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A simple mathematical model is presented for Batesian mimicry, which occurs when a
harmless species (mimic) is morphologically similar to another species (model) that is
noxious or distasteful to predators, thus gaining a measure of protection. Although math-
ematical models for species interaction, such as predator-prey or competition, are well
known, there is no similar literature on mimicry. The mathematical model developed
here is a one-dimensional iterated map which has the full range of dynamic behavior
present in the logistic map, depending on the values of its parameters. The dynamics
ranges from a stable fixed point and stable cycles through chaotic dynamics achieved
through a sequence of period doubling bifurcations.

1. Introduction

The use of mathematical models to predict the dynamics of interacting species dates back
to Lotka and Volterra in the 1920s. Despite some severe limitations, the predator-prey
and competition models of Lotka-Volterra are featured widely in both calculus and dif-
ferential equations texts, and these models are generalized for consideration of symbio-
sis, commensalism, and amensalism. See, for example, Begon et al. (1996). More real-
istic models have appeared in the literature, for example, Holling’s (1959) approach to
predator-prey interactions in which a functional response term replaces the insatiable
predators of Lotka-Volterra. Discrete-time models have also been applied to most forms
of multispecies interactions; the host-parasitoid model of Nicholson-Bailey (1935) atyp-
ically being more than simply a discrete-time counterpart of a continuous model. How-
ever, the notion of mimicry seems to have escaped mathematical analysis. The purpose of
this paper is to build and then analyze a simple model of Batesian mimicry.

Batesian mimicry occurs when a harmless species (or mimic) is morphologically sim-
ilar to another species (or model) that is noxious or distasteful to predators. In addition,
the mimic may behave in similar ways to the model. The mimic uses these physical and
behavioral similarities to gain a measure of protection from its potential predators. Per-
haps the best-known example is that of the monarch butterfly, which is poisonous to
many birds, and the similar viceroy butterfly that is not. Holling [2] conjectured that there
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is a limit to the number of mimics that can exist within a given population of models.
That is, there is a maximum ratio of mimics to models; this ratio is therefore optimal in
the sense that it provides the maximum benefit for the mimic. Heuristically, if there are
too many mimics, predators will find palatable prey within the model-mimic system and
will sample freely from this, thus providing the mimic with little benefit. On the other
hand, if the system is almost exclusively model, the few mimics present are likely to go
undetected, and will gain full protection from their similarity to the unpalatable model.
The question is whether there is a balancing point between these two extremes: Is there a
model: mimic ratio at which the system is stable, so that predation leaves this ratio more
or less unchanged?

In the next section, we propose a simple mathematical model for Batesian mimicry
that takes the form of a one-dimensional iterated map. In the final section, we analyze
this model and show that it exhibits a range of dynamic behavior similar to that of the
well-known logistic map.

2. The mathematical model

In this section, we propose a simple model for Batesian mimicry. We begin with a number
of assumptions for our model. Whether these apply to a given model-mimic system in
nature will of course depend on the life histories of the particular species involved.

We assume that predators have a variety of preys available to them that includes the
model and mimic species. The models are unpalatable, and although the predator may eat
some models, generally models will prove themselves noxious to their predators and will
escape if sampled. Predators are assumed to have short-term memories, so that although
they will for a time remember the bad experience from eating, or attempting to eat a
model, they will later sample again from the model-mimic system.

We assume that the level of predation on the model-mimic system depends only on
the model: mimic ratio, and not on the actual numbers of models and mimics. Predation
on other species is ignored, deemed to have no effect in light of the above assumption
since the model: mimic ratio is unaffected by the sampling of prey outside of the system.

We will work with discrete-time steps, and define Xn to be the number of models in the
population at time n and Yn to be the number of mimics in the population at time n. Of
interest is the ratio Xn : Yn and how this changes over time n. To measure this, we define
the related variable

Zn = Xn

Xn +Yn
(2.1)

which measures the model proportion of the total model-mimic population. Clearly, 0≤
Zn ≤ 1. We propose to model the system using an iterated map Zn+1 = f (Zn) and will
determine a number of properties of the function f . We will assume this function is
continuous.

Firstly, it is clear that f (0) = 0 and f (1) = 1. That is, 0 and 1 are fixed points of the
iterated map. The condition simply says that if the system ever consists entirely of one
species or the other, then it will continue to do so. Next, we consider what happens close
to Z = 0. Here, the system is predominately mimic, and so predators will sample more
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Figure 2.1. The graph of f in the simplest case. The model: mimic ratio will tend to an optimal value.

or less freely from the system. Because some models will be sampled but not eaten, the
model: mimic ratio will change in favor of the models. This implies that for ε small,
ε < f (ε). Consequently, the fixed point Z = 0 is unstable.

Next, we consider what happens close to Z = 1. If for ε small, f (1− ε) < 1− ε, then by
the continuity of f , the iterated map has at least one fixed point between 0 and 1. If the
fixed point is unique, and since 0 and 1 are unstable fixed points, it is reasonable to think
that this fixed point would be stable (although this is not necessarily true). This would
then be the “optimal” model: mimic ratio conjectured in [2] (see Figure 2.1).

However, it is hard to justify the fact that f (1− ε) < 1− ε. In this case, the population
is almost exclusively model and there will be little predation on the system. Thus, the
ratio will be affected by factors other than predation and the shape of the graph of f near
Z = 1 is therefore determined by life history factors external to the mathematical model. It
is clear however that it cannot be the case that f (Z) > Z for all 0 < Z < 1, since then Z = 1
is a global attractor. The model-mimic system would not evolve in these circumstances.

The possibility that 1− ε < f (1− ε) requires that f has more than one fixed point
between 0 and 1. The simplest case with two fixed points is illustrated in Figure 2.2. Note
that the rightmost fixed point ZR is unstable. The model: mimic ratios beyond this value
lead to the extinction of the mimic. The interesting part of the dynamics lies to the left of
this fixed point. In this case, the graph of f over [0,ZR] has the same shape of the graph
of f over [0,1] in Figure 2.1.

In general, f may have many fixed points, but we may assume that f has the shape
given in Figure 2.1, since otherwise we may restrict f to a domain [Z1,Z2] (where 0 ≤
Z1 ≤ Z2 ≤ 1) on which the graph has this shape. If the graph of f is steeper than shown
at the unique fixed point between 0 and 1, then this fixed point may be unstable and the
dynamics more complex. This is further discussed in the next section.

3. Analysis of the mathematical model

In order to determine the possible dynamics of the system, we will make some adjust-
ments to the function whose graph is shown in Figure 2.1. Rather than work with the
domain [0,1], we will use [−1,1] and we will further rescale Z so that the fixed points
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Figure 2.2. The simplest graph of f if the fixed point at Z = 1 is stable. The model: mimic ratio will
tend to one of two values depending on the initial conditions.

lie at Z =−1, 0, and 1. Such a rescaling has no effect on the dynamics; it merely gives us
different points of reference. We choose to use the family of functions

f (Z)= aZ3 + (1− a)Z (3.1)

for our study of the dynamics of the mimicry system under Zn+1 = f (Zn), noting cau-
tiously that this choice introduces a symmetry that is unlikely to be present in the func-
tion f of Figure 2.1. For more general functions, we would certainly expect more general
results. But, as we will show, the above family of functions shows the full richness of
dynamics present in the logistic map.

For f to map [−1,1] into [−1,1], interest lies in the parameter range 0 < a≤ 4, and in
all cases the fixed points at±1 are unstable. If a≤ 1, then f is an increasing function, and
the fixed point Z = 0 has basin of attraction (−1,1). If 1 < a≤ 4, then f is an N-shaped
function; for 1 < a≤ 2, the fixed point Z = 0 has basin of attraction (−1,1), but a period-
doubling bifurcation takes place at a = 2 and this is the beginning of the more complex
dynamics that takes place over the parameter range 2 < a≤ 4.

It is easily shown that for a > 1, the iterated map Zn+1 = aZ3
n − (1− a)Zn has negative

Schwarzian derivative. This has two well-known consequences (see, e.g., Guckenheimer
and Holmes [1]). Firstly, all flip bifurcations are supercritical, and so we may expect a
cascade of period-doubling bifurcations as seen in the logistic map (see, e.g., May [4]).
Secondly, if the iterated map has a stable periodic orbit γ, then the trajectory that starts
at the maximum or minimum points of f in (−1,1) will approach γ.

The given function has its maximum and minimum values at Z± = ±√(a− 1)/a. It
follows from the oddness of f that the trajectory through Z+ differs throughout from that
through Z− only in sign. The bifurcation diagram starting at Z+ is given in Figure 3.1. The
bifurcation diagram starting at Z− can be obtained from that of Z+ by reflection across
the a-axis. The full bifurcation diagram is obtained by combining these two diagrams and
yields that given in Figure 3.2.

Figure 3.2 looks very similar to the bifurcation diagram of the logistic map (see [1]
or [4]). Initially, trajectories tend to the stable fixed point at Z = 0, then to a stable 2-
cycle, and so forth. However, there is one important difference. The bifurcation at a= 3
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Figure 3.1. The bifurcation diagram of the iterated map Zn+1 = aZ3
n + (1− a)Zn over 0 < a < 4 ob-

tained from Z0 = Z+.
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Figure 3.2. The complete bifurcation diagram of the iterated map Zn+1 = aZ3
n + (1− a)Zn over 0 < a <

4 obtained using Z0 = Z+ and Z−.

is not a flip bifurcation, but a pitchfork bifurcation. It is easy to see that ±√(a− 2)/a
is a 2-cycle of the iterated map. This is stable in the range 2 < a < 3, and at a = 3, this
symmetric 2-cycle loses its stability. At a = 3, we see the appearance of two asymmetric

2-cycles given by ±
√

((a− 1)±√(a− 3)(a+ 1))/2a. These two 2-cycles are initially stable,
losing their stability in a flip bifurcation at a = 1 +

√
5. This is the first in the cascade of

such bifurcations. The dynamics after this point is very much like that of the logistic map.
The first 3-cycle appears when a equals the smallest positive root of the polynomial

F(a) = 4a8 − 48a7 + 189a6 − 144a5 − 828a4 + 2052a3 − 972a2 − 2700a + 4644 (approxi-
mately a = 3.6995). The consequences of the existence of a 3-cycle are well known (see,
e.g., [3]).

We also note that for values of a > 4, the maximum and minimum values of the func-
tion f map outside of the interval [−1,1]. If this interval does not represent the complete
range of the model: mimic ratios, but only a part, [Z1,Z2], this situation is still feasible
(see Figure 3.3). The trajectories of many points map outside [−1,1] and are attracted
elsewhere, but if we restrict the function f to those points whose trajectories remain in
[−1,1], the dynamics may be represented by a bi-infinite sequence on three symbols L,
M, R. It is well known that periodic orbits exist of all periods, and that there exists a dense
aperiodic trajectory. [This situation also parallels a case in the logistic map.]
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Figure 3.3. Example of a function in which the interval [Z1,Z2] maps outside of itself but within [0,1].
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