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1.0 PREFACE AND INTRODUCTION 

The included manuscript chapters were created for the SPR837 project with Oregon DOT. Some 

redundancy will result from combining these articles within the Northern Arizona University 

formatting requirements, as both articles have foundations in the same fundamental traffic 

theories.  

The purpose of the first article’s research is to use manual drone video data alongside 

fundamental traffic theories to evaluate vehicle detector performance. The detectors that pass this 

heuristic evaluation are then used in the second article’s research. The purpose of the second 

article’s research is to provide guidance for the action and implementation of detector health 

analysis as a low-cost option for updating faulty infrastructure. The algorithm developed for this 

end is described in the second article.  

I thank Professor Smaglik for managing this research and guiding this thesis. I thank Professor 

Russo and Professor Gehrke for their statistical guidance.   
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2.0 LITERATURE REVIEW 

The objective of this literature review is to explore previous research relevant to the areas of 

detector performance, detector health monitoring, and traffic flow theory as it applies to detector 

operations. 

 

2.1  DETECTION TECHNOLOGY 

Outside of downtown grid networks, signalized intersections are typically operated with some 

type of actuation. The complexity of the actuated control algorithm is directly related to the 

vehicle detection required to effectively operate the control.  With control algorithms ranging 

from legacy call and extend operation to complex traffic responsive and adaptive operations, 

detection requirements can vary from as simple as a presence detection zone to call a side street 

phase for service to an array of sensors covering a network tasked with delivering presence, 

count, and occupancy information. 

 

Vehicle detection falls into two general categories, invasive technologies, those which are within 

the pavement, and non-invasive technologies, located outside of the roadway surface.  Invasive 

sensors are commonly based upon inductive detection, taking the form of an in-pavement wire 

loop, preformed loop, small form factor loop (micro-loop), or wireless magnetometer.  Non-

invasive sensors vary in technology, including video, both visible and infrared, radar, and 

recently to the market, combination video and radar units.  In-pavement wired loops have been 

deployed in vehicle sensing operations for fifty years, with wireless magnetometer units entering 
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the marketplace a little more than a decade ago.  Various non-invasive sources have been 

employed in assorted vehicle detection operations for more than twenty years. It is noted that, 

per the direction of the Technical Advisory Committee (TAC), inductive loop and radar 

technologies will be used to develop the algorithms in this work; as such, little focus will be 

given to other detection sources.   

 

2.1.1 INDUCTIVE LOOP DETECTOR 

Historically, inductive loop detection has been the most widely used sensor for vehicle detection 

(Day et al. 2011) and, when functioning properly, have been purported to be the most accurate 

detection technology available.  Loop detectors are installed in the pavement at various points 

leading up to an intersection.  Figure 2-1 shows an example schematic of a typical loop 

installation. 
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Figure 2-1: Wire Inductive Loop Setup (Lamas et al. 2016) 

Inductive loop detection has been used as a ground truth in a number of other detection 

performance evaluations (Christopher Day et al. 2010) (Rhodes, Bullock, and Sturdevant 2006) 

(Grossman et al. 2012), and using the performance characteristics of an inductive loop, the 

Indiana Department of Transportation (INDOT) developed detection performance specification 

(INDOT 2015) (Middleton et al. 2009) to address the issue of detector latency and other 

performance issues identified with non-invasive detection devices.  Inductive loops are not 

without their challenges, however. Placing loops directly into the pavement can exacerbate 

pavement distress. While preformed loops placed under the surface course do not have this 

drawback, both types of installations are susceptible being compromised due to common in-
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ground hazards, including freeze/thaw cycling, vermin, and wayward construction equipment, all 

of which can cause performance degradation and impact detector health.   

 

2.1.2 RADAR DETECTION 

Radar technology has been in use for the development of vehicle performance measures on 

freeway facilities for a number of years, however only recently have products been brought to 

market to employ this technology at signalized intersections.  Earlier units focused on advance 

detection only, avoiding the inherent challenge of detection vehicles at the stop line with a 

technology that uses object motion to operate.  Researchers at the Texas A&M Transportation 

Institute (TTI) tested a unit in 2008 and found that the unit accounted for a 23-48% increase in 

phase termination over video detection (Middleton, Charara, and Longmire 2009).  Research 

personnel at Purdue University noted that the use of this type of technology for advance 

detection has the potential to increase both efficiency and safety of dilemma zone protection 

since it tracks the vehicle all the way through the detection zone as opposed to extrapolating 

from an advance speed trap (Sharma et al. 2008).  These results were supported by (Hurwitz et 

al. 2012) who documented a reduced frequency of drivers captured in the type two dilemma zone 

when a wide area radar detection system was employed as compared to in-pavement loops. 

Another research group noted that the units recorded speed and volume values comparable to 

loops during both free flow and congested conditions, although some occlusion issues were 

noted (Minge, Kotzenmacher, and Peterson 2010).  In favorable weather conditions, false and 

missed calls ranged from 0.4% to 6.1% of vehicles.  Investigation into the performance of these 

units under varying environmental conditions has been conducted, with the researchers noting 
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that an increase in precipitation was correlated to performance degradation (Medina, Ramezani, 

and Benekohal 2013).  Performance degradation for radar units can also come from out-of-date 

software, movement of the unit so that it no longer is pointing at the proper target area, and 

failure of the individual radio channels inside the unit. 

 

Figure 2-2 shows a radar set up on a pole at an intersection in Florida from the brand 

Wavetronix. Radar detectors are most commonly positioned at a high elevation to provide a 

wide, unobstructed view of the intersection to minimize issues with occlusion. 

 

Figure 2-2: Wavetronix Radar Detector (Huotari 2015) 
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2.2  DETECTOR HEALTH MONITORING 

Monitoring of detector health can be generally divided into three separate methods: monitoring 

through traffic control products, monitoring through traffic control software / algorithm, and 

monitoring through the use of in-person assessments.  The following subsections will detail what 

is available in scientific as well as vendor literature regarding these techniques. 

 

2.2.1 DETECTOR HEALTH MONITORING WITH TRAFFIC 

CONTROL PRODUCTS AND SOFTWARE 

As was noted earlier, most traffic controllers and detection devices are able to detect major 

detector failures by examining the presence, absence, or frequency of data being sent by a 

detector, but these tools are not able to assess the quality of the information sent; therefore, the 

health of the detector is commonly unmonitored. For example, detrimental detector behaviors at 

signalized intersections such as a loop that fails for 3 minutes and works for 1 minute may not 

send a phase into recall, and therefore may not be observed.  

 

Given the implementation of Q-Free/Intelight products on the ODOT system, the research team 

reached out to the vendor to request information regarding how their products monitor detector 

health (“MAXVIEW Atms” 2020). The email response from Patrick Marnell, a project manager 

at Q-Free, is included in Appendix A (Marnell 2020), and summarized as follows:  
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MAXTIME local control software includes three ways to identify a malfunctioning sensor. 

Collectively these features are called “detector diagnostics” in the software. These are an 

optional feature that can be programmed per detector. 

 

● No Activity – Assume a failure if no calls are received on a detector for a configurable 

period of time. 

● Max Presence – Assume a failure if a continuous call is placed on a detector for a 

configurable period of time. 

● Erratic Count – Assume a failure if a more than a specified number of calls are placed on 

a detector in a configurable period of time. 

 

When a detector is considered failed, a couple responses are possible. 

 

• Place a minimum or maximum recall. 

o MAXTIME software is pretty flexible on this and lets you pick between Min 

1 or Min 2 and Max 1, Max 2, or Max 3. 

• Define a “failed link” detector. 

o This defines a detector that will be used in lieu of inputs from a failed 

detector. 

 

The controller has some internal storage where detector failures will be logged for a limited 

period of time. If a jurisdiction is using MAXVIEW atms (central system) then they can also get 

alarms pulled into a Traffic Management Center type program for review. 
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As noted from this communication, MAXVIEW does identify detector faults, but only at the 

ends of the performance spectrum.  If performance has degraded slightly due to increased latency 

or some other performance issue, this would likely not be identified.   

 

Other vendors incorporate similar capabilities in their control software.  Econolite’s Centracs 

SPM central system specifications notes that this system applies statistical data science to 

analyze detectors that may not be fully operational, and creates a list within the monitored 

corridor that may have degraded detector performance (Econolite 2020b).  To accomplish this, 

Econolite’s traffic controller can be programmed to identify a lack of activity on a certain 

detector by time of day as a possible failure.  Additionally, their SPM tool can look historically 

at previous days to identify differences and use that information to flag a failure. 

 

McCain is another manufacturer that sells controllers and intersection control software, but their 

published literature does not detail how their products address sensor health (McCain 2020), and 

attempts to acquire further information from the manufacturer were unsuccessful.   

 

In researching detector health monitoring accomplished by detection devices, the research team 

reviewed various inductive loop and radar detection units and noted that the extent of health 

monitoring is reporting faults and logging them.  Vendor websites did not provide detail on how 

faults were identified, however given what is known about common practices by the research 

team, it is presumed that faults are identified by examining the presence, absence, or frequency 

of data being sent by a detector. (Econolite 2020a; Iteris 2020; Reno A&E 2020; “Wavetronix - 

SmartSensor V” 2020) 
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2.2.2 DETECTOR HEALTH MONITORING THROUGH 

ALGORITHMS / POST PROCESSING 

Algorithms can be used either in real time or through post-processing to identify problematic 

detector operation.  Statistical methods can be used to identify outliers, infeasible data, and 

erroneous data, making it suitable to develop graphs and tables to find the location of the 

erroneous data within the data set. From there, it is possible to find the detector itself that was 

causing the poor data quality.  While the work in this project is focused on interrupted flow 

facilities, algorithms in applied to uninterrupted flow are considered as well. 

 

Researchers at the Washington State Transportation Center developed an algorithm to identify 

and correct dual-loop sensitivity problems that resulted in inaccurate reporting of truck volumes. 

Using individual vehicle information developed from event based high resolution data, the 

researchers were able to identify sensitivity discrepancies and then retune the detectors, the end 

result of this work being the implementation of the algorithm in a software tool for convenient 

usage (Nihan, Wang, and Cheevarunothai 2006).  In a study that used loop detector data from 

almost 15,000 Caltrans inductive loops, malfunctioning loops are identified through their volume 

and occupancy measurements.  These measurements are compared against values at neighboring 

detectors as well as historical data to identify when a detector may be problematic, improving on 

earlier methods that only relied on data from a single detector (Chen et al. 2003).  In related 

work, researchers at the University of Nebraska developed a methodology to identify 

malfunctions such as detector and communication failures that lead to erroneous data 

(Vanajakshi and Rilett 2006).  This research focused on the conservation of vehicles principle on 
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a system-wide level to identify locations where the principle was violated.  It was then validated 

using a CORSIM model. 

 

The Portland Oregon Regional Transportation Archive Listing (PORTAL) is the ITS data 

archive for freeway loop detector data for the Portland metropolitan region, documenting 

aggregated data and performance measures.  Data uploaded into PORTAL is filtered to identify 

erroneous data through a series of data quality flags as well as comparison against plausibility 

thresholds.  For the former technique, if a detector logs a speed as zero when the same detector 

logs a count greater than zero, a flag is raised.  For the latter technique, data samples that have a 

speed about 100 miles per hour, or below five miles per hour would be flagged.  Data samples 

are then broken into four categories: Good, Suspicious (failed one or more data quality 

conditions), No Traffic, or Communication Failure.  This information is then made known to the 

user when downloaded and can also be plotted to identify the scale of erroneous data by type of 

filter.  Figure 2-3 shows a monthly report that is used to compare data samples from detectors to 

find failing units based on occupancy, volume, and speed thresholds (Tufte et al. 2007). 
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Figure 2-3: PORTAL - Number of Samples Failing Selected Conditions (Tufte et al. 2007) 

 

Researchers in Sweden and Finland collaborated to develop a Fuzzy Intelligent Traffic Signal 

(FITS) control, a method which provides an inexpensive approach to improve signal control 

based on road infrastructure (J Jin et al. 2016). A simulation-based framework is used to evaluate 

different traffic control strategies based on certain criteria such as vehicle flows, pedestrian 

flows, priorities, and platoon management. In this methodology, stop line detectors assist in 

vehicle actuated timing and advance detectors play a crucial role in the decision making process 

(J Jin et al. 2016). In running their FITS simulations, the researchers determined that traffic states 

can still be properly estimated and proper decisions can be made even if a few detectors are 

malfunctioning, though the authors noted that there is a threshold where this falls apart (J Jin et 

al. 2016).  Another project that related detection performance to advanced signal control was 

commissioned by Oregon DOT and completed in 2017.  In this project, researchers at Northern 

Arizona University led a team that investigated the impact on non-invasive detection 
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performance on adaptive control.  As part of their site evaluation researchers noted that only 42% 

of the coupled detection zones (inductive loop and non-invasive technology) passed a human 

ground truth comparison.  Additionally, the research team was able to identify other poorly 

performing detectors by comparing collected detector data (for example, occupancy with a video 

detector) with expected performance norms.  One of the conclusions of this study was that 

detector health monitoring is critical for sensors used for higher level control (Smaglik et al., 

2017).  

In a recent study, a screening tool was developed to identify detector errors from data within the 

Utah DOT detector data database. This work used statistical analysis as well as historical 

detector information to identify malfunctioning detectors from data within the database through a 

multi-stage process, using a combination of historical data, data from neighboring detectors, and 

the application of traffic flow theory to detector data to identify problematic detectors. Data was 

compiled from UDOT's Performance Measurement System (PeMS) from detectors along a 

corridor. The PeMS system received vehicle count and occupancy data at 20 second intervals. 

Speed, flow, and occupancy were analyzed to find potential errors in a one-month data collection 

period. The primary method of detector health evaluation in this study was through comparison 

of adjacent detectors upstream or downstream of each other on this roadway. (TRB 2020) 

 

2.2.2.1 Automated Traffic Signal Performance Measures 

(ATSPMs) 

ATSPMs started in the mid-2000s with the collection and analysis of high-resolution event based 

data for traffic signal performance (Smaglik et al., 2007).  Since then, researchers at Purdue 
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University along with practitioners at the Indiana Department of Transportation and Utah 

Department of Transportation have evolved the use of event based data into a method of 

assessing and improving the performance of traffic signals, traffic signal systems, and traffic 

signal system business practices (Day et al., 2014).  From a technical standpoint, the suite of 

ATSPMs can allow an agency to monitor capacity, progression, multimodal, and maintenance 

performance measures without the added expense of a central- or adaptive traffic signal system.  

These performance measures can be developed though robust communication and typical traffic 

signal detector information, though additional detection is required to take advantage of all the 

performance measures.  On the topic of detection performance, detector health can be 

determined through identification of phases in recall over time, as this is an indication that the 

detector is not performing properly.  These locations are aggregated and then reported to agency 

managers for repair prioritization. 

 

2.2.3 DETECTOR HEALTH MONITORING THROUGH ON-SITE 

INVESTIGATION 

While it is preferable to identify malfunctioning detectors through off-site means, equipment and 

procedures can be implemented on-site as well.  Researchers in Germany developed a portable 

Malfunction Sniffer to identify errors in inductive loop detector outputs (Kuhnel, Weisheit, and 

Hoyer 2011). Their device, shown in Figure 2-4, was effectively a portable method of ground 

truthing detector data.  Once programmed with the exact location of the detection zones, the 

system would corroborate the outputs of the detectors with an audiovisual signal indicating 
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vehicle passage so that supervisor could monitor the output.  It was noted that this system did not 

work as well for video detectors. 

 

Figure 2-4: Malfunction Sniffer (Kuhnel, Weisheit, and Hoyer 2011) 

 

A project sponsored by the Federal Highway Administration (FHWA) attempted to use Ground 

Penetrating Radar (GPR) to identify the location of loop detectors, determine if they were 

functioning, and perform detailed analysis to assess the conditions of the sensor (Arnold et al. 

2011).  While the device developed and deployed in this work was able to accomplish all three 

goals to some degree, it was noted that the device was not able to detect defect and deterioration, 

and further work is required.  Lastly, in a study performed by Purdue University, wireless 

magnetometers were tested against a standard loop detector to evaluate their effectiveness and 

accuracy at picking up calls.  While wireless magnetometers are not the focus of this work, one 

conclusion of this study was that 8 foot spacing be observed between sensors adjacent to the stop 
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line to minimize missed calls, indicating that design standards may have an impact on the 

performance of detection devices (C Day et al. 2010). 

 

2.3 TRAFFIC FLOW THEORY AND FUNDAMENTAL WORK 

2.3.1 GREENSHIELDS MODEL 

Traffic flow theory is the basis of conceptual modeling of traffic.  Greenshields Model of traffic 

flow (Greenshields 1935) is an elegant relationship that illustrates the connected nature of 

volume, speed, and density within traffic operations.  This relationship, shown in Equation 1, 

leads to the fundamental diagrams of the Greenshields model, shown in Figure 2-5. 

 

𝑽 = 𝑺 ∗ 𝑫 Equation 1 

Where:  V = Volume (vehicles/hour) 

    S = Speed (miles/hour) 

    D = Density (vehicles/mile) 
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(a) Speed vs Density 

 
(b) Speed vs Flow (Volume) 

 

 
(c) Flow (Volume) vs Density 

Figure 2-5: Fundamental Diagrams of Greenshields Model: (a) Speed vs Density; (b) Speed 

vs Flow (Volume); (c) Flow (Volume) vs Density 

These diagrams illustrate the idealized conceptual relationships between the three macroscopic 

traffic stream parameters, volume, speed, and density.  They encompass two distinct regions of 

flow, undersaturated (under capacity) and oversaturated (over capacity).  These diagrams are 
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conceptual in nature, in that volume, speed, and density data collected to model traffic flow at 

any given location when plotted would not give way to a smooth diagram as is shown in Fig. 8, 

but would look more like Figure 2-6, which is a Speed / Density plot developed from real world 

data.  The linear dashed line in Figure 2-6 represents Greenshields model, while the red points 

are the empirical data. 

 

Figure 2-6: Real world Speed-Density plot (Wang et al. 2011) 

The fundamental diagrams have been used in traffic research to assist in the investigation of 

incident detection (Jing Jin and Ran 2009), car-following models for simulation (Deng and 

Zhang 2012), the effects of weather on traffic operations (Dhaliwal et al. 2017), and variable 

speed limits (Bertini, Boice, and Bogenberger 2006), among countless other topics, but to the 

research team’s knowledge have not been used in detector health applications.  
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2.3.2 SATURATED FLOW RATE AND HEADWAYS 

The departing vehicle flow rate at capacity from a signalized intersection is defined as the 

Saturation Flow Rate.  This rate of flow occurs as vehicles in a standing queue depart, starting 

from the 5th vehicle in the queue as the first four vehicles in the queue depart at a lower flow rate 

due to time lost as the queue moves from a stopped to a moving queue (Transportation Research 

Board 2016).  This Saturation Flow Rate can be determined in three separate ways.  First, it can 

be calculated based upon site characteristics using methods set forth in the Highway Capacity 

Manual, as shown in Figure 2-7.   

 

Figure 2-7: Calculation of Saturation Flow Rate (Transportation Research Board 2016) 
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Second, it can be directly measured in the field by counting the vehicles departing at capacity 

during a certain time period.  Lastly, it can be determined in the field by measuring departure 

headways of vehicles departing at capacity, with headway defined as, “the time between 

successive vehicles as they pass a point on a lane or roadway, measured from the same point on 

each vehicle” (Transportation Research Board 2016).  The relation between headway and 

volume is shown in Equation 2.  If the headway measured occurs during queue discharge at 

capacity, the corresponding volume that will be calculated will be that of the saturation flow rate. 

 

𝑽 =  
𝟑𝟔𝟎𝟎

𝒉
 

Equation 2 

  Where:  V = Volume (vehicles/hour) 

     h = Departure headway (seconds/vehicle) 

 

The concepts of headway, saturation headway, and saturation flow rate were developed through 

applied research, and as part of the foundation of traffic operations theory, appear in research 

endeavors covering all aspects of traffic theory, including intersection capacity (Laufer et al. 

2019), the impact of automated vehicles on mixed-use lanes (Mohajerpoor and Ramezani 2019), 

bicycle operations (Raksuntorn and Khan 2003), geometric design (Potts et al. 2007), and 

weather conditions (Asamer and Van Zuylen 2011), among others, but they have not been 

applied to detector health. 
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2.4  CONCLUDING REMARKS 

This literature review has covered the basics of inductive loop and radar detection technology, 

the state of the practice regarding detector health monitoring, and the elements of traffic theory 

that will be used in monitoring detector health.  Inductive loops, when functioning properly, are 

purported to be the most accurate detection technology, likely due to their close proximity to the 

traffic being detected, a consequence of being an invasive technology.  But, because of their 

invasive nature, there are a number of issues that can compromise the performance of an 

inductive loop detection.  Radar detection, one type of non-invasive detection, has been shown in 

research to be generally reliable, with environmental factors causing a minimal impact on 

performance, however internal components can fail without a complete failure of the unit, which 

can also compromise performance. 

In the area of detector health, three different techniques were covered in this literature review: 

monitoring with traffic control products and software, monitoring with algorithms / post 

processing, and on-site monitoring.  Traffic control products and software typically identify 

poorly performing detectors through monitoring for flickering, lack of a call, or a constant call 

from a specific detector.  Most online vendor literature is vague when it comes to describing how 

detector health is monitored, if mentioned at all.  This, combined with the lack of information in 

the literature focused on detector health monitoring in the field, indicates that detector health 

monitoring is typically accomplished with these aforementioned heuristics.  If data is post 

processed, a number of different methods can be used to identify problems with detector health.  

This can be accomplished through comparing detector outputs with outputs of neighboring 

detectors, comparing detector outputs with historical data, or evaluating detector data with 
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plausibility thresholds.  Additionally, using ATSPMs, the health of a detector is monitored by 

identifying actuated phases operating in recall, an indication that the detector is not providing 

proper information to the controller.  Lastly, on-site investigations can also be conducted to 

identify poorly performing detectors, if so desired. 

Finally, Greenshields model and content within the Highway Capacity Manual form the 

theoretical basis for capacity analysis of interrupted and uninterrupted flow facilities.  Each 

intersection approach has a unique discharge capacity that can be either calculated or measured 

in the field through two separate methods.  These methods, along with the fundamental diagrams 

yielded through application of Greenshields’ model, and combined with high resolution detection 

data, reveal an opportunity to monitor detector health through traffic flow information on a per 

intersection approach basis.   

This thesis contributes to the existing literature in two ways: First, by introducing a new process 

of manually verifying vehicle detectors, and second, by developing new algorithms for detector 

monitoring. Regarding the former, the process of using drone video to record and transcribe data 

for individual vehicles over detection zones is specifically useful in research endeavors. 

Maneuvering one set of devices to record minimal video data for multiple vehicle detectors and 

intersections is useful for collecting very accurate data for these detectors. It is preferable to 

installing new cameras for research purposes, because it costs less and can retrieve videos at 

specific angles more appropriate for identifying vehicles entering and exiting detection zones. 

Regarding the latter, the algorithms subsequently developed in this thesis contribute methods of 

detector health analysis to the literature. Existing methods do not use Greenshields models and 

theories of traffic flow to analyze individual detectors at signalized intersections. Automated 

methods of detector monitoring are important to allow more wide-spread and efficient detector 
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malfunction identification in state DOTs. The developed algorithms introduce metrics for 

detector health evaluation applicable to detectors with event-based data outputs.  

The remainder of this thesis report is structured as follows. Chapter 3 includes the manuscripts 

that were submitted to tier-one peer-reviewed journals; the first manuscript was limited to 2500 

words, and the second manuscript was limited by number of pages. Chapter 4 will then explore 

the conclusions, lessons learned, and limitations of this project.   
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3.0 MANUSCRIPT CHAPTERS 
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A Novel Method of Detector Performance Verification 

Katherine Riffle, Yujun Liu, Eileen Chai, David Hurwitz, Ph.D, Edward Smaglik, 

Ph.D., and Brendan Russo, Ph.D.  

Past research [1] has shown declining operational performance of vehicle detectors over 

time at signalized intersections. This study uses statistical methods to compare event-

based data from vehicle detectors to manually transcribed drone video data to identify 

malfunctioning loop and radar detectors, and can be used in further research to verify 

detector performance at intersections without existing video cameras. 

Background 

Unmonitored declining vehicle detector performance reduces intersection safety and efficiency. 

This study develops a novel method of detector performance verification by using collected and 

transcribed drone video data and comparing it to detector event log data. Existing literature has 

limited information on detector health monitoring in the field, indicating that detector health 

monitoring is accomplished primarily by checking for complete failure (always on, always off, 

or flickering) [2] [3] [4] [5]. Using post-processed data, additional methods of identifying detector 

health problems include comparing detector outputs with outputs of neighboring detectors, 

comparing detector outputs with historical data, or evaluating detector data with plausibility 

thresholds [6] [7] [8]. Automated Traffic Signal Performance Measures can assess detector 

performance by monitoring actuated phases operating in recall indicating that the detector is not 

providing proper information to the controller [9] [10]. While the above methods are useful for 

assessing detector performance across a network, some quality of assessment is lost due to the 

lack of video surveillance. Previous studies have used existing video cameras to provide a higher 
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quality assessment of detector performance through manual verification and transcription [1]. The 

same level of assessment was required for the detection areas in this work, as they were to be 

used to develop an algorithm to monitor detector health over time, presuming they were healthy. 

However, with no cameras onsite, drones were used as part of an analysis process that included 

drone video collection, data transcription, and comparison to event log detector outputs through 

two statistical methods. Drone video recordings were higher quality and provided preferable 

overhead viewing angles than post-mounted intersection cameras otherwise would have. 

 

Drone Video Collection 

Six study sites in Oregon were surveyed with a drone to inventory existing infrastructure 

elements as well as record video of vehicles passing over detection zones. Specific researcher 

roles and responsibilities were established to ensure safe and efficient field data collection: 

Remote Pilot-in-Command (PIC), Visual Observer (VO), and Research Assistants. This 

experiment required the use of a drone, a high-resolution camera, a landing pad, a solar powered 

electric generator, and a distance measuring wheel. A DJI Mavic 2 Pro was used to collect all 

drone data in the field. The landing pad made it easier to initiate takeoffs and landings on uneven 

terrain, the field generator was used to recharge drone batteries in the field between flights, the 

measuring wheel was used to document the dimensions of detectors and their distance from the 

stop lines, and personal protective equipment (PPE) contributed to the safety of researchers in 

the field. Before the field work could be performed, Oregon State University (OSU) fulfilled 

nine Oregon Department of Transportation (ODOT) Unmanned Aircraft System Contractor 

Requirements to ensure compliance with local regulations in addition to those stipulated by the 

Federal Aviation Administration.  
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Detector Position and Dimensions 

Graduate Research Assistants used signal plans provided by ODOT, photographs collected on 

site, and distance measuring wheels to confirm the existence, placement, and dimensions of 

detectors. These details were annotated on field photographs and signal plans. Figure 1 shows an 

example of road measurement details. A research assistant measured the diameter of the circular 

detectors, the nearest length from detector to stop line (placement), and the dimensions of the 

parallelogram detectors. 

 

 

Figure 1: Road Measurement Details 
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Drone Video of Vehicles Driving over Detectors 

This work surveyed six sites in total, each with a number of in-pavement loop or radar detectors. 

Table 1 provides information about the drone video data collected from the detectors, including 

the dates that the drone video data was collected on. It also indicates the numbers of each 

detector classified as a stop line detector or advanced detector; with a detector considered to be 

stop bar detector if it is 75 feet or closer to the stop line on the subject approach. 

 

Table 1: Drone Video Data Collected 

Site 
Type Location 

Date 
Loop Radar Stop Line Advanced 

OR22 @ I-5 SB Offramp 12 0 2 10 Nov 7 2020 

OR34 @ I-5 SB Ramp 5 9 7 7 Nov 8 2020 

OR34 @ Peoria 14 0 5 9 Oct 31 2020 

US20 @ 15th 12 0 4 8 
Nov 8 2020, 

Nov 21 2020 

US26 @ Meinig-Pioneer 10 0 5 5 Dec 5 2020 

US101 @ 22nd 17 0 9 8 Nov 21 2020 

 

 

Each of the six selected signalized intersections has a unique detector configuration. To collect 

usable videos (i.e. stable images with good contrast of detectors against pavement) the weather 

conditions and the drone position were carefully considered. Additionally, some detectors were 

located hundreds of feet away from each other. These factors required multiple drone flights on 

each approach to directly observe each detector. With one available drone and nine batteries, the 

video observations were collected one intersection per day and one video at a time with a 

maximum video duration of approximately 20 minutes.  
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To ensure the safety of the drone, the research team, and the traveling public, as well as to ensure 

the quality of videos, research assistants found an appropriate area to set up the landing pad. This 

was a critical choice in avoiding collisions with power lines, span wires, tree branches, and other 

overhead obstacles. Once the drone was in flight, as stipulated by the Federal Aviation 

Administration, the maximum flight elevation could not exceed 400 feet, and the drone must not 

fly over the road or any non-research personnel. Moreover, the VO needed to continuously 

survey the surrounding environment while the PIC adjusted the camera angle to ensure the 

detectors and traffic signal display were captured on video simultaneously. During the recording 

period, the PIC was responsible for attending to the drone and the controller, maintaining 

constant communication with the VO, and ensuring the flight occurred safely until the drone 

landed. After the field data was collected, research assistants cropped the videos, added 

timestamps, and transcribed the video data. 

 

Drone Video Data Transcription 

The video captured by the drone was transcribed to obtain usable ground truth information about 

detector calls. As vehicles traversed an active detection zone, time stamps were recorded when 

the front bumper of the vehicle arrived at the upstream edge of the highlighted circular loop 

detector zone (Figure 2a) and again when the rear bumper of the vehicle departed the 

downstream edge of the detector zone (Figure 2b). Additionally, the active traffic signal display 

was recorded during each call for service. Transcription for an individual detection zone was 

performed for either the duration of the entire video or for the first 100 vehicle incursions. 
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(a) call on      (b) call off 

Figure 2: Detector 19 on the NB approach of US20 and 15th Street 

 

Event Log Data 

The drone videos were compared to processed event-based detector output logs, which report 

information using Event IDs and corresponding Parameters [9]. The list of used Event IDs and the 

corresponding Parameters are shown in Table 2. Event IDs 1 and 8 were used to identify the 

starting timestamps of each green and yellow phase, to determine the length of each cycle and 

each green and yellow/red phase. Event IDs 82 and 81 indicated Vehicle Detector On and 

Vehicle Detector Off, respectively. With all radar and loop detection zones operating in presence, 

data from these events can be used to determine activations (a surrogate for vehicle counts in this 

work, as count detector outputs are not available).  
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 Table 2: Event Log IDs and Parameters [9] 

Event ID Name Description 
Parameter 

Description 

1 Phase Begin Green 
Set when either solid or flashing green 

indication has begun 
Phase # 

8 
Phase Begin Yellow 

Clearance 

Set when phase yellow indication becomes 

active and clearance timer begins 
Phase # 

81 Vehicle Detector Off 

Vehicle detector has turned off. Detector on 

and off events are triggered post any 

detector delay/extension processing 

Vehicle 

Detector # 

82 Vehicle Detector On 

Vehicle detector has turned on. Detector on 

and off events are triggered post any 

detector delay/extension processing 

Vehicle 

Detector # 

 

Two of the sites provided for this work are equipped with radar detection, in addition to 

inductive loop detection. Only radar count zones operating in ‘Normal’ mode (akin to a loop 

detector operating in presence mode) were used in this analysis, as the outputs of the larger stop 

line and advance radar detection zones are manipulated by proprietary vendor software to 

achieve various objectives, and as such, their outputs will vary from what one might be able to 

visually observe through vehicle interactions. 

 

Event Log Data Reduction and Preparation 

While the timestamps on the drone Video Log were close to the timestamps in the Event, the 

specific Event Log data which corresponded directly to the reduced drone video data needed to 

be identified. Specific individual vehicles were identified within both data sets, and the time 

between Vehicle Detector On indications in both the Video Log and Event Log were used to 

match a specific Event Log vehicle activation with the corresponding Video Log vehicle 

activation. This process was conducted for the first and last vehicle of each Video Data log to 

develop a complete list of Event Log Vehicle Detector On and Vehicle Detector Off activations 
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corresponding to activity in the Video Log during that timeframe. Then, the initial vehicle green 

indication noted in the Video Log was used to shift the timestamps so that the initial vehicle 

activation in both the Video Log and Event Log occurred simultaneously. Next, the number of 

activations and duration of each activation was determined from both data sets. This process was 

undertaken for each detection zone with available data. An example of the activation duration 

data reduction is shown in Table 3.  

 

Table 3: Timestamps Example: Detector On and Off Indications for Detector 7 OR22 at I-5 

Detector Indication (minutes:seconds.00) Detector On Duration 

Video Log Event Log Video Log Event Log 

On Off On Off = Off - On = Off - On 

43:29.67 43:31.13 43:30.10 43:31.70 0:00:01.46 0:00:01.60 

43:32.13 43:33.27 43:32.60 43:33.80 0:00:01.14 0:00:01.20 

43:37.80 43:38.67 43:38.20 43:39.10 0:00:00.87 0:00:00.90 

43:44.37 43:44.90 43:44.90 43:45.40 0:00:00.53 0:00:00.50 

43:46.53 43:47.10 43:47.00 43:47.60 0:00:00.57 0:00:00.60 

43:59.33 43:59.90 43:59.70 44:00.40 0:00:00.57 0:00:00.70 

44:07.23 44:08.40 44:07.80 44:09.00 0:00:01.17 0:00:01.20 

44:12.43 45:24.77 44:12.90 45:25.40 0:01:12.34 0:01:12.50 

45:28.30 45:29.60 45:28.80 45:30.30 0:00:01.30 0:00:01.50 

45:31.00 45:32.23 45:31.70 45:32.80 0:00:01.23 0:00:01.10 

45:34.87 45:36.03 45:35.50 45:36.70 0:00:01.16 0:00:01.20 

45:47.63 45:47.93 45:48.20 45:48.50 0:00:00.30 0:00:00.30 

 

Finally, it should be noted that for radar count detection zones, the Event Log outputs were 

compared to the Video Log for closest neighboring inductive loop detector for activation counts 

only, as the exact location of the radar count zone is not visible. For the advanced detectors that 

span the width of the entire approach, the activations of multiple neighboring loop detectors were 

compiled chronologically to develop a consistent comparative set.  
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Detector Performance Evaluation Comparative Metrics 

With the datasets prepared as in Table 3, two separate metrics for comparative analysis of the 

two logs were used to determine whether or not the detector would be considered ‘healthy’. The 

first comparative metric used was the total number of activations noted by each log during the 

analysis period. A difference threshold of 10%, as calculated by Equation 2, determined whether 

or not the detector was healthy regarding activations. The 10% threshold is a rule of thumb used 

when comparing counts from vehicle sources, and has been previously used in research for 

detector performance [1] [10].  

 

Equation 2: Activation Difference Calculation 

 

 

The second metric for evaluating detector health was the Detector On Duration. When combined 

with an analysis of period duration, this metric can determine the occupancy of a detection zone. 

As shown in Table 4, the Detector On Duration was found for each activation for both the Event 

Log and Video Log datasets. The distributions of Detector On Durations for both the Video Log 

and Event Log were compared using a paired t-test to identify statistically significant differences 

(an f-test was used to check whether each pair of distributions had equal or unequal variances, 

and the corresponding t-test was used based upon the outcome of that test). If the t-test indicated 

a significant difference, then the detector was determined to be unhealthy for the purpose of this 

analysis [11]. 
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Results 

Table 4 shows the results of the Detector On Duration t-tests and the Number of Activations 

comparisons for the detectors at one intersection , indicating which detectors passed the 

comparative analyses. A similar table was created for each detector in the study, indicating 

whether the detector passed both evaluation metrics.  

 

Table 4: t-test Outputs for OR22 @ I-5 

Det 

Activations Detector On Duration Mean 
Passed Both 

Comparisons Manual 
Event 

Log 
Difference % Diff Manual 

Event 

Log 
Difference 

1 100 95 -5 -5.0% 00:00.3 00:00.4 00:00.0 Y 

2 105 103 -2 -1.9% 00:00.3 00:00.4 00:00.0 Y 

3 72 72 0 0.0% 00:00.3 00:00.3 00:00.05** N 

4-6 100 90 -10 -10.0% 00:00.4 00:00.5 00:00.1 Y 

7 58 58 0 0.0% 00:03.7 00:03.7 00:00.0 Y 

8 75 75 0 0.0% 00:02.4 00:02.6 00:00.2 Y 

9-10 103 98 -5 -4.9% 00:03.8 00:04.9 00:01.1 Y 

11-12 59 76 17 28.8% * 00:09.4 00:08.0 -00:01.40 N 

13-14 78 59 -19 -24.4% * 00:07.8 00:09.3 00:01.6 N 

15 100 48 -52 -52.0% * 00:00.2 00:00.6 00:00.34** N 

16 100 58 -42 -42.0% * 00:00.3 00:00.9 00:00.59** N 

17-18 100 93 -7 -7.0% 00:01.0 00:01.0 00:00.1 Y 

* indicates a difference of >10% between the Manually reported and Event Log number of activations 

** indicates Significant Difference at 95% CI in the Detector On Durations as reported by the t-Test 

 

In this work, a total of 79 detection zones underwent the comparative analyses (70 inductive loop 

and 9 radar). Of the inductive loop detection zones, 39 passed the analysis, while 6 of the radar 

zones passed the analysis, for a total of 45 valid detection zones, ~60% of the total analyzed. 



36 

 

Concluding Remarks 

This study developed and tested a novel method of detector health evaluation by statistically 

comparing manually collected and transcribed drone video data to event-based detector output 

logs. The process of using drone video to record and transcribe data for individual vehicles over 

detection zones has a specific place in research and practice, when a high-fidelity assessment of 

detector performance needs to be conducted at a location without existing video surveillance. 

Maneuvering one set of drone devices to record short-term video data for multiple vehicle 

detectors and intersections is useful for collecting very accurate data for these detectors. It is 

preferable to installing new cameras for research purposes and for practice in circumstances 

requiring highly accurate video information, as it costs less and videos can be retrieved at 

specific angles more appropriate for identifying vehicles entering and exiting detection zones. 
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ABSTRACT 

The scope of this study is to develop new methods for evaluating detector health using 

event-based outputs and existing traffic flow theory. In this work, event-based detector data 

outputs were used to develop empirical Volume vs. Density curves, per Greenshield’s 

Fundamental Model. Using integration, these empirical lines were compared with a conceptual 

Volume vs. Density curve for each detector, generated using average headway data and the 

posted speed limit. Additionally, detector performance and site information were used to model a 

predicted Volume versus Density relationship for each detector based upon collected data, which 

was then compared with the Conceptual line in the same manner as the empirical lines. The 

outcomes of both of these comparisons were then used to create a database to be used for 

assessing detector health within the structure of an algorithm. The algorithm is then presented 

and discussed, followed by directions for future research, lessons learned, and limitations of this 

work. 

INTRODUCTION 

Past research (Smaglik et al. 2017) has shown declining operational performance from non-

invasive detection units at signalized intersections. Specifically, errors in data quality and 

accuracy showed widespread issues with aging equipment and unmet maintenance needs. 

Accordingly, there is a need for policies, procedures, and techniques to identify malfunctioning 

detection equipment and evaluate the quality of data developed by detectors. Current tools, 
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including those available through the newer Advanced Traffic Controller (ATC) standards, can 

identify major detector failures in a detector, but cannot assess the quality of the detection 

outputs. To address this issue, this research applies existing traffic flow theory toward assessing 

detector health. Event-based detector data outputs are processed to approximate saturated traffic 

flow, then analyzed according to Greenshield’s Model.   

LITERATURE REVIEW 

The objective of this literature review is to explore previous research relevant to the areas of 

detector performance, detector health monitoring, and traffic flow theory as it applies to detector 

operations. 

DETECTOR HEALTH MONITORING 

The following subsections will detail what is available in scientific as well as vendor literature. 

Detector health monitoring with traffic control products 

and software 

Most traffic controllers and detection devices are able to detect major detector failures by 

examining the presence, absence, or frequency of data being sent by a detector.  

One vendor’s products, Q-Free/Intelight’s MAXTIME local control software, includes three 

ways to identify a malfunctioning sensor (“MAXVIEW Atms” 2020). Collectively these features 

are called “detector diagnostics” in the software. These are an optional feature that can be 

programmed per detector: No Activity – Assume a failure if no calls are received on a detector 
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for a configurable period of time; Max Presence – Assume a failure if a continuous call is placed 

on a detector for a configurable period of time; Erratic Count – Assume a failure if more than a 

specified number of calls are placed on a detector in a configurable period of time. MAXVIEW 

does identify detector faults, but only at the ends of the performance spectrum. If performance 

has degraded slightly due to increased latency or some other performance issue, this would likely 

not be identified.   

Other vendors incorporate similar capabilities in their control software. Econolite’s Centracs 

SPM central system specifications notes that this system applies statistical data science to 

analyze detectors that may not be fully operational, and creates a list within the monitored 

corridor that may have degraded detector performance (Econolite 2020b). To accomplish this, 

Econolite’s traffic controller can be programmed to identify a lack of activity on a certain 

detector by time of day as a possible failure. Additionally, their SPM tool can identify 

differences from recent historical data to flag a failure. 

McCain is another manufacturer that sells controllers and intersection control software, but their 

published literature does not detail how their products address sensor health (McCain 2020), and 

attempts to acquire further information from the manufacturer were unsuccessful.   

Health monitoring in inductive loop and radar detection units consists of primarily reporting 

faults and logging them. Vendor websites did not detail how faults were identified, however 

given what is known about common practices, it is presumed that faults are identified by 

examining the presence, absence, or frequency of data being sent by a detector. (Econolite 

2020a; Iteris 2020; Reno A&E 2020; “Wavetronix - SmartSensor V” 2020) 
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Detector health monitoring through algorithms / post 

processing 

Algorithms can be used either in real time or through post-processing to identify problematic 

detector operation. Statistical methods can be used to identify outliers, infeasible data, and 

erroneous data, making it suitable to develop graphs and tables to find the location of the 

erroneous data within the data set. From there, it is possible to find the detector itself that was 

causing the poor data quality. While this study is focused on interrupted flow facilities, 

algorithms applied to uninterrupted flow are considered. 

Researchers at the Washington State Transportation Center developed an algorithm to identify 

and correct dual-loop sensitivity problems that resulted in inaccurate reporting of truck volumes. 

Using individual vehicle information developed from event based high resolution data, the 

researchers were able to identify sensitivity discrepancies and then retune the detectors, with the 

end result of this work being the implementation of the algorithm in a software tool for 

convenient usage (Nihan, Wang, and Cheevarunothai 2006). In a study that used loop detector 

data from almost 15,000 Caltrans inductive loops, malfunctioning loops were identified through 

their volume and occupancy measurements. These measurements were compared against values 

at neighboring detectors as well as historical data to identify when a detector may be 

problematic, improving on earlier methods that only relied on data from a single detector (Chen 

et al. 2003). In related work, researchers at the University of Nebraska developed a methodology 

to identify malfunctions such as detector and communication failures that lead to erroneous data 

(Vanajakshi and Rilett 2006). This research focused on the conservation of vehicles principle on 
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a system-wide level to identify locations where the principle was violated. It was then validated 

using a CORSIM model. 

The Portland Oregon Regional Transportation Archive Listing (PORTAL) is the ITS data 

archive for freeway loop detector data for the Portland metropolitan region, documenting 

aggregated data and performance measures. Data uploaded into PORTAL is filtered to identify 

erroneous data through a series of data quality flags as well as comparison against plausibility 

thresholds.  For the former technique, if a detector logs a speed as zero when the same detector 

logs a count greater than zero, a flag is raised. For the latter technique, data samples that have a 

speed above 100 miles per hour or below five miles per hour would be flagged. Data samples are 

then broken into four categories: Good, Suspicious (failed one or more data quality conditions), 

No Traffic, or Communication Failure. This information is then made known to the user when 

downloaded and can also be plotted to identify the scale of erroneous data by type of filter (Tufte 

et al. 2007).  

Researchers in Sweden and Finland collaborated to develop a Fuzzy Intelligent Traffic Signal 

(FITS) control, a method which provides an inexpensive approach to improve signal control 

based on road infrastructure (J Jin et al. 2016). A simulation-based framework is used to evaluate 

different traffic control strategies based on certain criteria such as vehicle flows, pedestrian 

flows, priorities, and platoon management. In this methodology, stop line detectors assist in 

vehicle actuated timing and advance detectors play a crucial role in the decision making process 

(J Jin et al. 2016). In running their FITS simulations, the researchers determined that traffic states 

can still be properly estimated and proper decisions can be made even if a few detectors are 

malfunctioning, though the authors noted that there is a threshold where this falls apart (J Jin et 

al. 2016). Another project that related detection performance to advanced signal control was 
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commissioned by Oregon DOT and completed in 2017 (Smaglik et al., 2017). In this project, 

researchers at Northern Arizona University led a team that investigated the impact on non-

invasive detection performance on adaptive control.  As part of their site evaluation, researchers 

noted that only 42% of the coupled detection zones (inductive loop and non-invasive technology) 

passed a human ground truth comparison. Additionally, the research team was able to identify 

other poorly performing detectors by comparing collected detector data (for example, occupancy 

with a video detector) with expected performance norms.  One of the conclusions of this study 

was that detector health monitoring is critical for sensors used for higher level control. 

In a recent study, a screening tool was developed to identify detector errors from data within the 

Utah DOT detector data database. This work used statistical analysis as well as historical 

detector information to identify malfunctioning detectors from data within the database through a 

multi-stage process, using a combination of historical data, data from neighboring detectors, and 

the application of traffic flow theory to detector data to identify problematic detectors. Data was 

compiled from UDOT's Performance Measurement System (PeMS) from detectors along a 

corridor. The PeMS system received vehicle count and occupancy data at 20 second intervals. 

Speed, flow, and occupancy were analyzed to find potential errors in a one-month data collection 

period. The primary method of detector health evaluation in this study was through comparison 

of adjacent detectors upstream or downstream of each other on this roadway. (TRB 2020) 

TRAFFIC FLOW THEORY AND FUNDAMENTAL WORK 

Greenshields Model 

Traffic flow theory is the basis of conceptual modeling of traffic. Greenshields Model of traffic 

flow (Greenshields 1935) illustrates the connected nature of volume (V), speed (S), and density 
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(D) within traffic operations. This relationship, shown in Equation 1, leads to the fundamental 

diagrams of the Greenshields model, shown in Fig. 8. 

   𝑽 = 𝑺 ∗ 𝑫      (1) 

 
(a) Speed vs Density 

 
(b) Speed vs Flow (Volume) 

 

 
(c) Flow (Volume) vs Density 

Fig. 8. Fundamental Diagrams of Greenshields Model: (a) Speed vs Density; (b) Speed vs Flow 

(Volume); (c) Flow (Volume) vs Density 
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These diagrams illustrate the idealized conceptual relationships between the three macroscopic 

traffic stream parameters, volume, speed, and density. They encompass two distinct regions of 

flow, undersaturated (under capacity) and oversaturated (over capacity). These diagrams are 

conceptual in nature, in that volume, speed, and density data collected to model traffic flow at 

any given location when plotted would not give way to a smooth diagram as is shown in Fig. 8. 

The fundamental diagrams have been used in traffic research to assist in the investigation of 

incident detection (Jing Jin and Ran 2009), car-following models for simulation (Deng and 

Zhang 2012), the effects of weather on traffic operations (Dhaliwal et al. 2017), and variable 

speed limits (Bertini, Boice, and Bogenberger 2006), among other topics, but have not been used 

in detector health applications. 

Saturated flow rate and headways 

The departing vehicle flow rate at capacity from a signalized intersection is defined as the 

Saturation Flow Rate. This rate of flow occurs as vehicles in a standing queue depart, starting 

from the fifth vehicle in the queue as the first four vehicles in the queue depart at a lower flow 

rate due to time lost as the queue moves from a stopped to a moving queue (Transportation 

Research Board 2016). It can be directly measured in the field by counting the vehicles departing 

at capacity during a certain time period. It can also be determined in the field by measuring 

departure headways of vehicles departing at capacity, with headway defined as, “the time 

between successive vehicles as they pass a point on a lane or roadway, measured from the same 

point on each vehicle” (Transportation Research Board 2016). The relation between headway 

and volume is shown in Equation 2.  If the headway measured occurs during queue discharge at 

capacity, the corresponding volume that will be calculated will be that of the saturation flow rate. 
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𝑽 =  
𝟑𝟔𝟎𝟎

𝒉
 

(2) 

The concepts of headway, saturation headway, and saturation flow rate were developed through 

applied research, and as part of the foundation of traffic operations theory, appear in research 

endeavors covering all aspects of traffic theory, including intersection capacity (Laufer et al. 

2019), the impact of automated vehicles on mixed-use lanes (Mohajerpoor and Ramezani 2019), 

bicycle operations (Raksuntorn and Khan 2003), geometric design (Potts et al. 2007), and 

weather conditions (Asamer and Van Zuylen 2011), among others, but they have not been 

applied to detector health. 

LITERATURE REVIEW SUMMARY 

This literature review has covered the state of the practice regarding detector health monitoring 

and the elements of traffic theory that are applied to analyzing detector health in this research. In 

the area of detector health, three different techniques were covered in this literature review: 

monitoring with traffic control products and software, monitoring with algorithms / post 

processing, and on-site monitoring. Finally, Greenshields model and content within the Highway 

Capacity Manual form the theoretical basis for capacity analysis of interrupted and uninterrupted 

flow facilities. These methods, along with the fundamental diagrams yielded through application 

of Greenshields’ model, and combined with high resolution detection data, reveal an opportunity 

to monitor detector health through traffic flow information on a per intersection approach basis. 

In this study, the Fundamental Diagrams of Greenshields Model, Fig. 8, and the associated 

theories are used to develop an algorithm for identifying detector malfunctions. The conceptual 

quadratic relationship between Density and Volume is integral in deriving methods of detector 

health evaluation. Other relationships derived from the fundamental relationship between 
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volume, speed, and density, shown in Equation 1, incorporate more aspects of the detector data 

and the detector’s location characteristics into this evaluation. Approximating uninterrupted 

saturated traffic flow is necessary for analyzing the data using existing traffic theory. 

DATA PREPARATION AND VERIFICATION 

The initial data collection and processing methods organize and filter the event-based detector 

outputs for events that best represent uninterrupted traffic flow for each detector. These are 

explained in the following sections. 

EVENT LOG DATA 

Event Log data from vetted detection devices at six selected sites were used to develop 

algorithms for identifying poorly performing detectors. This Event Log Data reported 

information using Event IDs and corresponding Parameters (Christopher Day et al. 2014). While 

there are many different types of events contained in a typical log, the list of used Event IDs and 

the corresponding Parameter used in this task are shown in TABLE 1. Event IDs 1 and 8 were 

used to identify the start of each green and yellow phase, with timestamps attached to specific 

events used to determine the length of each cycle and each green and yellow/red phase. Event 

IDs 82 and 81 indicated the Vehicle Detector On and Vehicle Detector Off, respectively. With 

all radar and loop detection zones operating in presence, data from these events were used to 

determine activations (which are used as a surrogate for vehicle counts in this work, as count 

detector outputs are not available) and occupancy, which was used to evaluate the efficacy of the 

detection zones at the study sites.  
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TABLE 1. Event Log IDs and Parameters (Christopher Day et al. 2014) 

Event ID Name Description 
Parameter 

Description 

1 Phase Begin Green 
Set when either solid or flashing green 

indication has begun 
Phase # 

8 
Phase Begin Yellow 

Clearance 

Set when phase yellow indication becomes 

active and clearance timer begins 
Phase # 

81 Vehicle Detector Off 

Vehicle detector has turned off. Detector on and 

off events are triggered post any detector 

delay/extension processing 

Vehicle 

Detector # 

82 Vehicle Detector On 

Vehicle detector has turned on. Detector on and 

off events are triggered post any detector 

delay/extension processing 

Vehicle 

Detector # 

 

Two of the sites used for this work were equipped with radar detection, in addition to inductive 

loop detection. At the outset of the analysis, it was determined that only radar count zones 

operating in ‘Normal’ mode (which is akin to a loop detector operating in presence mode) would 

be used in this analysis, as the outputs of the larger stop line and advance radar detection zones 

are manipulated by proprietary vendor software to achieve various objectives, and as such cannot 

be linked to traffic theory. Thus, they are excluded from analysis. TABLE 2 lists the number of 

days of data available for each site. 

TABLE 2. Event Log Data Availability for Each of Six Intersections 

Intersection Dates Days Available 

OR22 @ I-5SB Ramp 8/2/20 – 8/8/20; 10/5/20 – 2/15/21 133 

OR34 @ I-5 8/2/20 – 8/8/20; 10/5/20 – 2/15/21 140 

OR34 @ Peoria 8/2/20 – 8/8/20; 10/5/20 – 2/15/21 133 

US20 @ 15th  8/14/20 – 8/17/20; 10/5/20 – 2/15/21 137 

US26 @ Meinig 8/26/20; 10/5/20 – 2/15/21 134 

US101@ 22nd  8/2/20 – 8/8/20; 10/5/20 – 2/15/21 133 
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DATA CLEANSING AND PREPARATION 

Cleansing raw data for processing 

Approximately 19 weeks of raw data was provided for each of the six intersections, each with 

multiple detection zones (45 in total). It should be noted that each detection zone used in this 

work had been assessed with a performance heuristic from prior research. Data from the 

sufficiently performing detectors were then used to build the relationships and algorithms 

documented in the subsequent sections. 

The raw data were first filtered for small errors that would impede the evaluation. There are two 

known issues with the provided event-based data, that of repeated ‘Detector On’ events for the 

same detector, and that of repeated ‘Green On’ interval data events. Repeating indications for 

Vehicle Detector On and Vehicle Detector Off were removed to ensure data consistency, while 

cycles where repeating indications for Green Time Start and Yellow Time Start occurred were 

removed to ensure that green durations and their related volume characteristics were consistent 

from cycle to cycle.  

Data preparation 

A number of additional filtering techniques were applied to remove variability in the data 

analyzed, and provide the most consistent data sets for analysis of detector health. First, given 

that approximation of saturated uninterrupted flow would require high volumes, the data from 

peak commuting periods (Tuesday, Wednesday, and Thursday, from 6:00 AM – 9:00 AM and 

4:00 PM – 7:00 PM) were used for analysis.  
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Second, due to the start-up lost time as described in the literature review, the first four vehicles 

of each cycle would need to be removed from the analysis as they exhibit headways which are 

larger than the headways during saturated flow (Transportation Research Board 2016). Finally, 

as the goal was to model saturated flow, activations with headways above a certain threshold 

were removed from the analysis. 

Regarding headways, the reported average headways are between 2.96 and 3.01 for vehicles 

traveling in corridors with speed limit ranges reflected in these study intersections 

(Transportation Research Board 2016). To determine the cutoff for removing vehicles with 

larger headways, headways were evaluated per vehicle position in the queue for each green-

phase interval. The plot in Fig. 9 represents three hours of afternoon peak period headway data 

for one detector, sorted by vehicle position. As can be seen in the figure, the median headway for 

each vehicle position is roughly between 2.5s and 4.0s. with additional data points logged well 

above the median for most vehicle positions. 

 

Fig. 9. Headway Data per Vehicle Position, No Data Removed, for One Detector 
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The first step taken toward filtering out headways not representative of uninterrupted traffic flow 

was removing the top quartile of headways for each position, as shown in Fig. 10.  

 

Fig. 10. Headway Data per Vehicle Position, Top Quartile of Headway Data Removed from Each Vehicle 

Position, for One Detector 

While this succeeded in removing some of the larger headways, the resulting data still contained 

many headways that were not indicative of saturated flow. Several other approaches were 

applied to limit the number of headways in the data that would represent non-saturated flow, 

including removing headways larger than two or three times the median headway for each 

position, removing activations that are detected within the last 6.0 seconds before the yellow-

phase interval, and removing the data from the entire green-phase interval if the first vehicle’s 

headway was greater than 8.0 seconds. In the end, it was determined that limiting the headways 

used in this work to 3.0 seconds, a common value used in setting gap timers within actuated 

control, would more effectively accomplish the desired outcome without the need to carry out 

complicated mathematical procedures. Reducing the number of complicated mathematical 

procedures was necessary for developing a more communicable algorithm that could be 
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interpreted into a coding language; moreover, the results of these procedures supported that the 

cutoff headway should be 3.0s, a value supported by existing traffic theory  (Transportation 

Research Board 2016). This approach has the added benefit of including activations later in the 

green interval as part of the data analysis, as saturated conditions can occur well into stale green. 

The red line in Fig. 10 indicates the 3.0 second cutoff for headway data. Note that the median 

headway value for each vehicle position is below this line, indicating that the majority of 

headways are captured by this method. 

DATA ANALYSIS 

The purpose of the data analysis was to evaluate detector health using existing traffic flow 

theories and variables. Raw data outputs from the detector were processed and used to determine 

the detector health.  

EMPIRICAL LINE DEVELOPMENT: EHV AND DENSITY 

After the raw data had been cleansed and prepared, the Equivalent Hourly Volume (EHV) and 

Density were calculated for each detector on a cycle basis. Equation 3 shows the calculation for 

EHV, using the number of activations during green as a surrogate for departure volume. It was 

noted that several vehicles may arrive on red, and these were not captured in departure volume. 

𝑬𝑯𝑽 = 𝟑𝟔𝟎𝟎
(𝟑𝟔𝟎𝟎 × 𝟐𝟒 × 𝑪)(𝑨)⁄     (3) 

Equation 4 shows the calculation for density, using occupancy per green interval as a surrogate.  

Both of these metrics were calculated on an individual cycle basis.  
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      𝑫 = 𝑶 × 𝟓𝟐𝟖𝟎
(𝑳𝑽𝒆𝒉 + 𝑳𝑫𝒆𝒕)⁄     (4) 

          𝑶𝒄𝒄𝒖𝒑𝒂𝒏𝒄𝒚 = 𝑫𝒆𝒕𝒆𝒄𝒕𝒐𝒓 𝑶𝒏 𝑫𝒖𝒓𝒂𝒕𝒊𝒐𝒏 ÷ 𝑪𝒚𝒄𝒍𝒆 𝑫𝒖𝒓𝒂𝒕𝒊𝒐𝒏  (5) 

For density, the vehicle length was assumed to be the design passenger vehicle length of 19 feet 

(A Policy on Geometric Design of Highways and Streets 2011), while Detector Length was 

provided as measurements from the field (or approximated in the case of radar detection zones). 

A constant vehicle length was used in this process with precedent in typical traffic analyses. A 

different vehicle length could be selected, and while it would impact the resulting calculations, 

the impact would be consistent across all data processed, as this value is a constant. 

Once the processing was completed for an entire week of data (Tuesday, Wednesday, and 

Thursday from 6:00 AM – 9:00 AM and 4:00 PM – 7:00 PM), the dataset was plotted and an 

empirical line of best fit was created by applying a quadratic best fit line to the plotted data, as 

shown in Fig. 11. The figure also shows the Coefficient of Determination (R2) for the fit of the 

line to the data, as well as a conceptual Volume vs. Density line derived from site information 

for that detector. 
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Fig. 11. Example Empirical Line and Empirical Data, and Conceptual Line 

For weeks of data with fewer than 50 data points, an empirical line was not developed due to 

data insufficiency; detectors with fewer than 50 data points per week had less reliable data 

because the vehicle activations were more irregular and did not represent the typical, largely 

undersaturated state of the detector. Additionally, any empirical line with an R2 less than 0.70 

was not used for further analysis, as an R2 less than 0.7 generally indicates a weak or moderate 

fit  (Montgomery and Runger 2018).  

Lastly, outlier control was performed to improve the correlation between EHV and Density, and 

reduce variability in the processed data. The interquartile range method was applied to remove 

data points located at the ends of the spectrum of plotted data. In this method, the interquartile 

range (IQR) (i.e. the 75th percentile – the 25th percentile of the data set) is calculated, and any 

point falling below the 25th percentile – 1.5*IQR or above the 75th percentile + 1.5*IQR is 



56 

 

removed as an outlier. Applying this method reduced both the mean and standard deviation of 

the processed data., as well as reduced the standard deviation, indicating a reduction in the 

variability of the data set. As such, both EHV and Density outliers identified with this method 

were removed. 

CONCEPTUAL LINE DEVELOPMENT 

The conceptual quadratic relationship was developed for each detector using the Optimum 

Density (Equation 6) and Maximum Equivalent Hourly Volume (Equation 7), per Greenshield’s 

relationship (Equation 1), using an average headway for the detector and the speed limit of the 

approach. 

   𝑫𝑶 =
𝑽𝑴𝒂𝒙

𝑺𝑶
      (6) 

    𝑽𝑴𝒂𝒙 =
𝟑𝟔𝟎𝟎

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑯𝒆𝒂𝒅𝒘𝒂𝒚
     (7) 

While the Optimum Speed was determined to be ½ the posted speed limit, an approximation 

directly derived from Greenshield’s work, several sets of data for a detector were analyzed to 

determine the most effective method of calculating the average headway. TABLE 3 shows the 

average headway for a detector for various days and time periods of analysis. Given the 

relatively small spread in the average headway from the various windows of data analyzed, and 

the fact the event-based data is collected at a 0.1s resolution, it was determined that using the 

average headway for the first day of data would be sufficient. 
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TABLE 3. Average Headways for Sensitivity Analysis 

Date Average Headway (seconds) 

Jan 12 2.11 

Jan 12-14 2.08 

Jan 19-21 2.08 

Feb 2-4 2.06 

Jan 12-14, Jan 19-21 2.08 

Jan 12-14, Jan 19-21, and Feb 2-4 2.07 

 

PREDICTED LINE DEVELOPMENT 

After establishing a quadratic relationship between vehicle volume and density in development 

of a site-specific conceptual line, the method for assessing detector health at these locations was 

advanced by modeling the empirical data set to produce detector-specific predicted lines for 

comparison. The choice of an appropriate modeling technique for predicting these empirical 

lines, however, was contingent on having sufficient data observed at each location, these data 

exhibiting a downward parabolic shape when fit to a quadratic curve, additional site-level data 

available to explore how independent factors may contribute to observed volume-density curve 

variation, and a model structure that accounts for the interdependence between observed a, b, 

and c terms in the quadratic formula in predicting empirical lines at each location. The form of a 

quadratic expression is shown in Equation 8. 

        𝒚 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄      (8) 

An initial step in the modeling process was the construction of a data set with sufficient 

representation at each location across the four weeks of collected data. Accordingly, a potentially 

complete sample of 180 records (four weeks of empirical data collected at 45 locations) was 

reduced to a sample of 106 records after removing records with empirical data fewer than ten 

points (74 records). Of this remaining sample, five records were removed in which the a term 
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exhibited a positive value, which would have produced an upward parabolic shape when plotted, 

resulting in a final sample of 101 records. 

Using the reduced sample, a next analytic step was to specify multiple regression models where 

observed values of a, b, and c were functions of various site characteristics that may account for 

variation in these outcome variables. Given the inter-relationship between the three outcome 

variables and a desire to model a single set of predictor variables, a multivariate multiple 

regression modeling structure was chosen. Specification of predictors in this simultaneous model 

of multiple outcomes was pursued with an iterative process that first assessed statistically 

significant intergroup (or model outcome) differences in the effects of independent predictors 

and then examined the explanatory power of any selected predictor variables. Regarding the 

former assessment, a multiple analysis of variance (MANOVA) was conducted to test 

differences in mean values of a, b, and c terms per location across several categorical site 

characteristics. TABLE 4 summarizes the results of this analysis in which significant variation 

was found for mean values of the a, b, or c terms in each of the tested categorical variables 

except for detector length. Of note, continuous measures of green activation and detector 

indication were examined as binary variables in the MANOVA, with low and high values based 

on relationship of locational measure with mean value of variables within the full final sample. 
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TABLE 4. Descriptive Statistics for Four-Week Sample of Detector Summary Data 

 

Notes: 

* Reduction of complete sample (n=180) after removing records with non-negative value for a (n=72) or less than 10 observations (n=74). 

^ High represents activation/indication level above the mean value for the study sample (x̄ activations = 304.927 and x̄ indications = 37.476). 

Cells in GREEN reflect a statistically significant difference in group means (p<0.05). 

Cells in BLUE reflect a marginally significant difference in group means (p<0.10). 

Having established that significant mean differences across the outcomes existed for seven 

independent variables, a backwards elimination model specification process was undertaken to 

determine a consistent set of predictors in the multivariate multiple regression model used to 

create the predicted empirical line. The final model specification—shown in TABLE 5—was 

determined once the removal of a single predictor resulted in no improvement to the adjusted R2 

value of the reduced model and that the Type II MANOVA test statistic for each remaining 

predictor variable was marginally statistically significant (p<0.10). Looking at individual model 

performances, the overall fit for the model of the b term (R2=0.661) was higher than the 
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specification for the a term (R2=0.172) and c term (R2=0.154). The presence of advanced 

detection technology and the continuous green activation metric were statistically significant in 

each specification, with these two variables being the lone significant predictors in the b term 

model. The former predictor as well as the presence of a loop detector were only marginally 

significant in the a term model, while the number of indications, presence of advanced detector 

technology, and site location within a single lane roadway were all statistically significant 

(p<0.05) in the c term model. 

TABLE 5. Multivariate Multiple Regression Model Estimates 

 

Using this final multivariate multiple regression model specification, the final step was to predict 

the value of a, b, and c terms for each combination of detector location and week of empirical 

data. Prediction of a maximum of four empirical lines per detector location was accomplished by 

inserting the observed value of each predictor variable in the final model specification for all 

records. While predictive estimates for a, b, and c terms using every week of recorded detector 

data helps to provide a more robust assessment of detector health, a location-level aggregation of 

these terms across the data collection period can also be useful in investigating the predictive 

model’s performance at sites with varying characteristics not isolated in the final specification.  
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COMPARING CONCEPTUAL, PREDICTED, AND 

EMPIRICAL LINES  

The concept of mathematical integration was used for comparing the performance of the 

conceptual Volume/Density curve with predicted and empirical approximations of that curve. 

Then, the percent difference in the integral value between two curves was compared and used as 

a metric for analysis.  

For each individual detector, two different percent difference calculations were made. First, a 

percent difference calculation was made between each respective weekly empirical line. 

Equation 9 shows the calculation for the percent difference between the integral values between 

weeks.  

𝑷𝒆𝒓𝒄𝒆𝒏𝒕 𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 = 𝟏𝟎𝟎 ×
(𝒘𝒆𝒆𝒌 𝒏+𝟏)−(𝒘𝒆𝒆𝒌 𝒏)

(𝒘𝒆𝒆𝒌 𝒏)
        (9) 

Because four weeks of data were processed for each detector, a total of six percent differences 

were generated, as each week was treated as an individual data point, regardless of the temporal 

sequence of the data: Week 2 compared to Week 1, Week 3 compared to Week 1, Week 4 

compared to Week 1, Week 3 compared to Week 2, Week 4 compared to Week 2, and Week 4 

compared to Week 3. 

Given the typical application of field data to an uninterrupted conceptual Volume/Density 

diagram, initial integration bounds for these comparisons were 0 and the x-coordinate of the 

vertex of the conceptual curve (100% vertex as shown in Fig. 12). However, because the majority 

of the plotted data points fell within 0 to 50% of the x-axis vertex range, comparative integrals 

were developed for four different sets of ranges, from 0% to 100% of the x-axis vertex 

coordinate, in 25% increments. Four complete weeks of data were able to be collected from 25 of 
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the verified detectors. These datasets developed the metrics shown in TABLE 6 and Fig. 13 for 

determining the appropriate integration bounds for the percent difference calculations. Fig. 12 

shows an example detector’s data to illustrate the empirical line, predicted line, and conceptual 

line being integrated to specific bounds.  

 

Fig. 12. Empirical Line, Predicted Line, and Conceptual Curve with Integration Bounds (25%, 50%, 75%, 

and 100% of the Conceptual Curve) 

Four complete weeks of data were able to be collected from 25 of the verified detectors; some 

detectors did not have four complete weeks of data. Overall, 578 percent difference data points 

developed the summary data shown in Fig. 13 which was used for determining the appropriate 

integration bounds for the percent difference calculations. Fig. 13 shows the cumulative percent 

differences for each integration bound. A line is drawn at the 20% difference bin to allow for a 

comparison between the four trace lines. This line illustrates that, at this point on the plot, 



63 

 

roughly 80% of the data points in both the 25% and 50% threshold have values of 20% percent 

difference or lower; only 70% of the data is encompassed for the 75% threshold, and 65% for the 

100% threshold. More data points below 20% are an indicator of less week to week variability. 

 

Fig. 13. Cumulative Percent Difference Comparison of the Integration Thresholds 

The percent differences when integrated to 100% of the conceptual vertex were typically the 

highest, as can be seen in TABLE 6, which summarizes the mean and standard deviations of each 

of the distributions. Both the mean and standard deviation continued decrease as the integration 

bounds were reduced, with the smallest values observed at the 25% threshold. 

TABLE 6. Mean and Standard Deviation of Integration Values at Different Integration Thresholds 

 25% 50% 75% 100% 

Mean 10.64 13.51 24.54 142.55 

Std Dev 16.69 24.81 36.36 386.77 
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Because of this, the desire to have roughly 80% of the percent difference values at or below 20% 

(black line shown in Fig. 13), and the fact that the majority of data points developed to create the 

empirical lines were in this section of the plots, it was determined that using bounds of 0 to 25% 

of the theoretical vertex would provide the most predicable performance assessment, as the mean 

and standard deviation will be used in the detector health analysis. 

Next, a percent difference calculation was made between the conceptual line for each detector 

and the predicted line for each week for that respective detector (predicted line shown in Fig. 12), 

integrating from 0 to 25% of the conceptual vertex. The distribution of these percent differences 

is shown in Fig. 14; the mean of this data is 2.8 percent difference and the standard deviation is 

5.5 percent difference.  

 

Fig. 14. Percent Difference between Conceptual and Predicted Line Integrals for All Detectors  

The data in Fig. 14 is representative of all of the sufficient detectors in the developed 

performance dataset. The mean and standard deviation were then used as a baseline for the 

detector health algorithm; the mean for the detector being evaluated should fall within 1.5 

standard deviations of that mean. The percent differences between the integrals of each detector 
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being evaluated are compared to the mean and standard deviation of the developed performance 

dataset percent differences as described in the following algorithm. 

ALGORITHM FOR INITIAL HEALTH ASSESSMENT 

The general form of this health assessment is illustrated in Fig. 15. It shows the process for using 

the data outputs from the detectors and the site characteristics to model three types of lines for 

use in the detector health assessment. A Predicted Volume versus Density curve and a 

Conceptual Volume versus Density curve were derived and compared as a metric for detector 

health upon initial implementation of this algorithm. The variations in the Empirical Volume 

versus Density data was analyzed over four weeks of data to assess the detector’s health over 

time. 

 

Fig. 15. Data Analysis Flowchart 

The algorithm describes how processed data from the detector and site characteristics from the 

detector’s location are used to derive an assessment of the detector’s functional status. It uses the 
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detector’s derived conceptual line, the predicted line derived from the first week of data, and the 

best fit empirical lines from the first four weeks of data. The algorithm for assessing detector 

health upon initial implementation is shown in Fig. 16. The process for each step is discussed in 

the successive text. 

 

Fig. 16. Initial Health Assessment Flowchart 
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1) Input: Initial Week of Processed Raw Data. One week of cleansed data is used in the algorithm for the 

Initial Health Assessment. Input: Site Characteristics. The site characteristics include the movement’s 

speed limit, which is used in the process of calculating the conceptual line, as well as aspects of the 

detector’s location used to model the predicted line.  

2) Process: Calculate Volume vs Density. The raw data are processed and the volume versus density 

relationships in the empirical data are derived.  

3) Process: Calculate Conceptual Line. The conceptual line is calculated. 

4) Process: Calculate Number of Activations per Green Duration. The raw data are processed and the 

number of activations per green-phase as well as the green-phase duration is found for each cycle.  

5) Process: Calculate Predicted Line from Site Characteristics. Site characteristics, activation data, and 

existing output models are used to calculate the predicted line.  

6) Output: Percent Difference between Conceptual and Predicted Lines. The determined Conceptual and 

Predicted lines are compared by finding the percent differences between their integrals.  

7) Compare to the developed performance dataset. The percent difference between the conceptual and 

predicted lines’ integrals is compared against the sufficient detectors’ dataset (25% column in 

TABLE 6).  

8) (Routine 1) Processes: Check if Volume vs Density for that week is viable. First an empirical line is 

best fit to the initial week of volume vs density data.  

9) (Routine 1) Output: There are multiple checks for this data and its empirical line. The data set for the 

initial week must have 50 or more data points; the Coefficient of Determination (R2) for the empirical 

line fit to the data set must be greater than or equal to 0.70; the empirical line must be concave down; 

and the empirical line must have a positive integral when integrated from 0 to 25% of the Conceptual 

line’s vertex. These checks determine if the initial week of empirical data is viable for assessing the 

detector’s health. 
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10) Decision: Determine if viable. The checks described above determine if the initial week of data is 

viable for this assessment. If it is not viable, the following week of data should be instead analyzed in 

these processes to see if it is viable. If the initial week of data is viable, then the empirical line’s 

integral from 0 to 25% of the conceptual line’s vertex should be stored. 

11) Input: The next week of processed raw data is now used in the algorithm for the initial health 

assessment. 

12) Process: The volume vs density data should be analyzed for this next week. 

(Routine 1) Determine if the volume vs density for that week is viable, similarly to how it was determined 

for the initial week, creating an empirical line and integrating it as part of the process. The same 

bounds are used for integration as were for the first week of data.  

13) Process: If this data is viable, the integral is stored, and the process moves onto the next week of 

processed data. This algorithm continues until there are 4 weeks of viable data.  

14) Multiple Data Sets: The 4 weeks of empirical line integrals are compared by their percent differences. 

Six data points of percent difference between integrals result from this comparison. 

15) Compare to developed performance data set. The mean of the percent differences between the 

empirical lines over four weeks is compared to the developed performance dataset (mean in TABLE 

6).  

16) Output: The percent differences calculated above must be within 1.5 standard deviations of the 

developed performance data set mean (noted in steps 7 and 15).  If one or both are outside this value, 

it is an indicator of possible poor detector health. 
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CONCLUSIONS 

In this work, event-based detector data were processed for a variety of detectors at select 

signalized intersections to first identify which detectors were performing sufficiently to be used 

for development of an algorithm. Event-based detector data outputs were analyzed according to 

Greenshields Models, providing guidance for post-processing data analysis techniques. 

Each detector’s average headway data for one week was used to derive a Conceptual line for that 

detector, incorporating the posted speed limit at that location. Site detector performance 

information was modeled to predict a Volume versus Density relationship, which was compared 

with the Conceptual line and related to a database developed in this work for an estimate of 

initial health. Four weeks of empirical data were also compared with a separate a developed 

performance dataset within this work. A value more than 1.5 standard deviations from the mean 

of the developed performance dataset was proposed as a starting point for health assessment, but 

this may be adjusted for sensitivity in identifying underperforming detectors.  

Moving forward, as noted in the paragraph above, it would be advisable to investigate 

different bounds for the sensitivity analysis. Commonly used bounds were applied, which may 

not be the most suitable for vehicle detector health monitoring. Additionally, as this algorithm is 

implemented, it is advised to develop percent difference datasets for detectors of various 

technologies and configurations so that comparisons can be made between field detectors and 

datasets developed from detectors with similar characteristics. This can be done by segregating 

percent difference data from various detectors as additional sites are brought online. This should 

allow for tighter control limits for determining sensor health, as variation in the comparative data 

set would be limited by the homogenous categorization of detectors.  
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Limitations include that the developed algorithm and datasets are modeled from a finite number 

of detectors. As such, the datasets developed for health assessment are based upon this set of 

analyzed detectors, which may not be a universally representative sample of detectors. Based 

upon comparisons between the healthy and unhealthy detector datasets in this work, the methods 

proposed will identify a variety of unhealthy detector operations, however the thresholds chosen 

can be tightened up with further testing. 
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NOTATION LIST 

The following symbols are used in this paper: 

A = Number of Activations per Green Duration 

C = Cycle Duration 

D = Density (vehicles/mile) 

DO = Optimum Density 

EHV = Equivalent Hourly Volume 

LDet = Detector Length 

LVeh = Average Vehicle Length 

O = Occupancy 

S = Speed (miles/hour) 

SO  =  Optimum Speed (½ of Posted Speed Limit) 

V = Volume (vehicles/hour) 

VMax  =  Maximum Volume 

h = Departure headway (seconds/vehicle) 
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4.0 OVERALL DISCUSSION OF RESULTS AND 

CONCLUSIONS 

In this thesis, event-based detector data were processed for a collection of detectors at signalized 

intersections in Oregon. To first identify which detectors were performing sufficiently to be 

foundational in an algorithm development, a manual detector health check was performed: For 

the six study sites in this work, Event Log data provided by ODOT personnel was compared with 

manually compiled detector data developed using a novel collection technique, that of drone 

video, to determine suitability of the existing detectors to be used in further research. This study 

developed and tested a new method of detector health evaluation by statistically comparing 

manually collected and transcribed drone video data to event-based detector output logs. A total 

of 79 detection zones underwent the above comparative analysis (70 inductive loop and 9 radar). 

The radar detection zones were not compared through Detector On Duration, only through 

Number of Activations, to the drone videos. Of the inductive loop detection zones, 39 passed the 

analysis, while 6 of the radar zones passed the analysis, for a total of 45 valid detection zones, 

~60% of the total analyzed. This study was limited by the amount of video footage possible to 

take, the variety in signalized intersection detectors provided, and the small sample of radar 

detectors. The subset of detection zones that passed the comparative analysis included stop line, 

advanced, single lane, multiple lane, short, and long detection zones over a variety of lane usages 

and provided a robust basis for the successive research.  

The algorithm developed from the validated detectors’ datasets and from fundamental traffic 

theory evaluated detector health through multiple analyses. Events occurring Tuesday through 
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Thursday during the morning and evening peak period were filtered to be considered the dataset 

for one week of data. Additional information was collected from each detector, including its lane 

of travel, the lane width, the detector length, and the posted speed limit for that road segment. 

For one week of data for each detector, the datasets were further filtered to remove repeats in the 

Detector On, Detector Off, Green Phase Start, and Yellow Phase Start events, and any 

corresponding data that may be affected by these repeats. The datasets were then processed to 

obtain the Number of Activations per Green Interval, and each Green Interval Duration, for one 

week of data. The same datasets were further filtered to better approximate uninterrupted flow: 

vehicles were removed from the datasets to account for start-up lost time, and vehicles with large 

headways were removed from consideration to account for gaps in the traffic flow. From the 

resulting datasets, the detector’s Equivalent Hourly Volume and Density were derived for each 

cycle. These data were plotted and a quadratic line of best fit, the Empirical line, was used to 

describe the Equivalent Hourly Volume and Density relationship for one week of data. The 

viability of each week of Equivalent Hourly Volume and Density data was checked using the 

line of best fit’s Coefficient of Determination, the number of data points available for the dataset, 

that the Empirical line was concaved down and that its integral was positive. For insufficient 

datasets, the following week of data was used instead. 

 

Each detector’s average headway data for one week were used to derive a Conceptual line for 

that detector, incorporating the posted speed limit at that location. The Conceptual line was used 

to compare to the initial week’s Empirical line for an initial health assessment. The comparison 

between these lines was done by calculating the integral for each line from 0 to 25% of the 

Conceptual line’s vertex – the Maximum Volume – and finding the percent difference between 
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these integration values. Four weeks of Empirical data was used for the initial detector health 

assessment; the mean of the percent differences between the Conceptual line and each week’s 

Empirical line is compared to the mean and standard deviation of the percent differences found 

in the previously developed performance datasets. 

 

Once a complete Empirical Volume versus Density dataset was created for each of the 

sufficiently-performing detectors in the dataset, this information was used to create a model for a 

predicted Volume versus Density relationship. This model incorporated the Number of 

Activation data from each week and additional characteristics from the detector’s site to create a 

Predicted line for each detector per week. The Predicted line for each detector’s first week of 

data and the Conceptual line for the detector were compared as another metric for initial detector 

health, similarly to how the Conceptual and the Empirical lines were compared. Four weeks of 

Empirical data was used for the initial detector health assessment. This algorithm provides 

guidance for the action and implementation of detector health analysis as a low-cost option for 

updating faulty infrastructure. 

 

The limitations of this study and developed algorithm include that they were modeled based off 

of the datasets from a finite number of detectors. In the model created from the developed 

performance dataset, not every detector configuration was addressed, due to the small sample of 

detectors. The sensitivity testing provided another limitation for this study and developed 

algorithm: the increase and decrease in Volume and Density data for sensitivity testing of the 

algorithm were incremented by 10%, 20%, and 30%; these percent increases and decreases were 

chosen arbitrarily. Another limitation of the project was that it was not feasible to provide long-
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term testing of the detector health assessment over time. It is predicted that after one year of data 

is collected for the detector’s health assessment over time, the detector will have its own dataset 

to compare to rather than comparing to this limited developed performance dataset. Also, due to 

time constraints, the algorithm developed in this work was not subjected to long term testing and 

validation. Based upon comparisons between the healthy and unhealthy detector datasets in this 

work, the methods proposed will identify a variety of unhealthy detector operations, however the 

thresholds chosen can be tightened up with further testing. 

 

In this study and algorithm development, the pseudocode was derived from a process undertaken 

in Microsoft Excel. This Excel Macros in this program were used to process the datasets and 

derive the relationships between Volume and Density. The scope of this project was not to create 

a working code, but the limited processing power of Microsoft Excel was not ideal for managing 

big datasets. A more elegant solution to processing this data using code or other programs would 

improve the processing time and reduce the number of mistakes, as well as increase the amount 

of data that could be processed simultaneously.  

 

Moving forward, it would be advisable to investigate different bounds for control chart limits 

(presumably statistically based). Because existing literature provided no guidance for applying 

this method to detector data, commonly used bounds were applied, which may not be the most 

suitable for vehicle detector health monitoring. Additionally, as this algorithm is implemented, it 

is advised to develop percent difference datasets for detectors of various technologies and 

configurations so that comparisons can be made between field detectors and datasets developed 
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from detectors with similar characteristics. This can be done by segregating percent difference 

data from various detectors as additional sites are brought online. This should allow for tighter 

control limits for determining sensor health, as variation in the comparative data set would be 

limited by the homogenous categorization of detectors.  

 

This thesis contributes to the existing literature and detector health monitoring methods by 

introducing a new process of manually verifying vehicle detectors and developing a new 

algorithm towards automated detector monitoring. The new verification process based on drone 

video collection is useful for deriving very accurate performance data from detectors at 

intersections without cameras. This process would be primarily useful for collecting research 

data. The developed algorithm from this study improves the efficiency of widespread detector 

malfunction monitoring for individual detectors at signalized intersections, without reliance on 

in-person evaluations. To continue developing this algorithm, further research into the long-term 

health analysis of individual detectors is suggested. Implementation into existing systems, such 

as ones at state DOTs, would most successfully utilize this algorithm for detector monitoring.  
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