads, 𝐷 = 2𝑚𝑚 

Oil 

Data Set 6 Glass beads, 𝐷 = 0.9𝑚𝑚 

Data Set 7 Glass beads, 𝐷 = 4𝑚𝑚 

Water Data Set 8 Glass beads, 𝐷 = 3𝑚𝑚 

Data Set 9 Glass beads, 𝐷 = 1.7𝑚𝑚 

Data Set 10 Quartz sand, 𝐷 = 1.9𝑚𝑚 Oil 

Data Set 11 Quartz sand, 𝐷 = 1.9𝑚𝑚 

Water 

Data Set 12 Quartz sand, 𝐷 = 2.25𝑚𝑚 

Data Set 13 Quartz sand, 𝐷 = 2.25𝑚𝑚 

Data Set 14 Lead balls, 𝐷 = 4𝑚𝑚 

 

The experimental data indicates that for some trials natural convection occurred slightly before 

or after the theoretical transition point. An analytical explanation was presented by Vadasz and 

Braester [22]. Theoretically, when the side walls are perfectly insulated, the transition from the 

motionless solution to the convective solution occurs via a perfect pitchfork bifurcation. This 

means that the motionless solution becomes unstable and two stable solution branches emerge: 
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clockwise rotation or counterclockwise rotation of convection cells. The branch the solution 

proceeds down is determined by the initial conditions.  

However, when there are small imperfections in the insulation of the sidewalls, resulting in heat 

leakage out of the sides, the nature of the transition from the motionless solution to the 

convective solution changes. The transition to the convective solution occurs via an imperfect 

bifurcation. Subcritical convection may occur, the nature of which is uniquely determined by the 

amount heat leakage from the sides of the problem domain and the resulting initial conditions of 

the problem. 

Figure 4.2 presents graphically the distinction between the perfect pitchfork bifurcation and the 

imperfect bifurcation. Inspection of the imperfect bifurcation diagram shows that low amplitude 

sub-critical convection occurs when there is heat leakage through the walls. Close to the 

transition point, these imperfections result in larger amplitude convection than occurs when there 

are no imperfections. As the Rayleigh number increases, the amplitude of the convection that 

occurs when there is heat leakage approaches that which occurs when there are no imperfections. 
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BIFURCATION DIAGRAM 
 

Perfect Bifurcation Imperfect Bifurcation 

𝐴
1

1
 

 

𝐴
1

1
 

 
 

𝜖2 =
𝑅𝑎 − 𝑅𝑎𝑐

𝑅𝑎𝑐
 

 
𝜖2 =

𝑅𝑎 − 𝑅𝑎𝑐

𝑅𝑎𝑐
 

Figure 4.2: The bifurcation diagram shows a perfect bifurcation on the left, which occurs when 

there are no imperfections in the boundary conditions, and an imperfect bifurcation on the 

right, which occurs when there is heat leakage through the walls. The boundary imperfections 

are represented by the parameter 𝜂. An increase in 𝜂 represents an increase in the boundary 

imperfections. Graph used with permission from [7]. 
 

In practice, it is impossible to perfectly insulate the sidewalls of an experimental setup. The 

result is that the experimental transition to convection may occur before 𝑅𝑎𝑐𝑟. 

Solution of Lorenz system 

The Lorenz system to be solved was derived in Chapter 3 from equations (3.1) and (3.2).This 

system is equivalent to the Lorenz equations, which are a simplified model for atmospheric 

natural convection [5], [18]. 

 𝑋̇ = 𝛼(𝑌 − 𝑋) (4.1) 

 
𝑌̇ = −𝑌 + 𝑅𝑋 − (𝑅 − 1)𝑋𝑍 (4.2) 
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𝑍̇ = 2(𝑋𝑌 − 𝑍) (4.3) 

 

𝑋̇, 𝑌̇, and 𝑍̇ represent the amplitude equations for the coefficients of the truncated Galerkin 

expansion of the governing equations. For the purpose of this research the solutions for 𝑋, 𝑌, and 

𝑍 were found using an explicit Runge-Kutta scheme. The results were then rescaled to their 

original form using, 

 𝑋 = −
𝐴11

4√𝑅 − 1
→ 𝐴11 = −4√𝑅 − 1𝑋 

(4.4) 

 

𝑌 =
𝜋𝑅𝐵11

2√𝑅 − 1
→ 𝐵11 =

2√𝑅 − 1

𝜋𝑅
𝑌 

(4.5) 

 

𝑍 = −
𝜋𝑅

𝑅 − 1
𝐵02 → 𝐵02 = −

𝑅 − 1

𝜋𝑅
𝑍 

(4.6) 

 𝑅 =
𝑅𝑎

4𝜋2
→ 𝑅𝑎 = 4𝜋2𝑅 

(4.7) 

 

𝛼 =
𝑉𝑎

2𝜋2
→ 𝑉𝑎 = 2𝜋2𝛼 

(4.8) 

 

The results for 𝐴11, 𝐵11, and 𝐵02 are then substituted back into equations (3.9) and (3.10). 

The final results for stream function and temperature are calculated for every point in the 

problem domain using a mesh of x and z coordinates. The mesh is chosen so that the grid points 

from the Lorenz system line up with the grid points from the numerical solution. This allows for 

a direct comparison to be made without the need for interpolation. 
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Numerical 

The numerical method chosen for the purposes of this research is a direct numerical simulation 

of the governing equations. The stream function and temperature functions are discretized using 

a fully implicit finite difference scheme with a single in space to deal with the nonlinearity and 

coupling between temperature and the stream function. Chapter 5 presents the details of the 

numerical method of solution.  
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5  NUMERICAL METHOD OF SOLUTION 

Overview 

The governing equations are discretized using a fully implicit finite difference scheme. The 

problem domain is broken into a uniform spatial mesh so Δ𝑥 = Δ𝑧 = Δ𝐿. The governing 

equations are time dependent, and each time step forward in time is represented by a constant Δ𝑡.  

The two governing equations are nonlinear and coupled and thus cannot be solved independent 

of each other. The numerical method uses an iterative method to find a solution for both 

temperature and stream functions which satisfies both equations. 

Discretization of governing equations 

Figure 5.1 below shows the details of the single index spatial mesh used to discretize the 

problem domain. At each point, 𝑖, the temperature and stream values are unknown, and at each 

point the governing equations are discretized to represent the heat transfer and fluid flow. The 

result is a system of 2(𝑀 ⋅ 𝑁) linear equations with 2(𝑀 ⋅ 𝑁) unknowns, since the values of both 

the stream function and temperature are unknown. 

The system is solved first for the values of temperature at each point and then for the values of 

the stream function, using an iterative method. Initially, the values of the previous time step are 

being used for the solution of the energy equation. The resulting values of 𝑇 are then used to 

solve for the new values of Ψ. This procedure is repeated until no change beyond a set tolerance 

occurs. This method means that only an 𝑀 ⋅ 𝑁 matrix system must be solved at each time step 

time instead of a 2(𝑀 ⋅ 𝑁) matrix system. 
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DISCRETIZATION SCHEME 

 

 

Figure 5.1: Discretization scheme for problem domain.  

 

The domain is broken into 𝑁 − 1 sub-grids for a total of 𝑁 grid points in the 𝑥 −direction. 

Similarly, in the 𝑧 −direction the domain is broken into 𝑀 − 1 sub-grids for a total of 𝑀 grid 

points. Each spatial grid point has an index denoted by 𝑖, totaling 𝑀 ⋅ 𝑁 grid points. When the 

governing equations are discretized, they will be a set of 𝑀 ⋅ 𝑁 equations with the value at each 

grid point being an unknown. This linear system is solved to find the solution to the linear 

system at each point. The system is also time dependent. The index 𝑗 represents the point in time 

at which the linear system is solved. The discretization scheme is represented graphically in 

Figure 5.1. 
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Temperature Function 

 
𝜕𝑇

𝜕𝑡
+

𝜕𝜓

𝜕𝑧

𝜕𝑇

𝜕𝑥
−

𝜕𝛹

𝜕𝑥

𝜕𝑇

𝜕𝑧
=

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑧2
 (5.1) 

 

Equation (5.1) above is the simplified equation for conservation of energy, with the stream 

function and 2D flow simplification applied. This equation is discretized using a forward 

difference scheme in time and a centered difference scheme in space. Equation (5.1) is coupled 

with equation (5.6) below because both equations have Ψ and 𝑇 as dependent variables. 

Equations (5.2) through (5.4) are the discretized form of (5.1). 

 

𝑇𝑖
𝑗+1

− 𝑇𝑖
𝑗

𝛥𝑡
+ 𝑢𝑖

𝑇𝑖+1
𝑗+1

− 𝑇𝑖−1
𝑗+1

2𝛥𝐿
+ 𝑤𝑖

𝑇𝑖+𝑁
𝑗+1

− 𝑇𝑖−𝑁
𝑗+1

2𝛥𝐿

=
𝑇𝑖−1

𝑗+1
− 2𝑇𝑖

𝑗+1
+ 𝑇𝑖+1

𝑗+1

𝛥𝐿2
+

𝑇𝑖−𝑁
𝑗+1

− 2𝑇𝑖
𝑗+1

+ 𝑇𝑖+𝑁
𝑗+1

𝛥𝐿2
 

(5.2) 

 

Where, 

 𝑢𝑖 =
𝛹𝑖+𝑁 − 𝛹𝑖−𝑁

2𝛥𝐿
 (5.3) 

 𝑤𝑖 = −
𝛹𝑖+1 − 𝛹𝑖−1

2𝛥𝐿
 (5.4) 

 

Equation (5.5) below expresses the known temperature values on the left-hand side and the 

unknown temperature values on the right-hand side with known coefficients. 
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𝑇𝑖
𝑗

= (𝑢𝑖

𝛥𝑡

2𝛥𝐿
−

𝛥𝑡

𝛥𝐿2
) 𝑇𝑖+1

𝑗+1
− (𝑢𝑖

𝛥𝑡

2𝛥𝐿
+

𝛥𝑡

𝛥𝐿2
) 𝑇𝑖−1

𝑗+1
+ (𝑤𝑖

𝛥𝑡

2𝛥𝐿
−

𝛥𝑡

𝛥𝐿2
) 𝑇𝑖+𝑁

𝑗+1

− (𝑤𝑖

𝛥𝑡

𝛥𝐿2
+

𝛥𝑡

2𝛥𝐿
) 𝑇𝑖−𝑁

𝑗+1
+ (

4𝛥𝑡

𝛥𝐿2
+ 1) 𝑇𝑖

𝑗+1 
(5.5) 

 

Stream Function 

 
1

𝑉𝑎

𝜕

𝜕𝑡
(

𝜕2𝛹

𝜕𝑥2
+

𝜕2𝛹

𝜕𝑧2
) + (

𝜕2𝛹

𝜕𝑥2
+

𝜕2𝛹

𝜕𝑧2
) = −𝑅𝑎

𝑑𝑇

𝑑𝑥
  (5.6) 

 

Equation (5.6) above is the simplified equation for conservation of momentum, extended Darcy’s 

law, with the stream and 2D flow simplification applied. This is discretized in the same way as 

equation (5.1) using a forward difference scheme in time and a centered difference scheme in 

space. Equation (5.7) is the discretized form of (5.6)(5.8). 

 

1

𝑉𝑎

1

𝛥𝑡
[(

𝛹𝑖−1
𝑗+1

− 2𝛹𝑖
𝑗+1

+ 𝛹𝑖+1
𝑗+1

𝛥𝐿2
+

𝛹𝑖−𝑁
𝑗+1

− 2𝛹𝑖
𝑗+1

+ 𝛹𝑖+𝑁
𝑗+1

𝛥𝐿2
)

− (
𝛹𝑖−1

𝑗
− 2𝛹𝑖

𝑗
+ 𝛹𝑖+1

𝑗

𝛥𝐿2
+

𝛹𝑖−𝑁
𝑗

− 2𝛹𝑖
𝑗

+ 𝛹𝑖+𝑁
𝑗

𝛥𝐿2
)]

+ (
𝛹𝑖−1

𝑗+1
− 2𝛹𝑖

𝑗+1
+ 𝛹𝑖+1

𝑗+1

𝛥𝐿2
+

𝛹𝑖−𝑁
𝑗+1

− 2𝛹𝑖
𝑗+1

+ 𝛹𝑖+𝑁
𝑗+1

𝛥𝐿2
)

= −𝑅𝑎
𝑇𝑖−1

𝑗+1
− 𝑇𝑖+1

𝑗+1

2𝛥𝐿
 

(5.7) 

 

Equation (5.8) below expresses the known temperature values on the left-hand side and the 

unknown temperature values on the right-hand side with known coefficients. 
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 (𝑉𝑎𝛥𝑡 + 1)(𝛹𝑖−𝑁
𝑗+1

+ 𝛹𝑖−1
𝑗+1

− 4𝛹𝑖
𝑗+1

+ 𝛹𝑖+1
𝑗+1

+ 𝛹𝑖+𝑁
𝑗+1

)

= −
𝑅𝑎𝑉𝑎𝛥𝑡𝛥𝐿

2
(𝑇𝑖−1

𝑗+1
− 𝑇𝑖+1

𝑗+1
)

+ (𝛹𝑖−𝑁
𝑗

+ 𝛹𝑖−1
𝑗

− 4𝛹𝑖
𝑗

+ 𝛹𝑖+1
𝑗

+ 𝛹𝑖+𝑁
𝑗

) 

(5.8) 

 

Boundary conditions 

Equations (5.8) and (5.5) represent the discretized equations for all grid points in the problem 

domain, with the exception of the boundaries. 

𝑥 = 0: 
𝛹𝑗+1 = 𝛹𝑗 = 0 (5.9) 

𝑇𝑖
𝑗

= − (
𝛥𝑡

𝛥𝐿2
) 𝑇𝑖−𝑁

𝑗+1
− 2 (

𝛥𝑡

𝛥𝐿2
) 𝑇𝑖−1

𝑗+1
                

+ (
4𝛥𝑡

𝛥𝐿2
+ 1) 𝑇𝑖

𝑗+1
− (

𝛥𝑡

𝛥𝐿2
) 𝑇𝑖+𝑁

𝑗+1 
(5.10) 

   

𝑥 = 𝐿: 
𝛹𝑗+1 = 𝛹𝑗 = 0 (5.11) 

𝑇𝑖
𝑗

= − (
𝛥𝑡

𝛥𝐿2
) 𝑇𝑖−𝑁

𝑗+1
− 2 (

𝛥𝑡

𝛥𝐿2
) 𝑇𝑖−1

𝑗+1
               

+ (
4𝛥𝑡

𝛥𝐿2
+ 1) 𝑇𝑖

𝑗+1
− (

𝛥𝑡

𝛥𝐿2
) 𝑇𝑖+𝑁

𝑗+1 
(5.12) 
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𝑧 = 0: 
𝛹𝑗+1 = 𝛹𝑗 = 0 (5.13) 

𝑇𝑗+1 = 𝑇𝑗 = 1 (5.14) 

   

𝑧 = 1: 
𝛹𝑗+1 = 𝛹𝑗 = 0 (5.15) 

𝑇𝑗+1 = 𝑇𝑗 = 0 (5.16) 

 

Iterative method of solution 

Inspection of equations (5.5) and (5.6) shows that the two equations are coupled and cannot be 

solved independent of each other. Instead of solving the two equations simultaneously, which 

would be computationally intensive, an iterative method is applied. The values from the previous 

time step are used as a guess for the current time step. The solver iterates between the 

temperature solver and the stream function solver, using the latest solution as a guess for the 

next. When the solver has converged on a solution for the temperature and stream function 

values, the solver moves on to the next time step. 

This process repeats until a steady state solution is reached, or until it is obvious that a steady 

state solution does not exist. The details of the iterative solution can be found in Figure 5.2 

below. 
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SOLVER ALGORITHM 

 

 

Figure 5.2: The detailed algorithm used for the numerical solver. 

 

Figure 5.2 above shows the details of the iterative method used to solve the discretized form of 

the two governing equations. The index 𝑗 represents the previous time step, at which all the 

values for temperature and stream function have been solved for to sufficient accuracy. 

Therefore, all values with this index represent known values. The values with the index 𝑗 + 1 are 

unknowns. To solve for stream and temperature at the current time step (the 𝑗 + 1𝑡ℎ time step) 

the values for the stream function from the previous time step are used to compute a guess for 

temperature at the current time step. The resulting temperature values, which have index 

(𝑗 + 1)𝑎 in the figure above, are used to compute a guess for the stream values. This updated 

guess for the stream function, which have index (𝑗 + 1)𝑏 in the diagram is used to compute an 

updated guess for temperature. This iterative cycle continues, and the computed guesses 

converge to the true values for temperature and stream at the current time step. Once these values 
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for stream function and temperature converge to within a small chosen tolerance the solution is 

complete for that time step and the cycle begins again for the next time step. 

Code verification 

Overview 

The numerical method of solution consists of many different interconnected parts, so there are 

many opportunities for errors to arise in the coding process. To ensure that there are no errors in 

the code a technique called the Method of Manufactured Solutions [23], [24] is used to verify the 

integrity of the custom solver.  

To implement the Method of Manufactured solutions, a source term is added to the original 

discretized equations, which modifies the solver so that it is solving for a known solution instead 

of an unknown solution. The known solutions for temperature and stream are 𝑇𝑀𝑆 and Ψ𝑀𝑆, 

respectively. These are chosen based on the initial and boundary conditions of the solver and are 

known as the “Manufactured Solutions”. Once the manufactured solutions are chosen the source 

terms can be calculated. The procedure for modifying the governing equations is outlined below. 

𝑄𝑇 is the source term for the temperature equation, and 𝑄Ψ is the source term for the stream 

equation. 

Temperature: 

 
𝜕𝑇𝑀𝑆

𝜕𝑡
+

𝜕𝜓𝑀𝑆

𝜕𝑧

𝜕𝑇𝑀𝑆

𝜕𝑥
−

𝜕𝛹𝑀𝑆

𝜕𝑥

𝜕𝑇𝑀𝑆

𝜕𝑧
=

𝜕2𝑇𝑀𝑆

𝜕𝑥2
+

𝜕2𝑇𝑀𝑆

𝜕𝑧2
+ 𝑄𝑇 (5.17) 

 

Equation (5.17) is discretized using exactly the same scheme as equation (5.5) above, 
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𝑇𝑀𝑆𝑖
𝑗+1 − 𝑇𝑀𝑆𝑖

𝑗

𝛥𝑡
+ 𝑢𝑖

𝑇𝑀𝑆𝑖+1
𝑗+1 − 𝑇𝑀𝑆𝑖−1

𝑗+1

2𝛥𝐿
+ 𝑤𝑖

𝑇𝑀𝑆𝑖+𝑁
𝑗+1 − 𝑇𝑀𝑆𝑖−𝑁

𝑗+1

2𝛥𝐿

=
𝑇𝑀𝑆𝑖−1

𝑗+1 − 2𝑇𝑀𝑆𝑖
𝑗+1 + 𝑇𝑀𝑆𝑖+1

𝑗+1

𝛥𝐿2
+

𝑇𝑀𝑆𝑖−𝑁
𝑗+1 − 2𝑇𝑀𝑆𝑖

𝑗+1 + 𝑇𝑀𝑆𝑖+𝑁
𝑗+1

𝛥𝐿2

+ 𝑄𝑇 

(5.18) 

 

When the known values are gathered on the right-hand side and the unknown values on the left, 

equation (5.18) becomes, 

 

𝑇𝑀𝑆𝑖
𝑗 = (𝑢𝑖

𝛥𝑡

2𝛥𝐿
−

𝛥𝑡

𝛥𝐿2
) 𝑇𝑀𝑆𝑖+1

𝑗+1 − (𝑢𝑖

𝛥𝑡

2𝛥𝐿
+

𝛥𝑡

𝛥𝐿2
) 𝑇𝑖−1

𝑗+1

+ (𝑤𝑖

𝛥𝑡

2𝛥𝐿
−

𝛥𝑡

𝛥𝐿2
) 𝑇𝑀𝑆𝑖+𝑁

𝑗+1 − (𝑤𝑖

𝛥𝑡

𝛥𝐿2
+

𝛥𝑡

2𝛥𝐿
) 𝑇𝑀𝑆𝑖−𝑁

𝑗+1

+ (
4𝛥𝑡

𝛥𝐿2
+ 1) 𝑇𝑀𝑆𝑖

𝑗+1 + 𝑄𝑇 ⋅ 𝛥𝑡 

(5.19) 

 

Stream Function: 

 
1

𝑉𝑎

𝜕

𝜕𝑡
(

𝜕2𝛹𝑀𝑆

𝜕𝑥2
+

𝜕2𝛹𝑀𝑆

𝜕𝑧2
) + (

𝜕2𝛹𝑀𝑆

𝜕𝑥2
+

𝜕2𝛹𝑀𝑆

𝜕𝑧2
) = −𝑅𝑎

𝑑𝑇𝑀𝑆

𝑑𝑥
+ 𝑄𝛹 (5.20) 

 

Equation (5.20) is discretized using exactly the same scheme as equation (5.7) above, 
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1

𝑉𝑎

1

𝛥𝑡
[(

𝛹𝑀𝑆𝑖−1
𝑗+1 − 2𝛹𝑀𝑆𝑖

𝑗+1 + 𝛹𝑀𝑆𝑖+1
𝑗+1

𝛥𝐿2
+

𝛹𝑀𝑆𝑖−𝑁
𝑗+1 − 2𝛹𝑀𝑆𝑖

𝑗+1 + 𝛹𝑀𝑆𝑖+𝑁
𝑗+1

𝛥𝐿2
)

− (
𝛹𝑀𝑆𝑖−1

𝑗 − 2𝛹𝑀𝑆𝑖
𝑗 + 𝛹𝑀𝑆𝑖+1

𝑗

𝛥𝐿2
+

𝛹𝑀𝑆𝑖−𝑁
𝑗 − 2𝛹𝑀𝑆𝑖

𝑗 + 𝛹𝑀𝑆𝑖+𝑁
𝑗

𝛥𝐿2
)]

+ (
𝛹𝑀𝑆𝑖−1

𝑗+1 − 2𝛹𝑀𝑆𝑖
𝑗+1 + 𝛹𝑀𝑆𝑖+1

𝑗+1

𝛥𝐿2

+
𝛹𝑀𝑆𝑖−𝑁

𝑗+1 − 2𝛹𝑀𝑆𝑖
𝑗+1 + 𝛹𝑀𝑆𝑖+𝑁

𝑗+1

𝛥𝐿2
) = −𝑅𝑎

𝑇𝑀𝑆𝑖
𝑗+1 − 𝑇𝑀𝑆𝑖

𝑗

𝛥𝑡
+ 𝑄𝛹 

(5.21) 

 

Gathering the known values on the right and unknown values on the left, equation (5.21) 

becomes, 

 

 (𝑉𝑎𝛥𝑡 + 1)(𝛹𝑀𝑆𝑖−𝑁
𝑗+1 + 𝛹𝑀𝑆𝑖−1

𝑗+1 − 4𝛹𝑀𝑆𝑖
𝑗+1 + 𝛹𝑀𝑆𝑖+1

𝑗+1 + 𝛹𝑀𝑆𝑖+𝑁
𝑗+1)

= −
𝑅𝑎𝑉𝑎𝛥𝑡𝛥𝐿

2
(𝑇𝑀𝑆𝑖−1

𝑗+1 − 𝑇𝑀𝑆𝑖+1
𝑗+1)

+ (𝛹𝑀𝑆𝑖−𝑁
𝑗 + 𝛹𝑀𝑆𝑖−1

𝑗 − 4𝛹𝑀𝑆𝑖
𝑗 + 𝛹𝑀𝑆𝑖+1

𝑗 + 𝛹𝑀𝑆𝑖+𝑁
𝑗 ) + 𝑄𝛹

⋅ (𝑉𝑎𝛥𝑡𝛥𝐿2) 

(5.22) 

 

Note that the source term must be added to the original discretized equations, before any 

gathering of terms or simplification is done. 

Choosing an appropriate manufactured solution 

The only restrictions on the manufactured solutions chosen are that they must be infinitely 

differentiable, they must be able to test all the pieces of the solver, and they must agree with the 

boundary conditions implemented, so that the solver can be thoroughly tested. Since the system 
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of equations being solved is dependent upon 𝑥,𝑧, and 𝑡, the manufactured solutions used must 

also vary in those dimensions. The equations chosen are, 

 𝑇𝑀𝑆 = (1 − 𝑒−𝑡) ⋅ 𝑐𝑜𝑠(𝜋𝑥) ⋅ 𝑠𝑖𝑛 (𝜋𝑧) (5.23) 

 𝛹𝑀𝑆 = (1 − 𝑒−𝑡) ⋅ 𝑠𝑖𝑛(𝜋𝑥) ⋅ 𝑠𝑖𝑛 (𝜋𝑧) (5.24) 

 

These equations satisfy the initial conditions, and the boundary conditions can be made to agree 

with a slight modification in the original solver. Additionally, the manufactured solutions 

converge to a steady state solution because of the term (1 − 𝑒−𝑡). This means that the original 

solver needs no modification beyond adding the appropriate source terms and modification of the 

𝑇 = 1 boundary condition to 𝑇 = 0. 

Calculating the source term 

The source terms are calculated as follows, 

 𝑄𝑇 =
𝜕𝑇𝑀𝑆

𝜕𝑡
+

𝜕𝛹𝑀𝑆

𝜕𝑧

𝜕𝑇𝑀𝑆

𝜕𝑥
−

𝜕𝛹𝑀𝑆

𝜕𝑥

𝜕𝑇𝑀𝑆

𝜕𝑧
−

𝜕2𝑇𝑀𝑆

𝜕𝑥2
−

𝜕2𝑇𝑀𝑆

𝜕𝑧2
 (5.25) 

 

𝑄𝛹 =
1

𝑉𝑎

𝜕

𝜕𝑡
(

𝜕2𝛹𝑀𝑆

𝜕𝑥2
+

𝜕2𝛹𝑀𝑆

𝜕𝑧2
) + (

𝜕2𝛹𝑀𝑆

𝜕𝑥2
+

𝜕2𝛹𝑀𝑆

𝜕𝑧2
) + 𝑅𝑎

𝑑𝑇𝑀𝑆

𝑑𝑥
 

(5.26) 

 

Since 𝑇𝑀𝑆 and Ψ𝑀𝑆 are known (equations (5.23) and (5.24)), the source terms are evaluated 

analytically by taking the appropriate derivatives. This is done using a symbolic solver to 

eliminate the possibility of human error. 

The analytical expressions for the source terms are evaluated at each point in the problem 

domain and added to the known terms in the solver, as shown in equations (5.19) and (5.22). If 
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the terms in the original discretized equations are re-arranged or simplified in any way, the 

source term must be appropriately modified. This is why the source terms in equations (5.19) and 

(5.22) have coefficients. Since the governing equations are time dependent, a new set of source 

terms are evaluated for each time step. 

Results 

The solver was used to evaluate the modified system of equations for successively finer grids. As 

the grid is refined, the solution produced by the solver approaches the manufactured solution, 

which is calculated analytically. Figure 5.3 below shows the contour plots for the chosen 

manufactured solutions, 𝑇𝑀𝑆 and Ψ𝑀𝑆. To show that the numerical solution is converging to the 

true solution, and thus show that the numerical solver has no errors, the numerical convergence 

is shown for four points in the problem domain in Figure 5.4. 

CONTOUR PLOT OF Ψ𝑀𝑆 AND 𝑇𝑀𝑆 

 

  
𝑇𝑀𝑆 = (1 − 𝑒−𝑡) ⋅ 𝑐𝑜𝑠(𝜋𝑥) ⋅ 𝑠𝑖𝑛(𝜋𝑧) 𝛹𝑀𝑆 = (1 − 𝑒−𝑡) ⋅ 𝑠𝑖𝑛(𝜋𝑥) 

 

Figure 5.3: Contour plots of the manufactured solutions for temperature and stream. At each of 

the labeled points, the numerical value at that point is compared to the analytical value for 

increasingly fine meshes. This comparison is shown in Figure 5.4. 
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NUMERICAL CONVERGENCE  

 Numerical convergence at point 1  Numerical convergence at point 2  

𝑇 𝑀
𝑆

 

 

𝛹
𝑀

𝑆  𝑇 𝑀
𝑆

 

 

𝛹
𝑀

𝑆  

 ℎ  ℎ  

 Numerical convergence at point 3  Numerical convergence at point 4  

𝑇 𝑀
𝑆
 

 

𝛹
𝑀

𝑆  𝑇 𝑀
𝑆

 

 

𝛹
𝑀

𝑆  

 ℎ  ℎ  

Figure 5.4: The numerical manufactured solution at 4 points for increasingly fine 

meshes and compared to the analytical manufactured solution. In the figures above, ℎ =

√𝐿 𝑁⁄ , where L is the length of the problem domain in the 𝑥-direction (in this case 𝐿 =
2), and N is the number of computational nodes along that length. Consequently, 

decreasing ℎ represents finer meshes.  

 

 

Conclusion 

The results above show that the as the grid is refined the output from the solver approaches the 

true solution. This means that the solver is free of coding errors and is solving the intended 

equations. 
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6  RESULTS AND DISCUSSION 

Results 

The solver was used to produce results on grids from 50 by 25 nodes up to 800 by 400 nodes. 

The results for the finest meshes are presented below. The solver was ran for Rayleigh numbers 

by increments of 10, beginning at 𝑅𝑎 = 40, which is just above the critical Rayleigh number, up 

to 𝑅𝑎 = 100. This range of Rayleigh numbers was chosen due to the availability of experimental 

data and due to the long length of time needed to run the solver to completion for sufficiently 

fine meshes when the Rayleigh number is greater than 𝑅𝑎 = 100.  

ANALYTICAL RESULTS FOR TEMPERATURE FUNCTION 

 

   
𝑅𝑎 = 40 𝑅𝑎 = 50 𝑅𝑎 = 60 

   
𝑅𝑎 = 70 𝑅𝑎 = 80 𝑅𝑎 = 90 

 

 

 

𝑅𝑎 = 100 

 

Figure 6.1: The results for temperature from the Lorenz system. The color contours represent 

the magnitude of the stream function and are scaled from 0 to 1, since 𝑇 = 1 is the maximum 

temperature that can occur. 
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Figure 6.1 above shows the results for the temperature from the Lorenz system. The convection 

cells may form such that the fluid rises from the center of the problem domain, or they may form 

such that the fluid rises at the edges of the problem domain. For the purposes of discussion these 

two solutions are referred to the two solution branches. The resultant branch is dependent on the 

initial conditions of the problem. The Lorenz system will always produce two convection cells 

for a domain having an aspect ratio of 𝐿 = 2. The Lorenz system also assumes that longitudinal 

rolls will prevail as the final nature of the solution. 

NUMERICAL RESULTS FOR TEMPERATURE FUNCTION 

 

   
𝑅𝑎 = 40 𝑅𝑎 = 50 𝑅𝑎 = 60 

   
𝑅𝑎 = 70 𝑅𝑎 = 80 𝑅𝑎 = 90 

 

 

 

𝑅𝑎 = 100 

 

Figure 6.2: The results for temperature from the numerical solution. The color contours 

represent the magnitude of the temperature and are scaled from 0 to 1, since 𝑇 = 1 is the 

maximum temperature that can occur. 

 

Figure 6.1 above shows the results for temperature from the numerical solver. The numerical 

solution can result in the same two branches as the Lorenz system, with the fluid rising from the 
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center or the sides. The numerical solution also assumes that 2D longitudinal cells is the resulting 

convective cell pattern, but does not assume that two convection cells will result. Instead, the 

solver is left without any constraint on the number of convection cells that will occur. The 

wavenumber is a result of the numerical solution instead of being chosen, as in the Lorenz 

system. For Rayleigh numbers 𝑅𝑎 ≥ 80 the numerical solution predicts that more than 2 

convection cells will occur. 

ANALYTICAL RESULTS FOR STREAM FUNCTION 

 

   
𝑅𝑎 = 40 𝑅𝑎 = 50 𝑅𝑎 = 60 

   
𝑅𝑎 = 70 𝑅𝑎 = 80 𝑅𝑎 = 90 

 

 

 

𝑅𝑎 = 100 

 

Figure 6.3: The results for the stream function from the Lorenz system. The color contours 

represent the magnitude of the stream function and are scaled from −6 to 6 for ease of 

comparison. The arrows show the direction of the flow. 

 

Figure 6.3 above shows the results for the stream function from the Lorenz system. The results 

for the stream function provide insight as to why the two solution branches occur. The two 
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branches are identical except that the clockwise-rotation convection cell can occur on the right 

side of the problem domain or the left, depending on the initial conditions. 

NUMERICAL RESULTS FOR STREAM FUNCTION 

 

   
𝑅𝑎 = 40 𝑅𝑎 = 50 𝑅𝑎 = 60 

   
𝑅𝑎 = 70 𝑅𝑎 = 80 𝑅𝑎 = 90 

 

 

 

𝑅𝑎 = 100 

 

Figure 6.4: The results for the stream function from the numerical solution. The color contours 

represent the magnitude of the stream function and are scaled from −6 to 6 for ease of 

comparison. The arrows show the direction of the flow. 

 

Figure 6.4 above shows the results for the stream function from the numerical solution. For 

Rayleigh numbers 𝑅𝑎 ≥ 80, three convection cells result. 

Analysis and Discussion 

Overview 

The results from the Lorenz system and the numerical solution are now compared. First, the 

percent difference is calculated using the following formula, 
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = |
𝑇𝑁 − 𝑇𝐿

𝑇𝑁
| ⋅ 100% (6.1) 

 

The results for all simulations (40 ≤ 𝑅𝑎 ≤ 100) are presented in Figure 6.5 and Figure 6.6. The 

percent difference shows to what degree the Lorenz system varies from the numerical results as a 

percent of the value of the numerical. The scale is such that when the Lorenz system is within 

5% of the numerical the resulting contour is green. When the Lorenz system varies to a degree 

greater then 5% of the numerical the result is red. 

PERCENT DIFFERENCE: TEMPERATURE 

 

   
𝑅𝑎 = 40 𝑅𝑎 = 50 𝑅𝑎 = 60 

 
  

𝑅𝑎 = 70 𝑅𝑎 = 80 𝑅𝑎 = 90 

 

 

 

𝑅𝑎 = 100 

 

Figure 6.5: The percent difference between the Lorenz system for temperature and the 

numerical solution for temperature for the range 40 ≤ 𝑅𝑎 ≤ 100. The Lorenz system shows 

the greatest degree of agreement with the numerical near 𝑅𝑎 = 50. 
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PERCENT DIFFERENCE: STREAM FUNCTION 

 

   
𝑅𝑎 = 40 𝑅𝑎 = 50 𝑅𝑎 = 60 

   
𝑅𝑎 = 70 𝑅𝑎 = 80 𝑅𝑎 = 90 

 

 

 

𝑅𝑎 = 100 

 

Figure 6.6: The percent difference between the Lorenz system for the stream function and the 

numerical solution for the stream function for the range 40 ≤ 𝑅𝑎 ≤ 100. The Lorenz system 

shows the greatest degree of agreement with the numerical near 𝑅𝑎 = 50. 

 

The results are now compared by calculating the absolute difference. This value represents the 

discrepancy between the Lorenz system and the numerical solutions in a way that is not scaled 

by the value of the numerical solution.  

 

The contours for the absolute temperature difference are scaled from 0 to 0.1 on each graph, 

since the maximum temperature deviation that occurs is ≈ 0.1. The contours for the absolute 

difference in stream function are scaled from 0 to 0.7 for the same reason. 

 
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = |𝑇𝑁 − 𝑇𝐿| (6.2) 
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The results for 𝑅𝑎 = 40 show an unexpectedly high difference. As a result, this case is addressed 

in its own section. The results for 𝑅𝑎 = 50 show the lowest deviation over the problem domain 

and thus have their own section. The results for Rayleigh numbers 60 ≤ 𝑅𝑎 ≤ 90 show a 

consistent increase in deviation and are presented together, so that the evolution of increasing 

difference can be easily seen. For the case 𝑅𝑎 = 80, the numerical solution no longer predicts 

that two convection cells will occur. As a result, this case is addressed separately and the 

absolute difference is not calculated, as the fundamental nature of the solutions does not agree. 

Results for 𝑅𝑎 = 40  

The results from the Lorenz system and numerical solutions show greater than 10% difference in 

many areas of the problem domain for both temperature and the stream function. Close to the 

Rayleigh critical number (𝑅𝑎𝑐𝑟 = 4𝜋2 ≈ 39.48), the convection is very weak, resulting in 

filtration velocities close to zero. Similarly, close to 𝑧 = 1 the temperature approaches zero. This 

means that the calculation of percent difference requires dividing by a number close to zero. An 

alternative analysis is presented which is not scaled by the numerical solution. 

ABSOLUTE DIFFERENCE: 𝑅𝑎 = 40 

  
Temperature Stream Function 

Figure 6.7: The absolute differences for the temperature and stream function for 𝑅𝑎 = 40. 

 

The absolute difference between the Lorenz system and the numerical solution for 𝑅𝑎 = 40 is 

presented above in Figure 6.7. The greatest discrepancy for the stream function occurs at the 
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center of each of the convection cells. The amplitude of the stream function at the center of the 

cells is predicted by the Lorenz system to be nearly twice that of the numerical solution, as 

shown in Table 6-1 below. 

Table 6-1: The maximum values for temperature are the same for all Rayleigh numbers, 

regardless of solution method because the maximum is defined by the boundary conditions of 

the problem. The maximum value for the stream function is dependent on the Rayleigh 

number and is often different for the two solution methods. The table below compares the 

maximum values for the stream function which result from the numerical solution and Lorenz 

system for 𝑅𝑎 = 40. 

Maximum temperature max(𝑇𝑁) = 1  

Maximum difference between Lorenz system and 

numerical temperature solutions 

max(|𝑇𝑁 − 𝑇𝐿|) = 0.045  

Maximum stream function (Numerical) max(Ψ𝑁) = 0.21  

Maximum stream function (Lorenz) max(Ψ𝐿) = 0.48  

Maximum difference between Lorenz system and 

numerical stream function solutions 

max(|Ψ𝑁 − Ψ𝐿|) = 0.27  

 

These results indicate that the Lorenz system and the numerical solution have significantly 

different results near the transition point from the motionless solution to the convective solution. 

Results for 40 < 𝑅𝑎 < 60  

Inspection of Figure 6.5 and Figure 6.6 indicate that the Lorenz system matches the numerical 

solution to greatest degree in the range of 40 < 𝑅𝑎 < 60. To determine the true validity domain 

of the Lorenz equations as a model for natural convection in porous media, it is necessary to look 

in greater detail at the behavior of both the Lorenz system to the numerical solution for this 

range. Additional trials were ran for the numerical and Lorenz system to determine the Rayleigh 

number which gives the minimum difference between the two solution methods. 
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AVERAGE PERCENT DIFFERENCE: 40 ≤ 𝑅𝑎 ≤ 70 
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 Rayleigh Number  Rayleigh Number 

Figure 6.8: The average percent difference between the Lorenz system and the numerical 

solution, averaged over the whole problem domain. 

 

Inspection of Figure 6.7 and Figure 6.8 indicates that the Lorenz system shows the smallest 

discrepancy near 𝑅𝑎 = 46. After this point, the average difference between the two solutions 

increases linearly. For the range 44 ≤ 𝑅𝑎 ≤ 54 the Lorenz system shows less than a 5% average 

deviation from the numerical solution. The absolute difference between the numerical solution 

and the Lorenz system is shown in Figure 6.9. The absolute difference, averaged over the entire 

problem domain, is presented in Figure 6.10, and the maximum difference is presented in Table 

6-2. 
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ABSOLUTE DIFFERENCE: 𝑅𝑎 = 46 

  
Temperature Stream Function 

Figure 6.9: The absolute differences for the temperature and stream function for 𝑅𝑎 = 46. 

 

Table 6-2: The table below shows the maximum absolute difference between the Lorenz 

system and numerical solution for Rayleigh numbers in the range 40 ≤ 𝑅𝑎 ≤ 60. 

 𝐦𝐚𝐱(𝑻)  𝐦𝐚𝐱(|𝑻𝑵 − 𝑻𝑳|) 𝐦𝐚𝐱(𝚿𝑵)  𝐦𝐚𝐱(𝚿𝑳) 𝐦𝐚𝐱(|𝚿𝑵 − 𝚿𝑳|) 

𝑅𝑎 = 40 1 0.045  0.21  0.48  0.27  

𝑅𝑎 = 42 1 0.018 0.93 1.01 0.081 

𝑅𝑎 = 44 1 0.016 1.31 1.35 0.05 

𝑅𝑎 = 46 1 0.015 1.60 1.63 0.03 

𝑅𝑎 = 48 1 0.015 1.85 1.86 0.027 

𝑅𝑎 = 50 1 0.019 2.08 2.06 0.049 

𝑅𝑎 = 52 1 0.024 2.28 2.25 0.071 

𝑅𝑎 = 54 1 0.029 2.47 2.42 0.095 

𝑅𝑎 = 46 1 0.034 2.65 2.59 0.119 

𝑅𝑎 = 48 1 0.039 2.82 2.74 0.146 

𝑅𝑎 = 60 1 0.043 2.98 2.88 1.175 
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AVERAGE ABSOLUTE DIFFERENCE: 40 ≤ 𝑅𝑎 ≤ 70 
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Figure 6.10: The average absolute difference between the Lorenz system and the numerical 

solution, averaged over the whole problem domain. 

 

This transition period is predicted to occur exactly at the point 𝑅𝑎 = 4 ⋅ 𝜋2. This is the point at 

which, mathematically, the equations predict that the motionless solution will become unstable. 

However, theoretically, the motionless solution will persist indefinitely if there is no disturbance, 

as convection cannot be initiated if 
𝑑𝑇

𝑑𝑥
= 0. Additionally, experimental results indicate that the 

transition point can occur slightly before or after this point, depending on the conditions of the 

experiment. Theoretical understanding of the transition from the motionless solution to the 

convective solution is still incomplete. 

These results indicate that the Lorenz system is best able to predict the results of the numerical 

solution in the neighborhood of 𝑅𝑎 = 46. This is presumably the point at which the nature of the 

solution has transitioned fully from pure conduction to convection. 
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Results for 60 ≤ 𝑅𝑎 ≤ 70  

The range at which the Lorenz system is able to predict the numerical solution within 5% 

deviation is 44 ≤ 𝑅𝑎 ≤ 54. However, up to 𝑅𝑎 = 70 the Lorenz system and numerical solutions 

both predict that two convection cells will result. The absolute differences for the temperature 

and stream function are presented below in Figure 6.11 and Figure 6.12, and the maximum 

difference that occurs in the problem domain between the Lorenz system and the numerical 

solution is presented in Table 6-3.  

ABSOLUTE DIFFERENCE: TEMPERATURE 

  
𝑅𝑎 = 60 𝑅𝑎 = 70 

 

Figure 6.11: The absolute difference between the Lorenz system and numerical temperature 

solutions for 60 ≤ 𝑅𝑎 ≤ 70 .  

 

ABSOLUTE DIFFERENCE: STREAM 

  
𝑅𝑎 = 60 𝑅𝑎 = 70 

 

Figure 6.12: The absolute difference between the Lorenz system and numerical stream 

function solutions for 60 ≤ 𝑅𝑎 ≤ 70 . 
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Table 6-3: The table below compares the maximum values for the stream function which result 

from the numerical and Lorenz system for 60 ≤ 𝑅𝑎 ≤ 70 

 𝐦𝐚𝐱(𝑻)  𝐦𝐚𝐱(|𝑻𝑵 − 𝑻𝑳|) 𝐦𝐚𝐱(𝚿𝑵)  𝐦𝐚𝐱(𝚿𝑳) 𝐦𝐚𝐱(|𝚿𝑵 − 𝚿𝑳|) 

𝑅𝑎 = 60 1 0.043 2.98 2.88 0.175 

𝑅𝑎 = 70 1 0.066 3.71 3.52 0.330 

 

Results for 𝑅𝑎 ≥ 80  

When the Rayleigh number reaches 𝑅𝑎 = 80, the numerical solution no longer predicts that two 

convection cells will occur. The formation of two convection cells is one of the fundamental 

assumptions for the Lorenz system. As a result, the Lorenz system and numerical solutions 

fundamentally disagree on the nature of the solution that will result. It has been shown 

experimentally that the size of the convection cells that form decreases slightly in length as the 

Rayleigh number increases. This phenomenon was discussed in Chapter 2  

Comparison of analytical results with experimental data 

The results from both the Lorenz system and numerical simulations are now compared with 

experimental data. When natural convection is studied experimentally, the quantity measured is 

the average Nusselt number. The average Nusselt number was calculated using the results from 

the simulation. Chapter 4 outlines the process for analyzing the raw experimental data. Figure 

6.13 shows the relationship between the Nusselt number and the Rayleigh number for the 

experimental data compared to the results from the Lorenz system and numerical solutions. 
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𝑁
𝑢

 
EXPERIMENTAL RESULTS 

 

 

𝑅𝑎 

Figure 6.13: The experimental data for Nusselt vs. Ralyeigh number with the computational 

results for the Nusselt number from the Lorenz system and numerical solutions. The error bars 

represent a 95% confidence interval. 

 

Figure 6.13 shows that both the Lorenz system and numerical models are inadequate for 

predicting the Nusselt number when the Rayleigh number is close to the critical Rayleigh 

number. However, the Lorenz system results (shown in blue) fall within the 95% confidence 

interval for the range 60 ≤ 𝑅𝑎 ≤ 100, while the numerical results (shown in red) fall within the 

experimental error bars for the range 75 ≤ 𝑅𝑎 ≤ 100. 

It is possible that imperfect experimental conditions such as uneven heating of bottom or 

imperfectly insulated side walls may have caused an imperfect bifurcation to occur, as discussed 

in Chapter 3 resulting in greater than predicted Nusselt numbers close to the transition point. No 

information regarding the tolerances to which the experimental boundary conditions were held 
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was present in the publications, so it cannot be known to what extent these imperfections may 

have affected the experimental results. 
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7  CONCLUSIONS 

The purpose of this research was to determine the validity domain of the Lorenz equations as a 

model for natural convection in porous media, i.e. for which Rayleigh numbers are the Lorenz 

equations valid as a model for natural convection. One would assume that a straightforward 

question such as this would result in a straightforward answer. However, the nature of this 

universe dictates that even the most straightforward questions have complex answers. The work 

presented here represents a mere first step into understanding the merits and drawbacks of this 

model, and no number of plots and tables can do sufficient justice to the complex mathematical 

beauty of the problem of natural convection in porous media. With that concession, the practical 

uses and limitations of the Lorenz system are henceforth presented, within the bounds of 40 ≤

𝑅𝑎 ≤ 100. 

Conclusions for range 𝑅𝑎 = 40  

Near the critical Rayleigh number the Lorenz system accurately predicts neither the temperature 

contours nor the stream function to sufficient accuracy. Additionally, when compared with 

experimental data, the Lorenz system under predicts the Nusselt number. 

Conclusions for range 40 < 𝑅𝑎 < 60  

The range for which the Lorenz system is able to predict the numerical solution within 5% is 

44 ≤ 𝑅𝑎 ≤ 54. The Lorenz system shows the best prediction at 𝑅𝑎 = 46. However, for this 

range of Rayleigh numbers neither the Lorenz system nor the numerical solutions fall within the 

95% confidence interval.  
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Conclusions for range 60 ≤ 𝑅𝑎 ≤ 70  

For this range of Rayleigh number, the percent difference and absolute difference both increase 

in an approximately linear fashion. The Lorenz system does not agree with the numerical 

solution within 5%, on average. However, the Lorenz system falls within the experimental 95% 

confidence interval for this range. 

Conclusions for range 𝑅𝑎 ≥ 80  

The fundamental nature of the solution changes at 𝑅𝑎 = 100. The Lorenz system makes the 

assumption that two convection cells will result. However, the results for the numerical solution 

suggest that after 𝑅𝑎 = 100, three or more convection cells may form. The experimental data 

indicates that both the Lorenz system and numerical solutions can predict the Nusselt number for 

this range, though the Lorenz system is closer to the mean than the numerical for 𝑅𝑎 = 100. To 

correctly predict the behavior of the solution for Rayleigh numbers greater than 𝑅𝑎 = 100, it 

will be necessary to study experimentally and theoretically the effect of the Rayleigh number on 

the number of convection cells that form. More experimental data is also needed to make a 

comparison of the Nusselt number. 
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APPENDIX 

Appendix I: Numerical solver 

MATLAB Function: RUN.m 

function [Stream_N,Temp_N] = RUN(Ra,N,Va) 

  

    if ~exist('Ra','var') 

        %Default Rayleigh number 

        Ra = 45; 

    end 

    if ~exist('N','var') 

        %Default grid spacing 

        N = 60; 

    end 

  

    if ~exist('Va','var') 

        %Default Vadasz number 

        Va = 98.7; 

    end 

  

    foldername = sprintf('RA%d_N%d',Ra,N); 

     

    mkdir(foldername) 

     

    %Time step 

    if Ra < 500 

        deltaT = 2/N/2; 

    else  

        deltaT = 2/N/20; 

    end 

     

    %Length in x-direction (Aspect Ratio) 

    L = 3; 

  

    %Space between gridpoints in x-direction 

    deltaL = L/N; 

  

    %Gridpoints in y-direction 

    M = (1/deltaL)+1; 

     

    %Gridpoints in x-direction 

    N = N+1; 

  

    %%% Initialize Temperature Mesh %%% 

    Temperature = zeros(M*N,1); 

  

    for i = 1:N 

        Temperature(i) = 1; 

    end 
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    for i = [randi([N+1,(M-1)*N]),randi([N+1,(M-1)*N])] 

        Temperature(i) = 1; 

    end 

  

    %%% Initialize Stream Mesh %%% 

    %Zero velocity in x and y direction everywhere 

    Stream = zeros(M*N,1); 

  

    %%% Initialize necessary variables %%% 

    global constants_g 

    global initial_stream_g 

    global initial_temp_g 

  

    global stop 

  

    constants_g = [M;N;deltaL;deltaT;Ra;Va]; 

    initial_stream_g = Stream; 

    initial_temp_g = Temperature; 

  

    stop = false; 

  

    %%% Pass initial conditions and necessary parameters to solver %%% 

    [Stream_N,Temp_N] = Controller; 

     

    Stream_N = vec2mat(Stream_N,N); 

    Temp_N = vec2mat(Temp_N,N); 

       

End 
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MATLAB Function: Iterate.m 

function [Stream_jp1,Temp_jp1] = Iterate(Stream_j,Temp_j) 

  

format long 

  

global stop 

  

global constants_g 

  

constants = constants_g; 

  

Va = constants(6); 

Ra = constants(5); 

deltaT = constants(4); 

deltaL = constants(3); 

N = constants(2); 

M = constants(1); 

  

S_done = false; 

T_done = false; 

  

Temp_jp1a = Temperature(Stream_j,Temp_j); 

Stream_jp1a = StreamFunction(Stream_j,Temp_jp1a); 

  

foldername = sprintf('RA%d_N%d',Ra,N-1); 

  

i=1; 

s_diff = []; 

t_diff = []; 

tic 

while ((S_done == false)||(T_done == false)) && stop == false 

     

    Temp_jp1b = Temperature(Stream_jp1a,Temp_j); 

    Stream_jp1b = StreamFunction(Stream_j,Temp_jp1b); 

    S_diff = sum(abs(Stream_jp1b - Stream_jp1a)); 

    T_diff = sum(abs(Temp_jp1b - Temp_jp1a)); 

  

    if S_diff < .00000001  

        S_done = true; 

    end 

  

    if T_diff < .00000001 

        T_done = true; 

    end 

         

    s_diff(i) = S_diff; 

    t_diff(i) = T_diff; 

     

    Stream_jp1a = Stream_jp1b; 

    Temp_jp1a = Temp_jp1b; 

     

    i = i+1; 

end 

elapsedtime = toc; 
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cd(foldername) 

dlmwrite('timeElapsed.txt',elapsedtime,'-append'); 

cd .. 

  

%%% Outputs 

Stream_jp1 = Stream_jp1a; 

Temp_jp1 = Temp_jp1a; 
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MATLAB Function: Controller.m 

function [Stream_N, Temp_N] = Controller() 

  

format long 

  

global constants_g; 

global initial_stream_g; 

global initial_temp_g; 

  

global stop 

  

Temp_j = initial_temp_g; 

Stream_j = initial_stream_g; 

  

constants = constants_g; 

  

Va = constants(6); 

Ra = constants(5); 

deltaT = constants(4); 

deltaL = constants(3); 

N = constants(2); 

M = constants(1); 

  

foldername = sprintf('RA%d_N%d',Ra,N-1); 

 

%Max number of time steps solver will take 

p = 10000000; 

  

%Initialize conditions that allow solver to check for steady state 

S_done = false; 

T_done = false; 

  

%Very first step forward in time 

Temp_jp1a = Temperature(Stream_j,Temp_j); 

Stream_jp1a = StreamFunction(Stream_j,Temp_jp1a); 

  

j=2; 

  

%Times how long each step forward in time takes to compute 

tic 

  

%While loop continues to move the solution forward in time as long as the 

%temperature and stream functions are both changing, or when the max number 

%of time steps has been reached. 

while ((S_done == false)||(T_done == false)) && (j<p) && stop == false 

     

    [Stream_jp1,Temp_jp1] = Iterate(Stream_j,Temp_j); 

     

%     Temp_field(:,j) = Temp_jp1; 

%     Stream_field(:,j) = Stream_jp1; 

     

    S_diff = sum(abs(Stream_jp1 - Stream_j)); 

    T_diff = sum(abs(Temp_jp1 - Temp_j)); 

     

    Stream_j = Stream_jp1; 



66 

    Temp_j = Temp_jp1; 

     

    %Check for Stream steady state 

    if S_diff < 0.000001 

        S_done = true; 

    end 

  

    %Check for Temperature steady state 

    if T_diff < 0.000001 

        T_done = true; 

    end 

  

    %Computed temp and stream fields become the new initial conditions for 

    %the next time step 

    Stream_j = Stream_jp1; 

    Temp_j = Temp_jp1; 

     

    cd(foldername) 

     

    dlmwrite('Residual2S.txt',full(S_diff),'-append'); 

    dlmwrite('Residual2T.txt',full(T_diff),'-append'); 

     

    dlmwrite('Stream.txt',full(Stream_j)); 

    dlmwrite('Temp.txt',full(Temp_j)); 

         

    cd .. 

     

    j = j+1; 

end 

  

elapsedtime = toc; 

  

%%% Outputs %%% 

Stream_N = Stream_j; 

Temp_N = Temp_j; 
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MATLAB Function: StreamFunction.m 

function [Stream_jp1] = StreamFunction(Stream_j,Temp_jp1) 

  

format long 

  

global constants_g 

constants = constants_g; 

  

Va = constants(6); 

Ra = constants(5); 

deltaT = constants(4); 

deltaL = constants(3); 

N = constants(2); 

M = constants(1); 

 

%%% Knowns %%% 

temp_jp1 = Temp_jp1; 

stream_j = Stream_j; 

  

a = Va*deltaT+1; 

b = 1; 

c = -0.5*Ra*Va*deltaT*deltaL; 

  

%Preallocate space for B 

B = sparse(M*N,1); 

  

for i = 1:M*N 

    if (0 < i)&&(i <= N) 

        B(i) = 0; 

    elseif mod(i,N) == 1 

        B(i) = 0; 

    elseif mod(i,N) == 0 

        B(i) = 0; 

    elseif (N*(M-1) < i)&&(i <= M*N) 

        B(i) = 0; 

    else 

        B(i) = (c*(temp_jp1(i+1)-temp_jp1(i-1))) + b*(stream_j(i+1) + 

stream_j(i+N) - 4*stream_j(i) + stream_j(i-N) + stream_j(i-1)); 

    end 

end 

  

%%% Unknowns %%% 

  

b = zeros(M*N,5); 

  

%a_imN 

b(:,1) = a; 

b(1:N:(M-1)*N+1,1) = 0; 

b(N:N:(M-1)*N,1) = 0; 

b((M-2)*N:(M-1)*N,1) = 0; 

  

%a_im1 

b(:,2) = a; 

b(1:N,2) = 0; 

b(N-1:N:(M-1)*N-1,2) = 0; 
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b(N:N:(M-1)*N,2) = 0; 

b((M-1)*N:M*N,2) = 0; 

  

%a_i 

b(:,3) = -4*a; 

b(1:N,3) = 1; 

b(N+1:N:(M-1)*N+1,3) = 1; 

b(N:N:(M-1)*N,3) = 1; 

b((M-1)*N:M*N,3) = 1; 

  

%a_ip1 

b(:,4) = a; 

b(1+1:N+1,4) = 0; 

b(N+1+1:N:(M-1)*N+1+1,4) = 0; 

b(N+1:N:(M-1)*N+1,4) = 0; 

b((M-1)*N+1:M*N+1,4) = 0; 

  

%a_ipN 

b(:,5) = a; 

b(1+N:N+N,5) = 0; 

b(N+1+N:N:(M-1)*N+1+N,5) = 0; 

b(N+N:N:(M-1)*N+N,5) = 0; 

  

d = [-N,-1,0,1,N]; 

  

A = spdiags(b,d,M*N,M*N); 

  

Solution = A\B; 

 

%%% Outputs %%% 

Stream_jp1 = Solution; 
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MATLAB Function: Temperature.m 

function [Temp_jp1] = Temperature(Stream_jp1,Temp_j) 

  

format long 

  

global constants_g 

constants = constants_g; 

  

N = constants(2); 

M = constants(1); 

Va = constants(6); 

Ra = constants(5); 

deltaT = constants(4); 

deltaL = constants(3); 

  

%%% Knowns %%% 

B = sparse(Temp_j); 

% Stream = vec2mat(Stream_jp1,N); 

Stream = Stream_jp1; 

  

%Take stream function from previous time step and extract x and z direction 

%velocities 

u_j = zeros(M*N,1); 

w_j = zeros(M*N,1); 

  

for i = 1:M*N 

    if mod(i,N) == 1 

        w_j(i) = 0; 

        u_j(i) = 0; 

    elseif mod(i,N) == 0 

        w_j(i) = 0; 

        u_j(i) = 0; 

    elseif (i <= N) 

        w_j(i) = 0; 

        u_j(i) = 0; 

    elseif (N*(M-1) < i) 

        w_j(i) = 0; 

        u_j(i) = 0; 

    else 

        u_j(i) = (Stream(i-1) - Stream(i+1))/(2*deltaL); 

        w_j(i) = (Stream(i+N) - Stream(i-N))/(2*deltaL); 

    end 

end 

  

% [u_j,w_j] = gradient(Stream); 

%  

% u_j = reshape(u_j./(-deltaL),[1,M*N]); 

% w_j = reshape(w_j./(deltaL),[1,M*N]); 

  

%Problem Constants 

s = deltaT/(2*deltaL); 

r = deltaT/deltaL^2; 

  

%Matrix Coefficients 

a_imN = -(s.*u_j+r); 
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a_im1 = -(s.*w_j+r); 

a_i   =  (4*r+1.*ones(M*N,1)); 

a_ip1 = -(-s.*w_j+r); 

a_ipN = -(-s.*u_j+r); 

  

%%% Unknowns %%% 

  

b = zeros(M*N,5); 

b(:,1) = a_imN; 

b(1:N:(M-2)*N+1,1) = -r; 

b(N:N:(M-2)*N,1) = -r; 

b((M-2)*N+1:(M-1)*N+1,1) = 0; 

  

b(:,2) = a_im1; 

b(1:N-1,2) = 0; 

b(N:N:(M-1)*N,2) = 0; 

b((M-1)*N:M*N,2) = 0; 

b(2*N-1:N:(M-1)*N-1,2) = -2*r; 

  

b(:,3) = a_i; 

b(1:N,3) = 1; 

b((M-1)*N+1:M*N,3) = 1; 

  

b(:,4) = a_ip1; 

b(1+1:N+1,4) = 0; 

b(N+1+1:N:(M-2)*N+1+1,4) = -2*r; 

b(2*N+1:N:(M-1)*N+1,4) = 0; 

b((M-1)*N+1:M*N,4) = 0; 

  

b(:,5) = a_ipN; 

b(1+N:N+N,5) = 0; 

b(N+1+N:N:(M-1)*N+1+N,5) = -r; 

b(2*N+N:N:(M-1)*N+N,5) = -r; 

  

  

d = [-N,-1,0,1,N]; 

  

A = spdiags(b,d,M*N,M*N); 

  

A_t = A; 

B_t = B; 

  

Solution = A\B; 

%[Solution,~] = bicgstabl(A,B,1e-10,500); 

  

%%% Outputs %%% 

Temp_jp1 = Solution; 
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Appendis II: Lorenz solver 

function [Stream_A,Temp_A] = RUN_A(Ra,N,Va) 

  

if ~exist('Ra','var') 

    %Default Rayleigh number 

    Ra = 45; 

end 

if ~exist('N','var') 

    %Default grid spacing 

    N =60; 

end 

 

if ~exist('Va','var') 

    %Default Vadasz number 

    Va = 98.7; 

end 

if ~exist('x0','var') 

    x0 = 111; 

end 

if ~exist('y0','var') 

    y0 = 15; 

end 

if ~exist('z0','var') 

    z0 = 1; 

end 

  

R = Ra/(4*pi^2); 

M = N/2; 

  

foldername = 'Z:\Documents\Thesis Data\'; 

foldername = 

horzcat(foldername,sprintf('Ra%d',Ra),'\',sprintf('RA%d_N%d',Ra,N)); 

workingdirectory = pwd; 

  

alpha = Va/(2*pi^2); 

g=@(t,x)[alpha*(x(2)-x(1));-x(2)+R*x(1)-(R-1)*x(1)*x(3);2*(x(1)*x(2)-x(3))]; 

  

Y0 = [x0,y0,z0]; 

  

[t,xa] = ode23(@(t,x) g(t,x),[0,100],Y0); 

  

A_11 = (-4*(R-1)^0.5).*xa(:,1); 

B_11 = (2*(R-1)^0.5)/(pi*R).*xa(:,2); 

B_02 = -(R-1)/(pi*R).*xa(:,3); 

  

x_vec = pi*linspace(0,2,N+1); 

z_vec = pi*linspace(0,1,M+1); 

  

sin_x = sin(x_vec); 

sin_z = sin(z_vec); 

cos_x = cos(x_vec); 

sin_2z = sin(2.*z_vec); 

  

for i = 1:length(sin_x) 
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    sin_xsin_z(i,:) = sin_x(1,i).*sin_z'; 

end 

  

for i = 1:length(sin_x) 

    a(i,:) = cos_x(1,i).*sin_z'; 

    b(i,:) = sin_2z'; 

    c(i,:) = 1-(z_vec./pi)'; 

end 

  

for i = 1:length(t) 

    Stream_field(:,:,i) = A_11(i).*sin_xsin_z; 

    Temp_field(:,:,i) = B_11(i).*a + B_02(i).*b + c; 

end 

  

Stream_A = Stream_field(:,:,length(t))'; 

Temp_A = Temp_field(:,:,length(t))'; 

  

cd(foldername) 

  

dlmwrite('StreamA.txt',Stream_A); 

dlmwrite('TempA.txt',Temp_A); 

  

cd(workingdirectory) 

  

end 

 


