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ABSTRACT 

 

ESTIMATING CHANGES IN FINE-SEDIMENT STORAGE AT EDDY-

SANDBARS ON THE COLORADO RIVER, GRAND CANYON, AZ 

USING OBLIQUE IMAGERY FROM REMOTE CAMERAS 

 

RYAN E. LIMA 

   

This research is a fluvial remote sensing study demonstrating methods for sub-annual 

monitoring via a dataset containing over 1,000,000 ground-based oblique images that capture 

daily observations at 43 sandbar monitoring sites in the dam-affected Colorado River in 

Grand Canyon since 1990. Over half of the world’s major rivers are affected by dams. In 

many dam-affected rivers, sediment limited conditions have led to increased erosion of banks 

and fine-sediment deposits for hundreds of kilometers downstream. Quantifying the short-

term rates of erosion and measuring the effect of dam operations and beach-building high 

flows on sediment storage at sub-annual scales is critical to managing downstream resources 

effectively. Sandbars in the Grand Canyon provide relatively flat, vegetation-free substrates 

utilized by nearly 25,000 river runners annually. Sandbars are also essential components of 

riverine systems creating habitat for native fish and storing sediment which would otherwise 

be transported downstream. This study is the most comprehensive attempt at quantitative 

analysis of this dataset. I present methods for estimating sandbar volume and hypsometry 

from the remote imagery. I demonstrate a deep learning approach to semantic segmentation, 

which allowed for detailed image-derived sandbar area analysis of over 13,000 images across 

10 years at three sites. Significant variability was observed in the sub-annual area change due 
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to current dam operations. I determined that erosion, deposition, and the resulting mean 

monthly area at sandbar sites are more closely correlated with antecedent sandbar size than 

monthly flow metrics. The analysis of time-lapse videos at 41 sites revealed links between 

daily and seasonal discharge patterns and mass failure rapid erosion events. These insights 

increase our understanding of the dynamics of fluvial bedforms in dam-affected, canyon-

bound rivers and might improve the adaptive management of the Colorado River in the Grand 

Canyon. These methods could be applied broadly to remote-camera monitoring efforts in 

many other fluvial and coastal settings for measuring erosion rates and improving, modeling 

and sediment budgeting efforts.   
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PREFACE 

 

 This dissertation is comprised of an introduction chapter (1), three manuscripts 

targeted for specific journals or proceedings, (Chapters 2-4), and a conclusion chapter 

(Chapter 5). Chapter 2 is formatted for and was published in the Proceedings of the Federal 

Interagency Sedimentation and Hydrologic Modeling Conference (2019). Chapter 3 was 

formatted for publication in the journal Water Resources Research, to which it will be 

submitted in short order. Chapter 4 is formatted for upcoming submission to the journal 

Geomorphology. Since these chapters were prepared as stand-alone manuscripts, there is 

some redundancy, which results from combining them to meet the university formatting 

requirements. 
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Floods in the Grand Canyon, in: Proceedings of the Federal Interagency Sedimentation 
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CHAPTER 1: INTRODUCTION TO EDDY SANDBAR DYNAMICS 

INTRODUCTION 

Sandbars are prominent features along the Colorado River within Grand Canyon National 

Park that provide substrate for riparian vegetation, create backwater habitat for native fish 

species, serve as a source of aeolian sand, and provide beaches utilized by tens of thousands 

of recreationalists each year (Kearsley et al., 1994; Valdez et al., 1995, Converse et al., 1998; 

Stevens et al., 2001; Sankey and Draut, 2004; East et al., 2016). Monitoring the dynamics of 

these sandbars in response to changes in sediment supply and discharge patterns resulting 

from the closure and operation of Glen Canyon Dam is of great interest to dam managers 

charged with balancing societal needs for water storage and power generation with the health 

of the downstream ecosystem and the provisioning of ecosystem services (Wright et al., 

2005). This research utilizes remote sensing, a process of detecting and monitoring the 

physical characteristics of an area by measuring its reflected and emitted radiation with 

sensors, to improve sandbar monitoring (Lillesand et al., 2004). In the following chapters, I 

explore various ways of utilizing a dataset of oblique images captured by remote cameras to 

measure changes in sandbar size and reveal linkages between discharge patterns and 

morphodynamics at a sample of 41 sandbar monitoring sites spanning 362 km between Lees 

Ferry and Diamond Creek in the Grand Canyon. This dataset, which contains over 1,000,000 

images, poses significant challenges from a remote sensing methodological standpoint, but 

also provides a valuable opportunity to quantify sandbar dynamics occurring at finer temporal 

resolutions than ever before.  
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In the following chapters, I explore methods for measuring changes in the elevational 

storage of sand using image-derived hypsometric curves and experiments with volume 

estimation by combining sandbar area measurements from multiple images. I utilize a deep 

learning approach to rapidly segment imagery and measure the planar area of the emergent 

sandbars in thousands of images. I investigate cyclic patterns of area change and the 

occurrence of mass failure erosional events using time-series of image-derived area estimates, 

and time-lapse videos. Finally, I attempt to relate observed area change with daily and 

monthly discharge patterns to provide new insights into the effects of dam operations on 

sandbars. Such insights increase our understanding of sediment dynamics in dam-affected, 

canyon bound rivers and may improve the adaptive management of the Colorado River in the 

Grand Canyon. This research explores the possibilities and limitations of one network of 

remote cameras but can also inform others of the utility of such datasets in other fluvial and 

coastal settings. This chapter will introduce the concepts and historical context needed to 

understand sandbar dynamics in the Grand Canyon. I discuss findings from previous studies 

and illuminate gaps in our current understanding. Finally, I summarize the research questions 

explored in subsequent chapters. 

 

BACKGROUND 

1.1.1. Sandbars 

Fluvial sandbars are elongate bedforms comprised of sediment transported by river or 

streams; these bars may occur within channels or at channel margins. While some fluvial 

sandbars may migrate along the bed, within the channel, or as point bars on the inside of 

meander bends in alluvial rivers, other fluvial bars persist as relatively permanent features 
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(Bierman and Montgomery, 2014). Persistent fluvial bars are common in fan-affected canyon 

bound rivers with bedrock channels, like those found in the Grand Canyon (Baker, 1984).  

Rivers with bedrock channels generally have steeper gradients, and larger stage 

increases relative to discharge than in alluvial rivers. These factors lead to high shear stresses 

resulting in high sediment transport rates and courser bed materials (Baker, 1984; Tinkler and 

Wohl, 1998). During high flows, a fraction of the fine-sediment (< 2mm) which would 

otherwise be transported downstream, is deposited in zones of local low-velocity flow in the 

lee of large boulders or channel constrictions. Because of rapid changes in stage, high flows 

can deposit fine-sediment at relatively high elevations, where it becomes less vulnerable to 

erosion by more frequent, smaller magnitude flows (Tinkler and Wohl, 1998). Therefore, 

sandbars are significant components of the fluvial ecosystem. These persistent fluvial bars or 

beaches are referred to hereafter as sandbars. 

1.1.1.1. Eddy-fan complex and Grand Canyon sandbars 

The Colorado River drops 670m between Lees Ferry and Lake Mead, most of which 

occurs in the span of 161 major rapids (Leopold, 1969; Dolan et al., 1974). These major 

rapids occur where debris flows from tributary side canyons have created debris fans, which 

act as hydrologic controls and constrict the flow of the river by as much as 50% (Kieffer, 

1985; Webb et al., 1989). Constrictions result in shooting flow, or increased velocity of the 

main channel current. Once past the apex of the debris fan, the main current becomes 

separated laterally from the bank before reattaching downstream (Webb et al., 1989). This 

separation creates a zone of low-velocity recirculating water between the primary current and 

the bank downstream of the fan. Such zones may contain one or more eddies (Schmidt and 

Graf, 1990). Suspended sediment advected into these zones of recirculating water may be 

deposited forming sandbars. 



4 

 

Sandbars in Grand Canyon are primarily composed of sand with smaller amounts of 

gravel, silt and clay (Howard and Dolan, 1981). Sandbar deposits may exceed 13m in vertical 

thickness, but average about 4m in thickness, and are often mantled by boulders or bedrock 

(Rubin et al., 1994). Sandbars in the Grand Canyon are often characterized by their 

depositional environment. Reattachment bars form as spits of sand projecting out from the 

bank where the river's primary current reattaches to the bank and decelerates (Rubin et al., 

1990). A second eddy may occur upstream of the reattachment point leading to deposition on 

the downstream end of the debris fan near the point, where the current separates from the 

bank. These deposits are known as separation bars (Schmidt and Graf, 1990; Andrews et al., 

1999). At higher flows, the upstream flow may carve out a return-current channel, between 

the reattachment bar and the bank, which serves as a vital backwater habitat at lower flows 

(Andrews et al., 1999). In some circumstances, the surface of separation and reattachment 

deposits may merge into a large eddy deposit, which cannot be distinguished from one or the 

other (Schmidt and Graf, 1990). Sandbars, that form in the slack water upstream of a debris 

fan, are known as upper pool bars (Schmidt and Graf, 1990). 

Together, these three sandbar types along with the debris fan and flow separation zone 

comprise what is known as the eddy-fan complex (sensu Schmidt and Rubin, 1995)(Figure 

1.1). Much of the exposed sand along the Colorado River within the Grand Canyon is found 

within eddy-fan complexes. In the debris fan-affected sections of the Green River, extending 

169 km downstream of Flaming Gorge Dam, 64% of the fine-sediment resides in eddy fan 

complexes (Grams and Schmidt, 1999). Less common depositional environments within the 

Grand Canyon include point bars, on the inside of meander bends, and channel margin 

deposits found in the lee of small boulders or bedrock outcrops along the banks (Schmidt and 

Graf, 1990). 
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Figure 1.1 Flow patterns and configuration of the eddy-fan complex. Figure from Schmidt and Graf 

(1990). (A) Flow patterns. (B) Configuration of bed deposits. 

1.1.1.2. Sandbar erosion 

Erosion is a major cause of morphodynamic change of sandbars. Sandbars can be 

thought of as discrete alluvial banks. Bank erosion models focus on the interplay between 

hydraulic forces and gravitational failures (Simon, 1989; Simon et al., 1999). Hydraulic 

forces involve the energy imparted by moving water and gravitational failures occur as the 

force of gravity overcomes the mechanical strength of banks (O’Neill and Kuhns, 1994). 

Fluvial erosion of sandbars in Grand Canyon results from several interrelated mechanisms 

including tractive scour, wave-action, seepage-driven erosion, gravitational failures, static 

liquefaction, and breaching (Schmidt and Graf, 1990; Beus and Avery, 1992; Bauer and 

Schmidt, 1993; Van den Berg, 2002; Wright and Kaplinski, 2011; Mastbergen et al., 2019). 

Sandbar characteristics such as grain size, porosity, pore pressure, vegetation cover, and grain 
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mineralogy affect the mechanical strength of the banks (Fischenich and Allen, 2000; Travis et 

al., 2010). Bank slope also affects susceptibility to different erosional mechanisms (Alvarez 

and Schmeeckle, 2013). Sandbar erosion typically proceeds gradually, resulting in meters of 

lateral erosion over weeks to months, but can lead to more rapid erosion through mass failure, 

where meters of lateral erosion occur in minutes to hours under certain conditions. 

1.1.2. Glen Canyon Dam 

Glen Canyon Dam began impounding the Colorado River in 1963 and was 

constructed because of the 1956 Colorado River Storage Project Act (U.S. Department of 

Interior, 1970). Prior to its closure, sediment from the upper basin, and sediment brought in 

by tributary side canyons would accumulate on the bed of the Colorado River during the late 

summer, fall, and winter (Topping et al., 2000a; Wright et al., 2005). Other than short-

duration flash floods associated with the North American Monsoon, the river's flow was 

relatively low during these times, with discharges as low as 71𝑚3𝑠−1  (National Resource 

Council, 1996). In the springtime, the river would swell with annual snowmelt from the 

Central and Southern Rockies. Flows during the spring sometimes exceeded 2,831𝑚3𝑠−1 

(National Resource Council, 1996). Such floods would scour the bed and carry most of the 

sediment downstream, but a significant amount of sediment would be deposited in hundreds 

of eddies as subaerial open sandbars (Topping et al., 2000a; Wright et al., 2005). Annual high 

floods prevented riparian vegetation from colonizing large portions of these sand deposits 

below the average yearly high-water mark (Dolan et al., 1974; Stevens et al., 2001).  

Since 1963, Glen Canyon Dam and its operation have led to several significant 

changes with regards to sediment inputs and flow on the Colorado River downstream. The 

dam stops sediment from the Colorado's upper basin from entering the Grand Canyon. There 

was considerable uncertainty and variability in the pre-dam sediment load carried by the 
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Colorado River in any given year, but Wright et al. (2005) estimated that an average of 25 

million tons of sand flowed into the Grand Canyon from the upper basin annually. 

Downstream of the dam, the Paria River and the Little Colorado River are the primary 

sources of fine-sediment to the canyon. They supply, on average, a combined 3.6 million tons 

of sand annually or between 15% and 20% of the pre-dam average (Topping et al., 2000b, 

Wright et al., 2005).  

 Coupled with a reduced sediment supply, significant changes to the character of the 

river's flow regime have resulted from dam operations. Annual snowmelt-driven floods have 

been eliminated as well as the typical late summer, winter, and fall low-flows. High annual 

flow variability and low daily variability have been replaced by large daily changes in flow 

and higher median flows. Under this new hydrologic regime, the Colorado River is sediment-

limited with respect to sand throughout the year, and no substantial period of sediment 

accumulation occurs in a typical year (Topping et al., 2000a; Rubin et al., 2002).  

 The impacts of Glen Canyon Dam to sediment resources in the canyon were first 

described in the scientific literature, just over a decade after its closure, by Dolan et al. 

(1974). Dolan and colleagues describe the widespread erosion of beaches used for camping 

and the encroachment of vegetation on subaerial, or emergent, sandbars in areas once scoured 

by large floods. This reduction in areas suitable for camping was occurring just as the use of 

the river was on the rise. In the early 1950's, approximately 200 people had taken a boat 

through the Grand Canyon, but by the 1970's more than 10,000 people per year were 

participating in trips down the canyon and the threat to bourgeoning recreation in the canyon 

led to management interest in the Grand Canyon’s sandbars (Dolan et al., 1974). 
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1.1.2.1. Flow regimes 

Understanding the effect of dam operations on sandbars requires a closer look at the 

discharge patterns, which result from the rules guiding the operation of Glen Canyon Dam 

since its closure. For this study, I delineate four distinct flow regimes: (1) Natural Flow (NF): 

this is the pre-dam period ending in March 1963; (2) Unconstrained Dam Operations (UDO): 

the period between 1964 and August 1991; (3) Interim Flows (IF): the flows between August 

1991 and October 1996; and (4) Modified Low Fluctuating Flows (MLFF): the flows 

occurring since the 1996 record of decision went into effect. These delineations are based on 

the primary dam operations at the time and the characteristics of the resulting flows. It should 

be noted that there was a period of experimentation from 1990-1991. I combine that period in 

the UDO because its hydrograph more closely resembles that of the UDO regime. The 

differences between these periods are illustrated in Figures 1.2 and 1.3. 

 

Figure 1.2 Average daily discharge in 𝑚3𝑠−1 from Lees Ferry gage 09380000 between 1955-2018 

showing the four flow regimes: Natural Flow (NF), Unconstrained Dam Operations (UDO), Interim 

Flows (IF) and Modified Low Fluctuating Flows (MLFF). 
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Figure 1.3 Annual hydrographs of daily discharge from Lees Ferry gage 09380000 for a randomly 

selected year within each of the four flow regimes discussed. 

During UDO, discharge and the resulting hydrograph was shaped primarily by energy 

demand and concerns about meeting water delivery obligations (National Resource Council, 

1996; Topping et al., 2000a; Wright et al., 2005). Daily maximum flows approached 

994𝑚3𝑠−1 and minimum daily flows were as low as 29𝑚3𝑠−1 in the winter and 85𝑚3𝑠−1 in 

the summer. The median range of daily discharges during UDO was greater than 

227𝑚3𝑠−1.  This high daily variability and specifically rapid down-ramping rates were cited 

as drivers of seepage erosion, creating mass-wasting events, or bank failures (Budhu and 

Gobin, 1994; Budhu and Gobin, 1995; Alvarez and Schmeeckle, 2013).  

In 1991 scientists and dam managers began implementing IF. These changes reduced 

the daily range of discharge to below 284𝑚3𝑠−1, reduced the maximum daily flow to 

556𝑚3𝑠−1, and increased the minimum flows to 227𝑚3𝑠−1 during the day and 142𝑚3𝑠−1 at 

night. IF also changed the ramp rates up and down. These temporary changes were intended 

to reduce erosion of sandbars until an EIS could be completed and new flow guidelines could 

be agreed upon (LaGory et al., 1993).  
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The 1995 Environmental Impact Statement, and the subsequent 1996 record of 

decision led to the adoption of MLFF and the approval of the Glen Canyon Dam Adaptive 

Management Plan. The shift from IF to MLFF increased the maximum allowable daily flows 

to 708𝑚3𝑠−1 and increased the allowable up-ramp rate from 71𝑚3𝑠−1 per hour to 113𝑚3𝑠−1 

per hour, but the biggest change between IF and MLFF was the addition of beach-building 

flows, or high flow experiments (HFEs). 

1.1.2.2. High Flow Experiments 

During the 1990s, the scientific consensus was that fine-sediment from tributary 

canyons was accumulating on the bed during normal dam operations and that high flows were 

needed to redistribute sand from the bed to high elevation eddy deposits (National Resource 

Council, 1996). Controlled floods, or High Flow Experiments (HFEs), are short-duration 

flows more than power plant capacity (940𝑚3𝑠−1). The first HFE occurred from March 26th 

- April 7th, 1996. Discharges reached 1274𝑚3𝑠−1 for seven consecutive days (Schmidt and 

Grams, 2011). 

When the waters had receded, the HFE had proved successful at redistributing 

sediment to high elevation sandbars, but, at least in Marble Canyon, the stretch of river 

between Lees Ferry and the Little Colorado River, most of the sand deposited as high-

elevation bars was scoured from lower elevation areas in the eddies, and not from the bed. 

Scientists realized that they had been working on the incorrect hypothesis-- that sediment was 

accumulating on the bed of Grand Canyon during normal dam operations, poised to be 

mobilized by high flows (Schmidt, 1999; Rubin et al., 2002). 

Topping et al. (2000a) found that fine-sediment deposits in the bed showed a trend of 

coarsening upward with regards to grain size, a trend evident throughout the year, suggesting 

that the Grand Canyon is sediment limited with respect to sand, and no substantial 
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accumulation was occurring. Sediment transport data collected between 1999 and 2004 

shows that when discharges are above about 255 𝑚3𝑠−1  to 283𝑚3𝑠−1 for an extended 

period, both fine-sediment stored in the bed and recent inputs from tributaries are rapidly 

transported downstream (Topping et al., 2000b; Lovich and Melis, 2007). Since the closure 

of Glen Canyon Dam, flows have exceeded 255𝑚3𝑠−1  most of the time. This reiterates the 

importance of sandbars as locations of high elevation storage for fine-sediment, where it is 

less vulnerable to the erosive flows of the main channel. 

Schmidt (1999), in his synthesis of the effects of the 1996 HFE, suggests that future 

HFEs be timed to follow high sediment inputs from tributaries before normal flows can 

export that sediment out of the canyon. The 1996 HFE showed that while the mean volume of 

sediment in high-elevation eddy deposits increased across the canyon, there was a fair 

amount of variability at individual sites, with some sites experiencing decreases in sediment 

storage in high-elevation deposits (Schmidt, 1999). Following the 1996 HFE, two more were 

conducted in November 2004 and March 2008. These were timed to follow shortly after flash 

flooding of tributary canyons when antecedent storage of sand in upper Marble Canyon was 

high (Schmidt and Grams, 2011). These HFEs were shorter in duration, just 60 hours each 

(Schmidt and Grams, 2011). Wiele and Torizzo (2005) found that the highest rates of 

deposition in eddy sandbars occurred during the first day of an HFE.  Schmidt (1999) 

suggested that exposing eddy sand deposits to high flows for shorter periods would reduce 

the risk of erosion while providing enough fine sediment deposition to increase sandbar area. 

A complete summary of the effects of 1996, 2004, and 2008 HFEs can be found in Melis et 

al. (2011). 

In 2011, the Bureau of Reclamation released an Environmental Assessment creating a 

protocol for HFEs for a ten-year period from 2012 - 2020 (U.S. Department of the Interior, 

2011). Remotely operated gages throughout the canyon provide information to create 
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sediment budgets which inform dam managers about sediment concentrations (Schmidt and 

Grams, 2011). The HFE protocol requires that antecedent sand enrichment reaches a 

predetermined level before an HFE can be triggered. HFEs are also limited to 1,274𝑚3𝑠−1, 

the total amount of water that can pass through the generators and bypass tubes. Such releases 

can last for up to 96 hours (Grams et al., 2015; Schmidt and Grams, 2011; U.S Department of 

the Interior, 2011). 

This protocol was used to conduct HFEs in 2012, 2013, 2014, 2016, and 2018. 

Collectively, annual topographic surveys have shown that HFEs do increase sediment storage 

at high elevation eddy deposits across the river, but such gains are often eroded away in the 

months following HFEs (Hazel et al., 2010; Grams et al., 2015; Hazel et al., in press). This 

generalization of overall sandbar size increase obscures the complexity of sandbar responses 

to HFEs. There is a large amount of variability in the response of specific sandbars to a 

particular HFE, both across the longitudinal profile of the canyon and to bars within the same 

reach. How any particular sandbar responds to high flows is dependent on its particular 

channel geometry, the flow patterns that result, the accommodation space available within the 

eddy to store sediment (antecedent conditions), and the amount of suspended sediment during 

a particular high flow (Schmidt and Grams, 2011; Grams et al., 2013).  

1.1.3. Sandbar monitoring 

The most accurate data we have on the dynamics of Grand Canyon sandbars comes 

from topographic surveys conducted annually since 1990 at up to 44 sites, and reach-based 

bathymetric surveys occurring once every three to five years (Hazel et al., 2008; Kaplinski et 

al., 2009; Hazel et al., in press). However, these annual surveys provide only a yearly 

snapshot of the net change over 12 months. Researchers using remotely operated cameras 

found that annual surveys likely underestimate lateral erosion rates, and that lateral changes 
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occurring over a single day may be greater than or equal in magnitude to the changes 

occurring in an entire year. Cycles of erosion followed by deposition obscure the signal of 

these frequent high magnitude events (Dexter and Cluer, 1999). Dexter and Cluer (1999) 

used remote camera imagery to measure lateral erosion, however they only measured 

maximum lateral erosion rates (see also Cluer 1995; Dexter et al., 1995; Dexter and Cluer, 

1996). Grams et al. (2018) utilized imagery to measure changes in sandbar area at a single 

discharge for the sandbar located 30.7 river miles (RM) downstream from Lees Ferry, 

RM30.7, discontinuously from 2009 to 2016. However, neither of these approaches enables 

quantitative and comprehensive monitoring of the nuance of sub-annual sandbar 

morphodynamics. 

An analysis of topographic and bathymetric data of sandbars from RM-0 to RM-225 

found that much of the spatial variability of decadal trends in sandbar size and response to 

HFEs can be explained by a classification scheme that used principal component analysis to 

classify bars by their geomorphic setting and annual trends in size (Mueller et al., 2018). 

Mueller (2018) classifies sandbars into 4 groups: (1) subaerial reattachment bars, (2) 

subaerial separation bars, which tend to have steep reach-averaged channel gradients, (3) 

subaerial upper-pool bars, typically in low energy environments, and (4) eddy-deposits, 

which generally contain a small subaerial separation bar and a reattachment bar that is 

typically submerged or subaqueous. The sandbars in group (1) are further subdivided into 

three groups (1a, 1b, and 1c), which correlate with changes in the extent of vegetation cover, 

stage change, and channel width. Relatively open, unvegetated bars in narrow reaches of the 

canyon are designated 1a, and mostly vegetated bars in wider reaches designated 1c, with 1b 

bars falling somewhere in the middle (Mueller et al., 2018). Such groups explain some of the 

spatial variability between sites with regards to long-term trends or HFE response, but 

significant differences in sub-annual variability and behavior exist, which may not be fully 
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explained by these groupings (Hazel et al., in press). The topographic changes observed at 

individual sites are influenced by a complex combination of factors including eddy size, 

antecedent storage condition, grain size, distance downstream from GCD, discharge, 

suspended sediment concentration, and local hydraulics (Beus and Avery, 1992; Wright and 

Kaplinski, 2011; Grams et al., 2013) 

SUMMARY AND MOTIVATING QUESTIONS 

Few places in the world have garnered as much scientific inquiry as the Colorado River in 

Grand Canyon, yet the remoteness of the canyon makes frequent in-person observations 

infeasible. Acquisition of satellite data at high-spatial- and temporal-resolutions is currently 

cost prohibitive, and the use of unmanned aerial vehicles is prohibited in Grand Canyon 

National Park. Furthermore, an existing dataset of oblique imagery spanning 43 monitoring 

sites and nearly three decades has not been comprehensively examined until now and offers 

promising opportunities with the advance of computer vision and new segmentation methods.   

Several studies have looked at topographic evolution during a handful of discrete flow 

events and decadal trends in size resulting from the combined effects of annual discharge 

patterns (Andrews et al., 1999; Hazel et al., 2008; Kaplinski et al., 2009; Wright and 

Kaplinski, 2011; Hazel et al., in press). However, the daily and monthly discharge patterns 

which create conditions favoring stability, dynamism, deposition, gradual erosion, and mass 

failures at sandbars throughout the canyon are not clear. Many efforts have been made to 

model the dynamics of eddy sandbars in Grand Canyon (Sloff et al., 2009; Travis et al., 2010; 

Nieuwboer, 2012; Sloff et al., 2012; Alvarez et al., 2017). However, models that did not 

explicitly account for mass failures tended to over-predict low-elevation subaqueous 

deposition and produced slopes steeper than the angle of repose (Sloff et al., 2009; Sloff et 

al., 2012; Alvarez et al., 2017). Analysis of the discharge patterns, which result in mass 
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failures, could improve this modeling. Furthermore, the parameterization of sub-annual 

erosion and deposition rates in those models could also be improved with better estimates of 

daily erosion and deposition from remote camera imagery.   

Past remote camera studies have examined mass failure occurrence and quantified 

lateral erosion rates during the end of the UDO and beginning of the IF, but no study since 

has used the imagery data to examine daily and monthly behavior over multiple years and 

multiple sites during the MLFF (Cluer 1995; Dexter and Cluer 1999). Grams et al. (2018) 

demonstrated that the measurement of area time-series at a single site from remote camera 

imagery was possible. However, the method of image segmentation used in that study was 

time-consuming and infeasible for processing a dataset which now exceeds 1,000,000 

images. I build on the methods described by Grams et al. (2018) in the following chapters and 

provide the most comprehensive analysis of sub-annual sandbar behavior during the MLFF.  I 

discuss the limitations and demonstrate the potential of oblique time-series imagery for 

monitoring erosion and deposition in fluvial and coastal settings. 

 In Chapter 2 of this dissertation, I explore the following question: Can remote 

imagery be used to estimate sandbar volume at sub-annual scales? I utilize segmentation 

methods described by Grams et al. (2018) and demonstrate that estimating sandbar volume 

using oblique imagery is possible, but this is limited by the availability of imagery over a 

wide range of discharges. I applied hypsometric analysis, the study of elevational-area 

distribution, to measure the response of sandbars to HFEs and quantify changes in elevational 

storage of fine-sediment.    

In Chapter 3, I determine if rapid segmentation and measurement of sandbar in 

imagery can be applied to the current imagery dataset. I improve on the methods in Chapter 2 

by applying a deep learning approach to image segmentation, drastically reducing the time 

needed to identify and measure sandbar area in oblique images. I show the process and 
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practical considerations needed to train a convolutional neural network end-to-end for the 

purpose of binary semantic segmentation. I examine the effects of hyperparameter choice and 

training sample size on the accuracy of three different symmetrical encoder-decoder 

convolutional neural networks.  

In the fourth chapter of this dissertation examines the following questions: How much 

variability is there between sandbars in a similar geomorphic setting? How often do mass 

failures occur and are they correlated with flow patterns and comparable to monthly or daily 

change? To address these questions, I apply the new segmentation approach described in 

Chapter 3 to segment over 13,000 images, creating daily and monthly time-series of sandbar 

area at three dynamic reattachment bars. I use these high-temporal-resolution time-series to 

estimate daily and monthly changes in area. More broadly, I compile time-lapse videos to 

measure the frequency of mass failure events at 41 sites throughout the canyon, 

demonstrating links between monthly and seasonal shifts in discharge and mass failure 

occurrence.  

In chapter 5, I summarize the findings from the previous three chapters and describe 

the policy-relevant implications of this work. I discuss the limitations of the remote camera 

dataset and make recommendations for improving the remote camera sandbar monitoring 

network in the Grand Canyon. I then conclude by outlining the most fruitful directions for 

future remote image analysis. 
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ABSTRACT 

 

Measuring changes in the elevation distribution of subaerial fine (< 2𝑚𝑚) sediment 

and estimating sandbar volume multiple times per year can improve sediment budget 

calculations in fluvial systems. In the Grand Canyon of the Colorado River, effects of dam 

operations on sandbar size and distribution is of long-term management interest. Bar-building 

controlled floods have been implemented in 1996, 2004, 2008, 2012, 2013, 2014, 2016, and 

2018 to mitigate sandbar erosion. Annual topographic surveys provide a single measurement 

of sandbar change caused by the integrated effects of all flows in one year (both controlled 

floods and normal dam releases), but do not measure erosion and deposition caused by 

specific operations or individual floods. At one sandbar monitoring site in Grand Canyon, we 
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demonstrate that imagery from autonomous digital cameras can be used to provide 

quantitative measures of sandbar hypsometry multiple times per year without costly and 

labor-intensive surveys. We describe methods for measuring changes in the storage of fine 

sediment at monthly or seasonal timescales by constructing hypsometric (area-elevation 

relation) curves. These curves are created and updated with sandbar area measurements from 

georectified images taken multiple times each day. As the water surface elevation fluctuates 

with daily, seasonal, and monthly discharge patterns, sandbar area and volume can be 

estimated using known stage-discharge relationships. We present parameters extracted from 

image-derived hypsometries to estimate sandbar volume and elevation relief ratio, which 

provides a new way to quantitatively measure monthly or seasonal changes in fine sediment 

storage. 

2.1. INTRODUCTION 

The closure of Glen Canyon Dam in 1963 significantly altered the discharge patterns and 

sediment supply of the Colorado River in Grand Canyon. Increases in minimum and mean 

discharges, increases in daily discharge fluctuation, decreases in maximum discharge, and a 

reduction of sediment supply have created a deficit of fine sediment (Topping et al. 2000) and 

reductions in the size and extent of sandbars throughout Grand Canyon (Dolan et al. 1974; 

Schmidt et al. 2004). The preservation of fine sediment resources downstream of Glen 

Canyon Dam has been a long-standing management focus. Sandbars are used for camping by 

nearly 25,000 people each year who float the Grand Canyon. Sandbars also form habitat used 

by native fish and provide a source of sand for aeolian transport to upslope archaeological 

resources, protecting those areas from erosion (Sankey et al. 2018).  

Controlled floods have been carried out periodically since 1996 to rebuild and 

maintain sandbars. They are conducted following significant tributary inputs of sediment. 
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The high flows are intended to redistribute sand from low elevations within the channel or in 

eddies to high elevations where sand is less vulnerable to erosion from fluctuating flows and 

can provide the benefits previously listed. Following the high flow events, topographic 

surveys are the primary method for monitoring the storage of subaerial fine sediment within 

Grand Canyon. These surveys are typically conducted once per year and provide a detailed 

snapshot of fine sediment storage at 44 sandbar monitoring sites (Hazel et al. 2006). 

To supplement the detailed topographic surveys, daily photographic monitoring of 

sandbars in Grand Canyon began in the early 1990s with film cameras, which collected one 

image per day at just a few sandbar monitoring sites. These images revealed that sandbars 

undergo cycles of rapid short-term erosion followed by gradual deposition throughout the 

year and that short-term rates of erosion equalled or exceeded the rates of erosion and 

deposition measured at annual timesteps (Dexter and Cluer, 1999). These findings reiterated 

the need for more frequent, short-term monitoring in addition to detailed annual monitoring. 

The network of remote cameras was expanded throughout the 1990s and early 2000s 

to monitor 43 sandbars sites, and between 2008 and 2014, film cameras were replaced with 

digital cameras capturing five or more oblique images each day. These remote camera 

systems include a solar panel, a data logger, a 12V battery, a camera, and lens sealed in 

weatherproof boxes. The camera systems and their specifications, referred to hereafter as 

remote cameras are described by Bogle et al., (2013). They operate autonomously with semi-

annual maintenance schedules. The sandbar imagery dataset contains over 1,000,000 images 

and is one of the most comprehensive and longest records of fluvial sandbar monitoring 

currently available. Recently, imagery from remote cameras has been used to qualitatively 

assess size changes following controlled floods, and to quantify sandbar area at a single 

elevation through time (Grams et al. 2018, Tusso et al. 2015). 
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We describe methods for quantifying changes in fine sediment storage at sandbars in 

Grand Canyon using oblique imagery captured from the remote cameras. We utilize rectified 

oblique imagery to: (1) isolate sandbar pixels from images, taken at multiple discharges, to 

compute sandbar area at different elevations; (2) examine the area-elevation relationship and 

(3) estimate sandbar volume at monthly or seasonal timescales. Our analysis focuses on the 

subaerial portion of sandbars, which are emergent during most flows. Since daily discharges 

are rarely less than 8,000 𝑓𝑡3𝑠−1 (227 𝑚3𝑠−1), our analyses are limited to the portions of the 

sandbar which remain subaerial at a discharge of 8,000 𝑓𝑡3𝑠−1. The elevation of the water-

surface at 8,000𝑓𝑡3𝑠−1 is hereafter referred to as the reference elevation. At river mile 30.7 

the reference elevation is 855.47 m. 

We refer to elevations in two different ways in this study; the first is in meters above 

sea level. This absolute elevation is useful for understanding changes in storage at a particular 

site. Secondly, we use discharge as a proxy for elevation based on an observed stage-

discharge relationship to show the proportion of the bar inundated at different flow levels. 

This relative elevation-proxy provides a context for understanding changes in storage in 

relation to particular flow patterns and allows for comparison across sites throughout the 

canyon which occur at different absolute elevations. 

In this study, we examine hypsometry because it provides a quantitative estimate of 

overall sandbar steepness and allows quick visualization of where fine sediment is stored in 

relation to stage-elevations. We estimate sandbar volume by creating digital elevation models 

(DEMs) from the segmented sandbar outline in the oblique images collected in discrete (one 

to four day) intervals, where three or more images showing water-surfaces across a broad 

range of discharges. 
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2.2. METHODS 

2.2.1. Study Area 

We chose to focus on the sandbar site located at 30.7 river miles downstream of Lees 

Ferry, referred to, hereafter as RM30.7 (Figure 2.1). This site was chosen principally because 

it is dynamic, but also because it is almost vegetation-free. The lack of vegetation makes 

automated segmentation of sandbar area simpler, which was important in the development of 

our new method. Further, RM30.7 is located just 0.7 river miles downstream of USGS gage # 

09383050, which provides 15-minute measurements of discharge. In 2009, the location of the 

camera at RM30.7 was moved, and we primarily use images (up to five times per day) 

captured between 2009 and 2017. Images were pre-processed and processed via a sequence 

of analysis and methods. We describe each of the important steps below 

 

Figure 2.1 The study area, depicting the Grand Canyon in hatched green, the Colorado River, remote 

camera monitoring sites (black triangles) and the RM30.7 site (red triangle). 
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2.2.2. Image-derived area measurement 

Sandbar area measurements from the images involved registering and rectifying the 

images to known references and then segmenting the sandbars to calculate their areas 

2.2.2.1. Registration 

Registration is the process of spatially matching multiple images of the same scene. 

This is needed because small shifts in the camera viewing angle occur during camera 

maintenance or as a result of environmental conditions. Batch registration was carried out to 

register all images taken at RM30.7 to a single reference image using a 2-D Fast Fourier 

Transform (Grams et al., 2018). 

2.2.2.2. Rectification 

Once registered, images were rectified using a homography or transformation 

between two images in the same planar surface. A homography was developed by using the 

known location of particular rocks (i.e., hardpoints) and panels which were surveyed for their 

precise location and imaged with the remote cameras; collectively these are known as ground 

control points (GCPs). This transformation assumes all ground control points are on the same 

2-D plane or have the same elevation. The homography could then be applied to images so 

that distances in pixels could be translated into distances on the Earth’s surface. The 

homography was generated using the OpenCV package in Python 2.7. The workflow is 

described by Grams et al. (2018). 

2.2.2.3. Segmentation 

To perform segmentation, or the process of delineating pixels containing sand from 

non-sand pixels, we used a program called RCSandseg, implemented in Python 2.7 and 

described by Grams et al. (2018). RCSandseg allows the user to define a bounding box 

around the sandbar and uses the GrabCut algorithm (Rother and Kolmogorov, 2004) to 
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delineate a subject from the background. This supervised method also allows the user to 

correct misclassified pixels. Each segmentation required minimal user input and takes 

between one and five minutes. 

2.2.2.4. Area measurement 

Once the sandbars were segmented, we imported the coordinates of the sandbar 

shoreline from all photos, or the boundary between pixels classified as sandbar and those 

classified as background, into ArcMap 10.6.1 and created a polygon from the points. The area 

of the polygon was then calculated using the Geometry tool within ArcMap 10.6.1. 

2.2.2.5. Estimating water-surface elevation 

To associate a measured water-surface elevation to an image, we first estimated the 

discharge pictured in each image using the time recorded in the image EXIF metadata and 

subtracted a lag-time to the upstream gage (USGS-09393050) from the image time. This 

provides an estimated time when the discharge wave in the image passed the upstream gage. 

Since the gage records discharge every 15-minutes, discharge was interpolated from the two 

discharge measurements closest (temporally) to the discharge wave. That discharge was then 

converted to water-surface elevation using the stage-discharge relationship developed from 

several decades of field observations at the RM30.7 site (Hazel et al., 2007) 

2.2.3. Volume from image-derived DEMs 

Our first approach in estimating sandbar volume was to find periods of one to four 

days where images captured discharges at or below the reference elevation and images at 

higher discharges > 12,000𝑓𝑡3𝑠−1. A total of twenty-two such periods were identified 

between 2012 and 2015. An image from at or below the reference elevation was selected for 

each period along with at least two other images at higher elevations. A total of 68 images 

from those twenty-two intervals were selected. These images were segmented to identify the 
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sandbar. The homography (described above) was applied to points along the boundary 

between the sandbar and the water providing geographic coordinates for those points. An 

elevation value estimated using the process described above was paired with the water’s edge 

points based on the image time. Points were converted into polylines in ArcMap 10.6.1. 

Polylines were used to create a triangular irregular network, then the triangular irregular 

network was converted into a digital elevation model which was used to calculate volume. 

2.2.4. Hypsometric analysis 

Hypsometry is a measure of the relationship between area and elevation, usually 

applied to a basin or watershed. Hypsometric curves are created by plotting the cumulative 

area of a basin against its relative elevation (Strahler, 1952). For a drainage basin, the shape 

of this curve is characteristic of the erosional processes occurring within the basin and the 

geologic setting. Convex hypsometries may indicate a tectonically young basin where much 

of the mass is stored at higher elevations. In such basins, fluvial processes play a greater role 

(Strahler, 1952). Elevation relief ratio, shown in Equation 2.1, 

 

  (Eq. 2.1)  
𝑀𝑒𝑎𝑛 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛−𝑀𝑖𝑛 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛

𝑀𝑎𝑥 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛−𝑀𝑖𝑛 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛
= 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑙𝑖𝑒𝑓 𝑅𝑎𝑡𝑖𝑜 

(Pike and Wilson, 1971) 

is the normalized elevation of the mean basin area. Described by Pike and Wilson (1971), it 

provides a single number that can be used to compare basins irrespective of scale. Concave 

hypsometries result in lower elevation relief ratios (~0.2 – 0.5), whereas convex hypsometries 

result in higher elevation relief ratios (~0.5-0.8) (Pike and Wilson, 1971). This metric is 

useful because it distils the complexity of a curve, which may have several inflection points 

and different slopes, into a single number which can be compared over time at the same site 

and across several sandbar sites in the canyon.  
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These concepts are useful to the analysis and monitoring of sandbars in several ways. 

Like drainage basins, sandbars can have complex morphologies which are not easily 

quantified. Hypsometric curves, and the elevation relief ratio can provide a simple means of 

quantifying changes occurring to these sandbars through time. Determining the elevation 

relief ratio for a sandbar at a particular time might also provide insight into the dominant 

types of erosion, which can be expected to occur at a given site, and how that might be 

related to overall sandbar slope or degree of convexity. Alvarez and Schmeeckle (2013), for 

example, found in the laboratory that the slope angle of sandbars determines the dominant 

mode of erosion in response to diurnal stage fluctuations. A field test of this finding is one 

eventual goal of the present work.  

Controlled floods in Grand Canyon generally mobilize sediment from low elevations 

on the channel bed and store it at higher elevations within eddies and on the riverbanks 

(Grams et al., 2015). The hypsometric curves in figure 2.2 were created from surveys before 

and after the 2008 and 2012 controlled floods, which supports the conclusions that controlled 

floods are depositing sediment at higher elevations. Although controlled floods were also 

conducted in 2014, 2014, 2015, and 2017, sandbar topography was not measured in the field 

before and after these events.  

Maintaining camp-able sandbar area that is above the water-surface most of the time 

is a primary management concern along the Colorado River in Grand Canyon. In comparison 

to volume alone, a hypsometric curve provides more information about the usable area since 

the steeper sandbars may be less desirable for camping and hypsometry provides insight into 

the overall sandbar slope angle. 
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Figure 2.2 Relationships between the area and elevation for the sandbar at RM30.7 plotted in three 

ways, before and after the 2008 and 2012 flood using data from topographic surveys. Panels (a) and 

(b) show sandbar area scaled to the subaerial sandbar area at a discharge of 8,000𝑓𝑡3𝑠−1, plotted 

against the water surface elevation𝑓𝑡3𝑠−1 for each year. Panels (c) and (d) show normalized area and 

elevation showing the hypsometry for each year, where ERR is the elevation relief ratio. Panels (e) 

and (f) show area (𝑚2) by elevation (m) relationship for each year. 

 

2.3. RESULTS AND DISCUSSION 

2.3.1. Surveyed hypsometries 

We built hypsometric curves using data from 42 topographic surveys of RM30.7 

collected between 1990 and 2019. The measured area was scaled as a percentage of the 

sandbar area at the reference elevation and plotted against elevation. Here elevation is 

expressed as the water-surface elevation at a particular discharge in 𝑓𝑡3𝑠−1(Figure 2.3). We 
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built these hypsometric curves for two reasons. First, we sought to understand the variability 

in sandbar morphology which has been observed over the multi-decadal topographic survey 

period. Second, river management would benefit from an improved understanding of the 

relationship between sandbar area at the references stage, and area scaled to the references 

stage at various other water surface elevations. This could be used develop a relationship 

through which sandbar volume can be predicted using two oblique images, one at the 

reference stage and another at a higher elevation. 

 

Figure 2.3 Relationship between survey-derived area measurements scaled to the reference elevation 

and the stage elevations for 42 sandbars surveys at RM30.7. 

2.3.2. Hypsometrically-derived volume 

To estimate sandbar volume using the rectified oblique imagery, we first needed to 

determine the relationship between area at multiple elevations and volume at the reference 

elevation. Linear models were fit to the hypsometric relation (figure 2.3) using survey-
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derived area measured at the reference elevation and scaled area for each elevation with 1000 

𝑓𝑡3𝑠−1 intervals between 8,000𝑓𝑡3𝑠−1 and 45,000𝑓𝑡3𝑠−1 as a predictor, and volume at the 

reference elevation as the response (Equation 2.2): 

(Eq. 2.2)  𝑉𝑟𝑒𝑓 =  𝛽0 + 𝛽1𝐴𝑟𝑒𝑓 +  𝛽2𝐴2 +  𝜀 

Where 𝑉𝑟𝑒𝑓 is the volume (𝑚3) at the reference elevation, the predictor variables are 

𝐴𝑟𝑒𝑓, the area (𝑚2) at the reference elevation, and 𝐴2, the area (𝑚2) at another elevation 

scaled to the area at the reference elevation. 𝛽0is the intercept, 𝛽1and 𝛽2 are the coefficients 

for the predictor variables, and 𝜀 is an error term. The lm( ) function in R was used to fit 

models using ordinary least squares. We examined model fit using a wide range of elevations 

for the second variable (𝐴2). Coefficients of determination in Table 1 are > 0.9 for linear 

models utilizing an area at the reference stage and a scaled subaerial sandbar area at 

discharges between 15,000𝑓𝑡3𝑠−1 and 26,000𝑓𝑡3𝑠−1. Therefore, in a predictive capacity, if 

area can be measured accurately from oblique imagery, we can estimate sandbar volume 

within an accuracy of 90% or more, using just two images: one at the references stage and a 

second at a water-surface elevation associated with flows between 15,000𝑓𝑡3𝑠−1 and 

26,000𝑓𝑡3𝑠−1. 

 

Table 2.1 Survey-derived area volume relationships. Coefficients of determination and root-mean-

squared error (RMSE) for linear models relating surveyed sandbar volume at the reference elevation 

with (1) the surveyed area at the reference elevation and (2) the scaled area at discharges between 

14,000𝑓𝑡3𝑠−1 and 26,000𝑓𝑡3𝑠−1 at RM30.7. 𝑅𝑎𝑑𝑗
2  = 1-(1-𝑅2)

𝑛−1

𝑛−𝑝−1
, where p = # of predictors. 

𝑨𝟐Discharge (𝒇𝒕𝟑𝒔−𝟏) 

Elevation 𝑹𝟐 𝑹𝒂𝒅𝒋
𝟐  RMSE (𝒎𝟑) 

14000 0.874857 0.86844 601.3845 

15000 0.911225 0.906673 506.5172 

16000 0.921782 0.91777 475.4492 

17000 0.926187 0.922402 461.8654 

18000 0.928511 0.924845 454.5362 
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19000 0.929401 0.92578 451.6995 

20000 0.93369 0.930289 437.7633 

21000 0.940267 0.937204 415.486 

22000 0.958439 0.956307 346.5727 

23000 0.963504 0.961632 324.7686 

24000 0.919457 0.915326 482.4634 

25000 0.912903 0.908437 501.7069 

26000 0.906134 0.901321 520.8383 

 

2.3.3. Accuracy of image water-surface elevations 

To determine how accurate the predicted water-surface elevation, based on known 

discharge values and the lag time to any site, was at any given day and time, we compared 

our results to the water-surface elevation in fourteen surveys where the water’s edge was 

surveyed at RM30.7. The surveyed elevations were compared to estimated water-surface 

elevations using the same dates and times (Figure 2.4). Our predicted water surface 

elevations correlated with the surveyed elevations with an 𝑅2 = 0.9573 and produced a root-

mean-squared error or (RMSE) of 0.053m, indicating strong agreement between our 

estimates and survey results. 
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Figure 2.4 Comparison between estimated water-surface elevation and surveyed water-surface 

elevations. The reported R-squared value of 0.957 suggests high agreement between estimated and 

surveyed water surface elevations. 

2.3.4. Volume from image-derived DEMs 

When comparing image-derived sediment volume estimates above the reference 

elevation to the survey-derived volumes above the reference elevation (Figure 2.5), we 

observe that the trends in surveyed and estimated volume over time are similar. However, 

four out of five of the image-derived estimates underestimated sandbar volume (Figure 2.5). 

This is likely because the surveyed area is not exactly the same as the extent of sub-aerial 

sand picked up by our segmentation, the surveyed site boundary contains small areas that 

contain rocks or sandbar covered with vegetation. Therefore, in future studies, an offset or a 

correction factor, once properly defined, could be applied to image-derived volumes if the 

errors are found to be within the same range in every case (Figure 2.6). Unfortunately, direct 
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comparisons between the 22 image-derived volume estimates could only be made on four 

occasions between 2012 and 2016, when surveys occurred within a day or two of each 

estimate (Figure 2.6). More data are needed to quantify the accuracy of image-derived 

volume estimates. New imagery from 2017 – 2019 should allow for more accurate 

comparison in future work. Evaluating uncertainty is a future research goal and involved 

estimating the combined errors in the segmentation process, image rectifications, and area 

estimation, and how these errors propagate into volume measurements of resulting raster 

surfaces. 

 

Figure 2.5 Comparison between survey-derived volumes above the reference elevation (blue dots) 

and volumes estimated from image-derived DEMs (red line). 
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Figure 2.6 Comparison between survey-derived volumes above the reference elevation and image-

derived volumes for four corresponding dates. 

2.3.5. Limitations 

The creation of DEMs and hypsometric curves, and their accuracy, is limited by the 

frequency with which an image at or very near the reference elevation is taken, along with 

images at discharges greater than 15,000𝑓𝑡3𝑠−1  within a few days of each other or a period 

when erosion and deposition can be assumed negligible. The frequency of images captured at 

discharges greater than 20,000𝑓𝑡3𝑠−1  is low, and the period, where a broad range of 

discharges can be captured, are limited to infrequent controlled floods. Figure 2.7 shows the 

frequency of images at various discharges at RM30.7. Since portions of the sandbar that 

remain subaerial above 20,000𝑓𝑡3𝑠−1  are rarely inundated, we assume that fluvial erosion of 

those portions of the bar is limited to controlled floods, and episodic mass failures likely 

resulting from erosion at lower elevations and back wasting. Such failure events are evident 

in imagery. Overall, we assume these high-elevation areas remain static in the absence of 
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obvious episodic mass failures detected by manual inspection of imagery. To aid in future 

analysis, the camera systems could be programmed to take 10 images per day instead of five 

which would provide additional area measurements and increase the accuracy of image-

derived hypsometries, and potentially the accuracy of volume estimates. 

 

Figure 2.7 (a) Image frequency at RM30.7 by discharge; (b) Image times plotted over the estimated 

hydrograph for RM30.7. There are 18,699 total images between 2009 and 2017. Relatively few 

images of discharges above 15,000𝑓𝑡3𝑠−1 are available. 

 

2.4. CONCLUSIONS 

Our results indicate that sandbars can be successfully delineated in oblique imagery. 

Segmented sandbar imagery can be used to accurately estimate sandbar area and water 

surface elevation. Image-extracted area measurements were successfully combined to create 

contours and subsequent DEMs at the RM30.7 sandbar three to five times per year from 2012 

– 2016, providing a mechanism for monthly or seasonal monitoring of sandbar size and 
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morphology. Volume measurements from image-derived DEMs show a similar trend of 

surveyed sandbar volumes. Currently, there are only four occasions where surveys 

correspond temporally to image-derived DEMs. Therefore, more data are needed to evaluate 

the accuracy of volume estimates. Analysis of images in 2017 – 2019 will likely provide 

more corresponding surveys to test image-derived volume estimate accuracy.  

 Future analysis will attempt to produce hypsometric curves from oblique 

imagery at more sites. This technique offers and important tool for monitoring the effects of 

controlled floods between surveys and may provide a single value, the elevation relief ration, 

which can be used to compare changes in elevational storage at individual sites and across 

sites within Grand Canyon. 

 

Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only 

and does not imply endorsement by the U.S. Government 
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KEY POINTS 

• We describe a workflow to train a Convolutional Neural Network end-to-end for 

semantic segmentation of oblique time series imagery.   

• Res-UNet outperformed UNet with and without dropout layers in binary semantic 

segmentation of oblique sandbar imagery from Grand Canyon. 

• 25 labeled images with augmentation were sufficient to train and validate a 

Convolutional Neural Network and achieve an accuracy of F1 = 0.93 for a single site.  

KEYWORDS 

Deep Learning, Semantic Segmentation, Time-series, Fluvial Monitoring, CNN 
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ABSTRACT 

The proliferation of remotely sensed images in hydrologic monitoring has increased the need 

for automated methods of image segmentation. Deep Learning (DL) and Convolutional 

Neural Networks (CNNs) are becoming increasingly popular for segmentation tasks within 

the water sciences. However, detailed and accessible discussions about steps required for data 

pre-processing, decisions about the size of labeled data sets, and hyperparameter selection are 

often neglected, making it difficult for non-experts to apply DL to their specific needs. We 

present a case study describing our workflow of image-processing, labeling data, training, 

validating, and testing three different CNNs to perform binary semantic segmentation on 

oblique images of Grand Canyon sandbars. Sandbars are used by thousands of river runners 

each year, provide substrate for riparian vegetation, and create backwater habitat for native 

fish species. We found that neural networks with residual connections and UNet architecture 

outperformed two UNet models without residual connections. We also found that a set of 25 

labeled images with augmentation were sufficient to train and validate a CNN capable of 

accurately (F1 = 0.93) segmenting imagery from a test set at a single site. However, 40 images 

from five different sites with augmentation did not provide the variability needed to train a 

generalized model capable of segmenting imagery from three or more sites with accuracies F1 

>= 0.9. We made use of cyclic learning rates and trained networks for 100 epochs. Our results 

demonstrate that optimizer ’Adam’ outperformed ’RMSprop’ and ’dice-loss’ outperformed 

’binary cross-entropy’ as a loss function with models without residual connections. We 

provide a workflow that can be used to apply DL to binary classification problems within the 

growing body of image data sets in earth and water sciences. 
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     PLAIN LANGUAGE SUMMARY 

We describe a step-by-step workflow for pre-processing data, labeling imagery and training a 

Convolutional Neural Network (CNN) to perform binary semantic segmentation. We use this 

UNet model with Residual Connections (Res-UNet) to delineate subaerial sandbars in time 

series imagery from Grand Canyon. We provide discussion and insight into network 

architecture, training sample size, and hyperparameter choice. Such methods can be adapted 

for other time series of coastal or fluvial remotely sensed images. 

 

3.1. INTRODUCTION 

Sandbars are an important component of the physical and biological systems in riparian areas 

around the world and specifically in the Grand Canyon. Sandbars in Grand Canyon serve as 

high-elevation storage locations for fine (<2mm) sediment, create backwater habitat for native 

fish (Valdez & Ryel, 1995; Converse et al., 1998; Valdez et al., 2012), and provide a source 

of aeolian sand that protects archaeological sites and mitigates gully erosion (Draut & Rubin 

2007; Sankey et al., 2018). Sandbars are the preferred camping location for nearly 25,000 

annual river users (Kearsley et al., 1994; NPS, 2006). Sandbars in Grand Canyon have 

decreased in size and extent beginning with the 1963 closure of Glen Canyon Dam (Dolan et 

al., 1974). To mitigate sandbar erosion, controlled floods have been used to re-distribute sand 

deposited in the channel by tributary flooding to high elevations within eddies (Grams et al., 

2015). Images from a network of remote cameras are one of the data sources used to monitor 

the effects of controlled floods (Grams et al., 2018). These cameras capture five oblique 

images per day at 43 different sandbar monitoring sites throughout Grand Canyon, resulting 

in a large data set that currently contains over 1,000,000 images. 
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The promise of this collection of daily images is the measurement of short-term 

changes in fine sediment storage and correlation of those changes to particular flow patterns, 

which is of interest to river managers. However, quantification of sandbar change from a 

dataset of nearly a million images requires an automated method of accurate segmentation of 

pixels containing subaerial sand in oblique imagery, which often contains significant 

shadows, solar glare, and changing water color. 

Deep Learning (DL) has increasingly become an important tool in the arsenal of water 

resource scientists (Shen, 2018). DL is a subset of the larger field of artificial intelligence, 

which performs automatic feature extraction. Contrast DL with traditional Machine Learning 

systems, which required features or patterns of interest to be define beforehand (Arif et al., 

2020). In DL, the practitioner provides input data and ground-truth data and DL networks 

“learn” which features or patterns to utilize. This learning process automatically tunes 

internal adjustable parameters, often called “weights” that define the input-output function. 

Such parameters would have to be specified beforehand in traditional machine learning 

methods (Lecun et al., 2015). Convolutional Neural Networks (CNNs) are a class of artificial 

neural networks (ANNs) within the field of DL. CNNs are designed to perform classification 

tasks on image-like arrays through a filtering process known as kernel convolution (Lecun et 

al., 2015). During kernel convolution, image arrays are successively down-sampled creating 

progressively smaller feature maps that allow for the abstraction of high-level features, object 

detection, and classification (Lecun et al., 2015). The word ’deep’ in this context refers to the 

inclusion of one or more hidden layers within the neural network. Advances such as the Fully 

Convolutional Network (FCN) (Long et al., 2015), and encoder-decoder architectures 

(Ronneberger et al., 2015; Badrinarayanan et al., 2017) have improved CNN performance on 

pixel-wise classification tasks, known as semantic segmentation. CNNs have recently been 

used to segment water bodies (Li et al., 2018; Chu et al., 2019; Ling et al., 2019; Nath et al., 
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2019), clouds (Guo et al., 2020), glaciers (Baumhoer et al., 2019), ocean eddies (Lguensat et 

al., 2018), underwater vegetation (Burguera, 2020), and a host of other natural textures in 

remotely sensed imagery (Buscombe et al., 2018; Buscombe & Carini, 2019). 

Fluvial landscapes are currently undergoing rapid change due to human activities 

(Piégay et al., 2020). CNNs offer tremendous potential in the burgeoning field of fluvial 

remote sensing to monitor and assess those changes (Marcus & Fonstad, 2010; Carbonneau et 

al., 2012; Shen, 2018; Piégay et al., 2020). The availability of low-cost remote camera 

systems and UAVs has led to the proliferation of large fluvial and coastal monitoring imagery 

datasets (Bertoldi et al., 2012). In this paper, we apply DL to one of the first and longest-

running fluvial monitoring networks, which has been collecting oblique images of sandbars 

in Grand Canyon since 1990 (Dexter et al., 1995). 

While attempting to apply DL and CNNs to our dataset, we found that many of the 

practical questions for the application of DL in this context remained unanswered. Most of 

the CNN studies focus on evaluating network performance on very large, pre-labeled 

competition datasets containing street scenes, animals, or anthropogenic objects (Cheng et al., 

2017; Garcia-Garcia et al., 2017). CNN used in the natural sciences most often involves 

segmenting tiles from satellite imagery (Chu et al., 2019; Ling et al., 2019; Carbonneau et al., 

2020; Guo, Y., et al., 2020; Jiao et al., 2020) with a few notable exceptions (Buscombe et al., 

2018; Buscombe & Carini, 2019; Nath et al., 2019; Burguera, 2020). Little work has been 

done on oblique land- or UAV-based time-series imagery (Carbonneau et al., 2020). 

Labeling imagery for training, validation, and testing neural networks is a tedious and 

time-consuming process. Therefore, we wanted to determine the minimum number of labeled 

images required to train a CNN that can accurately segment time-series imagery from a single 

site of interest (a sandbar), and from multiple sandbars with a range of different scales and 

imaging angles. We compare the performance of three different neural networks, all 
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variations of the symmetrical encoder-decoder type UNet architecture, which was originally 

developed for segmenting medical imagery, but has since been used to segmented sea ice 

flows, water, clouds, and to delineate coastlines (Ronneberger et al., 2015; Yan and Dong, 

2019; Guo, H., et al., 2020; Jiao et al., 2020; Heidler et al., 2021; Nagi et al., 2021). Given 

these recent applications, we use it here to delineate sandbars. If this application is successful 

along the Colorado River, it could be widely applied to other dam-impacted systems around 

the world.  

In a UNet architecture, down-sampled image arrays from the contracting (encoder) 

path are concatenated with up-sampled layers from the expanding (decoder) path acting as 

long-skip connections recovering spatial information lost during down-sampling (Drozdzal et 

al., 2016). One key advantage of UNet models is that they can be trained end-to-end using 

relatively few training images, if image augmentation is applied to artificially increase the 

size of the training dataset (Ronneberger et al., 2015). 

The addition of residual connections to a CNN was first described by He et al., 

(2016). In a UNet with Residual connections (Res-UNet), each block of layers is replaced 

with a residual block containing batch normalization and activation layers creating shortcuts 

or short-skip connections. Such short-skip connections effectively simplify the loss landscape 

(Li et al., 2018), allowing for much deeper networks to be trained, and addressing the 

problem of vanishing gradients when backpropagating across many layers (Drozdzal et al., 

2016; He et al., 2016). We examine the effect of residual blocks, dropout layers, image 

augmentation, optimizer choice, and loss function choice on semantic sandbar segmentation 

accuracy. We address the following specific questions: 

• Which of the three CNN architectures UNet-1, UNet-Drop, or Res-UNet performs 

best after 100 training epochs? 
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• Which loss function and optimizer result in the highest model accuracy after 100 

training epochs? 

• How many labeled images are needed to train and test a site-specific CNN with a 

binary segmentation accuracy of F1 >= 0.9? 

• How many labeled images, and from how many sites, are needed to train a 

generalized model with a binary segmentation accuracy of F1>= 0.9? 

This paper presents the entire workflow from image pre-processing, labeling, and 

CNN training, to model evaluation for a time series of fluvial, remotely sensed oblique 

imagery. All of our training and testing was performed on a relatively modest desktop 

computer with a GPU or in Google Colab notebooks using Python, Keras, and Tensorflow. 

This case study can serve as a starting point for other water scientists in attempting to apply 

DL to fluvial or coastal image data sets. 

3.2. DATA 

Beginning in the 1990s, a network of remote camera systems was installed in Grand 

Canyon, originally containing film cameras capturing a single image per day at 43 different 

sandbar monitoring sites. Beginning in 2008, film cameras were replaced with digital 

cameras capturing up to five images per day at each site. Each of these camera systems 

contains a solar panel, data logger, 12V battery, digital single lens reflex camera, memory 

card, and an 18-55mm zoom lens mounted in a weatherproof box. Greater detail about these 

systems is provided by Bogle et al. (2013), and the specific details of their deployments in 

Grand Canyon are described by Grams et al. (2018). 

There is significant intrasite and intersite variability within the Grand Canyon remote 

camera data. One of the motivations of this research was to understand how many labeled 

images from a single site are needed to provide a site-specific CNN with the requisite 
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intrasite variability to generalize and allow for segmentation of unseen images from that site. 

In addition, we attempt to understand how many labeled images, from how many different 

sites, are needed to provide a CNN with the intersite variability necessary to generalize to 

unseen sandbar sites. Intrasite variability occurs because of annual changes in solar radiation 

angle, flow, and suspended sediment concentration. Intersite variability is caused by 

differences in site size, terrain, and camera accessibility. Cameras tend to be placed across the 

river channel from monitoring sites on talus slopes. Changes in river width, surrounding 

bedrock type, and vegetation add to this variability. 

Sandbar monitoring sites in Grand Canyon are named for the river mile, downstream 

from Lees Ferry, where they are located. One site of particular interest, which is the subject 

of the single-site model, is 30-mile. This site was chosen for testing because we have specific 

morphological questions about this site, and it contains unobstructed views of mostly open 

sand. Nine additional sites were chosen for CNN testing to provide a range of intersite 

variability. Imagery from four of those sites and 30-mile are used for model training and 

validation, and the remaining five are used only for testing model accuracy. A random sample 

of imagery stratified by month was gathered for each site (up to 125 from each site), and 

additional imagery from infrequent controlled floods were included. Images are 2592 by 

3888 pixels, (.JPG) format with three bands (R-G-B).  Imagery depicts a ground area ranging 

from 0.25 – 2 hectares depending on the height and angle of the camera. A map showing the 

distribution of sites in this study is shown in Figure 3.1. 
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Figure 3.1 Map of the study area in Grand Canyon National Park. Data from ten remote camera sites 

are used in this study and shown on the map. Below the map is a diagram showing how data were 

split into the various train and test image datasets described in section 3.2.4 below 
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3.3. METHODS 

3.3.1. Image pre-processing 

Oblique images show a 3-dimensional scene projected onto a 2-dimensional surface, 

where equally sized pixels represent different distances in 3-dimensional space. In order to 

measure sandbars in oblique imagery, images must be warped such that the pixels in the 

image plane, represented by X, Y coordinates, have an equal area in a projected coordinate 

system. We use NAD 83, Arizona Central State Plane FIPS 0202 meters, where locations are 

defined by Eastings and Northings (E, N). We, hereafter, refer to coordinates in this projected 

coordinate system as real-world coordinates 

Warping images, a process known as rectification, involves several steps. First, 

camera-lens distortions are removed through camera calibration. Second, a transformation 

matrix or homography is calculated using ground control points (GCPs) visible in a reference 

image for each site and surveyed to determine their location in real-world coordinates. Third, 

registration is performed to map all images in each set to the reference image containing 

GCPs for which the homography is calculated. Finally, the homography is applied to warp 

each registered and undistorted image to a nadir view with equal area pixels corresponding to 

the real-world coordinates. 

3.3.2. Removing distortion 

Camera calibration is the process of estimating the intrinsic matrix of a camera-lens 

system (Hartley & Zisserman, 2003). This step is necessary to: correct for tangential and 

radial distortion inherent in the camera-lens system, determine the focal length in pixels, and 

to find the principal point or optical center of the image. Ideally, cameras with lenses of a 

fixed focal length are calibrated in the lab before deployment. The array of remote cameras in 
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Grand Canyon contains a variety of different camera models and zoom lenses. Focal lengths 

cannot be fixed beforehand and are adjusted in the field to fit each camera location. Camera 

calibration took place in situ using a 10x10 checkerboard pattern printed on aluminium. 

Between 15 and 30 images were taken of the calibration checkerboard at different distances 

and angles. The camera calibration toolbox in Matlab was used to determine the intrinsic 

matrix for each camera deployment (Bouguet, 2015). The intrinsic matrix and distortion 

parameters were used with the cv2.undistort() module in OpenCV 4.2 and Python 3.6 to 

remove distortion from each image. 

3.3.2.1. Rectification 

To rectify imagery from sandbar sites, reference images were taken during annual 

sandbar monitoring trips in 2017 and 2019. Black and white panels, 1x1m in dimension, were 

photographed from the remote cameras and surveyed with a total station tied to permanent 

control points with known real-world coordinates. The cv2.findHomography() function in the 

OpenCV module was used to develop a perspective transformation between the X, Y image 

coordinates of GCPs and their real-world coordinates by minimizing the back-projection 

error with a simple least-square algorithm (Bradski, 2000). For each homography, an error 

surface was generated which displays the error between the reprojected image coordinates 

and the real-world coordinates of each GCP and then values between GCPs were interpolated 

to provide an estimate of rectification error across each sandbar site as shown in Figure 3.2. 
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Figure 3.2 Original reference image on the left for the 30-mile sandbar monitoring site, with the 

rectified image in the center. Reprojected image coordinates for GCPs can be seen in blue, real-world 

coordinates in red. The error surface of interpolated error (in meters) between the reprojected and 

real-world GCP points is shown on the right. 

3.3.2.2. Registration 

Remote cameras deployed in the field are subject to changes in temperature and 

pressure as well as potential disturbance from, falling rock, wildlife, or backcountry travelers. 

Remote cameras undergo routine bi-annual maintenance where memory cards are exchanged, 

and faulty batteries are replaced. Maintenance of this sort and the other disturbances 

mentioned can lead to camera movement. Each time the camera moves, the relationship 

between the image plane and the scene changes. In order to minimize the number of 

rectifications with surveyed GCPs needed for each site, registration, or image alignment, was 

conducted. Registration is the process of mapping images to a common reference image so 

that all images share the same field of view. We employed three different registration 

methods depending on the needs of each specific site. 

The first two methods involve correspondences in the Fourier domain. Fast Fourier 

transform-based (FFT) methods use low-level features such as edges and corners to match 

images that have been translated and rotated with respect to one another (Reddy & Chatterji, 

1996). The first method uses the ’imreg_dft’ module developed by Goklhe (https:// 

pypi.org/project/imreg/) and implemented in Python 3.6. The imreg_dft method is robust and 
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works most of the time. However, it takes between two and four minutes per image. The 

second method is noticeably faster, 10 - 60 seconds per image, but less robust to significant 

changes in illumination and may fail in images with sharp black borders introduced when 

radial distortion is removed at remote cameras with shorter focal lengths (18 - 24mm). This 

second method is also based on FFT and is taken from Grams et al. (2018). The third method 

utilizes the cv2.findTransformECC() and cv2.warpPerspective() function in the OpenCV 

module in Python. This third method makes use of the Enhanced Correlation Coefficient 

algorithm, which is invariant to photometric distortions in contrast and brightness 

(Evangelidis & Psarakis, 2008). The advantage of this method is that it uses a homography 

rather than a translation and thus it can deal with warping and scaling associated with small 

changes in focal length that occur due to lens creep or camera maintenance. This third 

method is the slowest taking between three and ten minutes per image. 

3.3.2.3. Labeling imagery 

Labeling imagery is a necessary but time-consuming process needed to generate train, 

validation, and test data for CNNs. We utilized the labeler found in 

https://github.com/dbuscombe-u sgs/dl_tools/ , a tool developed by Buscombe et al. (2018), 

which accepts manual annotations and expands those annotations using a conditional random 

field (CRF), a type of classification and graphical modeling known as structured prediction, 

to label every pixel in the image (Lafferty et al., 2001). The labeling process takes between 

two and fifteen minutes per image labeling the 475 images in the various test and train sets 

took approximately 75 hours. Therefore, one of the goals of this study was to determine the 

minimum amount of training data needed to accurately segment imagery. 

This case study involves binary segmentation with a target class (subaerial sand) and 

all else not in the target class. However, the networks described here can easily be adapted to 

multiclass problems. Our first attempts at segmentation involved multiple classes, segmenting 

https://github.com/dbuscombe-u%20sgs/dl_tools/
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pixels into sand, water, boats, tents, vegetation, glare, rocks, sky, etc., to obtain information 

about vegetation or sandbar use from the data, but eventually a binary approach was selected 

because there were significant class imbalance issues with small or rarely occurring classes or 

classes not shown at some sites. Increased numbers of classes led to increased labeling times 

as well. Increased number of classes are also known to significantly reduce classification 

accuracies from greater confusion among classes (Congalton and Green, 2019). Labeling an 

image with five classes took approximately 3- 5 minutes more per class. Pixels within images 

were labeled as either ‘1’ = sandbar (the subaerial or emergent portion of the bar), or ‘0’ = 

not sandbar. The outputs of the labeling process are image-label pairs. Images are in the 

(.JPG) format, and labels are (.PNG) binary masks containing values of 0 and 255. To input 

the image-label pairs into the CNN for training and testing, the images and labels were both 

converted into arrays of unsigned integers (uint8). Pixel values in the label array (0-225) were 

converted to values of 0 or 1, and both the images and labels were resized to 128 x 128 pixels 

for faster convolution to reduce computing power needed, and to reduce the size of imagery 

and masks and storage space required. Storage and organization of imagery data is an 

important concern. During each step of image processing copies of each image were made so 

that the accuracy of each step could be examined. With a dataset of over 1,000,000 images, 

each new copy of the image and mask multiplied the amount of storage space required to 

store the dataset. 

3.3.3. CNN semantic segmentation 

3.3.3.1. Neural network architectures 

We tested three different CNN architectures. All three utilize the UNet encoder-

decoder structure. The first model, which we call UNet-1, contains six blocks in the 

contracting path, each with two Conv2D layers and one Max Pooling layer. The expansive 
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path also contains six blocks each with two Conv2D layers, one concatenated layer with input 

from the contracting path, and one conv2D transpose layer before a final Conv2D prediction 

layer. 

The second model we tested ’UNet-Drop’ has the same structure as UNet-1 except 

that it contains dropout layers between each of the Conv2D layers in each block of the 

encoder and decoder paths. The purpose of a dropout layer is to randomly drop out a given 

percentage of the data between the convolutions to reduce overfitting and make the model 

more generalizable (Srivastava et al., 2014). We varied the dropout proportion from 0.1 to 0.3 

throughout UNet-Drop. We would expect a certain amount of overfitting to benefit a model 

trained and used for segmenting a single-site. However, when it comes to training a multi-site 

sandbar segmentation model, we expected the dropouts included in UNet-Drop to improve 

generalizability and accuracy on imagery from unseen sites. 

The third network type we tested ‘Res-UNet’ makes use of residual connections. 

Residual blocks create short-skip connections as described above. The differences between 

the three models are highlighted in Figure 3. 
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Figure 3.3 A simplified diagram of UNet-1 showing the U-shaped structure, the blocks of 

convolutional and pooling layers on the encoder path (top left side), and concatenated layers along 

with conv2DTranspose layers along the decoder path (top right side). Two blocks of the contracting 

path of all three models tested in this research are shown to highlight their differences (lower). UNet-1 

on the left, UNet-Drop in the middle, and Res-UNet on the right. UNet-Drop has the same structure as 

UNet-1 except for the addition of dropout layers and Res-UNet contains short-skip connections using 

batch normalization and activation layers. UNet-Drop has the same structure as UNet-1 except for the 

addition of dropout layers and Res-UNet contains short-skip connections using batch normalization 

and activation layers. 

 

3.3.3.2. Hyperparameters 

In the context of DL, hyperparameters are user-defined settings that control how 

CNNs learn. Learning in this context is an attempt to minimize loss--or the difference 

between predicted classifications and ground-truth data. The loss function is the 

hyperparameter that defines how loss is calculated, a performance metric. Neural networks 

may be made up of tens of thousands of different weights and biases that are gradually 

adjusted as the network is trained and features or patterns are learned. Loss functions are 

high-dimensional and non-convex, they can be visualized as a landscape where areas of high-
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elevation have high loss and areas of low elevation have low loss, the location of any point in 

this landscape is defined by values of weights and biases (Li et al., 2018). With each pass 

through the training data, known as an epoch, the loss is re-calculated based on the chosen 

loss function (Burkov, 2019). The optimizer is the hyperparameter that acts as a solver for 

this minimization problem, providing instructions on which direction to move through the 

loss landscape to find the global minimum in the landscape rather than local minimums 

(Burkov, 2019). Learning rate is the hyperparameter that specifies the size of the steps you 

take while moving through the loss landscape (Burkov, 2019). 

For this research, we varied the learning rate cyclically during network training 

between a maximum learning rate of 0.0001 and a minimum learning rate of 0.000001. Using 

cyclic learning rates removes the need to tune for this hyperparameter provided that the range 

is reasonable and can improve classification in fewer iterations relative to fixed learning rates 

(Smith, 2017). We tried two popular optimizers; RMSprop and Adam, which are both variants 

of Stochastic Gradient Descent (Burkov, 2019). A discussion of the differences between these 

two can be found in Ruder (2016). We tried two different loss functions, which are 

commonly used with UNet architectures, trained for binary segmentation; binary cross-

entropy and dice-loss (Ronneberger et al., 2015; Drozdzal et al., 2016; Sudre et al., 2017; 

Diakogiannis et al., 2020). We chose a relatively small batch size of five, because of the 

memory limitations of our PC. Breuel (2015) tested a range of batch sizes between 1 and 

1000 and found that, with CNNs containing ReLu activation functions, small batch sizes 

yielded the lowest test set errors. In all three of our models, ReLu activation functions were 

used within the convolutional blocks and a sigmoid activation function was used in the final, 

output convolutional layer. During initial testing, our model loss and accuracy began to 

plateau after about 70 epochs and training longer than 100 epochs did not improve model loss 

or accuracy. 
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3.3.3.3. Image augmentation 

Image augmentation is commonly used to artificially increase the number of images 

in small CNN training datasets to increase variability and reduce overfitting (Ronneberger et 

al., 2015; Xu et al., 2016; Perez & Wang, 2017). Augmentation reduces overfitting by 

preventing the network from learning features based on their scale or relative location by 

flipping, scaling, and rotating them. Keras contains methods for on-the-fly augmentation 

where augmentations are randomly applied to imagery in-place as training occurs. However, 

we chose to create separate augmented data sets for the sake of repeatability and control. 

We applied random adjustments to contrast and brightness, random rotations, and 

flips using the Python Image Library (PIL) to create larger augmented data sets. Examples of 

such augmentations are shown in Figure 3.4. Researchers must be careful to apply 

augmentations that are realistic for the data and represent the variability within the larger 

image data set. 

 
Figure 3.4 Examples of image augmentation performed on a rectified image from the 30-mile site. 

The original image (a); the rotated image (b); mirrored image (c); random brightness adjustment (d); 

contrast augmentation (e); mirrored, rotated, contrast augmented image (f). Images undergo a 

combination of these augmentations to create a much larger dataset of images, which should be 

representative of conditions in imagery throughout the dataset. 
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3.3.3.4. Training, testing, and validation data 

One of the motivations of this research was to determine the number of labeled 

images needed to train, validate, and test a site-specific model for sandbar segmentation at the 

30-mile site, and how many labeled images were needed to train, validate, and test a 

generalized segmentation model which could be used on many, or all of our sites. To address 

these research questions, several test and train sets were generated. Image-label pairs were 

randomly selected from the full set of labeled images; the test sets were held out and only 

used for final model comparison. One_site_test contains 25 images or 20% of the total (125) 

image-label pairs from the 30-mile site. 

To test the generalized sandbar model, we created three test sets: Three_site_test , 

which contains 10 image-label pairs from each of three sandbar sites (30 total); 30-mile, 22-

mile and 23-mile (figure 3.1). Five_site_test contains 10 image-label pairs from five sites 

including the aforementioned three sites with imagery from 56-mile and 145-mile added in 

(50 total). Image-label pairs from all five of these sites are included in the training data. 

Ten_site_test contains 10 image-label pairs from the aforementioned 5 sites with additional 

image-label pairs from 91-mile, 94-mile, 104-mile, 122-mile, and 137-mile included (100 

total). Imagery from these last five sites are not included in training data. This final test set is 

used to evaluate the performance of the generalized sandbar segmentation model on unseen 

sandbar sites. 

In order to determine the minimum number of images needed to train a single-site 

neural network for 30-mile, we created the following training data sets; One_site_25, 

One_site_25_aug, One_site_50, One_site _50_aug, One_site_100, One_site_100_aug. These 

contain 25, 50, and 100 image-label pairs with and without image augmentation, respectively, 

from the 30-mile site. These training sets allow us to investigate the effects of image 
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augmentation and increasing the number of training image-label pairs, on segmentation 

accuracy. 

To understand how many images, and from how many different sites, a generalized 

neural network needs to accurately segment imagery from five or more sites, we created the 

following training data sets; Three_site, Three_site_aug, Five_site, and Five_site_aug. Those 

training sets contain: 40 image-label pairs from each of the sites in Three_site_test (120 

total), and an augmented version of that train set, and 30 image-label pairs from each of the 

sites in Five_site_test (150 total) along with an augmented version of that train set. A visual 

representation of which sites are in the various sets can be found in Figure 3.1 (above). 

Image-label pairs within the training datasets are used for CNN training and 

validation. For each training set, image-label pairs were further subdivided using k-folds 

cross-validation into (k=5) ‘Fold-n-train’ (0.8 of train images) and ‘Fold-n-validation’ (0.2 of 

train images) sets. During model training, the Fold-n-train image-label pairs are used in the 

learning process to fit model weights, while the Fold-n-validation image-pairs provide an 

unbiased evaluation of the model fit at the end of each training epoch and assist in 

hyperparameter selection. For each of the five folds of the data, a separate model is trained, 

then all five fold-specific models and an ensemble are used to evaluate model performance on 

the test sets. Model performance is evaluated based on the average accuracy of the 

segmentation results across folds and using the ensemble model on each of the training sets, 

we use F1-score as the metric for segmentation accuracy (Goodfellow et al., 2016; Burkov, 

2019; Carbonneau et al., 2020) (Equation 3.1). 

   (Eq. 3.1)  𝑭𝟏 = 𝟐
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
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F1-score is also known as the dice similarity coefficient and is numerically equivalent 

to the dice-loss function we tested during model training. We chose the relatively high 

accuracy threshold of F1 >= 0.9 to determine segmentation success. For any single image, a 

value of 75% for overall accuracy is considered acceptable in most remote sensing 

applications (Congalton & Green, 2019) and (70 – 80%) accuracies are common in fluvial 

remote sensing studies (Carbonneau et al., 2020). However, when trying to quantify short-

term erosion and deposition between images, the errors compound when detecting change 

between images and thus we chose a higher accuracy threshold (Congalton & Green, 2019). 

3.3.3.5. Experiments 

Loss function choice and optimizer choice were examined by training CNNs using the 

single-site training sets (One_site_ …) and evaluating their performance on the validation 

data. All three UNet models were trained using the single-site training sets and evaluated 

with the single- site test set (One_site_test). Each of the different models were also trained 

using the six multi-site training sets and evaluated for their performance on the three multi-

site test sets. 

3.3.3.6. Computing hardware and software 

CNNs were built and implemented using the Keras API, Tensorflow 2.1, and Python 

3.6. Many of the faster training models with smaller training and validation sets were trained 

using Google ColabPro and their Tesla P100 PCIE GPUs. However, due to run- time 

restrictions on Google Colab and long training times for augmented image data sets, a 

Quadro P2000 GPU was utilized on a Dell precision 3630 desktop PC for all training with the 

larger augmented data sets. 
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3.4. RESULTS 

3.4.1. Optimizer and loss function 

We trained all three models using the 100-image, One_site_100 train set to evaluate 

optimizer performance on the validation data. We found that using Dice-loss as the loss 

function and Adam as the optimizer resulted in higher F1-scores on the validation data after 

100 epochs with the UNet-1 and UNet-Drop models when averaged across all five folds of 

the data. The accuracy of the Res-UNet model was not significantly affected by loss function 

or optimizer choice as shown in Figure 3.5. 

3.4.2. Architecture performance 

We compared the model performance of each architecture on the same training set, 

One_site_100_test, to determine which model should be used for single-site segmentation. 

Res-UNet achieved a marginally higher mean accuracy (F1 = 0.89) across five folds after 

100 epochs than UNet-1 (F1 = 0.87) and significantly better than UNet-Drop (F1 = 0.76). 

When tested on training data including augmented imagery from five sites, similar accuracies 

were observed Res-UNet (F1 = 0.87); UNet-1 (F1 = 0.86) and UNet-Drop (F1 = 0.79) 
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Figure 3.5 F1 scores across five folds of the one-site 100 train and validation set. The choice of loss 

function and optimizer does not seem to have a significant effect on the performance of Res-UNet 

after 100 epochs. The use of optimizer Adam does significantly increase performance of UNet-1 after 

100 epochs and the use of dice-loss significantly improves the performance of Unet-Drop after 100 

epochs. 
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3.4.3. Image augmentation 

Models trained with augmented datasets had higher accuracies and lower variability 

in the F1 scores across folds on the same test sets when compared to models trained with 

non-augmented data. Figure 3.6 shows the difference in model performance of the Res-UNet 

models on the single-site training data with, and without, image augmentation. 

 
Figure 3.6 Accuracy of all five folds of Res-UNet CNNs trained with the 30-mile one-site train data 

sets containing 25, 50, and 100 images and corresponding augmented train data sets and tested on the 

One-site test set. 

3.4.4. Evaluating training sample size 

The results in Table 3.1 show that with as few as 25 labeled training images, with 

augmentation applied, a Res-UNet model could achieve the desired accuracy on a test set 

with imagery from the same site. Without augmentation, 100 images were sufficient to train a 

Res-UNet model to achieve the desired accuracy on the single-site test set: One_site_test. 

None of our multi-site training sets were able to achieve the desired accuracy when 

evaluated on test sets containing image-label pairs from more than one site as shown in rows 

12-22 of Table 3.1. Though the Five_site_aug train set, which contains 30 image-label pairs 

from each of five sites, with augmentation applied, was able to reach accuracies of F1 = 0.89 

when evaluated against test sets containing three and five sites whose imagery was also 
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included in the training sets (Rows 14,15 &17). None of our training sets were able to 

generalize to sites outside of the training data with the desired accuracy as shown in rows 20-

22 of Table 3.1, with the Ten_site_test. 

Table 3.1 Selected Accuracies for CNNs trained on various train and test sets, all models shown were 

trained with optimizer Adam, and loss function dice-loss. F1 scores >= 0.9 are in bold. 

# DCNN Type Train Set Test Set F1 Ensemble F1 fold-Mean

1 Res_UNet one_site_25 one_site_test 0.83 0.64

2 Res_UNet one_site_25_aug one_site_test 0.93 0.90

3 Res_UNet one_site_50 one_site_test 0.89 0.87

4 Res_UNet one_site_50_aug one_site_test 0.91 0.90

5 Res_UNet one_site_100 one_site_test 0.92 0.90

6 Res_UNet one_site_100_aug one_site_test 0.95 0.94

7 Res_UNet three_site_aug one_site_test 0.93 0.93

8 Res_UNet three_site_aug one_site_test 0.88 0.88

9 Res_UNet five_site_aug one_site_test 0.93 0.90

10 UNet_1 five_site_aug one_site_test 0.91 0.90

11 UNet_Drop five_site_aug one_site_test 0.85 0.82

12 Res_UNet three_site_aug five_site_test 0.80 0.77

13 Res_UNet three_site_aug ten_site_test 0.63 0.60

14 Res_UNet five_site_aug three_site_test 0.89 0.87

15 UNet_1 five_site_aug three_site_test 0.89 0.87

16 UNet_Drop five_site_aug three_site_test 0.81 0.80

17 Res_UNet five_site_aug five_site_test 0.89 0.87

18 UNet_1 five_site_aug five_site_test 0.88 0.86

19 UNet_Drop five_site_aug five_site_test 0.80 0.79

20 Res_UNet five_site_aug ten_site_test 0.71 0.68

21 UNet_1 five_site_aug ten_site_test 0.70 0.68

22 UNet_Drop five_site_aug ten_site_test 0.65 0.64
 

 

3.5. DISCUSSION AND CONCLUSIONS 

When trained and tested on the same imagery using the same hyperparameters, the 

Res-UNet network clearly performed better than UNet-1 and UNet-Drop on a single-site 

One_site_test set. This is consistent with results from Li et al., (2018) that points out that, 
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when networks become sufficiently deep, loss landscapes can become chaotic and difficult to 

train; the residual connections effectively flatten the loss landscape. Drozdzal et al. (2016), 

found that networks with both long and short skip connections, like Res-UNet, performed 

better and converged faster than networks without short-skip connections. 

Our results show improved performance when using dice-loss as the loss function in 

UNet-1 and UNet-Drop, and similar results were found by Drozdzal et al., (2016) who 

showed cleaner segmentation results when comparing dice-loss and binary cross-entropy. We 

also show improvement when using Adam over RMSprop as the optimizer with UNet- 1 and 

UNet-Drop. However, Res-UNet does not appear to be as sensitive to optimizer or loss 

function choice, possibly due to a simplified loss landscape produced by (short-skip) residual 

connections. A simplified loss landscape might also explain why there was less variability in 

model performance across different folds of the data with the Res-UNet model relative to 

UNet-1 or UNet-Drop, as can be seen above in Figure 3.5. 

The purpose of including dropout layers in the UNet-Drop architecture was to 

evaluate if adding dropout layers would make the CNN more generalizable to sites it was not 

trained on. If this were the case, we would expect the performance of UNet-Drop to be higher 

than UNet-1 on test sets containing image-label pairs from sites not seen in train sets, such as 

in the Ten_site_test. We did not see the expected increase in ensemble F1-score in UNet-

Drop compared to UNet-1 as shown above in rows 21-22 of Table 3.1. More work should be 

done to test different configurations of dropout layers, and different percentages of dropout. 

Our image augmentation method created separate augmented data sets which 

increased the size and training time significantly. For example, the One-site 100 data set, with 

augmentations applied grew to 5,400 images, and training time increased from twenty-five 

minutes per fold on the Tesla P100 GPU available through Google Colab to nearly six hours 

per fold on a Quadro P2000 GPU on a desktop PC. Due to runtime restrictions, long training 
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sessions will often cause Google Colab to timeout, which necessitated the use of a desktop 

PC with a GPU for augmented data sets. While the training-times increased significantly with 

augmented data, this one-time cost resulted in a model with improved model performance. 

The results in Figure 3.6 also show that we were able to achieve an accuracy of F1 >= 0.9 

with 100 training images from a single site, but also with fewer images using image 

augmentation. Researchers must choose whether to spend time creating larger labeled data 

sets or implementing image augmentation resulting in longer training times. 

We found that a site-specific Res-UNet model could be trained and tested with as few 

as 50 images (25 for training and validation, and 25 for testing) for binary semantic 

segmentation and achieve an accuracy of F1 = 0.93 (see row 2 of Table 3.1), if image 

augmentation is applied. Although the generalizability of our results is somewhat limited 

because we only tested the single-site workflow on one site (30-mile), we expect similar 

performance at other sites that have similar features. Future work will include single-site 

testing for several other sites. 

Importantly, we also found that our multi-site train set with augmentation did not 

provide the intersite variability needed to train models to segment multiple sites to our 

predetermined accuracy threshold, or to generalize to sites outside of the train set. Ensemble 

accuracy for the Res-UNet trained with Five_site_aug and tested on Five_site_test achieved 

an ensemble accuracy of F1 = 0.89 (row 17 of Table 3.1). This leads us to believe one, or all 

of the following are true: 1) 30-mile single-site network was overfit to the image-label pairs 

from that site; 2) adding more sites in the same proportion increases model generalizability at 

the expense of accuracy by introducing more variability into the CNN’s ‘sandbar’ class, or 3) 

imagery from particular sites might be more difficult to train a CNN to segment than for 30-

mile, and that for certain sites more than thirty images are needed. 
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In this study, we did not assess the optimal size of a test set. We somewhat arbitrarily 

chose 25 images for a single-site, 30 for three sites (ten from each site), 50 for five sites (10 

each), and 100 for ten sites (10 each). Some of the performance loss observed as trained 

models were tested on the Five_site_test and Ten_site_test sets likely results from the 

increased number of images in the unequal sized test sets. We would expect that with each 

additional image in a test set, the set would have increased variability until, at some point, 

most of the inter- and intrasite variability in the imagery dataset is captured by the test set, or 

the test set is of a size that it is representative of the imagery as a whole. We carefully 

included images capturing the range of lighting, the color of the water, and size conditions at 

each bar while minimizing computational time and time spent labeling imagery. Future 

studies should gradually increase the size of the test sets, observing decreases in accuracy 

with the increased test-set size until accuracy plateaus suggesting much of the intersite or 

intrasite variability had been captured within the test set. Image augmentation could also be 

conducted on the test sets to artificially increase the test set size and variability. 

The goal of this research was not to create a CNN, which could identify subaerial 

sand or sandbars in all imagery outside of Grand Canyon. Instead, we trained specialized 

neural networks end-to-end for our specific dataset and research needs. While certain aspects 

of our data set are unique to Grand Canyon, large coastal and fluvial imagery datasets are 

becoming increasingly common, and many have similar attributes. We demonstrate that with 

relatively little computing power, and with a minimal amount of time spent labeling imagery, 

an accurate CNN could be trained for binary semantic segmentation with time-series image 

data containing natural textures. 

Future studies might consider comparing the accuracy of encoder-decoder CNNs like 

those used here with other type of CNNs, such as those used by Buscombe and Richie (2019) 

and Carbonneau and others (2020). Subsequent segmentation attempts could also experiment 
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with segmentation before rectification and registration which may improve segmentation by 

increasing resolution during segmentation and limiting the effects of pixel warping during 

rectification at the expense of increasing training times and the need for more advanced 

GPUs. The sequence of steps we utilized in thus study was a product of methods evolving 

through time, storage limitations, and computational limitations and thus more 

experimentation is warranted to determine the ideal sequence. 

As water scientists trying to understand how to apply DL to water resource problems, 

we found that much of the DL literature is focused on very large image test sets with tens of 

thousands of unique images and scenes. Little guidance exists on how much labeled imagery 

is needed to train, validate, and test a CNN tailored to data that is focused on change 

detection at one or a few sites with significant variability in image angle and lighting 

conditions. Our research can serve as an example and a starting point for other water 

scientists attempting to apply DL to their datasets. 
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4.1. ABSTRACT 

Sandbars are salient features in the Colorado River that allow for recreation, provide 

habitat for riparian vegetation, and create backwater habitat for native fish species. Daily 

oblique images captured by remote cameras from 41 sandbar monitoring sites on the 

Colorado River, Grand Canyon were used to examine mass failure occurrence. Then a 

detailed analysis of spatial variability in the sub-annual response to discharge patterns on 

daily, monthly, and seasonal timescales was conducted at three sites. In addition, a total of 

226 mass failures were identified over ten years at 27 of 41 sandbars examined. Mass failures 

resulted in a mean area loss of between 0.5 - 30% of the exposed sandbar area at two sites. 
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We found evidence that mass failure occurrence is related to monthly and seasonal 

adjustments in discharge, increased discharge variability, and increased daily or monthly 

mean discharges. The accurate quantification of daily erosion and deposition rates at our 

three target sites was hampered by errors in area estimates that equalled or exceeded the 

magnitude of expected rates of change. However, mean monthly area showed significant 

differences in the magnitude and frequency of cyclic erosion and deposition at the three 

reattachment bars. Among them, the 30-mile site was the most responsive to controlled 

floods, but all three sites showed increased area in the six months following controlled floods. 

These gains in area were generally lost with the onset of high summer flows in June, July, 

and August. Antecedent size was a more important driver of changes in monthly sandbar area 

than the monthly flow metrics examined. Our results demonstrate the utility of re-examining 

an existing fluvial imagery dataset to provide policy-relevant findings and elucidate 

relationships between sandbar response and discharge patterns on the dam-affected Colorado 

River through Grand Canyon. 

4.2. INTRODUCTION 

Fluvial remote sensing studies have increased rapidly as new sensing technologies 

have emerged (Marcus and Fonstad, 2010; Carbonneau and Piégay, 2012). Advances in deep 

learning have also improved image segmentation and interpretation within the water sciences 

(Shen, 2018). While new technologies offer tremendous potential for designing future 

studies, further exploring existing datasets was identified as an important avenue for the 

future of fluvial remote sensing (Piégay et al., 2020). For example, large camera networks 

have been employed to monitor vegetation change and bank erosion across river basins, as 

well as beach erosion on large sections of coastline (Nieto et al., 2010; Briere et al., 2011; 

Brinley-Buckley et al., 2016; Splinter et al., 2018). In addition, ground-based camera systems 
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capturing repeat images or videos have been used to observe coastal and fluvial processes at 

high spatial and temporal resolutions with minimal time in the field (Lane et al., 2000; 

Bertoldi et al., 2012). 

Today over half of the world’s major rivers are affected by dams, which collectively 

sequester between 25 and 60 Gt of sediment per year (Nilsson et al., 2005; Walling, 2012). 

Dams reduce sediment supply and alter the flow of their rivers by changing the magnitude 

and timing of discharge resulting in a broad range of morphological responses (Brandt, 2000; 

Schmidt and Wilcock, 2008; Williams and Wolman, 1984). The Colorado River in the Grand 

Canyon is among the most rigorously studied dam-impacted river reaches in the world. A 

robust long-term, annual monitoring program was established with the passage of the 1992 

Grand Canyon Protection Act to ensure that Glen Canyon Dam (GCD) is operated: 

“...in such a manner as to protect, mitigate adverse impacts to, and improve the 

values for which Grand Canyon National Park and Glen Canyon National Recreation Area 

were established, including but not limited to natural and cultural resources and visitor use” 

(Grand Canyon Protection Act 1992, Public Law 102-575). 

In part, a network of remote cameras has been capturing oblique images of sandbar 

monitoring sites in the Grand Canyon since 1990. Until now, those remote cameras have been 

primarily used to complement detailed annual topographic surveys with qualitative 

assessments of imagery examining changes in sandbar size in response to controlled floods 

downstream of GCD. This research is the most comprehensive attempt at re-visiting the 

Grand Canyon remote camera dataset to examine changes in fine sediment storage at daily 

and monthly scales and to measure the effects of controlled floods. Among the resources 

protected by that law are the eddy sandbars within the Grand Canyon. Sandbars provide 

substrate for riparian vegetation, backwater habitat preferred by native fish species, and they 

are the favored camping and picnicking location for up to 25,000 annual river runners 
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(Kearsley et al., 1994; Converse et al., 1998; Nat. Park Serv., 2006; Vincent and Andrews, 

2008; Valdez et al., 2012). 

Sandbars have been a subject of ongoing scientific interest and monitoring due their 

importance to river-based recreation in the canyon, as well as other ecosystem services they 

provide. The focus of current sandbar monitoring efforts is understanding annual and decadal 

trends in fine (<2mm) sediment storage or measuring sandbar response before and after a 

handful of controlled floods. Such efforts measure the cumulative effects of discharge 

patterns which vary on monthly, daily, and hourly scales, providing a conservative estimate 

of sandbar size through time (Hazel et al., in review). However, gaps remain in our 

understanding of cyclic patterns of sandbar deposition and erosion in response to daily 

discharge patterns and monthly shifts in discharge. 

A more detailed understanding of the link between sub-annual discharge patterns and 

variability in morphodynamic response can help inform adaptive management efforts and 

improve future dam operations. The objectives of this research are: 1) to investigate the 

utility and accuracy of repeat oblique images in quantifying daily and monthly changes in 

sandbar size; 2) to examine variability in the sub-annual responses of three dynamic sandbars 

located in similar geomorphic settings to daily and monthly flow adjustments and controlled 

floods, and 3) to use time-lapse videos from 41 sandbar monitoring sites to examine the 

frequency and magnitude of mass failure erosional events as well as the flow patterns related 

to their occurrence. The methods described here could be used to implement detailed monthly 

analyses at more sites within the Grand Canyon imagery dataset or to re-analyze data from 

other fluvial or coastal monitoring systems.  
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4.2.1. Regional setting and site descriptions 

This study is focused on the Colorado River within Grand Canyon National Park 

(Figure 4.1). The gorge of the Colorado River reaches depths of 2,048 m and extends 446 km 

from Lees Ferry in the east to the Grand Wash Cliffs in the west (Annerino, 2000).  By 

convention, sandbar sites within the canyon are specified by their river mile (RM) 

downstream from Lees Ferry, AZ (RM 0). Our study utilizes long-term sandbar monitoring 

sites located between Lees Ferry (RM 0) and Diamond Creek (RM 225) including a total 

distance of 362 km. 

Remote camera systems include a digital camera, zoom lens, memory card, solar 

panel, battery, and data logger housed in a weatherproof container (Bogle et al., 2013). The 

cameras are generally situated across the river from the sandbars on talus slopes providing 

oblique imagery of monitoring sites. Each camera is programmed to capture five images per 

day at 2-hour intervals from 8 a.m. to 4 p.m. MST (Grams et al., 2018). 

A detailed analysis of segmented imagery was carried out at three sites located at RM 

22, 30.7, and 145.9, referred to hereafter as 22-mile, 30-mile, and 145-mile (Figure 4.1). 

These sites were chosen because they share a similar geomorphic setting and are classified as 

narrow reattachment bars (Hazel et al., in press). Sandbars in this grouping are mostly 

unvegetated, have the most dynamic response to controlled floods among the monitored 

sandbar sites, and experience the highest stage changes in the canyon during current dam 

operations (5-6 m) (Mueller et al., 2018). This study aims to understand how discharge 

patterns caused by the operation of GCD affect sandbar area. We chose sites that have similar 

annual trends and geomorphic settings to examine the site-specific responses while 

minimizing inter-site variability (Figure 4.1) more clearly. The dynamics inherent in the 

response of these narrow reattachment bars also make them ideal for examining links 

between discharge patterns and changes in sandbar area. We also conducted an analysis of 
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mass failures using imagery from 2011 - 2021 at 41 long-term sandbar monitoring to assess 

the frequency of mass failures more broadly throughout the canyon. 

 
Figure 4.1 Study Area and the Grand Canyon National Park (highlighted in green), which surrounds 

the gorge of the Colorado River. Glen Canyon Dam is located 24km upstream of Lees Ferry and the 

Colorado River primarily flows from the upper right to the bottom left of the figure. Yellow stars 

indicate the 41 sandbar monitoring sites examined in our time-lapse analysis. Red camera icons 

indicate where more detailed analysis of imagery was conducted at 22-mile, 30-mile, and 145-mile 

sandbars. 

4.2.1.1. Grand Canyon sandbars 

Rivers with bedrock channels generally have steeper gradients and more significant 

stage changes relative to discharge than alluvial rivers (Baker, 1984). In such settings, high 

flows can deposit fine sediment at relatively high elevations, where it becomes less 

vulnerable to erosion and subsequent transport during lower flows (Baker, 1984; Tinkler and 

Wohl, 1998). Sandbars thus represent an important storage location for fine sediment. 

Sandbars are discrete fluvial bedforms composed primarily of fine sediment. In the 

Grand Canyon, sandbars occur as persistent geomorphic features along banks within the 
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debris fan-affected bedrock canyon (Hazel et al., in press).  Debris flows initiated in high-

relief tributaries cause channel constrictions, where high-velocity flow separates from the 

bank creating areas of low-velocity, recirculating current between the bank and the high-

velocity, downstream flow (Webb et al., 1989, Andrews and Vincent, 2007; Mueller et al., 

2014). Such zones may contain one or more eddies, rotational flow structures with more or 

less vertical axes, as well as areas of low-velocity flow that are not organized into rotation 

(Matthes, 1947; Schmidt and Graf, 1990). Such areas may be stagnant, have a preferential 

flow direction, or oscillate in several directions (Schmidt and Graf, 1990). Suspended 

sediment advected into these recirculation zones may be deposited, forming one or more eddy 

sandbars (Schmidt, 1990; Schmidt and Graf, 1990). 

Deposition within recirculation zones occurs where sediment transport capacity is 

lowest, near the points where flow separates from the bank (the separation point), and where 

flow reattaches to the bank (the reattachment point) (Schmidt, 1990; Wiele et al., 1999). 

Deposition occurs at or below the water’s surface and may be limited by the amount of space 

available within the recirculation zone, known as accommodation space (Hazel et al., 1999; 

Schmidt and Grams, 2011). Therefore, deposition is influenced by sediment availability, 

accommodation space, and flow structures in the low-velocity recirculation zone that vary 

from site to site depending on stage, channel geometry, and antecedent bar morphology 

(Schmidt and Graf, 1990; Mueller et al., 2018). 

Before the construction of GCD, the extent and morphology of sandbars in the Grand 

Canyon were the product of abundant sand supply and large seasonal fluctuations in flow 

(Beus and Avery, 1992). The closure of GCD in 1963 eliminated fine sediment flux into the 

canyon from the upper basin of the Colorado River. Today the largest sources of fine 

sediment to the Grand Canyon are the Paria River, which joins the Colorado River at RM 1, 

and the Little Colorado River, which enters at RM 62. Together they contribute between 15 - 
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20% of the pre-dam fine sediment load creating sediment-limited conditions in the Grand 

Canyon (Topping et al., 2000; Wright et al., 2005). 

4.2.2. Flow regimes and controlled floods 

The 1963 closure of GCD ended the naturalized flow period (NF) and eliminated 

snowmelt-driven spring floods, replacing large annual flow fluctuations with large daily 

variability, which significantly impacted sediment resources downstream. Documentation of 

the decreasing size and extent of Grand Canyon sandbars due to dam operations began in 

1974 (Dolan et al., 1974). The potential loss of ecosystem services, resulting from the decline 

of sandbars and other dam-induced changes to the downstream environment, led to an 

adaptive management program and extensive monitoring (U.S. Dept. of Int., 1995). 

Annual releases from GCD are targeted at 8.23 million acre-feet (maf) or 10.15 

billion 𝑚3, satisfying downstream obligations set by the Law of the River and maximizing 

storage in Lake Powell (National Resource Council, 1996). Typical monthly releases vary 

between 0.5 and 1 maf, with lower releases occurring in the spring and fall months. Higher 

releases occur in the summer and winter months to balance demands for hydropower, 

delivery obligations, recreation, and other downstream resources (National Resource Council, 

1996). Daily discharge patterns from GCD are influenced by energy demand and operating 

rules, which define the maximum and minimum releases, and the rates of discharge change 

(National Resource Council, 1996). Therefore, we focus on understanding the effects of the 

dam operations on the sandbar daily, monthly, and seasonal behavior to provide information 

to the Glen Canyon Dam adaptive management program and insight into the 

morphodynamics of fluvial bedforms in dam-affected rivers. 

Since the end of NF, we identify three other distinct flow periods based on operating 

rules and resulting dam operations (Fig. 4.2). In the first period from 1963 to 1991, known as 

unconstrained dam operations (UDO), the hydrograph was primarily shaped by energy 
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demands and water delivery obligations. High daily flow variability and large down-ramping 

rates were cited as drivers of sandbar erosion and led to a brief period of reduced flow 

variability known as interim flows (IF) from 1991 to 1996 (Budhu and Gobin, 1994; Budhu 

and Gobin, 1995; National Resource Council, 1996; Dexter and Cluer, 1999). During IF, 

maximum daily discharge was reduced, the down ramp rate was decreased, and minimum 

discharges were increased, all of which reduced flow variability (Fig. 4.2) (National Resource 

Council, 1996). Monitoring observations during IF led to the adoption of the current modified 

low fluctuating flow regime (MLFF) from 1996 to the present. In the MLFF, the maximum 

allowable daily discharge increased, and sandbar-building controlled floods were introduced 

(Fig. 4.2) (National Resource Council, 1999; Grams et al., 2015). 

 
Figure 4.2 Annual (top) and daily (bottom) hydrographs displaying representative years from each 

GCD flow period: 1941 (NF - Naturalized Flow), 1990 (UDO - Unconstrained Dam Operations), 

1993 (IF - Interim Flows), and 2013 (MLFF - Modified Low Fluctuating Flows). The daily 

hydrograph represents flows from August 8th of each year. The NF period (blue) has the highest 

annual and lowest daily flow variability. Daily flow variability is most extreme during the UDO (red) 

and is the least extreme during IF. The large spike in discharge around Julian days 310-315 in the 

MLFF (Green) represents a controlled flood, which is considerably smaller than the flooding during 

NF. Daily variability during the MLFF is higher than during the IF but lower than the UDO. 
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Controlled floods involve water releases above power plant capacity (940𝑚3𝑠−1) up 

to a discharge of 1,274𝑚3𝑠−1 for up to 96 hours. While Controlled floods have occurred in 

both the fall and spring, they typically occur in November in years when a sufficient volume 

of sand has accumulated in the reach downstream of Lees Ferry. If these conditions exist, fine 

sediment deposited during tributary floods can be mobilized and deposited at high elevations 

within eddies, aggrading sandbars (Hazel et al., 2010, U.S. Dept. of Int., 2011; Grams et al., 

2015). 

4.2.3. Sandbar behavior 

The Colorado River drops 670m as it travels through the canyon. Since we are 

measuring area change occurring above the water’s surface in imagery throughout the 

canyon, it is convenient to use discharge as a proxy for elevation. We delineate elevation 

zones or vertical locations on different sandbars which are emergent or submerged at 

different volumetric flow rates (Fig. 4.3). Daily discharges during MLFF rarely fall below 

227𝑚3𝑠−1; therefore, annual topographic surveys focus on the portion of the sandbar that is 

emergent at that discharge-- hereafter described as the subaerial sandbar. The portion of the 

bar inundated at a discharge of 227𝑚3𝑠−1 is referred to as the subaqueous sandbar. The 

fluctuating flow zone (FFZ) is the portion of the bar exposed to fluctuating flows during 

normal dam operations (142𝑚3𝑠−1 – 708𝑚3𝑠−1) (Fig. 4.3). The controlled flood zone (CFZ) 

is the portion of the bar only inundated during controlled floods (708𝑚3𝑠−1 - 1,274𝑚3𝑠−1). 

The hydrologically inactive zone (HIZ) (>1,274𝑚3𝑠−1), which is unaffected by current dam 

operations containing sediment deposited before dam closure, during floods in the 1980s, or 

sediment deposited by the wind (Fig. 4.3). 
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Figure 4.3 Diagram of flow zones on a conceptualized Grand Canyon sandbar.  The difference 

between subaerial (227 𝑚3𝑠−1) and subaqueous (<227 𝑚3𝑠−1) portions of the sandbar are highlighted 

along with elevational zones related to dam operations during the current Modified Low Fluctuating 

Flow (MLFF) period. 

4.2.3.1. Sandbar Erosion 

Several erosional processes have been identified in the Grand Canyon, which may act 

alone or combined with other fluvial processes to erode sandbars. Depending on the process, 

or processes, such erosion can proceed gradually, resulting in meters of lateral bank retreat 

over weeks to months or rapidly resulting in meters of erosion over seconds to hours. The 

action of waves within areas of low-velocity flow can entrain sand in otherwise depositional 

settings, undercutting or steepening sandbar faces in the FFZ and making them susceptible to 

other erosional processes (Bauer and Schmidt, 1993). Similar over-steeping can occur from 

tractive force erosion by nearshore currents (Schmidt and Graf,1990). Seepage erosion occurs 

as water exfiltrates from the bar following decreases in stage. Groundwater stage within 
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sandbars lags relative to the hydrograph, so during rapid reductions in discharge, water 

escaping the bar may cause increased pore pressure leading to instability, slumping, rilling, or 

slope failure within the FFZ (Beus and Avery, 1992; Buhu and Gobin, 1994; Budhu and 

Gobin, 1995). Such processes generally act on sandbars gradually but can lead to more rapid 

erosion under certain conditions. 

 Rapid erosional events, identified in imagery and referred to hereafter as mass 

failures, seem to result from processes originating below the water surface on subaqueous 

slopes, or on slopes within the low end of the FFZ. Most occur upstream of the reattachment 

point and are characterized by semi-circular scars consistent with the direction of upstream 

current in the recirculation zone (Fig. 4.4) (Hazel et al., in press). Studies observing mass 

failures in the Grand Canyon have suggested breaching or static liquefaction as a primary 

cause (Budhu, 1992; Budhu and Gobin, 1995; Cluer, 1995; Wright and Kaplinski, 2011, 

Hazel et al., in press). 

 

Figure 4.4 An example of a mass failure at the 41-mile sandbar occurred between Jun 26th and 27th 

of 2012. Observed mass failures in the Grand Canyon often have this rounded morphology, which is 

consistent with descriptions in the breaching literature. 

 

 Outside of the Grand Canyon, mass failures have been described by several different 

terms. Such events in fine to medium sand (250𝜇𝑚 -0.25mm) have been attributed to either 

static liquefaction, in loosely packed sands, or to a phenomenon known as breaching, which 
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is restricted to more densely packed sand (Yamamuro and Lade, 1997; Van den Berg, 2002; 

Mastbergen et al., 2019). Liquefaction flow slides are instantaneous failures of large masses 

of sediment and typically occur on the order of minutes. Conversely, failures by retrogressive 

breaching generally occur over tens of minutes to hours, during which steep to vertical slopes 

retreat gradually into the bank (Van den Berg, 2002). First observed during dredging 

activities, breaching has since been interpreted as the main failure mechanism in several 

fluvial, tidal, and coastal settings (de Koning, 1970; Mastbergen et al., 2019). While the 

triggers of breaching events are still poorly understood, they are likely related to some 

combination of over-steepening of sand deposits and changes in pore pressure associated with 

fluctuating flows or precipitation events (Mastbergen et al., 2019). Many flow slides or mass 

failures at eddy sandbars are likely hybrid involving both breaching and liquefaction 

mechanisms that occur independently of each other (Van den Berg personal communications 

April 2021). 

Laboratory experiments that examined the effects of down ramping flow rates on 

slope stability found that failures were the dominant form of erosion on steep bar faces 

(≥26°) and occurred regardless of ramp rate. Seepage erosion dominated on moderate slopes 

(18° - 22°), and both failure and seepage erosion largely ceased as bars reached an 

equilibrium slope (≤14°) (Alvarez and Schmeeckle, 2013). Their results suggest that slope is 

a significant factor in influencing erosion rates and mechanisms, however, the flow patterns 

that rework sandbars to achieve steep angles, or trigger mechanisms leading to rapid versus 

gradual erosion is the subject of this paper. We seek to provide more insight into rates of area 

change and variability as a result of discharge patterns. 

Erosion and deposition are also affected by vegetation, which has been steadily 

encroaching on the subaerial sandbars since the closure of Glen Canyon Dam and the 

elimination of snow-melt-driven floods. At many sandbars, area within the HIZ is becoming 
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increasingly vegetated and stabilized, as well as portions of the CFZ and the FFZ at some 

sites (Sankey et al., 2015; Kasprak et al., 2018; Hazel et al., in press). Because the research 

focuses on narrow reattachment bars with little vegetation cover, we do not examine the 

effects of vegetation cover in this study. 

4.2.3.2. Observations from past sandbar studies  

Annual topographic surveys have been conducted using electronic total stations at 

least once per year at up to 44 different sandbar monitoring sites since 1990 (Hazel et al., 

2008; Hazel et al., in press). Results from annual surveys have shown that properly timed 

controlled floods have increased average sandbar volume during the MLFF period throughout 

the Grand Canyon, though increases in sandbar size resulting from controlled floods are 

mostly eroded away in the months following controlled floods during normal dam operations 

(Grams et al., 2010; Hazel et al., 2010; Grams et al., 2015; Hazel et al., in press). Surveys 

indicate that the observed increases in sandbar volume often manifests as increases in vertical 

sandbar thickness. They show that area is a poor predictor of volume (Hazel et al., in press). 

Despite the poor relationship between area and volume, area measurements can elucidate 

differences in cyclic erosional and depositional behavior in response to sub-annual flow 

patterns which cannot be resolved by annual surveys. Furthermore, because one of the goals 

of maintaining sandbars is to provide substrate for water-based recreation, the lateral area is 

likely as important of a consideration for recreational values as volume is.  

The magnitude of deposition and long-term trends in bar behavior are spatially 

variable even over within the same reach (Grams et al., 2010; Hazel et al., 2010; Grams et al., 

2015). Analysis of topographic and bathymetric data suggested grouping sandbars based on 

the geomorphic setting of sandbar sites, which explains much of the spatial variability 

observed in annual data (Mueller et al., 2018). Mueller et al. (2018) found that dynamic 



92 

 

reattachment bars, such as 22-mile, 30-mile, and 145-mile sandbars, are narrow, unvegetated, 

and experience large stage change relative to other bar types: including wider, more vegetated 

reattachment bars, separation bars, and undifferentiated eddy sandbars. Sandbars in this 

narrow reattachment classification also showed the largest increases in vertical bar thickness 

from controlled floods (Mueller et al., 2018). Despite the usefulness of these sandbar 

groupings to explain annual trends, observations from the remote camera imagery indicate 

that at finer temporal resolutions, sandbar behavior may differ significantly even among 

sandbars within the same geomorphic grouping. Until now, those differences have not been 

examined in detail during the MLFF flow period. We provide the first detailed quantitative 

analysis examining cyclic erosion and mass failure occurrence at multiple sites during current 

dam operations. 

Previous studies using remote cameras deployed during the end of UDO and the 

beginning of the IF flow periods indicated that annual surveys likely underestimate erosion 

and deposition rates (Cluer, 1995; Dexter and Cluer, 1999). They found a cyclic pattern of 

erosion and deposition at sandbar sites, where weeks to months of deposition followed 

similar periods of gradual or rapid erosion (Dexter and Cluer, 1999). While observations of 

time-lapse imagery show that sand eroded from the FFZ is often redeposited at lower 

elevations in the eddy, erosion of any type provides an opportunity for fine sediment within 

the eddy to mobilize and be transported downstream. Observations of mass failures that 

occurred during repeat bathymetric surveys of two sites during the 2008 controlled flood 

showed that sediment mobilized during one subaqueous mass failure was deposited in the 

channel, where it was rapidly transported downstream (Wright and Kaplinski, 2011). 

Attempts to model erosion and deposition during controlled floods, which did not 

include the mechanisms for mass failure, over-predicted low-elevation deposition and led to 

the formation of slopes at steeper than the angle of repose (Sloff et al., 2009; Sloff et al., 



93 

 

2012). Mass failures then, at sites where they occur frequently, may be significant 

mechanisms by which large amounts of fine sediment are transported out of an eddy, and 

therefore may have a significant impact on the balance of fine sediment at sites where they 

occur (Dexter and Cluer 1999; Alvarez et al., 2017). Thus, understanding the specific flow 

patterns and antecedent conditions that favor rapid erosion through mass failure versus 

gradual erosion is a significant subject of interest for adaptive management of GCD and can 

improve our understanding of the morphodynamics of fluvial bedforms. 

Several lines of evidence suggest that increases in discharge may result in fluvial 

processes leading to formation of high-angle slopes, or lead to erosion, triggering mass 

failures. Observed and modeled changes to recirculation zones in Grand Canyon during rising 

discharge led to the following: the development well-defined upstream currents along the 

shore (Andrews et al., 1999); lengthening and narrowing of the recirculation zone (Schmidt 

1990; Wright and Kapslinski, 2011); reattachment and separation point migration (Schmidt 

1990; Wright and Kapslinski, 2011); the appearance of secondary eddies, which scoured 

deposits (Schmidt, 1990; Cluer, 1995); helical flow patterns (Wright and Kaplinski, 2011); 

increased high-elevation deposition and low-elevation erosion forming steep subaqueous 

slopes (Wright and Kaplinski, 2011); and non-periodic eddy pulsations (Rubin and 

McDonald, 1995; Alvarez et al., 2017). The effects of these discharge-induced changes in 

flow patterns and deposition are likely to vary between eddies depending on the site-specific 

geometry and antecedent conditions. For example, differences in reattachment point 

migration and secondary flow structures were observed at adjacent sites during the 2008 

controlled flood. These differences were attributed to the proximity of a downstream 

constriction at one of the sites (Wright and Kaplinski, 2011) and differences in recirculation 

variability across discharges has been measured at several other sites (Schmidt, 1990). 
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Thus, we explored differences in area change and mass failure occurrence in response 

to the same discharge patterns at three sites in the narrow reattachment sandbar grouping. 

Because of the connection between discharge patterns and variability in secondary flow 

structures, we examined metrics related to the flow variability, the flashiness of discharge, the 

minimum, mean, maximum, and range of discharge. Our goal was to better resolve which 

aspects of discharge patterns are most strongly related to sandbar area change and to 

understand what, if any, discharge patterns lead to similar effects at similar sites throughout 

the canyon providing policy relevant findings to inform dam operations. 

4.3. MATERIALS AND METHODS 

We segmented 13,579 images from 2011 - 2020 to examine the utility and accuracy 

of using oblique images to measure daily and monthly changes in subaerial sandbar area at 

22-mile, 30-mile, and 145-mile (Figure 4.1) We correlated changes in the mean monthly area 

with monthly flow metrics. We estimated the magnitude of daily and monthly changes to 

examine the variability in the monthly sandbar area in years when controlled floods occurred 

versus years without controlled floods. In addition to the detailed area estimates at the three 

sites, we examined time-lapse videos created from imagery at 41 sites spanning up to 10 

years to characterize general sandbar response to current discharge patterns and controlled 

floods. Then we identified mass failures as events providing conservative estimates of mass 

failure frequency. Next, estimates of changes in the area at various elevations and the 

magnitude of erosion during mass failures were assessed. 

4.3.1. Measuring changes in sandbar size 

Quantitative analysis of sandbar dynamics was completed by measuring the emergent 

portion of the sandbar in each remote camera image. This is the area above the water’s 

surface, which varies between images depending on both the size of the bar and the discharge 
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in the image. Over a single day, while sandbar size may remain constant, differences in the 

water surface elevation, or stage, reveal more or less of the sandbar affecting the observable 

size of the emergent sandbar area. Comparing image-derived area estimates, hereafter 

referred to as image-areas, from imagery required each image to be associated with a stage-

elevation based on gage data and the travel time of a wave through the canyon. Once the 

image stage had been estimated, images were separated into discharge bins, so comparisons 

between images captured changes due to erosion or deposition and minimized changes in 

area associated with stage change. 

4.3.1.1. Estimating discharge 

We estimated discharge in each image by routing the flow from the nearest gage to 

each site using Wiele and Griffin’s (1997) unsteady flow model. This flow model allowed us 

to predict the lag time, or the time it takes a wave to travel between the nearest gage and each 

site. The six gages on the Colorado River in the Grand Canyon are 0938000- Lees Ferry at 

RM30, 09280505-Thirty-Mile at RM30, 09283100-Little Colorado River at RM62, 

09402500-Phantom Ranch at RM87, 09404120 - National Canyon at RM166, and 09494200-

Diamond Creek at RM225. For each image timestamp, the lag time was added or subtracted, 

depending on location of the gage relative to each site, providing a gage-wave time. The 

gage-wave time is the time the parcel of water viewed in the image passed the nearest gage. 

Because discharge data is recorded every fifteen minutes, and the gage-wave time often did 

not correlate precisely with a gage reading (+/- 7.5 minutes), we used linear interpolation to 

estimate discharge between the two gage readings most proximate to the gage-wave time 

providing a more accurate estimate of gage-wave discharge. The segmented sandbar area was 

then taken as the planar area of the sandbar at the estimated gage-wave discharge. Images 

were then grouped into discharge bins, used as a proxy for elevation, with a bin width of 

28𝑚3𝑠−1  (1,000𝑓𝑡3𝑠−1). A sensitivity analysis demonstrated that the mean changes in water 
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surface elevation at our three target sites were between 17-20 cm for each 28𝑚3𝑠−1  bin. 

Based on the mean survey hypsometries of each site, mean area differs between 22𝑚2 and 

92𝑚2 over a 17-20 cm elevation range.   

Several image pre-processing steps were completed before area measurement. Camera 

calibration was done in situ by taking 20-30 photos of a black and white checkerboard pattern 

on an aluminum plate at multiple orientations and processing those images using the camera 

calibration toolbox in Matlab. The calibration process determines the intrinsic matrix for the 

camera-lens system, which contains: the principal point, focal length, and image size, and 

allows for the removal of radial and tangential distortion with the undistort() function in the 

OpenCV library. 

Since images are captured at an oblique angle, pixels within the image show portions 

of the sandbar whose real-world areas vary due to perspective. Therefore, images had to be 

warped and rectified to a known coordinate system. Rectified images appear as if viewed 

from above, with each pixel representing the same area on a known coordinate system. 

Rectification was done by placing eight to twelve black and white panels (1 𝑚 𝑥 1 𝑚 in 

dimension) on each sandbar; panels were surveyed and used as ground control points (GCPs) 

to create a homography. A homography is a perspective transformation between the image 

coordinates (X, Y) of the GCPs in a reference image and their surveyed real-world 

coordinates (easting, northing). Rectification was done in Python 3 using the 

findHomography() function in the OpenCV library. 

The entire image set was then registered or aligned to the reference image in Python 

3, using a combination of Enhanced Correlation Coefficient and 2-dimensional fast-Fourier 

transform algorithms, removing the effect of slight changes in the field-of-view caused by 

camera maintenance or other disturbance (Evangelidis and Psarakis, 2008; Reddy and 

Chatterji, 1996; Grams et al., 2018). Registration allows the same homography to be used for 
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all images, minimizing the number of occasions where surveyed GCPs were needed and 

allowing for use of a single rectification for each site. For a more in-depth discussion of the 

methods used in image pre-processing, see Chapter 3 in this dissertation. 

4.3.1.2. CNN image segmentation 

The task of measurement also required that areas containing sand within each image 

be identified through a process known as segmentation. A residual U-Net, a type of 

Convolutional Neural Network (CNNs), was built, trained, validated, and tested using Python 

3, Tensorflow, and Keras for the purpose of binary semantic segmentation to identify pixels 

that contain subaerial sand from those which do not. Conditional Random Field post-

processing was used to improve prediction masks. CNNs with CRF post-processing have 

shown promise in segmentation tasks involving natural textures (Buscombe and Richie, 

2018). Our segmentation had a mean F1 = 0.93 and a mean Cohen’s Kappa = 0.89 on a test 

dataset containing 100 images from the 22-mile, 30-mile, and 145-mile sandbars. Detailed 

descriptions of this neural network as well as considerations for training convolutional neural 

networks end-to-end for binary segmentation of natural textures can be found in Chapter 3 of 

this dissertation. 

Practically, the accuracy for most images exceeded F1 = 0.93, but a few images with 

lower accuracies of F1≤ 0.7 reduced the average accuracy. These were generally images with 

significant glare. Rather than spending more time re-training the network, all 13,579 images 

were manually checked, where we focused on removing very poor segmentations in which 

portions of water with glare were classified as sand or where large portions of the sandbar 

were not classified as sand due to overexposure in the image highlights. This eliminated 

1,281 images, bringing the total number of images down to 12,298. The final dataset 

contained 3,365 images at 22-mile, 6,550 at 30-mile, and 2,383 at 145-mile. The disparity in 

the number of images in part has to do with the success of registration techniques, which fail 
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more often at 22-mile and 145-mile due to lighting conditions, and increased number of 

images available at 30-mile. During 2014 and 2015, images were collected every hour at 30-

mile, providing twice the number of images during those year. 

4.3.1.3. Daily and monthly sandbar area 

The homographies applied during the rectification process reprojects imagery onto the 

Arizona State Plane Central coordinate system (FIPS 0202). Rectified images have pixels that 

measure 0.01𝑚2 in dimension. We summed the pixels, classified as ‘sand’ by our neural 

network, to provide an estimated area in square meters (image-area). Evaluating the accuracy 

of image-areas involved comparing those image-areas to survey-derived area measurements, 

referred to hereafter as survey-area, at the same water surface elevation on days when 

topographic surveys were conducted. Digital elevation models or DEMs of the surveyed bars 

allowed us to extract the aerial extent, or planar area, of sandbars at any elevation within the 

subaerial sandbar. Time-series of daily and monthly areas were constructed for each elevation 

bin, where images were available. 

Most of our analysis focus primarily on the elevation bin centered at 283𝑚3𝑠−1 

(10,000𝑓𝑡3𝑠−1) for several reasons:  1) this is the lowest discharge which appears in imagery 

in nearly every month of the photo record, 2) it is the elevation bin with the highest number 

of images, and 3) it is nearly always in the fluctuating flow zone during normal dam 

operations, thus it is likely very sensitive to changes in discharge pattern. 

4.3.1.4. Estimating erosion and deposition magnitude 

Daily measurements compare image-areas within the same elevation bin from 

individual photos. Daily image-areas within each month were averaged to provide a mean 

monthly area estimate for each elevation bin and a monthly standard deviation in months 

where multiple images were available. The standard deviation measures the variability in size 
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over each month and contains errors from individual images making it a liberal estimator of 

within-month variation. Differences in the estimated area for each month and each daily 

observation were then compared to the nearest previous value. Positive differences were 

interpreted as deposition and negative differences as erosion. The change in area was then 

divided by the number of days or months between area estimates to provide daily and 

monthly net change rates. The change rates were then standardized (or normalized) using the 

mean area and standard deviation (or maximum area) in the image-area dataset at the 

elevation being examined or at the 227𝑚3𝑠−1  (8,000𝑓𝑡3𝑠−1) elevation when comparing 

multiple elevations.However, in the interest of estimating daily erosion and deposition rates 

rather than net change, we limited our daily magnitude analysis to observations that were less 

than ten days apart. We treat these daily net change rates as liberal estimates of erosion rate 

or deposition rate (depending on the sign (+/-) of the change) due to the error in each 

observation. 

4.3.1.5. Discharge patterns 

We utilized 15-minute discharge data from the six gages to link sandbar response with 

dam operations. We computed the lag-time described in section 4.2.1.1 for each observation 

to create a local hydrograph for each site. The flow metrics (Table 4.1) were then calculated 

from local hydrographs. Some metrics were calculated for 24-hours of flow, and others were 

calculated for monthly flow reflecting the entire calendar month. 

  

Table 4.1 Discharge (Q) metrics calculated for daily and monthly flow periods.  

Metric Description or Formula Scale Unit 

mean, min., max., 

median, and range. 

Summary statistics were calculated for the 

discharge period (day or month) 

Daily & 

Monthly 
𝑚3𝑠−1 

∆𝑚ean 𝑙𝑎𝑔1,  

∆𝑚in 𝑙𝑎𝑔1,  

The change in these summary statistics relative 

to the previous month.  For example: 

Daily & 

Monthly 
𝑚3𝑠−1 
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∆𝑚ax 𝑙𝑎𝑔1, 

∆ range 𝑙𝑎𝑔1 

∆𝑚𝑒𝑎𝑛 𝑙𝑎𝑔1 = 𝑚𝑒𝑎𝑛(𝑄𝑡) − 𝑚𝑒𝑎𝑛(𝑄𝑡−1)     

Standardized∆   The range in daily (or monthly) discharge RDQ 

(or RMQ) divided by the mean daily (or 

monthly) discharge MDQ (MMQ). A measure of 

monthly variability adapted from Bevelhimer et 

al. (2014) 

𝐷𝑆∆ =  
𝑅𝐷𝑄

𝑀𝐷𝑄
 𝑜𝑟 𝑀𝑆∆ =  

𝑅𝑀𝑄

𝑀𝑀𝑄
 

Daily & 

Monthly 

Unitless  

Coefficient of 

Variation (CoV) 

The standard deviation of discharge over a day 

(or month) divided by the mean daily (or 

monthly) discharge.  

Daily CoV =  
𝑆𝐷 𝑑𝑎𝑖𝑙𝑦 𝑄

𝑚𝑒𝑎𝑛 𝑑𝑎𝑖𝑙𝑦 𝑄
 or  

Monthly CoV =  
𝑆𝐷 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑄

𝑚𝑒𝑎𝑛 𝑚𝑜𝑛𝑡𝑙𝑦 𝑄
 

Daily & 

Monthly 

Unitless 

Richards-Baker (R-

B) Flashiness 

Index, 

 

 R-B Flashiness 

index 

An index proposed by Baker et al. (2004) which 

measures oscillations in discharge relative to the 

total discharge. We also calculated the change in 

the R-B flashiness index at a lag of 1. 

R-B flashiness index= 
∑ |𝑄𝑖−𝑄𝑖−1|𝑛

𝑖=1

∑ 𝑄𝑖
𝑛
𝑖=1

 

∆R-B flashiness index = RB 𝑖𝑛𝑑𝑒𝑥𝑡 −
𝑅𝐵 𝑖𝑛𝑑𝑒𝑥𝑡−1 

Daily & 

Monthly 

Unitless 

 

We chose to use summary statistics such as mean, min, max, and range since they are 

the easiest to conceptualize and interpret. Standardized delta was adapted from the daily 

standardized delta described by Bevelhimer et al. (2014) and applied to both daily and 

monthly flows. This metric provides a measure of variability based on daily or monthly range 

scaled to the mean discharge. The coefficient of variation, or CoV, is similar except that it 

uses the standard deviation of discharge scaled by mean discharge. Richards-Baker 

Flashiness or the R-B Flashiness index measures the length of the hydrograph line over a 

given time period (Baker et al., 2004). 

4.3.1.6. Application-specific considerations 

Remote imagery only captures flows that occur within the 8-hour daily imagery 

window. Because of the time required for water to travel from GCD downstream to each site, 
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the daily maximum or minimum discharge is not always captured in imagery. Seasonal flow 

patterns related to power generation result in higher flows in December, January, July, and 

August, and lower flows in March, April, October, and November, with the flows in other 

months falling somewhere in-between. Therefore, the image-area time-series at any elevation 

chosen will have some gaps. 

At certain times of the year, imagery from various sites contains heavy glare due to 

the sun’s angle reflecting off the sand or water, making image segmentation difficult. Our 

segmentation procedure also struggled with imagery during high flows when very little of the 

sandbar was showing, reducing the imagery analyzed during peak flows of controlled floods. 

We thus focused our analysis on changes in the area at the water surface elevation with the 

most imagery throughout the year at our target sites, the 283𝑚3𝑠−1 discharge elevation. 

 

4.3.2. Mass failure time-lapse analysis 

Time-lapse videos were created for 41 different sandbar sites using one image per day 

captured between 11:00 - 13:00 MST to minimize stage change between images and 

brightness differences. We utilized the OpenCV module in Python 3 to downsize imagery, 

extract the EXIF data, annotate the image with the timestamp, and combine the images into a 

video (* .MP4 or *.AVI) at a rate of seven frames per second. 

Time-lapses show a week’s worth of bar behavior each second. Gradual erosion or 

deposition happens over several seconds, representing weeks to months of imagery. Mass 

failures are easily observable as large changes in lateral area between frames and appear 

instantaneous in time-lapses. While it is likely that large, rapid changes in sandbar area are 

the result of different conditions, mechanisms and processes discussed in section 4.1.3.1, 

without detailed field measurements, we treat all noticeably large single-day changes in area 

as mass failures. Since most of these failures appear to initiate in the subaqueous portion of 
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the bar, with varying effects on the subaerial part of the bar, some of the mass failures could 

not be detected by image-area analysis, preventing the development of a quantitative 

threshold for mass failures. Identification of mass failure events was conducted by qualitative 

visual assessment of time-lapse videos. The timing of each of these events was documented 

based on the video timestamp, and the imagery surrounding the event was scrutinized to 

confine the timing of mass failures to a 24-hour window from noon to noon, which we term 

the failure day. We calculated the daily flow from noon-noon because often we could not tell 

the precise time of mass failures that occurred overnight. We only know that they occurred 

between the first image on the day the failure was identified and the last image from the day 

before. 

Localized flow from each failure day was summarized into daily flow metrics 

described above in section 4.2.1.6. Flow metrics were compared between three different 

intervals: a) Failure days, b) 𝑙𝑎𝑔2 the days which preceded failure days by 48 hours, and c) 

randomly selected days (random days) from the study period 2008 - 2021 with failure days 

removed. The 𝑙𝑎𝑔2 group was created to compare failure days to flows with similar seasonal 

patterns as failure days occurring two days prior. We treat the 𝑙𝑎𝑔2 and random groups as 

control groups. 

 

4.4. RESULTS 

4.4.1. Accuracy of image-derived area 

Image-areas were strongly correlated with the survey-areas at the three selected sites 

with correlation coefficients ranging between 0.7-0.96 (Figure 4.5). RMSE values were 

relatively small at 243𝑚2, 151𝑚2 , and 26𝑚2 at sites 22-mile, 30-mile, and 145-mile, 

respectively, comprising roughly 8.8%, 4.8%, and 2.9% of the maximum surveyed site area. 
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Figure 4.5 Correlations between image-areas and survey-areas at the three selected sites. Imagery, 

excluding mass failure events, from within 1-3 days of annual surveys were processed, segmented, 

and image-areas were measured. Image-area estimates were compared to survey-areas at the same 

elevation to estimate image-area accuracy at each site. Shaded areas surrounding lines show the 95% 

confidence interval of the Loess smoothed linear model.  

 

Image-derived area estimates contain several sources of error from image 

processing: error in camera calibration, registration, rectification, and semantic segmentation. 

In addition, there is error in the timestamp based on the accuracy of the camera's internal 

clock and error in the estimated travel time of the imaged discharge to the nearest gage (Table 

4.2). 
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Table 4.2 Sources of error in image-derived area estimates. Errors affect either area estimation or the 

elevation to which that area is assigned because of errors in gage-wave time. The errors vary by site, 

elevation, and camera.  

Source of 

Error 

 Description of Error Estimated Error 

 
 Errors in Area Estimation  

 

Camera 

Calibration 

 The distance between a pattern keypoint detected 

in a calibration image and the corresponding 

world point projected into the same image 

0.30 - 0.71 pixels 

Registration  Translation error may occur between any subject 

image and the reference image to which it is 

being registered. Significant differences in 

lighting between a subject image and a reference 

image can cause misregistration.  

Unknown; images with 

obvious registration errors 

were excluded. 

Rectification  Mean squared distance between surveyed ground 

control point locations and re-projected ground 

control points using homography 

0.1 - 2 meters error in the 

location or size of each pixel 

when re-projected 

CNN 

Segmentation 

 Binary classification error using a test set 

containing 25 images from each sandbar site. 

Lima et al., (in review) 

mean F1 = 0.93, mean (~7% 

of max site area) Cohen’s 

Kappa = 0.89 

 
 Errors in Image Discharge Estimation1 

 

Time-stamp  Error in the camera's internal clock +/- up to 10 minutes or 18 

𝑚3𝑠−1 (≤ 59𝑚2)2 

Lag-Time  Error in estimating the time wave travel times in 

Grand Canyon based on the Wiele and Griffin 

(1997) unsteady flow model   

≤ 1 hour as discharge in 

increasing (≤ 113𝑚3𝑠−1 ; ≤ 

371𝑚2) 2 & ≤ 3.2 hours as 

the discharge is decreasing. 

(≤ 227𝑚3𝑠−1; ≤  746𝑚2) 2 

 

1  Lima et al. (2019) compared estimated-water surface elevation using timestamps and lag-time to 

surveyed water surface elevation at the 30-mile site. The data had an R-squared = 0.957 and an RMSE 

= 0.053 m, or ~5cm 
2Area-error estimates related to discharge change are based on area differences at different water 

surface elevations from average surveyed hypsometries from 22-mile, 30-mile, and 145-mile.    
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4.4.2. Image-area erosion and deposition rates at 22-mile, 30-mile, and 145-mile 

sandbars 

Rates of daily erosion and deposition at the 283𝑚3𝑠−1 stage, derived from image-

areas differenced at a lag of 1 day were the same order of magnitude at all three 

sites. Observations recorded deposition slightly more often than erosion at 30-mile and 145-

mile sandbars, but the opposite was true at 22-mile sandbar. The daily erosion rate at 22-mile 

was -117𝑚2  or -3.7% of max sandbar area, and the daily deposition rate was 106𝑚2  or 

3.4% of max sandbar area, where 49% of observations showed erosion, and 48% of 

observations showed deposition. Only 3% of observations occurred over intervals longer than 

ten days and thus were excluded. At 30-mile sandbar, the daily erosion averaged -120𝑚2, or -

2.6% of the maximum area, with a deposition rate of 112𝑚2, or 2.5% of max sandbar area, 

where 46% of observations at 30-mile showed erosion, and 50% of observations showed 

deposition. At 145-mile, 47% of observations showed erosion, which averaged -34𝑚2 or -

3.4% of the max area, while 48% of days showed deposition with an average of 35𝑚2  of 

deposition or 3.5% max sandbar area. 

4.4.2.1. Time-series of net area change 

We examined the time-series of sandbar area at the 283𝑚3𝑠−1 discharge elevation to 

show differences in intersite variability and behavior at three timescales. The annual time-

series was created with survey-area measurements; monthly time-series using averaged 

image-areas measurements for each month; and daily time-series using individual image-

areas (Fig. 4.6). 
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Figure 4.6 A comparison of image-derived normalized sandbar area from annual, monthly, and daily 

time-series at the elevation associated with the 283𝑚3𝑠−1discharge at the 22-mile, 30-mile, and 145-

mile sandbars. Values were normalized by dividing each value by the maximum survey-area for 

the 283𝑚3𝑠−1 elevation from 1990 -2018. The monthly and daily area values exceed 1 in some cases 

because annual surveys do not always capture the maximum sandbar extent. Vertical red lines indicate 

controlled floods. 

 

These three time-series show similar trends, but a more detailed picture of cyclic 

erosion and deposition is apparent in the daily and monthly series. The annual series shows 

that 30-mile steadily decreased in size after the 2013 controlled flood until the trend reversed 

following the 2016 controlled flood. However, daily and monthly series show that the decline 

in size was not as large as is implied by the annual data and that a period of high variability 

was occurring with pronounced peaks in sandbar area reaching near maximum size. 

When examining the standard deviation of measurements at all three scales and the 

absolute value of the average change between observations at each scale, significant 
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differences in area change between sites are apparent (Table 4.3). Within annual surveys, the 

30-mile sandbar experiences 2 -4 times as much net change in its 283𝑚3𝑠−1 area between 

subsequent years as the other two sites (Table 4.3). The standard deviation of mean monthly 

areas and the average net change in monthly mean areas are 2-3 times higher at 30-mile than 

at 145-mile and 22-mile sandbars (Table 4.3). Daily measurements, by contrast, show less of 

a disparity in the average change between images, but do show over twice as large of a 

standard deviation at 30-mile than the other two sites (Table 4.3). 

Table 4.3 Variability in 283𝑚3𝑠−1 area at three timescales: annual, monthly, and daily. We present 

two measures of variability for each timescale: 1) The standard deviation across all measurements at 

each scale (Rows 1,3,& 5) and 2) The mean absolute value of change between observations at each 

timescale with a lag of 1 (Rows 2,4,& 6). These values are reported in Area (𝑚2)  and normalized 

area, or the size divided by the maximum surveyed area at 283𝑚3𝑠−1. 

  
22-mile 30-mile 145-mile 

  
Area 

(𝐦𝟐) 

Norm. 

Area 

Area 

(𝐦𝟐) 

Norm. Area Area 

(𝐦𝟐) 

Norm. 

Area 

1 SD Annual Surveyed 

Area 

183  0.071 603 0.164 26 0.028 

2 Mean Annual Area 

Change 

171  0.067 751 0.204 29 0.032 

3 SD Mean Monthly 

Image Area 

148  0.058 603 0.164 49 0.056 

4 Mean Monthly Image 

Area Change 

127 0.050 368 0.102 40 0.045 

5 SD Daily Image Area 184 0.072 751 0.194 66 0.074 

6 Mean Daily Image Area 

Change 

136 0.053 159 0.043 49 0.055 

 

4.4.2.2. Response to controlled floods 

Image-area estimates allowed us to examine differences in monthly area in years with 

and without controlled floods. The 30-mile site has the largest response to controlled floods 

at the 283𝑚3𝑠−1 stage elevation (Fig. 4.7). At all sites, the area is higher in the month 
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immediately following controlled floods (December), but that difference increases and peaks 

between January and February and then the differences begin to dampen. The effects of 

suspended sediment concentration are also important in determining response in future 

analyses.  

 

Figure 4.7 Standardized mean monthly sandbar area at the elevation associated with 283𝑚3𝑠−1  in 

years with controlled floods (red) vs. years without controlled floods (blue) at 22-mile, 30-mile, and 

145-mile sandbars. Dots indicate individual mean monthly values. Controlled floods typically occur 

in November. The months June and July are absent from 145-mile because images of the 283𝑚3𝑠−1 

rarely occur during daylight hours at that site during the summer.  

 

A closer look at monthly changes in area at several discharge elevations before and 

after the 2014 and 2016 controlled floods at all three sites show just how much more dynamic 

30-mile is in its response to controlled floods than 145-mile or 22-mile (Fig. 4.8). At all three 



109 

 

sandbars, max area following a controlled flood occurs in the first monthly observation 

following the flood at high elevations (340𝑚3𝑠−1 and 396𝑚3𝑠−1), while maximum area at 

lower elevations (227𝑚3𝑠−1) is lagged by 1-4 months. The 30-mile sandbar is smaller in 

terms of normalized area before controlled floods and then grows significantly after 

controlled floods, whereas the response at 22-mile and 145-mile are less extreme, starting 

from a larger size and gaining small amounts of area at multiple elevations. 

 

 

Figure 4.8 Time-series of image-derived mean monthly area at 22-mile, 30-mile and 145-mile before 

and after the 2014 and 2016 controlled floods (red dashed lines). Five water surface elevations within 

the FFZ are shown. Imagery, and thus mean monthly area measurements were not available at some 

elevations during some months at 145-mile because the peaks and troughs of daily discharge did not 

always arrive at 145-mile during daylight hours. Area gains are lagged by a few months at lower 

elevations and coincide with area loss at higher elevations suggesting the downslope movement of 

fine sediment following controlled floods. 

4.4.2.3. Monthly net area changes and monthly flow 

Our second objective aims to correlate sandbar behavior with monthly flow patterns, 

which reflect seasonal changes in power demand and dam operations. We compared monthly 

flow metrics described in Table 4.1 to monthly measures of sandbar area and net change 

relative to the previous month at the elevation associated with 283𝑚3𝑠−1 (Fig. 4.9). 
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Figure 4.9 Correlation matrices for 22-mile, 30-mile, and 145-mile showing relationships between 

mean monthly area, minimum monthly area, the standard deviation of area measurements within a 

month, change in mean area relative to the previous month (which can be either positive or negative), 

normalized area from the previous month (antecedent area which ranges from 0 to 1), and flow 

variables: monthly mean discharge (Q), maximum monthly Q, minimum monthly Q, the range of 

monthly Q, median Q, monthly standardized delta, monthly coefficient of variation, monthly 

Richards-Baker Flashiness Index, change in monthly mean Q relative to the previous month, and 

change in maximum monthly Q relative to the previous month. Descriptions of these metrics are 

found in Table 4.1. and in section 4.1.6. Significant relationships between variables are shown with 

stars (p.values: * = 0.05; ** = 001, *** = 0.001). 
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For all sites, there is a significant and strong negative relationship between change in 

area and antecedent bar size (Fig. 4.9) suggesting that the larger a bar was the previous 

month, the more erosion or negative change in area is occurring, and vice-versa. As indicated 

by the R-B flashiness index, the flashiness of discharge has significant negative relationships 

with mean and minimum monthly area at 145-mile. However, this flow metric is not 

significantly related to metrics of sandbar area at the other two sites. Increases in the mean 

discharge relative to the previous month appear to have a significant negative relationship 

with mean and maximum monthly area at 22-mile only. The minimum monthly discharge 

does not show any significant relationships with area metrics at 22-mile but does appear 

significant at 30-mile and 145-mile, where it is significantly related to both monthly area 

variation (the standard deviation of monthly area measurements) and the minimum areal 

extent-- though the relationships are opposite between 145-mile and 30-mile. The range of 

monthly discharge has a positive and significant relationship with the minimum monthly area 

measured at 22-mile only. The median monthly discharge shows a significant relationship 

with the standard deviation of area measurements within a given month at 30-mile and 145-

mile, but the relationships are opposite. 

4.4.3. Mass failures in time-lapse analysis 

Analysis of time-lapse videos of 41 sandbar sites in the period between 2008 - 2021 

revealed a total of 226 mass failure events occurring at 27 sites and no observed failures at 14 

sites. There were seven sites, where ten or more mass failures were observed. Across sites 

from Lees Ferry (RM-0) to Diamond Creek (RM-225), there does not seem to be a 

longitudinal trend in failures. The lengths of these records varied between sites depending on 

image availability as shown in Table 4.4. 

 



112 

 

Table 4.2 Number of observed mass failures in time-lapse videos and length of the time-lapse record. 

Mass failures were observed at 27 of 41 sites. RM is the site location in river miles downstream of 

Lees Ferry. Time-lapse start (TL-start) and TL_end are the start- and end-dates of time-lapses, Total 

days in record (Rec. Len. Days) and mean recurrence interval (Mean Rec. Int. Days) is the number of 

failures divided by Rec. Len. Days. If no mass failures were observed an NA is in the frequency 

interval column. 

Site# Name RM TL_start TL_end 

Mass 

Failures 

Rec. Len. 

Days 
Mean Rec. 

Int. Days 

0025L Cathedral Wash 2.5 2010/02/18 2017/02/11 4 2,550 638  

0081L Jackass Camp 8.1 2012/02/18 2017/02/12 0 1,821 NA 

0089L 9-Mile 8.9 2012/10/04 2016/05/06 0 1,310 NA 

0166L Hot Na Na Wash 16.6 2014/05/03 2015/09/21 2 506 253  

0220R 22- mile 22 2010/02/19 2020/02/01 0 3,634 NA 

0235L Lone Cedar 23.5 2013/02/17 2020/02/01 3 2,540 847  

0307R 30-mile 30.7 2010/01/01 2021/02/21 50 4,069 81 days 

0319R South Canyon 31.9 2012/02/02 2016/12/31 1 1,794 1,794  

0333L Redwall Cavern 33.3 2013/09/24 2016/05/13 0 962 NA 

0414R Buckfarm 41.4 2010/02/21 2021/02/19 29 4,016 138 days 

0434L 

Anasazi Bridge 

(43-mile) 43.4 2012/10/07 2016/05/19 0 

1,320 

NA 

0445L Eminence 44.5 2012/01/01 2021/02/19 6 3,337 556  

0450L Willie Taylor 45 2008/03/02 2021/02/21 15 4,739 316  

0476R Saddle 47.6 2011/10/10 2021/02/21 2 3,422 1,711  

0501R Dinosaur 50.1 2011/10/10 2021/02/20 5 3,421 684  

0515L 51-mile 51.5 2010/02/06 2021/02/21 16 4,033 252  

0559R Kwagunt Marsh 55.9 2011/01/01 2016/05/16 3 1,962 654  

0566R Kwagunt Beach 56.6 2013/09/27 2017/02/16 2 1,238 619  

0629R Crash Canyon 62.9 2013/02/22 2015/06/14 0 842 NA 

0651R Carbon 65.1 2012/10/09 2021/02/23 12 3,059 255  

0658L Above Lava Chuar 65.8 2008/02/10 2017/02/20 1 3,298 3,298  

0661L Palisades 66.1 2011/02/24 2016/05/16 0 1,908 NA 

0688R Tanner 68.8 2011/10/11 2016/05/17 1 1,680 1,680  

0817L Grapevine 81.7 2014/10/28 2017/02/15 0 841 NA 

0846R Clear Creek 84.6 2010/10/01 2021/02/24 0 3,799 NA 

0917R 

Above Trinity 

Camp 91.7 2012/10/11 2016/05/18 0 

1,315 

NA 
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0938L Granite 93.8 2012/10/01 2021/02/25 9 3,069 341  

1044R Emerald 104.4 2012/10/01 2021/02/26 7 3,070 439  

1194R Big Dune 119.4 2011/01/01 2021/02/26 0 3,709 NA 

1227R 122-mile 122.7 2010/02/27 2020/02/01 3 3,626 1,209  

1233L Upper Forster 123.3 2014/05/17 2021/02/27 2 1,239 1,239  

1377L Football Field 137.7 2010/02/28 2021/02/26 4 4,016 1,004  

1459L 

Above Olo (145-

mile) 145.9 2010/02/27 2019/11/27 24 

3,560 

148  

1671L Lower National 167.1 2013/03/01 2016/11/12 0 1,352 NA 

1726L 

Below Mohawk 

(172-mile) 172.6 2011/01/01 2021/02/27 10 

3,710 

371  

1833R Below Chevron 183.3 2011/03/05 2021/02/28 0 3,648 NA 

1946L Hualapai Acres 194.6 2010/03/02 2016/11/15 0 2,450 NA 

2023R 202-mile 202.3 2011/01/01 2016/11/15 1 2,145 2,145  

2133L Pumpkin springs 213.3 2013/10/06 2021/04/13 7 2,746 392  

2201R middle 220-mile 220.1 2013/10/06 2021/03/01 1 2,703 2,703  

2255R Above Last Chance 225.5 2010/03/03 2016/10/14 1 2,417 2,417  

 

After identifying the approximate timing of each failure, we used lag-time estimates 

for each site to identify the discharge at Lees Ferry coinciding with the mass failure which 

allowed us to compare dam release patterns to mass failure occurrence, rather than the timing 

of when water from the dam arrived at each site, hours or days later. This allowed us to 

compare dam release patterns to mass failures rather than Mass failure occurrences, which 

tend to be concentrated in high-flow months and are conspicuously absent from lower flow 

months within the decadal hydrograph. Mass failures are sometimes clustered, with one 

failure following shortly after another. 

Mass failures occur most often during water released from GCD on the first day of the 

month (8% of all mass failures) when flows are adjusting to the new monthly patterns, which 

is 2.5 times as frequent as would be expected if mass failures happened at the same rate each 

day. Mass failures most often occur on Mondays, Wednesdays, or Thursdays, with 17.3% of 
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mass failures occurring on each of those days, compared to Saturdays, which corresponds 

with just 8.0% of mass failures and lower weekend flows. The day of the year when failures 

were most common was Julian day 152 (2.7%), which is June 1, followed by Julian day 153 

(2.2%), June 2 (Fig. 4.10). In comparison, the mean percentage of mass failures per Julian 

day was 1.4%. A total of 16.4% of all mass failures occurred in the month of January, 

followed by 13.7% in August and 12.8% in June. Meanwhile, October, November, and 

February had just 3.5% of mass failures each.

 

Figure 4.10 Discharge patterns and mass failure frequency in the Grand Canyon. Average daily 

discharge from USGS gage 09380000 at Lees Ferry on the Colorado River from 2011 - 2021 was 

averaged by Julian Day. Vertical lines indicate Julian days with three or more mass failure 

observations. Varying colors indicate different months. 

Monthly, annual, and seasonal patterns occur during the MLFF with the highest flows 

occurring in the summer months of June, July and August. High flows are also common in 

the winter, specifically in December and January. February is a transition month between 

high winter flows and lower spring flows (March and April), and May is a transition month 

between lower spring flows and high summer flows. September and October comprise the 

low fall flows, and November is typically low, but also has controlled floods. There is also a 
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subtle weekly flow pattern characterized by higher flows during the week and lower flows on 

the weekend when power demand is reduced. 

We examined the relationship between daily flow patterns and mass failure 

occurrence (Fig. 4.11). There are significant differences in flow pattern on days when failures 

occurred compared to randomly selected days and two days prior to failures (𝑙𝑎𝑔2 days). 

Days when failures occurred generally have a higher mean, max, and range of discharges as 

well as higher variance (CoV), daily-std-delta, and increased flashiness (R-B Flashiness 

index) relative to the previous day, than 𝑙𝑎𝑔2 or random days. 

 

Figure 4.11 Flow metrics on failure days (F), 𝑙𝑎𝑔
2
 days (L2), and randomly selected days (R).  Flow 

metrics shown in Table 4.1. Section 4.2.1.6. were calculated to determine if there is a link between 

dam operations under the modified low fluctuating flow protocol and the occurrence of mass failure 

events observed at 21 different sites (of 41) between 2010 - 2021. All flow metrics were calculated 

using 24-hour flow periods from noon - noon local time at each sandbar. We compare flow metrics on 

226 days when mass failures were observed (F) to 226 randomly selected days within the same 

timeframe (R) and to 226 days which each preceded the failure day by two days (L2). We examined 

summary statistics for each 24-hour flow period as well as the Coefficient of Variation (CoV), the 

daily standard delta, and the Richards-Baker Flashiness index along with changes (∆) in those metrics 
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relative to the previous 24-hour period indicating a shift in weekly or monthly. (p.values: * = 0.05; ** 

= 001, *** = 0.001, ns = not significant) 

4.4.3.1. Mass failures at 30-mile and 145-mile sandbars 

No mass failures were observed at the 22-mile site during the study period. However, 

50 mass failures were observed at 30-mile from 2010 - 2021, and 24 mass failures at 145-

mile from 2010 - 2019. The detailed area analysis conducted at these two sites allowed us to 

measure mass failure magnitude at multiple elevations. Change in net area in a 7-day period 

in which a mass failure was observed resulted in up to a 40% decrease in sandbar area at both 

sites with mean area losses between 0 - 20% at 145-mile and mean losses in area at 30-mile 

ranging from 0 - 30% depending on the elevation examined. Mass failure magnitude is then 

larger on average at 30-mile and more frequent and these large magnitude changes in area 

primarily occur at elevations at the lower end of the FFZ. The magnitude of area changes at 

145-mile is slightly smaller, but failures result in erosion over a wider range of elevations 

within the FFZ. 

4.5. DISCUSSION 

4.5.1. Image-area and spatial variability among sandbars 

We quantified daily erosion and deposition rates by examining differences in image-

area at the 283𝑚3𝑠−1  stage elevation. Errors associated with each image-derived area 

measurement ranged from 2.9% (145-mile) - 8.8% (22-mile) of site area, which is promising. 

However, these uncertainties are the same magnitude as expected area changes making it 

difficult to separate the signal from the noise. This is particularly true at 22-mile, which 

appears to have the lowest monthly and annual variability of the three sites, but the highest 

error in its daily image-derived area estimates. The lower accuracy for 22-mile is likely due 

to shifts in focal length (1-2 mm), which were recorded in the image metadata and occurred in 

2017 and 2013. Calibration and collection of ground control points took place after the 2017 
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shift. Ideally, calibration data and ground control is collected each time the focal length 

changes, but this was not the case, and therefore error in the registration, rectification, and 

calibration likely increases at the 22-mile site going back in time. 

In addition to the varying accuracies across sites, there are also different numbers of 

observations at each site, which may have biased these daily estimates. With more frequent 

observations at 30-mile, changes between images would undoubtedly be smaller. Also, there 

were fewer 283𝑚3𝑠−1  images available at the 145-mile because the minimum daily flows do 

not typically arrive at that site during daylight hours in July or January. 

Monthly measures of area, since they are the average of several daily measurements, 

serve as more reliable estimates of sandbar area. Differences in the mean monthly area allow 

for estimates of net change in area and show the cyclic patterns of erosion and deposition. 

The monthly area time-series (Fig. 4.9) show that monthly net area change shifted from 

erosion to deposition at 30-mile at nearly twice the rate as 22-mile or 145-mile. The average 

change in area between subsequent months was twice as large at 30-mile as at 22-mile or 

145-mile (Table 4.3). This is likely due, in part, to the increased frequency of mass failures at 

30-mile, a lack of mass failures at 22-mile, and the lower magnitude of mass failures at lower 

elevations such as 283𝑚3𝑠−1  at 145-mile as evidenced in Figure 4.13. 

Differences in the rate and magnitude of change at these three similarly classified 

sites (Mueller et al., 2018) are not surprising considering the differences in erosion and 

deposition rate and morphological evolution observed at two adjacent eddies in the same 

geomorphic grouping during the 2008 controlled flood (Wright and Kaplinski, 2011). Wright 

and Kaplinski (2011) suggested differences in site geometry caused by a downstream 

constriction at one site might be responsible for the discrepancy. Aerial imagery of the three 

sites illustrates that while all three are reattachment bars, there are major differences in the 

site characteristics. 
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Figure 4.12 Imagery of 22-mile (A-C), 30-mile (D-F), and 145-mile (G-I). The first column of 

images (A,D,G) contains aerial imagery taken in 2013. The middle column (B,E,H) contains oblique 

imagery from a remote camera capturing the subaerial sandbar at the low end of the FFZ. The column 

on the right contains oblique imagery showing the subaerial sandbar near the high end of the FFZ. 

Red arrows are placed at the estimated reattachment point based on visual assessment of bar 

morphology. Blue arrows indicate the direction of downstream flow. 

At the 145-mile site, a large portion of the subaerial bar is protected on both the 

upstream and downstream ends by rocks. The erodible portion of 145-mile within the FFZ is 

narrow and slopes steeply to the water which may cause it to aggrade and degrade more 

vertically than the other sites (Fig. 4.12G-I). The 22-mile sandbar has a higher percentage of 

its subaerial area within the FFZ and a conspicuous channel constriction mantling its 

downstream (Fig. 4.12A-C). Such constrictions might limit reattachment point migration and 

other forms of variability with regards to secondary flow structures during higher discharges 

(Wright and Kaplinski, 2011). The 30-mile sandbar has the largest extent of its area within 
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the fluctuating flow zone, sticking out further from the banks than the other two (Fig. 4.12D-

F). The deposit is surrounded on three sides by water maximizing the area where erosion can 

occur. Its recirculation zone does not appear to be restricted like at 22-mile, thus it might 

have more variability in secondary flow structures at different discharges. 

Correlations between monthly flow patterns and monthly area showed a significant 

and strong relationship between antecedent area and change in sandbar size from month to 

month (Fig. 4.9). Consistent with Mueller et al (2018), the significant and strongly negative 

relationship indicates that bars with large antecedent areas are primed to enter a phase of 

erosion, while small bars with ample accommodation space are primed to begin a phase of 

deposition. Meanwhile, correlations between other flow patterns varied between sites both in 

significance and direction. This suggests sandbar area change is tied more closely to 

antecedent sandbar size than to the flow metrics we examined. It also suggests that depending 

on the site-specific characteristics and antecedent conditions, the same discharges can have 

significantly variable effects on sandbar area at sandbars of the same geomorphic type, giving 

rise to the spatial variability observed in annual surveys. It may be useful to classify these 

sandbars into smaller sub-groupings based on average hypsometry to better predict sandbar 

behavior. 

The response of these three sites to controlled floods also differs. Sandbar area is 

nearly twice as large at 30-mile during January and February in years following controlled 

floods than in years without controlled floods, while a measurable but more subdued response 

occurs at 22-mile and 145-mile (Fig. 4.7). However, across all sandbars, the effects of 

controlled floods on sandbar areas seem to disappear following the onset of high summer 

flows (Fig. 4.7 and 4.8).  Caution must be taken before assuming that controlled flood 

responses at 22-mile and 145-mile are as similar as our results suggest. The increased 

steepness of 145-mile makes it more likely that controlled floods result in increased thickness 
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rather than area change at that site. Examining the trends in 30-mile’s area after the 2014 and 

2016 controlled floods shows that the peak of low-elevation area (227𝑚3𝑠−1) occurs 4-6 

months after the controlled flood. This change corresponds with decreases in the area at 

higher elevations (340𝑚3𝑠−1  and 396𝑚3𝑠−1), suggesting the downslope movement of sand 

during normal dam operations. 

4.5.2. Mass failures at 22-mile, 30-mile, and 145-mile sandbars 

Mass failures appear to be significant erosional events in the cyclic behavior at 30-

mile and 145-mile, but were not observed at 22-mile. The mean magnitude of area loss 

during mass failures at 30-mile ranged from 0.5% - 30% of the sandbar area at multiple 

elevations. This is up to 1.5 times larger than the average annual change in 283𝑚3𝑠−1  area 

(20.4%) and up to twice the average monthly change in 283𝑚3𝑠−1  area (16.4%) at 30-mile 

(Table 4.3). The magnitude of mass failures at 145-mile was similar in range but the means 

were between 0.5% - 20% of area at multiple elevations, though more high-elevation erosion 

seemed to result from failures. This increased tendency for higher elevation area loss at 145-

mile might be due to the steepness of the narrow portion of the bar in the FFZ, providing an 

opportunity for mass failures to affect high-elevation sand deposited steeply over the failure 

area. 

Alvarez and Schmeekle (2013) suggested that failure occurrence was primarily 

influenced by slope angle. Our results along with the hypsometric curves of these bars offer 

further evidence. Lima et al. (2019) (Chapter 2 of this dissertation) showed that hypsometric 

curves, which illustrate the normalized subaerial area by elevation (Fig. 4.13), could be used 

to examine the overall slope and morphology of sandbars in the Grand Canyon. 
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Figure 4.13 Hypsometric curves showing the percent of 227𝑚3𝑠−1 area at elevations within the FFZ 

and CFZ derived from annual topographic surveys. (A) shows the hypsometric curves for each survey 

(2011 - 2018), and (B) shows the hypsometry averaged across all surveys (2011 - 2018). The blue box 

shows the FFZ. A dashed horizontal line shows the elevation of the maximum controlled flood 

1274𝑚3𝑠−1. A red vertical line indicates 50% of the sandbar 227𝑚3𝑠−1 area. The elevation where 

each curve crosses this line indicates the stage elevation where half or more of the subaerial sand is 

stored. 

Based on annual surveys, the 145-mile sandbar is the steepest of the three sandbars on 

average and in each survey. The 22-mile sandbar is the least steep on average, with 30-mile 

in the middle. The lack of failures at 22-mile may be due in part to its reduced overall 

steepness and in part due to the limitations in flow variability caused by the downstream 

constriction. The 145-mile site, which has the steepest hypsometry, may have fewer mass 

failures than 30-mile because overall bar steepness is less important than the steepness of the 

portion of the bar within the FFZ or the steepness of the subaqueous bar. On average, over 

half of the subaerial extent of the 145-mile sandbar is above the FFZ (Fig 4.13B), while only 

around 28% of the 30-mile subaerial extent is above the FFZ. The high elevation area of 145-
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mile above the FFZ is sheltered on both the upstream and downstream ends (Fig. 4.12G). We 

take this evidence to suggest that site-specific factors and resulting average bar morphology 

have a large impact on whether mass failures occur or not. 

4.5.3. Time-lapse mass failure analysis 

Mass failures were observed in time-lapses at 27 of 41 sites in our study (Table 4.4). 

The lack of observed mass failure events at 14 of the sites is likely due, in part, to the limited 

length of time-lapses, turbid water hiding sub-aqueous failures from detection, and more 

oblique angles preventing observation of sub-aqueous failures occurring at low elevations. 

At sites where mass failures were observed, their mean recurrence intervals ranged 

from 74 days to 3,298 days with a mean recurrence interval for all sites of 976 days. This is 

considerably longer than the 371 day mean recurrence interval during the MLFF found in a 

study examining mass failure event frequency at seven sandbar sites from 1990 – 1993 

(Cluer, 1995). The previous study identified failures at the end of the UDO and beginning of 

IF regimes by visually identifying them in photos. Of the three sites that are in both our study 

and the previous study (43-mile, 51-mile, and 172-mile), 51-mile has a shorter mean 

recurrence interval (684 days) during MLFF than in the previous study (1021 days). At the 

43-mile site, mass failure events were documented with a recurrence interval of 177 days, 

while none were observed at that site during our study. The mean recurrence interval at 172-

mile was 117 days in the previous study but 371 days in our analysis. 

The discrepancy between recurrence intervals in the past and present could be due to 

differences in visual identification criteria, changes in camera viewing angle showing 

different portions of the bars in past studies versus the present study, or due to differences in 

bar behavior. The previous study also spanned just three years, making it difficult to 

accurately measure recurrence intervals. The current MLFF period started in 1996, and the 

current protocol for controlled floods began in 2011, giving the sandbars time to adjust to the 
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discharge patterns common in the MLFF. In contrast, the previous study was conducted as a 

transition was occurring between the UDO and IF. If sandbars had adjusted to the discharges 

in the UDO, the shift to IF could have altered the cyclic patterns of sandbars as they were 

adjusting to a new flow regime. Our results show that mass failure frequency increases with 

the onset of monthly changes in discharge (Fig. 4.10), most often occurring on the first day of 

a new month, when flows are adjusting. It is also important to consider that since controlled 

floods have been successful at increasing sediment storage within eddies, mass failures could 

be increasing in frequency due to increased sediment storage within eddies. 

There are several potential mechanisms through which changes in flow might lead to 

conditions triggering mass failures. Previous studies have suggested that mass failures occur 

in response to high down ramp rates and coincided with weekend lows or seasonal shifts to 

lower water (Carruth and Cluer, 1991; Cluer, 1991; Budhu, 1995; Cluer, 1995). The 

breaching literature also describes mass failures in tidal environments coinciding with very 

low tides (Masterbergen et al., 2019). However, our analysis of mass failures during the 

MLFF found failures more often coincided with increases in discharge. Mass failure 

occurrences were clustered in the high-flow winter and summer months and on weekday 

water, which is higher on average than weekend water (Figs. 4.10). January had the highest 

number of mass failures, which may be because January is the first high flow month 

following November controlled floods, which result in steeper sandbar configurations. We 

also saw a clustering of some mass failures, where multiple failures at the same site happen in 

a short period of time. This may be due to a dramatic increase in instability following an 

initial failure or increased variability in secondary flow structures due to rapid changes in 

morphology.  

We also found significant differences with regard to several flow metrics between 

days when failures occurred (Failure days) and our control groups (𝐿𝑎𝑔2 days and Random 
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days) (Fig. 4.11). Variance in flows, captured by the CoV and daily standard delta metrics, 

were all significantly higher on failure days than on 𝐿𝑎𝑔2 days. We found that maximum 

discharge, increases in maximum discharge relative to the previous day, range in discharge, 

and increases in mean discharge were all significantly higher on days when failures occurred 

than on the control group days (𝑙𝑎𝑔2  and random). 

The increases in discharge and subsequent mass failures are likely connected to 

changes in secondary flow structures at increased discharges.  Discharge-induced changes, 

such as the appearance of secondary eddies, the formation of helical flow patterns, and 

adjustments in reattachment and separation point location observed during the 2008 

controlled flood could be related to site-specific discharge thresholds, which vary based on 

site-geometry and antecedent sandbar conditions. The appearance of a secondary eddy 

coinciding with a mass failure has been observed at least once in the field during an increase 

in discharge from weekend to weekday water (Cluer, 1995). Perhaps at sites like 30-mile, 

significant changes in flow structure, leading to steeper deposition and more erosive forces 

within the eddy, can happen at the high end of fluctuating flow during high-flow months. 

While the specific triggers that lead to mass failures remain elusive, we have 

established a connection between seasonal flow adjustments, increases in discharge, and 

discharge variability with mass failure occurrence throughout the Grand Canyon. Since mass 

failures are likely a significant mechanism for the transport of sediment out of long-term 

storage within the eddy, and because failures result in size change larger in magnitude than 

either the monthly or annual variability, they will remain a subject of management interest. 

Future research in this area would benefit from 3-D modeling at a wide range of discharges, 

repeat bathymetric surveys, and Acoustic Doppler current profiling during seasonal flow 

transitions. 
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Careful examination of time-lapses at all 41 sites adds context to the more detailed 

results at 22-mile, 30-mile, and 145-mile. Time-lapses elucidate patterns and processes that 

are often difficult to quantify (Brinley-Buckley et al., 2017). While there is significant 

variability in the responses of different sandbar sites to the current regime (MLFF) and to 

controlled floods, there does appear to be a generalized pattern at work. Controlled floods 

appear to be the most significant driver of morphological change at sites in years when they 

occur. Controlled floods most often increase deposit thickness, creating large convex-shaped 

sandbars though sometimes changing little with regards to aerial extent. Over the following 

months, gradual erosion and gravitational collapses of steepening banks begin to erode sand 

at the high end of the FFZ and in the CFZ, which is either carried downstream or redeposited 

at lower elevations in the FFZ or on the subaqueous sandbar forming a low-elevation 

platform. This process often creates a concave feature within the fluctuating flow zone, which 

retrogressively erodes bankward, often simultaneously as deposition is occurring on the low-

elevation platform. Low-elevation aggradation continues until the sand fills the lateral 

accommodation space, which is also stage-dependent. Occasionally the channel-proximate 

edge of the subaqueous sandbars experiences mass failures, which often coincide with 

seasonal or monthly shifts in discharge occurring more often in high-flow months. Such 

failures open up accommodation space which is then gradually filled in by deposition, 

presumably with sand from higher elevations on the bar or sediment actively advecting into 

eddies. 

In general, controlled floods seem to recharge eddies with sediment, while the 

cumulative effects of daily, weekly, monthly, and seasonal flow patterns in the MLFF rework 

that sediment creating bars, which are increasingly stable at specific flows but become 

destabilized when monthly flows shift. Thus, gradual erosion acts to mobilize sediment, 

conveying it primarily downslope, but likely also downstream. As sediment moves out of the 
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eddy and out of long-term storage, controlled floods are needed to periodically enrich eddies 

with new sediment (Grams et al., 2015; Hazel et al., in press). 

Shifts from erosion to depositional phases do seem to coincide with seasonal or 

monthly changes in flow and with mass failure occurrence. Deposition appears to happen in 

both vertical and horizontal directions simultaneously and the sandbars exhibit continued 

growth until most of the horizontal accommodation space is filled. Without the ability to 

expand laterally and bounded by high-velocity mainstream current, deposition occurs 

vertically, creating steeper and steeper slopes. High-angle deposition may also be occurring 

more often in high-flow months since steeper deposition has been noted during controlled 

floods (Wright and Kaplinski, 2011). Such steep slopes prime the sandbar for a shift to an 

erosional phase that may be triggered by adjustments in seasonal flow or daily flow patterns. 

Spatial variability in bar behavior is likely related to both 1) site-specific hydraulic geometry, 

the site-specific discharge threshold for increased variability of secondary flow structures, 

and 2) antecedent conditions including the available accommodation space, sandbar slopes, 

and whether the site is experiencing an erosional or depositional phase. 

4.6. CONCLUSIONS 

We demonstrate that, despite its challenges, the enormous dataset of Grand Canyon 

sandbar imagery, which now exceeds a million images, can be utilized in a variety of ways to 

quantify sandbar response. First, imagery and image-areas can be used to examine spatial 

variability between sites. A detailed analysis of three reattachment bars revealed high spatial 

variability in the magnitude and frequency of cyclic behavior. It demonstrated that site-

specific hydraulic geometry and antecedent conditions are likely more significant drivers of 

sandbar area change than discharge patterns, which might affect sandbars differently 

depending on those site-specific conditions. Secondly, image-derived monthly area estimates 
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track annual trends and reveal the frequency and magnitude of cyclic changes of eddy 

sandbars. However, errors in image-area and gage-wave time estimation make it challenging 

to quantify daily erosion or deposition rates with much certainty. Thirdly, image-derived 

time-lapses allow us to conservatively measure mass failure frequency and add to our 

understanding of complex processes that are difficult to quantify 

Mass failures might be the most significant process for transporting fine sediment out 

of long-term storage in eddies. Our findings demonstrate that mass failures can result in 

erosion at magnitudes greater than average annual variability, most often corresponding with 

increases in daily, monthly, or seasonal discharge. Whether increases in discharge primarily 

lead to steeper deposition, which results in inevitable slope-induced mass failures, act as 

triggering mechanisms for failures on already unstable slopes, or both, is unclear. However, 

dam operators might consider making seasonal adjustments to make flow more gradual or 

consider equalizing differences between seasons to some degree to reduce the risk of mass 

failure events. 

Information gathered from remote cameras can inform dam managers of sandbar 

behavior during the MLFF and contextualize that information with the detailed and more 

extended time-series. Findings like ours have the potential to influence dam operations and 

improve the management of downstream resources. Our results could be helpful in 

understanding other dam-affected and debris fan-affected canyons throughout the Western 

United States. The methods described here can also be applied to other large coastal or fluvial 

oblique image datasets to quantify sub-annual changes. 
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CHAPTER 5: CONCLUSIONS AND MANAGEMENT  

IMPLICATIONS 

Ryan E. Lima 

5.1. INTRODUCTION 

The remote camera network in Grand Canyon is one of the longest running and most 

extensive fluvial monitoring datasets in existence. The purpose of this study was to re-

examine this under-utilized dataset to measure sub-annual sandbar morphodynamics and 

relate them to current dam operations. This chapter includes a summary of the key findings 

and contributions from each of the previous chapters, along with limitations and questions for 

future research. Finally, the implications of these findings for the adaptive management of 

Glen Canyon Dam are discussed. 

5.2. RESEARCH QUESTIONS AND KEY FINDINGS 

While annual topographic surveys still provide the most reliable method for 

monitoring year-to-year and decadal trends in sandbar size, they provide little insight into the 

sub-annual topographic evolution of sandbars (Cluer, 1995; Hazel et al., in press). In Chapter 

2, I attempted to determine if accurate estimates of sandbar volume could be quantified using 

oblique imagery. Results showed that careful selection of imagery over periods where a wide 

range of discharges were captured, such as the rising and falling limb of HFEs could be used 

to estimate volume at one site. These results provide evidence that sandbar volume may be 

estimated more frequently using pairs of image-derived areas at different elevations. If 

combined with the deep learning approach to image segmentation described in Chapter 3, 

such analyses could extend image-derived volume estimation to more sites at higher 

frequencies.  
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A fundamental question answered in Chapter 2 was whether imagery could be used in 

other ways to measure changes in elevational storage and measure the effectiveness of 

controlled floods. This research demonstrates that hypsometric curves can be a useful tool in 

this regard. Hypsometric curves provided a useful visual metric of overall sandbar 

morphology, allowed for monitoring the effects of HFEs and revealed patterns of elevational 

sediment distribution through time (Strahler, 1952; Jakobsson, 2002; Bahr et al., 2015, 

Karran et al., 2017).  

Analyses in Chapter 2 were limited by my initial inexperience in programming for 

computer vision, the lack of reliable rectifications and camera calibrations, and lack of a 

method for rapid segmentation of imagery in the early days of this study. Monitoring efforts 

in the canyon would greatly benefit from more time and resources dedicated to image-derived 

volume estimation and hypsometric analysis. The next logical step in this line of inquiry, 

other than extending it to more sites, would be developing a method for extracting elevation 

relief ratio from image-derived hypsometric curves, which would provide a single metric 

useful in comparing sandbar morphology throughout the canyon (Pike et al., 1971). The 

analyses completed in Chapter 2 were critical to understanding the limitations of this dataset 

and exploring what information could feasibly be extracted from oblique remote imagery if 

segmentation methods could be improved.  

 Chapter 3 focused on improving our ability to rapidly segment imagery. The 

segmentation method employed in the second chapter was time consuming and infeasible for 

segmenting a dataset of over 1,000,000 images. Studies employing deep learning approaches 

to segmentation of remotely sensed imagery have shown great promise (Buscombe and 

Richie 2018; Carbonneau et al., 2020; Piégay et al., 2020). However, the majority of deep 

learning segmentation methodologies used in the earth sciences are designed for use with 

satellite or UAV-based imagery, while relatively few have been developed for use with 
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oblique, ground-based imagery applied to change detection in images with natural textures. 

The third chapter demonstrates a successful application of deep learning to the rapid binary 

semantic segmentation of sandbars in Grand Canyon remote camera imagery. This study 

contributes to the literature by providing an example of the steps needed to train, test, 

validate, and deploy a convolutional neural network to achieve sufficiently accurate (F1 = 

0.9) binary semantic segmentation in oblique ground-based imagery. Methods such as these 

can easily be adapted for use with similar fluvial and coastal monitoring datasets. The 

research in this third chapter evolved slowly and consumed a majority of the time and 

resources dedicated to this dissertation. My lack of programming expertise at the start of the 

study, led to innumerable dead ends. However, as my competency in programming increased, 

the work progressed with increasing speed and sophistication. With more time, computing 

power, and the availability of assistants to aid in image labelling the accuracy of sandbar 

segmentation models could be improved substantially.  

 Future attempts to improve sandbar segmentation in the canyon should compare the 

encoder-decoder CNNs that we employed with other types of fully-connected neural 

networks, which make use of transfer learning. Furthermore, steps should be taken to apply 

segmentation prior to registration and rectification which could increase accuracy further. 

The model developed in this study was tested on, at most, ten different sandbar sites and 

utilized training data from just five sites. The creation of a generalized sandbar segmentation 

tool would benefit from training sets including imagery from a larger sample of sandbar sites. 

With improved methods for delineating sandbar area in remote camera imagery, 

several questions about sandbar dynamics could finally be examined in chapter 4. Results 

showed that area estimates with errors on the order of 2.9%-8.8% can be extracted from 

oblique imagery. Such errors make it difficult to quantify daily or monthly erosion rates, but 

daily area time-series and mean monthly area time-series are consistent with trends observed 
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in annual surveys and reveal nuanced sub-annual behavior. The variability in area measured 

at daily and monthly scales was the same order of magnitude as annual variability. Changes 

in net monthly area were strongly correlated with antecedent sandbar area at three dynamic 

reattachment bars. This study revealed that sandbar behavior is likely influenced more by 

site-specific characteristics and antecedent conditions than discharge patterns in the MLFF. 

For example, one of our sites experienced about twice as many cycles of erosion and 

deposition than the others. While differences in sandbar response to current dam operations 

and HFEs have been observed before in several studies, we are the first to quantify daily and 

monthly variability through nearly ten years of the MLFF (Hazel et al., 2010; Wright and 

Kaplinski, 2011; Hazel et al., in press). Our area analyses were limited to a few elevations 

and just three sites, but future work should extend to sites occupying different geomorphic 

classifications to capture spatial variability at sandbars throughout the canyon.  

 While uncertainty remains in what triggers mass failure events at Grand Canyon 

sandbars, the time-lapse analysis in Chapter 4 revealed that there is a significant connection 

between mass failures and increases in flow magnitude and variability that coincide with 

seasonal shifts in discharge. Results show that mass failures can result in area loss on the 

order of 20-40% of maximum subaerial sandbar area. Rates and magnitudes of mass failure 

varied among the three sites examined in detail. This variance is likely related to the 

influence of local controls on sandbar steepness and secondary flow structures.  

 

5.3. MANAGEMENT IMPLICATIONS  

The impetus behind this dissertation attempts to improve our understanding of 

morphodynamic processes occurring at scales that are difficult to monitor in order to improve 

the operation of a dam. Dams are among the largest pieces of infrastructure on the planet. 
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Collectively dams hold back nearly 15% of total annual runoff globally disrupting the 

conveyance, and sequestering between 25 and 60Gt of sediment each year, resulting in a 

broad range of morphological and ecological responses (Williams and Wolman, 1984; 

Brandt, 2000; Nilsson et al., 2005; Walling, 2012). At the same time, dams provide critical 

services to society storing water, controlling floods, and generating electricity. Operations at 

Glen Canyon Dam are influenced by a program of adaptive management that seeks to 

mitigate impacts to, and improve the ecological and cultural values of, the downstream 

environment (Grand Canyon Protection Act 1992, Public Law 102-575; U.S. Department of 

the Interior, 1995). The effect of discharge patterns on sandbar morphodynamics is one 

consideration among many, but this dissertation contributes the following policy-relevant 

findings in that regard. 

The sub-annual responses of sandbars to daily and monthly discharge patterns is 

complex and spatially variable even among sites in similar geomorphic settings, and therefore 

it may be useful to re-think sandbar classifications considering not only annual trends but 

sub-annual behavior or hypsometry. Monthly discharge patterns alone cannot explain rates of 

mean monthly area change or sandbar behavior. It would also be useful to conduct repeat 

topographic and bathymetric surveys at multiple sites during controlled floods to provide 

more insight into secondary flow structure variability across a range of discharges. This 

dissertation presents evidence that mass failure occurrence is linked to daily increases in 

discharge magnitude and variability that occurs as discharge shifts from low-flow to high-

flow months and mass failures increase in frequency during higher weekly flows and in the 

first days of high flow months. Adjusting seasonal flow transitions to occur more gradually, 

over a week rather than a single day, could reduce the frequency of mass failures at sites 

where they occur, although more explicit testing of this hypothesis is needed. Remote 
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cameras such as those in the Grand Canyon have proved a vital tool in sandbar monitoring 

and show great potential for improving our understanding of sub-annual sandbar 

morphodynamics and answering outstanding questions in the field of fluvial geomorphology.  
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APPENDIX 

UNITS AND ACRONYMS 

 

ACRONYMS 

ANN    Artificial neural network 

CFZ    Controlled flood zone 

CNN    Convolutional neural network 

DEM    Digital elevation model 

DL    Deep learning 

EXIF    Exchangeable image file format 

FCN    Fully-convolutional network 

FFZ    Fluctuating flow zone 

FFT                                         fast Fourier transform 

GCD    Glen Canyon Dam 

GCP    Ground control point 

GPU    Graphical processing unit 

HIZ    Hydrologically inactive zone 

IF    Interim flows 

MLFF    Modified low fluctuating flows 

NF    Naturalized flows 

PC    Personal computer 

RM    River mile 
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ROD    Record of Decision 

UAV    Unmanned aerial vehicle 
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UNIT CONVERSIONS 

Multiply By To obtain Quantifies 

cubic feet per second 

( 𝒇𝒕𝟑𝒔−𝟏) 

 

0.028316846592 

cubic meters per 

second ( 𝒇𝒕𝟑𝒔−𝟏) 

Volumetric flow 

rate 

acre-foot (af) 1233.48 cubic meters (𝒎𝟑) Volume 

acre-foot (af) 1,000,000 million acre-feet 

(maf) 

Volume 

ton(t) U.S. 1102311310.9244 gigaton(Gt) Mass 

acre 0.000247105 square meter (𝒎𝟐) Area 

mile (mi) 1.609 kilometer (km) Distance 
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