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ABSTRACT 

REMOTE SENSING ASSESSMENT OF SEMI-ARID FOREST STRUCTURE CHANGES 

AND ECOHYDROLOGICAL RESPONSES TO THINNING-BASED RESTORATION 

PRACTICES  

ADAM JACKSON BELMONTE 

 

The expansive ponderosa pine forests across the southwestern U.S. have grown significantly 

denser over the last century, altering the historical ecological functioning, health, and resilience 

of the entire ecosystem. Coupled with the ongoing threats posed from climate change, namely 

hotter and drier regional weather conditions, these forests are increasingly vulnerable to drought-

related stress and mortality. To help combat these and other deleterious effects, landscape-scale 

(400+ ha) forest restoration thinning has been used to promote vegetation health and help 

stabilize regional ecohydrological systems. Assessing restoration-based forest structure changes 

and the effects of altered forest structure on surface water resources are key to improving 

management practices. Remote sensing methodologies and datasets offer accurate, cost-effective, 

and timely ways to quantify aspects of both forest structure and ecohydrological conditions 

across multiple spatial scales. In this dissertation, I use high-resolution remote sensing to develop 

and test novel methodologies for quantifying forest structure, snow cover, and soil moisture 

conditions in response to a restoration thinning treatment. First, I used unmanned aerial vehicle 

(UAV) image‐derived Structure‐from‐Motion (SfM) models and high‐resolution multispectral 

orthoimagery to quantify vertical and horizontal forest structure at both the fine‐ (<4 ha) and 

mid‐scales (4–400 ha) and assess specific objectives of a restoration thinning project. I found 

that estimates of fine-scale forest structure were most accurate in low‐density conditions, with 
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significantly degraded accuracies in high‐density conditions. Mid‐scale estimates of forest 

structure behaved similarly across the density gradient. Overall, I found that a majority of the 

prescription objectives were met in the post‐thinning conditions, demonstrating the effectiveness 

of UAV image data in quantifying forest structure changes from thinning treatments. Next, I use 

UAV multispectral imagery and SfM models to quantify snow cover dynamics and examine the 

effects of forest structure shading on persistent snow cover. I first develop a method with 90.2% 

accuracy to identify persistent snow cover using repeat UAV imagery (n = 11 dates) across the 

76-ha forest. Using the SfM-derived trees (98% accuracy, n = 1,280 trees) and forest structure 

variables, I show that forest canopy shading was a significant driver of persistent snow cover 

patches (R² = 0.70). Overall, my results indicate that UAV image-derived forest structure metrics 

can be used to accurately predict snow patch size and persistence, providing insight into the 

importance of forest canopy shading in the amount and distribution of persistent seasonal snow 

cover. Finally, I use dense soil water potential time-series data across the same thinned forest site 

to assess soil moisture availability and persistence in response to seasonal drought and forest 

structure conditions. Using terrestrial lidar data, I assess how fine-scale forest structure 

components drive differences in the timing, magnitude, and amount of soil drying across soil 

depths during the seasonal drought period. Results show significant differences in soil moisture 

response between two abnormally dry years, across all soil depths (25, 50, and 100 cm), and 

from specific forest structure metrics. Taken together, these studies provide a detailed 

methodological assessment of the efficacy of high-resolution remote sensing datasets in 

quantifying forest structure changes from thinning-based restoration and impacts of forest 

structure on specific ecohydrological components, and importantly how forest management can 

be used to optimize the availability of water resources in the semi-arid ponderosa pine forests. 
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PREFACE 

This dissertation consists of three manuscripts that examine the relationships between forest 

structure and ecohydrological processes in a thinned semi-arid ponderosa pine forest ecosystem. 

Two of these manuscripts are published and one will be soon submitted for peer review and 

publication to a leading remote sensing and ecohydrology journal. These manuscripts have been 

or will be reviewed by all co-authors prior to submission for publication. Formatting of all 

manuscripts is consistent throughout this document, and references are provided at the end of 

each manuscript for clarity. Chapter 1 consists of a comprehensive review of the literature 

relevant to all manuscripts. Chapter 2 is the first published manuscript on a novel method for 

inventorying and assessing the changes from a restoration thinning treatment in a semi-arid 

ponderosa pine forest in northern Arizona in the journal Remote Sensing in Ecology and 

Conservation (https://zslpublications.onlinelibrary.wiley.com/doi/full/10.1002/rse2.137?af=R). 

Chapter 3 is the second published manuscript about a novel method of quantifying persistent 

snow cover and assessing the relationships with forest structure in the journal of Remote Sensing 

(https://www.mdpi.com/2072-4292/13/5/1036). Chapter 4 is a manuscript that examines the 

response of the timing, magnitude, and extent of soil drying during seasonal drought and to 

forest structure conditions. Chapter 5 provides a brief discussion of the results from these 

chapters and summarizes the main findings and implications. Chapter 6 summarizes the overall 

conclusions of the dissertation. 

 

https://zslpublications.onlinelibrary.wiley.com/doi/full/10.1002/rse2.137?af=R
https://www.mdpi.com/2072-4292/13/5/1036
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CHAPTER 1: INTRODUCTION 

1.1 Southwestern semi-arid forest ecosystems: Importance, conditions, and outlook 

Forest ecosystems are integral to the health and functioning of our planet. They cover about 28% 

(3.7 billion ha) of the total land area on Earth and provide fundamental services to our natural 

and sociopolitical systems (FAO, 2015; Pearce, 2001). Specifically, forests harbor extensive 

plant and animal biodiversity, drive global carbon sequestration, and moderate the hydrologic 

cycle at the local and planetary scales. In addition, forest ecosystems provide many goods and 

services to humankind, resulting in extensive direct and indirect valuations underpinning 

economic markets (Mori et al., 2017; Pearce, 2001; Hawksworth & Kalin-Arroyo, 1995). The 

cumulative loss of forest ecosystems from direct human intervention and the anticipated losses 

from the effects of climate change has prompted the international community to begin 

prioritizing conservation and restoration of forest resources (Stanturf et al., 2014). 

There are an estimated 7.48 million hectares of forested land across the Southwestern 

U.S., containing roughly 3.98 billion live trees (https://www.fia.fs.fed.us/). Across this region, 

mid-elevation ponderosa pine (Pinus ponderosa) forests have endured significant changes in 

their structure, composition, and ecological functioning since European-American settlement 

(hereafter pre-settlement) (Cooper, 1960; Fulé et al., 1997). These changes are a result of many 

different factors including wildfire suppression, selective logging, and livestock grazing 

(Altschul & Fairley, 1989; Cooper, 1960; Madany & West, 1983; Schubert, 1974). As a result, 

overly dense forests have replaced the low-density, park-like pre-settlement conditions, 

increasing fuel loads and creating conditions that promote net ecosystem moisture loss and a 

propensity for catastrophic wildfire. 

https://www.fia.fs.fed.us/
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The natural range in variability of forest structure and composition in pre-settlement 

forests was reflected by diversity in tree age and structure      with forest patches and large, 

irregularly shaped interspaces (Cooper, 1960, 1961; Mast et al., 1999; Pearson, 1923; Sanchez-

Meador et al., 2011; White, 1985, Woolsey, 1911). These conditions yielded an ecosystem 

adapted to and tolerant of frequent (every 2-26 years), low-severity wildfires and other naturally 

occurring disturbances such as insect and disease outbreaks (Castello et al., 1995; Dahms & 

Geils, 1997; Fitzgerald, 2005; Schubert, 1974). Currently, a majority of the region’s ponderosa 

pine forests are characterized by higher canopy cover, comprised of trees homogeneous in both 

age and stature (Larson & Churchill, 2012; Moore et al., 2004; Reynolds et al., 2013). These 

conditions have altered the historical ecological functioning, health, and resilience of the entire 

ecosystem (Kolb et al., 1994; Swetnam, 1999; Swetnam & Betancourt, 1998). Reintroducing the 

natural range of variability of and promoting long-term ecological health in these forests are now 

recognized as important management goals (Allen et al., 2002; Covington & Moore, 1994; 

Covington et al., 1997; Fulé, 2008; Landres et al. 1999; White & Walker, 1997). 

With overly dense forests dominating federally managed lands in the western U.S. and 

wildland firefighting costs nearly tripling to $3 billion since the early 1990’s, scientific 

community and natural resource managers called for a comprehensive ecosystem management 

strategy (Allen et al., 2002; Covington & Moore, 1994; Covington et al., 1997; Grumbine, 1994). 

Taken together, this spurred the United States Congress to pass the Forest Landscape Restoration 

Act (FLRA) in 2008-2009 (Fitch et al., 2018; Schultz et al., 2012; US GAO, 2007). This enabled 

the United States Forest Service (USFS) to establish the Collaborative Forest Landscape 

Restoration Program (CFLRP) and allocate funding to a number of large-scale forest 

management programs (Day et al., 2006; Weldon, 2014). As one of the first and the largest 
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CFLRP projects, the Four Forests Restoration Initiative (4FRI) in Arizona focuses on improving 

and sustaining watershed health, wildlife habitat, and biodiversity, while also reducing the risk of 

catastrophic wildfire across the Apache-Sitgreaves, Coconino, Kaibab and Tonto National 

Forests (http://4fri.org/). Spanning more than 20 years and covering almost a million hectares, 

4FRI will design and implement restoration treatments that selectively harvest and thin dense 

forests and gradually reintroduce natural fire across the treated areas. As the threat of widespread 

and catastrophic wildfire to forests looms across the western United States, thinning- focused 

restoration practices have garnered increased public support and funding (Fitch et al., 2018; 

Schultz et al., 2012). In addition to reducing the risk of catastrophic wildfire, thinning practices 

also fulfill a suite of other ecologically oriented goals (Ziegler et al., 2017). For example, 

thinning can enhance wildlife habitat, promote vegetation health, and stabilize the water balance 

in treated forests. As more forest is earmarked for thinning, an operational understanding of how 

thinning patterns influence forest health and ecohydrological dynamics can further restoration 

efforts. 

Continued monitoring and adaptive management strategies are critical for 4FRI’s long 

term success (Schultz & Coelho, 2012; Williamson et al., 2011; Four Forests Restoration 

Initiative, 2013). Extensive data collection is needed to plan restoration treatments, assess 

adaptive management benchmarks, and monitor long-term progress. Doing so has traditionally 

relied on time intensive and costly field surveys, which provides thorough, fine-scale 

measurements at the plot-level (0.5 ha) (United States Forest Service, 2005). However, given the 

vast extent of the current and planned restoration treatments, remote sensing-based 

methodologies are needed for their flexible temporal and spatial resolutions. While the scope of 

forest restoration projects is often at the landscape-scale (400+ ha), individual restoration 

http://4fri.org/
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treatments are designed and implemented at the mid-scale (4-400 ha) as funding and project 

logistics allow. This leaves a gap in forest mensuration and inventorying required for adaptive 

management and monitoring. Also established were specific monitoring frameworks and goals, 

each having distinct spatial and temporal scales. For example, an assessment of pre- and post-

treatment forest structure characteristics need to be conducted annually at a scale of 10’s to 100’s 

of hectares. When coupled with a treatment plan including ~12,000 ha per year for 10 years, as 

outlined in 4FRI’s initial NEPA documents, the need for a comprehensive and transparently 

structured monitoring protocol helps ensure stakeholder involvement and the program’s long-

term survival (Schultz & Coelho, 2012). 

1.2 Ecohydrological health indicators in southwesetern ponderosa pine forests 

Surface streamflow in the world’s semi-arid regions provides water for drinking and agricultural 

uses for roughly one-sixth of the population and contributes trillions of dollars to the global 

economy (Barnett et al., 2005; Sturm et al., 2017). In the western U.S., significant reduction in 

surface streamflow within the Colorado River Watershed could manifest in up to $1.5 billion in 

economic losses across the Southwestern U.S. (James et al., 2014). Critical to global and 

regional hydrologic cycles, near-surface water resources help moderate the land-atmosphere 

interactions responsible for redistributing water along the soil-vegetation-atmosphere continuum 

(Entekhabi, et al., 1996; Hong & Kalnay, 2000; Koster et al., 2004; Thornthwaite, 1952; van der 

Schrier & Barkmeijer, 2007). Additionally, these resources are critical to the health and 

distribution of vegetation and aquatic ecosystems across the landscape, as well as influence the 

partitioning of water into surface runoff and deep aquifer storage (Bales et al., 2011; French & 

Binley, 2004; Newman et al., 1998; Price & Hendrie, 1983; Rieman et al., 2003; Sandvig & 
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Phillips, 2006; Seyfried et al., 2005; Wilcox, Breshears, & Allen, 2003; Wilcox et al., 1997). 

Applied ecohydrology lies at the nexus of atmosphere-vegetation-hydrology interactions and 

seeks to explain these relationships by quantifying the distribution and persistence of water 

throughout the unsaturated zone of the soil horizon (Vose et al., 2011). This dissertation aims to 

further our current understanding of these relationships in high-elevation ponderosa pine forests 

of the Southwestern U.S.  

Throughout semi-arid ecosystems, like those in the Southwestern U.S., limited 

precipitation inputs contribute to relatively low baseline soil water levels, making the loss of soil 

water a critical consideration in the total ecosystem water budget (Yaseef et al., 2010; Stoy et al., 

2019; Wang et al., 2014; Wei et al., 2017). Soil water loss is largely governed by fluxes in near-

surface soil water evaporation and vegetation transpiration, which can account for up to 100% of 

the precipitation inputs in semi-arid forests (Allen et al., 1998; Newman et al., 1997; Yaseef et 

al., 2012; Yaseef et al., 2009; Zhang et al., 2001). The relationship between near-surface soil 

water and vegetation water stress is crucial to quantifying broader ecosystem health and 

functioning in these water limited environments (Koepke & Kolb, 2013; Porporato et al., 2001). 

This has prompted scientists and land managers to seriously consider the effects of soil water 

limitation across the landscape and prioritize water management in forest ecosystems to reduce 

water stress and preserve productivity and resilience (Grant et al., 2013). Subsequently, this 

dissertation focuses on the effects of forest management on various components of the forest 

ecohydrological cycle.  

Forests regulate surface streamflow timing and magnitude, snow accumulation and 

ablation, ground surface evaporation, and groundwater infiltration through interception, 
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transpiration, and ground shading (Essery et al., 2003; Lundquist et al., 2013; Price 2011; Vose 

et al., 2016). In the high-elevation (1,500-3,000 m) semi-arid ponderosa pine forests of the 

Southwestern U.S., about half of the annual precipitation falls as rain during the summer, while 

the other half as snow during the winter via extensive slow-moving Pacific storms (Hereford, 

2014). Accumulated winter snow percolates into the soil column and functions as a reservoir for 

perennial evergreen vegetation throughout the growing season (Ehleringer et al., 1991; Forzieri 

et al., 2011). For mature ponderosa pine trees in particular, water from snowpack is the dominant 

source of water throughout the year (Ehleringer & Dawson, 1992; Kerhoulas et al., 2013).  

As snowmelt concludes, the transition into the spring and early summer seasons heralds 

the driest months in the Southwestern U.S., and often referred to as the fore-summer drought 

period. This period is bookended by the disappearance of snow and the onset of the North 

American Monsoon in mid to late summer, and is characterized by high atmospheric water 

demand, increased evapotranspiration, and large fluctuations in soil moisture availability 

(Hereford, 2014; Loik et al., 2004). Persistent soil moisture deficits in the root zone during the 

growing season will negatively impact the physiological processes controlling vegetation 

functioning, structure, and overall health (Chapin, 1991; Chapin et al., 1987; Maherali & 

DeLucia, 2001; Williams et al., 2001). These negative effects can be further exacerbated by 

periodic or prolonged drought conditions (Adams et al., 2009). 

While seasonal and multi-year drought conditions are not abnormal in these water-limited 

forests, climate-change-driven increases in air temperature and variability in vapor pressure 

deficit are likely contributing to hotter and more frequent droughts (Breshears et al., 2005; 

Palmer, 1965; Vicente-Serrano et al., 2010; Vicente-Serrano et al., 2013). Despite this evolved 
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tolerance to drought conditions, the presence of ongoing multi-year and hotter drought leads to 

unsustainable levels of tree water stress and eventually coincides with or contributes to 

widespread mortality from naturally occurring insect, pathogen, and wildfire (Allen et al., 2015; 

Clark et al., 2016; Ganey & Vojta, 2011; Gaylord et al., 2006; Kolb et al., 2016; Mueller et al., 

2005; Pinol & Sala, 2000; Williams et al., 2010; Zhang et al., 1997). Given the currently ongoing 

multi-year drought conditions, this dissertation addresses the impacts of both the seasonal and 

multi-year drought periods.  

1.3 Spatial variability in ecohydrological variables 

Vegetation presence, stress, and mortality are not evenly distributed throughout semi-arid forests 

in part due to high spatial variability in snow cover and soil moisture levels across the landscape 

(Andrews et al., 2020; Huxman et al., 2004; Yaseef et al., 2010; Snyder & Tartowski, 2006; 

Teuling, 2005; Weltzin et al., 2003). Forest cover is central to governing the accumulation and 

ablation of snow on the ground surface, primarily by controlling canopy interception and 

subsequent sublimation (Essery et al., 2003; Molotch et al., 2007, 2009; Roth & Nolin, 2017; 

Varhola et al., 2010). Discontinuous forests and those with low overall canopy cover tend to 

have higher rates of snow accumulation and ablation than forests with continuous cover and with 

higher canopy cover (Dickerson-Lange et al., 2017; Gottfried & Ffolliott, n.d.; Revuelto et al., 

2015). Additionally, the size, shape, spacing, and tree structure of forest patches greatly 

influences snow accumulation and ablation processes both within patches and in adjacent forest 

gaps (Davis et al., 1997; Dickerson-Lange et al., 2015; Essery et al., 2008; Lawler & Link, 

2011). In addition, individual tree structure and the spatial patterns of tree groups directly 

influence the accumulation and ablation of snow throughout semi-arid forests, articulating the 
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spatial heterogeneity of soil moisture (Davis et al., 1997; Essery et al., 2008; Essery et al., 2003; 

Molotch et al., 2009; Roth & Nolin, 2017). 

Forest canopy shading and individual tree structure also exacerbate spatial heterogeneity 

of soil moisture. As spring snowmelt occurs, areas with the most persistent and deeper snow 

saturate the shallow soil depths, translating into non-uniform soil water inputs across the 

landscape (Newman et al., 2004). Higher rates of soil water evaporation are observed in 

unshaded versus shaded areas, which can result in increased water yield from areas with higher 

cover (D’Odorico et al., 2007; Duff et al., 1997; Qubaja et al., 2020; Sahin & Hall, 1996; Tyagi 

et al., 2013). There are also significant effects attributed to fine-scale differences in tree structure 

and forest patch characteristics (Breshears et al., 1997; Gray et al., 2002; Teng-Chiu Lin et al., 

1992). For example, within forest patches with high canopy cover, there is increased interception 

of precipitation but also more water uptake from transpiration, translating into lower soil 

moisture levels. Interspaces directly adjacent to tree groups show the opposite response, a direct 

benefit from canopy shading. 

Quantifying the forest structure-driven differences in snowpack and soil moisture can 

help resource managers promote ecosystem resilience as both human-caused and natural 

disturbances change the structure and composition of these dry forests. Previous research has 

exhibited increases in snowpack-derived water resources from forest cover changes related to 

insect, drought, wildfire, and thinning-based forest management (Biederman et al., 2014; 

Broxton et al., 2020; Ffolliott et al., 1989; Ffolliott & Gottfried, 2003; Goeking & Tarboton, 

2020.; Gottfried & Ffolliott, n.d.; Harpold et al., 2014; Pugh & Small, 2012; Sankey et al., 2015; 
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Winkler, 2011; Woods et al., 2006). This dissertation further addresses these relationships using 

novel, high resolution UAV time-series datasets from thinned and unthinned forests.   

1.4 Remote sensing of forest structure and ecohydrology 

Accurate and timely forest inventory data are essential to forest management, providing insight 

into individual tree and larger forest patch age, species composition, and structure. In particular, 

implementing forest restoration plans relies on quantifying forest structure to both create 

treatments and assess their effectiveness. Specific restoration prescriptions utilize this 

information with the goals to reduce fire, insect, and disease risk, while promoting other wildlife 

and stand diversity metrics such as interlocking canopies and old-growth tree retention (Allen et 

al., 2002; Covington et al, 1997; Mast et al., 1999). Planning for, implementing, and evaluating 

restoration treatments require quantitative data at a variety of spatial scales, which relies upon 

the accurate and efficient location and measurement of trees throughout a representative portion 

of the forest in question (Husch et al., 2003). 

Forest structure metrics important to restoration planning and assessment include, but are 

not limited to, stand-level canopy height, diameter at breast height, basal area, trees per hectare, 

canopy cover, as well as more specific forest patch and interspace metrics. Traditional methods 

for providing estimates of these metrics require a combination of sample-driven field 

measurements of individual trees and statistical modeling techniques (Huffman et al., 2001). 

These methods tend to be expensive, time-intensive, and only viable at the fine-scale (< 4 ha). In 

an effort to alleviate these shortcomings, remotely sensed data products have emerged as a viable 

alternative across all spatial scales. This dissertation demonstrates applications using both 

airborne multispectral and ground-based lidar sensors. In addition to quantifying fine-scale (<4 
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ha) forest structure, UAV datasets can also be used to measure snow cover and depth (Harder et 

al., 2016; Lendzioch et al., 2019; Miziński & Niedzielski, 2017). While satellite remote sensing 

can provide temporally dense and spatially extensive measurements of snow-covered area 

(SCA), the generally coarse spatial resolutions, fixed time intervals, and cloud interference can 

limit its applications (Sankey et al., 2015). However, applying similar methodologies used in 

satellite remote sensing to derive SCA, UAV datasets can yield high resolution and near real-

time SCA observations (Niedzielski et al., 2018). This offers a flexibility essential to capturing 

both ongoing forest structure changes as well as the often-day-to-day variability of snow cover, 

which rapidly melts in semi-arid Southwestern forests (Sankey et al., 2015). 

1.5 Motivations 

As the climate of Southwestern U.S. trends toward hotter and drier conditions, it is essential to 

better understand and manage for landscape-scale ecohydrological health. The region’s semi-arid 

forests are critical to broader ecological health and remain vulnerable to a suite of natural and 

human-caused threats. As such, these forests have been the focus of costly and extensive 

management action for decades. Managers aim to curb stress and mortality in forests using 

different combinations of thinning- and burning-based treatments to promote natural ecosystem 

functioning. While this management strategy explicitly promotes a diverse suite of objectives, 

such as improvement of wildlife habitat and reduction of catastrophic wildfire potential, it lacks 

a framework to specifically manage for water resources and broader ecohydrological health. 

Key to establishing and maintaining adaptive management strategies are accurate, 

detailed, and easily reproducible methodologies and data. For example, gauging the success of a 

restoration treatment and informing future treatments are reliant on measuring forest structure 
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changes at fine- to mid-scales and their impact on the ecohydrological processes. Doing so 

remains challenging given the scale and pace of restoration thinning projects. Importantly, 

methods for quantifying the response of ecohydrological components, like snowpack and soil 

moisture, in response to thinned forest conditions are not well documented. Further research into 

using remote sensing technology for rapid and scalable forest structure measurement will directly 

serve operational forest management throughout the region. Research into the remote sensing of 

near-surface water resources in thinned forests will help tailor future restoration efforts to 

maximize snow cover and soil moisture.  

1.6 Objectives 

The overarching goal of this dissertation research focuses on developing UAV and lidar remote 

sensing methods for operationalizing forest restoration assessment and investigating the complex 

relationships between ecohydrological processes and post-restoration forest structure. This 

research is divided into three distinct and interconnected chapters that use cutting-edge remote 

sensing techniques to: 1) quantify a mechanically thinned ponderosa pine forest structure in 

northern Arizona, 2) measure and relate snow cover dynamics to forest structure, and 3) assess 

seasonal soil moisture deficits in response to forest structure. Two of the three chapters have 

already resulted in peer-reviewed articles in the journals Remote Sensing in Ecology and 

Conservation (chapter 2) and Remote Sensing special issue Ecohydrological Remote Sensing 

(chapter 3).  

Chapter 2 in this dissertation and the first publication focuses on quantifying forest 

structure changes from a mechanical thinning restoration treatment at a 76-ha study site and 

providing a framework for future management operations. I use UAV‐borne photogrammetry to 
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examine the structural changes to a high‐density forest that underwent a prescribed mechanical 

thinning restoration treatment. More specifically, I develop a methodology for measuring forest 

structure at the fine‐ and mid‐scales to quantify the changes resulting from the treatment and 

determine whether this methodology is a viable tool for monitoring prescription‐based forest 

restoration treatments. I use UAV high‐resolution multispectral imagery and structure from 

motion (SfM) models to quantify vertical and horizontal forest structure metrics at the fine‐scale 

across a gradient of density conditions. Then, I use the UAV-derived data to assess the 

effectiveness of the restoration thinning prescription. 

The second publication, which is chapter 3 in this dissertation, focuses on quantifying 

snowpack dynamics in the thinned and unthinned portions of the same study site, and evaluates 

the benefits of thinning on snowpack. I use UAV multispectral orthomosaic image time-series to 

quantify snow cover and areas of persistent snowpack. In addition, I use UAV-derived SfM 

models to examine the effects of forest structure on snowpack persistence. Snow cover was 

quantified using data from three separate winter storms and persistent snow cover was identified 

using a novel classification scheme. The effects of forest structure shading on snow persistence 

were assessed using a novel approach to quantifying fine-scale tree shading with multivariate 

adaptive regression splines (MARS). 

The third and final paper (chapter 4) focuses on measuring soil moisture availability and 

its persistence throughout fore-summer seasonal drought. I generate and use unprecedented, 

spatially- and temporally-extensive soil moisture time-series data to investigate soil moisture 

relationships to forest structure conditions. I use data from 112 soil matric potential sensors to 

quantify soil moisture along the top 100 cm of the soil profile during two consecutive seasonal 



 

13 

 

drought periods. Sensors were located across the same 76 ha study site and cover the gradient of 

forest density available from heavily thinned to overly dense unthinned conditions. I use high 

resolution lidar data from a terrestrial laser scanner to assess how fine-scale forest structure 

components drive differences in the timing, magnitude, and amount of soil drying. 

The objectives of this study can be summarized as follows: 

1. To develop a rapid and accurate methodology for measuring and assessing forest 

structure changes at fine- and mid-scales resulting from a restoration thinning project, 

using UAV high-resolution multispectral imagery and photogrammetric SfM point cloud 

data. 

2. To quantify and predict the spatial extent of persistent snowpack as it relates to forest 

structure resulting from the restoration thinning project using UAV image time-series and 

photogrammetric SfM point cloud data. 

3. To measure the soil moisture response to seasonal drought and to assess its relationship to 

fine-scale forest structure in the recently thinned forest using high-resolution soil matric 

potential measurements and terrestrial lidar datasets. 
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CHAPTER 2: UAV-derived estimates of forest structure to inform ponderosa pine forest 

restoration 

2.1 Abstract 

Restoring forest ecosystems has become an increasingly high priority for land managers across 

the American West. Millions of hectares of forest are in need of drastic yet strategic reductions 

in density (e.g., basal area). Meeting the restoration and management goals requires quantifying 

metrics of vertical and horizontal forest structure, which has relied upon field‐based 

measurements, manned airborne or satellite remote sensing datasets. We used unmanned aerial 

vehicle (UAV) image‐derived Structure‐from‐Motion (SfM) models and high‐resolution 

multispectral orthoimagery in this study to quantify vertical and horizontal forest structure at 

both the fine‐ (<4 ha) and mid‐scales (4–400 ha) across a forest density gradient. We then used 

these forest structure estimates to assess specific objectives of a forest restoration treatment. At 

the fine‐scale, we found that estimates of individual tree height and canopy diameter were most 

accurate in low‐density conditions, with accuracies degrading significantly in high‐density 

conditions. Mid‐scale estimates of canopy cover and forest density followed a similar pattern 

across the density gradient, demonstrating the effectiveness of UAV image‐derived estimates in 

low‐ to medium‐density conditions as well as the challenges associated with high‐density 

conditions. We found that post‐treatment conditions met a majority of the prescription objectives 

and demonstrate the UAV image application in quantifying changes from a mechanical thinning 

treatment. We provide a novel approach to forest restoration monitoring using UAV‐derived 

data, one that considers varying density conditions and spatial scales. Future research should 

consider a more spatially extensive sampling design, including different restoration treatments, 
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as well as experimenting with different combinations of equipment, flight parameters, and data 

processing workflows. 

2.2 Introduction 

Forests cover roughly 28% (3.7 billion ha) of the land area on Earth and are cornerstone to the 

functioning of hydrologic, ecological and sociopolitical systems (FAO, 2015). In the American 

Southwest, specifically Arizona, there are an estimated 7.48 million hectares of forested land 

containing roughly 3.98 billion live trees (https://www.fia.fs.fed.us/). Across this region, 

ponderosa pine (Pinus ponderosa) forests have undergone significant changes in their structure, 

composition and ecological functioning since European‐American settlement (hereafter pre‐

settlement) (Cooper, 1960; Fulé et al., 1997; Congalton and Green, 2008) due to wildfire 

suppression, selective logging and livestock grazing (Cooper, 1960; Altschul et al., 1989). Pre‐

settlement regional forest conditions were characterized by a mosaic of diversely aged and 

structured forest patches with large, irregularly shaped interspaces (Cooper, 1961; Sánchez 

Meador and Moore, 2011). Their distributions were dependent on site‐specific conditions 

(Woolsey, 1911; Pearson, 1923; Cooper, 1960, 1961; White, 1985; Mast et al., 1999) and the 

natural variability of vertical and horizontal forest patch structure yielded an ecosystem adapted 

to and tolerant of frequent (every 2–26 years), low‐severity wildfires and other naturally 

occurring disturbances such as insect and disease outbreaks (Schubert, 1974; Dahms and Geils, 

1997; Fitzgerald, 2005; Castello et al., 2006). 

The Southwestern ponderosa pine forests are now characterized by extensive closed 

canopy forests, comprised of trees usually homogeneous in both age and stature with few old‐

growth trees, and a uniform horizontal spatial distribution at the landscape scale (Moore et al., 

https://www.fia.fs.fed.us/
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2004; Larson and Churchill, 2012; Reynolds et al., 2013). The current forest structure and 

composition have, in turn, altered the historical ecological functioning, health and resilience of 

the entire ponderosa pine ecosystem (Kolb et al., 1994; Swetnam et al., 1999; Swetnam and 

Betancourt, 2010). These changes to structure have increased and concentrated the amount of 

ground surface fuels and tree canopy fuels, leading to greater susceptibility to crown fire (Fulé et 

al., 2004; Reynolds et al., 2013). Reintroducing the ‘natural range of variability’ and promoting 

long‐term ecological health of the Southwestern ponderosa pine forests are now recognized as 

important management goals (Allen et al., 2002; Covington & Moore, 2006; Fulé, 2008; Landres 

et al., 1999). 

The United States Congress passed the Forest Landscape Restoration Act (FLRA) in 

2008–2009 (Fitch et al., 2018; Schultz et al., 2012) and subsequently the Collaborative Forest 

Landscape Restoration Program (CFLRP) has allowed the United States Department of 

Agriculture Forest Service (USFS) to establish and fund a number of large‐scale forest 

management programs (Day et al., 2006; Weldon, 2014). Given the collaborative foundations of 

the CFLRP, a diverse group of stakeholders in Arizona including federal, state, non‐profit and 

private entities established the Four Forests Restoration Initiative (4FRI). As one of the first and 

the largest forest restoration efforts, 4FRI focuses on reducing the risk of catastrophic wildfire, 

improving and sustaining watershed health, wildlife habitat and biodiversity across the Apache‐

Sitgreaves, Coconino, Kaibab and Tonto National Forests (http://4fri.org/). Spanning more than 

20 years and covering almost a million hectares, 4FRI will design and implement restoration 

treatments that selectively harvest and thin dense forests via mechanical thinning and reintroduce 

fire across the treated areas. 

http://4fri.org/
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Continued monitoring of restoration treatments is critical in supporting adaptive 

management goals and ensure the long‐term success of 4FRI (Williamson et al., 2011; Four 

Forests Restoration Initiative, 2013; Schultz et al., 2014). More specifically, quantitative data 

that catalog changes to forest cover and structure are necessary to evaluate the outcome and the 

success of a restoration treatment. These data allow managers to determine how well a specific 

treatment prescription is followed and how future treatments should be tailored to meet larger 

landscape‐scale goals. Acquiring this data has traditionally relied on time‐intensive and costly 

field surveys, which provides thorough, fine‐scale measurements at the plot level (0.5 ha) 

(Smith, 2002; USGS, 2017). However, given the vast extent of the current and planned 

restoration treatments, remote sensing‐based methodologies are needed for their cost‐

effectiveness and spatial extent coverage. Here, we assess unmanned aerial vehicle (UAV)‐

derived aerial imagery and Structure‐from‐Motion (SfM) models in evaluating the effectiveness 

of a forest restoration treatment. 

2.2.1 Quantifying forest biophysical variables 

Planning, implementing and evaluating restoration treatments can greatly benefit from 

quantitative datasets that summarize pre‐ and post‐treatment conditions in a stand or across the 

landscape, regardless of the forest restoration objective and desired outcomes (Patton, 1977; 

Covington et al., 1997; Mast et al., 1999; Allen et al., 2002; Kalies and Rosenstock, 2013; 

Bottero et al., 2017; Matonis and Binkley, 2018). Evaluating individual treatments with accurate, 

quantitative datasets helps determine their contribution to the larger restoration plan and 

associated changes to the plan. Commonly used forest mensuration metrics in restoration 

planning and assessment are individual tree diameters at breast height (DBH), and stand‐level 
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estimates of basal area (BA), trees per hectare (TPH), canopy cover (CC), as well as tree patch 

and interspace size and shape. Tree patches are groups of trees with similar vegetation 

composition and structure while interspaces are un‐treed ‘areas not under the vertical projection 

of the outermost tree canopies’ (Reynolds et al. 2013, p. 71). Traditional field‐based methods for 

these variables rely on trained field personnel, specialized measurement devices, and often 

lengthy site visits to produce detailed stem maps and stand‐level summaries that are used for 

implementing and monitoring treatments. Additionally, quantifying stand‐level metrics requires 

a combination of sample‐driven field measurements of individual trees and statistical modeling 

techniques (Huffman et al. 2001). To facilitate standardization of data collection, the USFS 

developed the Common Stand Exam (CSE) guideline, which provide a step‐by‐step field 

measurement methodology and acceptable accuracy standards for collection of individual tree 

and plot‐level vegetation data. We use the accuracy standards from the CSE Field Guide for 

Region 3 (Southwestern Region) as a baseline in evaluating the UAV‐derived estimates of forest 

metrics. 

In contrast to the traditional field‐based forest mensuration methods, which tend to cover 

relatively small spatial extents, airborne lidar (light detection and ranging) data are commonly 

used to capture structural detail at the landscape level (400 + ha) (Næsset, 2004; Reutebuch et 

al., 2005; Hudak et al., 2006). The continued high costs associated with airborne lidar data 

acquisition make it unattractive for fine‐ (0–4 ha) and mid‐scale (4–400 ha) projects. This has 

fostered interest in UAV‐borne photogrammetric Structure‐from‐Motion (SfM) modeling as a 

viable, cost‐effective alternative for fine‐ and mid‐scale assessments (Iizuka et al., 2018; Puliti et 

al., 2015; White et al., 2013; Alonzo et al., 2018; Carr and Slyder, 2018; Diaz‐Varela et al., 

2016). SfM algorithms construct three‐dimensional (3D) models with high point densities and 
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include spectral information. When compared to lidar 3D point cloud data, SfM models often 

provide similar accuracies in estimating individual tree canopy heights, diameter and volumes 

(Thiel and Schmullius, 2006; Wallace et al., 2016; Sankey et al., 2019). However, SfM 

photogrammetry in forested environments has unique challenges affecting the quality of data 

products and their overall accuracies are not well quantified across a gradient of forest conditions 

(Bohlin et al., 2017; Rupnik et al.. 2017; Snavely et al., 2006). More specifically, Iglhaut et al. 

(2019) reported that uniform forest canopy textures and common patterns could hamper the 

ability of SfM algorithm, which negatively affect the quality of the data products. The untreated, 

highly dense forests typical of the 4FRI region might present large areas of tree and ground 

occlusion, which is expected to limit scene reconstruction. Here, we use UAV‐borne 

photogrammetry to examine the structural changes to a high‐density forest that underwent a 

prescribed mechanical thinning restoration treatment. Specifically, we develop a methodology 

for measuring forest structure at the fine‐ and mid‐scales to quantify the changes resulting from 

the treatment, and determine whether this methodology is a viable tool for monitoring 

prescription‐based forest restoration treatments. 

Our first objective was to assess UAV‐derived high‐resolution multispectral imagery and 

SfM models in quantifying forest vertical and horizontal structural elements at the fine‐scale (<4 

ha) across a gradient of density conditions. We first hypothesized that the UAV‐derived 

estimates of individual tree location, tree height (m) and crown diameter (m) would not differ 

significantly from corresponding field‐based measurements. Specifically, all of the UAV‐derived 

estimates of tree height and crown diameter would fall within the acceptable error rates used in 

USFS Common Stand Exam (CSE) protocol. Second, we hypothesized that as tree density, 
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measured in trees per hectare (TPH), and canopy cover increased along a density gradient, the 

accuracy of all UAV‐derived individual tree level estimates would significantly decrease. 

Our second objective was to evaluate UAV‐derived vertical and horizontal forest 

structural measurements at the mid‐scale (4–400 ha); first by quantifying the forest density and 

structure metrics before and after the mechanical thinning treatment, and then by comparing 

post‐treatment conditions to the restoration prescription guidelines to determine if treatment 

objectives were met. We hypothesized that the lower, post‐treatment forest density would allow 

accurate estimates of stand‐level basal area (BA), canopy cover, and forest patch and interspace 

metrics. Additionally, that our workflow, when applied to the post‐treatment UAV‐image 

derived datasets, would allow forest managers to efficiently assess restoration treatment 

objectives. 

2.3 Materials and Methods 

2.3.1 Study area and treatment description 

Situated on the southern edge of the Colorado Plateau in northern Arizona, the study area is 

located in the Coconino National Forest, at the base of the San Francisco Peaks, about 6.5 km 

from the City of Flagstaff (12S 438346 N., 3901732 E. UTM) (Figure 1A). The study area 

includes 46 hectares of forested land, ranging in elevation between 2200 and 2270 m above sea 

level. It is characterized by relatively flat topography bisected by two distinct ephemeral 

drainages oriented toward the southwest, with slopes of 0–10% across a majority of the study 

area and slopes up to 25% found in the drainages. The climate is sub‐humid and is characterized 

by distinct seasonal trends including early summer drought, with an average of 560 mm of 
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precipitation (http://www.wrcc.dri.edu) falling half as snow during winter months and half as 

rain during the mid‐summer monsoon season. 

 

Figure 2.1: Overview of the study site within the state of Arizona and accompanying US Forest 

Service land (panel A). The 46.5 ha study area with the field plot locations and an example of a 

single field plot are shown in panel B, whereas the eBee UAV platform used for all UAV‐

derived data collection is shown in panel C. Base imagery used in panel B is the post‐treatment 

UAV multispectral orthomosaic image. 

The vegetation is characterized by ponderosa pine Pinus ponderosa, which dominates 

both the region and the study area, and includes intermittent Gambel oak Quercus gambelii and 

http://www.wrcc.dri.edu/
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Rocky Mountain juniper Juniperus scopulorum. The understory vegetation is typical of 

ponderosa pine‐dominated forest in the immediate area and mainly consists of Arizona fescue 

Festuca arizonica, mountain muhly Muhlenbergia montana, mutton bluegrass Poa fendleriana, 

bottlebrush squirreltail Elymus elymoides and Buckbush Ceanothus fendleri. The site had been 

undisturbed since its last naturally occurring fire in 1876, except for selective historical firewood 

harvesting (Dieterich, 1980). However, the site was subjected to a prescribed fire in 1976 as a 

part of a study, in which 63% of the smaller surface fuels and 69% of the woody surface fuels 

(up to 8 cm in diameter) were consumed (Sackett, 1979). 

Mechanical thinning operations across the study area began during the fall of 2017 and 

were completed by the spring of 2018. The study area spans two different restoration units and is 

divided into 30 ha treated and 16 ha untreated areas. Similar to other regional restoration 

treatments that promote diversity in tree group and interspace size, shape and spacing, this 

treatment aimed to reinstate pre‐settlement forest conditions and included a range of thinning 

goals that would promote healthy overstory vegetation and the regeneration of understory 

vegetation (Allen et al., 2002; Larson and Churchill, 2012; Reynolds et al., 2013). Specifically, 

the treatment prescription at our study area emphasized irregular tree group delineation, 

expansion of interspace, retention of all non‐ponderosa pine species (e.g., Gambel oak and 

juniper) and significant reductions in smaller ponderosa pine trees within groups and interspaces. 

The treatment was implemented using an approach called designation by prescription (DxP) and 

digital tree marking, which relied upon outfitting the tree harvesting equipment with tablet 

computers that use GPS. This supplied the harvesting personnel with location‐specific 

prescription criteria to guide the cutting process. For this study, the same set of GPS‐delineated 

polygons which guided thinning process was used to select for and quantify the patch and 
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interspaces. To assess whether the restoration treatment objectives were met or not, we used 

estimates of individual tree location and site‐wide tree density in TPH and BA. 

2.3.2 UAV images and pre-processing 

We performed two sets of UAV flights, one before the treatment started (hereafter pre‐treatment) 

during October 2017 and another set after the treatment was completed (hereafter post‐treatment) 

during January 2018. We used the Parrot Sequoia multispectral sensor (Parrot Drones SAS, 

Paris) aboard a Sensefly eBee fixed‐wing UAV platform (SenseFly, Lausanne, Switzerland) with 

a total payload of 690 gr in weight including the platform itself. With a wingspan of 96 cm, it 

can cover up to 12 km2 in a single flight (www.sensefly.com/drone/ebee-mapping-drone). All 

flights were planned and executed using Sensefly's eMotion 3 software (SenseFly, Lausanne, 

Switzerland), which enabled customized flight plans that controlled all flight and data 

parameters. 

Site‐specific characteristics known to cause issues in photogrammetric processing, such 

as dense forests and heavy shadowing, were carefully considered to ensure consistent data 

quality within and across flights (Puliti et al., 2015). Specifically, we used perpendicular and 

interlaced flight lines, high latitudinal and longitudinal overlaps (85% and 90%, respectively), 

and operated within 60 min of solar noon for all flights. During flight, each photo location 

included a total of five images; four individual 1.2MP images in the green (530–570 nm), red 

(640–680 nm), red edge (730–740 nm), and near infrared (770–810 nm) spectral bands, as well 

as a separate 16MP RGB composite image. Using on‐board gyroscopic sensors, each image was 

assigned a unique set of GPS coordinates (X, Y and Z dimensions) as well as a location relative 

to the aircraft's principal axes: the x‐axis (roll), y‐axis (pitch) and z‐axis (yaw). Using the 
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eMotion 3 software, this embedded information along with the flight log was used to geotag and 

georeference the images for all subsequent processing steps. The resulting pre‐treatment dataset 

consisted of 1285 images per band (6425 total) covering 85 ha and the post‐treatment dataset 

consisted of 1369 images per band (6845 total) covering 130 ha. We performed all flights at a 

consistent altitude of 122 meters above ground, which resulted in image spatial resolution of 15 

cm. Specific flight parameters and environmental conditions are provided in Table 2.1. 

Table 2.1: Summary of UAV flight data collection and SfM image reconstruction parameters 

used in our study, and relevant product characteristics. 

 Pre-treatment Flight Post-treatment Flight 

UAV flight information   

    Flight Date 10/14/2017 1/29/2018 

    Wind Speed 0.61 m/s 0.13 m/s 

    Cloud Cover 0% 0% 

    Total Flight Time 1:36:15 1:30:31 

    Number of Images 1285 1369 

    Total Coverage 0.85 km² 1.45 km² 

Data processing parameter   

    Photo Aligment Accuracy Setting High High 

    Key Point Limit Setting 60,000 60,000 

    Tie Point Setting 0 (maximum) 0 (maximum) 

    Generic Preselection No No 

    Reference Preselection Yes Yes 

    Dense Cloud Quality Setting High High 

    Depth Filtering Setting Aggressive Aggressive 

Data output details   

    Orthomosaic Ground Resolution 13.6 cm/pixel 15.7 cm/pixel 

    SfM Model Tie Points 6,496,677 5,406,209 

    SfM Dense Cloud Points 12,092,123 14,505,513 

    SfM Model Reprojection Error 0.33 pixel 0.31 pixel 

    XY Error 1.59 m 1.14 m 

    Z error 1.13 m 1.80 m 
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We established ground control points (GCPs) for each flight evenly spread across the 

study site using a combination of 1 m × 1 m vinyl checkerboard panels and large rocks that 

would remain visible above the snow in the winter season. Each GCP was mapped using a 

Trimble GeoXH handheld GPS unit and the data were differentially corrected using GPS 

Pathfinder Office software. The post‐corrected GPS positional accuracies ranged between 0 and 

50 cm for 87.5% and 96.5% of the total points for pre‐ and post‐treatment datasets, respectively. 

Error estimates in the orthomosaic imagery are described in Table 2.1. 

2.3.3 UAV image analysis 

Post‐processing of individual images into final data products was accomplished using the 

Agisoft PhotoScan v1.4.0 photogrammetric processing software (Agisoft LLC, St. Petersburg, 

Russia). In Agisoft, all images from the flights were scanned for matching ‘tie‐points’, oriented 

in three‐dimensional space via bundle‐adjustment, and then mosaicked together based on unique 

overlapping points and spectral similarities (Dandois and Ellis, 2013). The general workflow in 

the software includes image alignment to create a sparse point cloud, incorporation of GCP 

locations, image alignment optimization, gradual filtering out of inaccurate and error‐inducing 

points, and lastly a full image realignment before data product creation (Puliti et al., 2015; 

USGS, 2017). Final data products for this study included an undistorted, high‐resolution 

orthomosaic image of the entire study site in 15 cm spatial resolution and four spectral bands, 

and dense three‐dimensional (3D) point cloud data photogrammetrically generated from the 

high‐resolution images using Structure‐from‐Motion (SfM) algorithms. A full list of parameters 

used for all image processing steps is provided in Table 2.1. 
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2.3.4 Field-based validation dataset 

To assess the accuracy of the UAV‐derived forest measurements, a total of 17 field plots were 

established throughout the study area and were inventoried during the summer of 2018, 

approximately 5 months after the post‐treatment UAV flights. The field plots were each selected 

to represent a specific forest condition along the canopy cover and stem density gradient, 

capturing as much variability in forest density across the study area as possible. To assess the 

effects of forest conditions on UAV image‐derived tree measurements, we divided the field‐

measured plots (n = 17) into groups of varying stem density conditions, which was expressed in 

trees per hectare (TPH). These density conditions included low (1–89 TPH; n = 5 plots), medium 

(100–211 TPH; n = 8 plots) and high (467–856 TPH; n = 4 plots). Each plot was 30 m × 30 m in 

dimension (0.09 ha). Together, the field plots covered roughly 2% (1.53 ha) of the total study 

area. 

Within each plot, the geographic location (X, Y coordinates), height (Z), two canopy 

widths (widest and narrowest) and the diameter at breast height (DBH) of each tree were 

measured for all trees taller than 1.37 m. The DBH measurements were used to estimate basal 

area (BA) at the plot level. Stems less than 1.37 in height were considered as seedlings and not 

measured due to their low abundance. All trees were stem‐mapped using a Trimble Geo7X hand‐

held GPS unit with the Laser Rangefinder module, with 95.6% of all recorded point locations 

having <2 m accuracy. A total of 392 individual trees were located and measured across the 17 

plots (Figure 2.1). 
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2.3.5 Fine-scale forest structure metrics 

Using the UAV image‐derived point cloud data, we segmented individual trees and estimated 

their location (X, Y coordinates), tree height (Z in m), and crown diameter (m). First, the raw 

SfM point cloud was filtered using the statistical outlier removal tool in CloudCompare software 

(CloudCompare, 2.9.1, 2018) and then classified into ground versus non‐ground points using the 

Cloth Simulation Filter (CSF) model (Zhang et al., 2016). We performed all steps of the 

individual tree segmentation (ITS) process using the lidR and rLiDAR packages (Mohan et al., 

2017; Roussel et al., 2017) implemented in RStudio. A digital terrain model (DTM) was 

produced using the post‐treatment classified ground points dataset, which was superior to the 

pre‐treatment dataset due to the greater amount of classified ground points. The overall accuracy 

of the DTM (R² = 0.95, RMSE = 2.98 m) was assessed by comparing points extracted from the 

DTM to the corresponding points from the differentially corrected GPS elevation values (Z) of 

the trees in the field‐based validation dataset. This DTM was then used to normalize both the 

pre‐ and post‐treatment point clouds prior to tree segmentation. 

Using the ITS algorithm developed by Li et al. (2012), a collection of points was grouped 

into a tree from the top of the tree crown down using thresholds controlling the relative spacing 

between trees, the changes in that spacing throughout the height of the tree and the relationship 

between point distances. The ideal parameters were achieved by iteratively and incrementally 

testing them with our data and based on the results from previous research (Shin et al., 2018). 

The final parameters were as follows: distance threshold (DT) 1 of 1.4 m, DT 2 of 1.7 m, 

minimum height of 2 m, individual point height for triggering DT value of 12 m and the search 

radius of 0 m. The segmentation and associated tree metric calculation processes yielded a list of 
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all trees segmented with their unique identification number, their geographic coordinates (UTM 

in meters), heights (m) and two opposing canopy diameters (m). 

An accuracy assessment was performed to determine which of the field‐measured trees (n 

= 392) were correctly identified and segmented in the UAV‐derived point cloud data. The 

accuracy assessment consisted of an analysis of omission and commission error rates (Mohan et 

al. 2017; Shin et al. 2018). The omission and commission analysis quantifies the rate of correctly 

identified trees or true positive (TP), omitted or false negative (FN) and incorrectly included 

trees or false‐positive (FP) trees. These accuracy categories are summarized by calculating the 

recall (r), precision (p) and F‐score (F) via the following equations: 

𝑟 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑝 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐹 = 2 × 
(𝑟 × 𝑝)

(𝑟 + 𝑝)
 

The correctly identified trees in the UAV image‐derived point cloud were then compared 

to the corresponding trees measured in the field using their height, and crown diameter via paired 

t tests and simple linear regression models. Differences in individual tree locations were 

quantified using a simple Euclidean distance from the field‐measured GPS tree locations. The 

UAV image‐derived estimates for each variable were also compared to a set of acceptable 

accuracy ranges utilized by the USFS during their common stand examination (CSE): ±10% for 

an intensive examination and ±20% for an extensive examination. Analysis of variance 

https://zslpublications.onlinelibrary.wiley.com/doi/full/10.1002/rse2.137?af=R#rse2137-bib-0050
https://zslpublications.onlinelibrary.wiley.com/doi/full/10.1002/rse2.137?af=R#rse2137-bib-0071
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(ANOVA) tests with unequal variances were used to compare individual tree metrics among the 

three density categories: low, medium and high. 

2.3.6 Mid-scale forest structure metrics 

We estimated stand‐level basal area (BA), canopy cover, and forest patch and interspace metrics 

as well as the changes in these variables resulting from the mechanical thinning treatment. We 

first established a linear relationship between the field‐measured tree density in trees per hectare 

(TPH) and BA (m2/ha) at the plot level (n = 17) using the following equation: 

𝐵𝐴 (
𝑚²

ℎ𝑎
) = 8.95 + 0.07 ∗ 𝑇𝑃𝐻 

This relationship yielded R² of 0.89 and RMSE of 347 , when compared to the field‐

measured BA. We then extended this relationship to the entire study area using our UAV image‐

derived tree density estimate from the individual tree segmentation described above to estimate 

the site‐wide BA. 

Using the UAV orthomosaic image in the ENVI 5.3 software (Exelis Visual Information 

Solutions, Boulder, Colorado), we classified canopy cover. The four spectral bands were 

converted to reflectance and layer stacked together to create a single multispectral image, which 

was then used to calculate normalized difference vegetation index (NDVI). Using a NDVI value 

threshold along with a 2‐m tree height threshold in the SfM point cloud data, we classified tree 

canopy versus non‐tree canopy cover. Since our study area was dominated by a single, evergreen 

conifer species, NDVI provided a simple approach in distinguishing tree canopies from the 

herbaceous understory mixed with some bareground. The integration of the tree height 
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information allowed us to eliminate large piles of cut trees and vegetative material left behind 

from the mechanical thinning treatment operations. The resulting binary canopy/non‐canopy 

classification was summarized in 10 m cells to estimate total tree canopy cover per cell (in 

percent). Field‐measured canopy cover was calculated by rasterizing each tree's average crown 

diameter into 15 cm grid cells, then summarizing it into 10 m cells to facilitate direct 

comparison. The relationship between the field‐measured and UAV‐derived estimates of canopy 

cover was assessed using a simple linear regression model. We then quantified the changes in 

forest canopy cover and BA between the pre‐ and post‐treatment conditions. 

Other specific outcomes of the restoration prescription were also quantified using a set 

forest patch and interspace metrics: patch and interspace shape regularity, size and spacing (Pelz 

and Dickinson, 2014). First, a forest patch and interspace raster was created from the binary 

canopy cover classification by implementing a clustering algorithm in R‐Studio (Girvetz and 

Greco, 2007). The patch summary raster is a binary classification of the pixels labeled by the 

algorithm as either a forest patch or non‐patch (i.e., interspace). This was resampled to 5 m 

pixels and then used with the FragStats software (McGarigal et al., 2012) to estimate the 

following specific patch‐level metrics: patch area (ha), patch perimeter (m), contiguity index 

(unitless) and Euclidean nearest random point distance (ENRPD) (m). The contiguity index 

quantifies the shape of a patch by measuring its contiguity of cells within a 3 × 3 cell 

neighborhood (McGarigal et al., 2012), whereas ENRPD quantifies the prevalence and size of 

gaps (Pelz and Dickinson, 2014). We summarized the patch‐level metrics in both the pre‐ and 

post‐treatment images and compared them to evaluate the restoration treatment. 
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2.4 Results 

2.4.1 Fine-scale forest structure metrics 

Our field plots included a total of 392 trees: the low‐density plots (n = 7) contained 37 field‐

measured trees, the medium‐density plots (n = 6) contained 75 trees and the high‐density plots (n 

= 4) contained 280 trees. These field‐measured trees were used for the assessment of fine‐scale, 

individual‐tree metrics derived from the SfM point cloud data (Figure 2.2). Overall, 64% of all 

the trees were correctly identified and segmented in the UAV SfM point cloud data: 92% from 

low‐density, 71% from medium‐density and 30% from high‐density plots (Table 2.2). We 

compared Euclidean distances between tree X and Y coordinates across density classes. ANOVA 

results indicated there was a significant difference between the classes (P < 0.01) and the low‐ 

and high‐density classes were significantly different. 
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Figure 2.2: Examples of our field plots from each of the low‐ (A), medium‐ (B) and high‐ (C) 

density classes. The top row shows the UAV orthomosaic images overlaid with both the field‐

measured and UAV‐derived tree locations as well as their corresponding crown diameters. The 

bottom row shows the Structure‐from‐Motion (SfM) point cloud data that corresponds to each 

plot above, as well as the SfM‐derived tree locations placed on each respective tree. 

Table 2.2: Individual tree omission and commission errors in the low‐, medium‐ and high‐

density classes, with the overall scores across each density class provided. Analysis parameters 

included were the true positive (TP), false negative (FN), false positive (FP) trees, as well as the 

recall (r), precision (p) and F‐score (F). TPH, trees per hectare; CC, canopy cover. 

 

 
Mean 

TPH 

Mean 

CC (%) 

Field-based 

measurement 

UAV 

image-

derived 

TP FN FP r p F 

Low 

density 

(n = 7) 

59 9 37 35 34 3 1 0.92 0.97 0.94 

Medium 

density 

(n = 6) 

139 17 75 57 53 22 4 0.71 0.93 0.80 

High 

density 

(n = 4) 

778 74 280 185 93 221 20 0.33 0.82 0.44 

 

A simple linear regression model of all individual tree heights showed moderate overall 

agreement between field‐based measurements and UAV image‐derived estimates (Figure 2.3). 

Furthermore, a paired t test indicated no significant overall difference (P = 0.51) between the 

field‐based measurements (M = 17.52 m; sd = 4.58 m) and UAV image‐derived estimates (M = 
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17.39 m; sd = 4.65 m). In contrast, comparison of all individual tree crown diameters showed a 

significant difference (P < 0.01) between the field‐based measurements (M = 4.48 m; sd = 1.66 

m) and UAV image‐derived estimates (M = 5.96 m; sd = 2.46 m). The UAV image‐derived 

crown diameters tended to be overestimated. When we compared the UAV image‐derived 

estimates to USFS Common Stand Exam (CSE) acceptable error rates, 86% of the overall tree 

height estimations fell within the ±20% range and 63% fell within the ±10% range (Table 2.3). 

However, only 29% of the UAV image‐derived tree crown diameter estimates was within the 

±20% range (Table 2.3). Both the UAV image‐derived individual tree height and crown diameter 

estimates differed between density classes, with the low‐ and high‐density classes consistently 

being the most and least accurate estimates, respectively (Table 2.3). 

 



 

54 

 

Figure 2.3: Linear regression models established between the field‐measured and UAV image‐

derived individual tree height estimates. The dashed line is a 1:1 reference line and solid black 

line is the overall fitted regression model (adj. R² = 0.71). In addition, separate regression models 

were fit to each density class and the regression lines are colored accordingly. 

Table 2.3: A summary of the UAV image‐derived individual tree height and canopy diameter 

estimates, grouped by density classes, and compared to the US Forest Service Common Stand 

Exam (CSE) acceptable accuracy ranges. The reported values for each acceptable accuracy range 

indicate the percent of the total trees estimated from the UAV data within that range. 

 

 Tree Height Crown Diameter 

 CSE ±10% CSE ±20% CSE ±10% CSE ±20% 

UAV image-derived estimates within CSE accuracy ranges 

Low Density (n = 34) 29 (85.3%) 32 (94.1%) 9 (26.5%) 21 (61.7%) 

Medium Density (n = 53) 30 (56.6%) 45 (84.9%) 13 (24.5%) 22 (41.5%) 

High Density (n = 93) 54 (58.0%) 77 (82.7%) 4 (4.3%) 10 (10.7%) 

Overall (n = 180) 113 (62.7%) 154 (85.5%) 26 (14.4%) 53 (29.4%) 

 

In the low‐density class, 92% (n = 34) of the trees was correctly identified as True 

Positives (TP), with a recall (r) score of 0.92 (0.75–1.00), an overall precision (p) of 0.97 (0.86–

1.00) and an F‐Score of 0.94 (0.80–1.00) (Table 2.2). When we compared the location of these 

trees in the low‐density class to the field‐based GPS data, the mean difference in the coordinates’ 

Euclidean distances was 2.44 m. A simple linear regression model comparing the field‐based and 

UAV image‐derived individual tree heights showed strong agreement with an adjusted R² = 0.95 
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(RMSE = 1.77 m) for these trees, while the regression model of the crown diameters showed 

moderate agreement with an adjusted R² = 0.61 (RMSE = 1.27 m). 

In the medium‐density class, 71% (n = 53) of the trees was correctly identified as true 

positives, with slightly lower recall (r = 0.71), precision (p = 0.93) and F‐score values (F = 0.80) 

than for the low‐density class (Table 2.2). The mean difference in the coordinates’ Euclidean 

distances was lower than that of the low‐density class at 1.92 m. The regression model of 

individual tree heights had an adjusted R² = 0.92 (RMSE = 1.87 m) (Figure 2.3). The regression 

model of medium‐density class crown diameters only had an adjusted R² = 0.09 (RMSE = 2.19 

m). 

In the high‐density class, only 33% (n = 93) of the field‐measured trees was correctly 

identified as true positives, with recall (r = 0.30), precision (p = 0.82) and F‐score values (F = 

0.44) lowest among the three density classes (Table 2.2). The lowest mean difference between 

the coordinates’ Euclidean distances was observed for this density class at 1.54 m. The 

regression model of tree heights showed low agreement between the SfM‐derived and field‐

measured heights with an adjusted R² = 0.08 (RMSE = 3.14 m) (Figure 2.3), while the model 

comparing canopy diameters exhibited similar behavior with an adjusted R² = 0.005 (RMSE = 

3.94 m). 

2.4.2 Mid-scale forest structure metrics 

Field‐measured canopy cover and UAV image‐derived estimates showed good agreement overall 

(adj. R² = 0.79; RMSE = 15.4%) (Figure 2.4). When this agreement was assessed by density 

class, the medium‐density relationship (adj. R² = 0.78; RMSE = 10.8%) was stronger than the 

low‐(adj. R² = 0.72; RMSE = 10.7%) and high‐ (adj. R² = 0.48; RMSE = 27.1%) density classes. 
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ANOVA results indicated significant differences in UAV image‐derived canopy cover estimates 

between the density classes (F2,150 = 84.47, P < 0.01): the high‐density class had significantly 

greater canopy cover than both the medium‐(P < 0.01) and low‐(P < 0.01) density classes. When 

we similarly assessed the UAV image‐derived tree density estimates, there was a significant 

difference (P = 0.03) in TPH between the field‐measured (M = 248.4 TPH; sd = 297.1 TPH) and 

UAV image‐derived estimates (M = 129.4 TPH; sd = 107.6 TPH). Significant differences were 

also found between density classes in both the field‐measured (F2,14 = 106.9, P < 0.01) and 

UAV image‐derived estimates (F2,14 = 30, P < 0.01). The UAV image‐derived TPH estimate in 

the high‐density class was significantly greater than both the medium‐ (P < 0.01) and low‐ (P < 

0.01) density classes. 
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Figure 2.4: Linear regression models established between field‐based measurements and UAV 

image‐derived estimates of tree canopy cover. The dashed line is a 1:1 reference line and solid 

black line is the overall fitted regression model (adj. R² = 0.79). In addition, separate regression 

models were fit to each density class and the regression lines are colored accordingly. Data 

points here are the individual 10 m cells (n = 153) from the field‐measured plots, which were 

summarized from the high‐resolution (15 cm) binary canopy raster layers and are colored by 

density condition. 

2.4.3 Restoration treatment effects 

When the UAV image‐derived canopy cover estimates were compared across the treated portion 

of the study area from the pre‐treatment and post‐treatment dates, the results indicated that the 

restoration treatment reduced the forest canopy cover from 39.4% to 9.6%. Similarly, our results 

indicated that stem density was reduced from 212.4 TPH to 64.5 TPH and the corresponding 

basal area was reduced from 22.9 m²/ha to 13.2 m²/ha. Our patch and interspace analysis results 

indicated that the treatment created considerable canopy openings by breaking up once 

continuous forest patches, often leaving single trees or groups of 2–3 trees behind (Figure 2.5). 

The restoration treatment increased the number of patches across the study site by 70.6%, while 

the mean patch area decreased by 80.8% to 0.13 ha (Table 2.4). The total patch area across the 

study site decreased by 39.6% with a corresponding 74% increase of interspace area. Measures 

of the average patch contiguity decreased overall, while both the average patch fractal dimension 

index value and the Euclidean nearest random point distance (ENRPD) increased. This indicates 

that the remaining patches are less contiguous to one another, have more complex shapes, and 

that there is more area between remaining patches, respectively (Table 2.4). 
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Figure 2.5: A comparison of pre‐treatment (A) and post‐treatment (B) forest patches illustrating 

substantial changes in horizontal structure and the creation of new forest patches. Toward the 

center of panel B, the vegetation not highlighted as a patch is fallen timber awaiting removal. 

The base map images are the respective UAV orthomosaic images in 15 cm resolution used for 

canopy cover and forest patch delineation. 

Table 2.4: Patch and interspace metrics from the treated portion of the study area. Patch 

contiguity is a unitless metric, ranging from 0 to 1 where 0 is a single pixel patch and it 

approaches 1 as patch shape complexity and patch boundary configuration increase. Fractal 

dimension index is a unitless metric, ranging from 1 to 2 where 1 is a patch with a simple shape 

(e.g., square) and 2 is a patch with a more convoluted boundary. Euclidean nearest random point 
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distance (ENRPD) is an assessment of the shortest straight‐line distance between randomly 

generated points and is used to measure the prevalence and size of forest gaps. 

 

No. of 

Patches 

Total 

Patch 

Area (ha) 

Total 

Interspac

e Area 

(ha) 

Mean 

Patch 

Area (ha) 

Fractal 

Dimension 

Index ENRPD (m) 

Patch and Interspace Metrics 

Pre-

Treatment 39 15.2 12.5 0.68 

1.12 

(range=0.41) 

3.5 

(range=15.6) 

Post-

Treatment 133 5.9 21.8 0.13 

1.16 

(range=0.26) 

7.1 

(range=38.9) 

 

 

No. of 

Patches 

Total 

Patch 

Area (ha) 

Total 

Interspac

e Area 

(ha) 

Mean 

Patch 

Area (ha) 

Patch 

Contiguity ENRPD (m) 

Patch and Interspace Metrics 

Pre-Treatment 39 15.2 12.5 0.68 

0.41 

(range=0.35) 

3.5 

(range=15.6) 

Post-

Treatment 133 5.9 21.8 0.13 

0.47 

(range=0.60) 

7.1 

(range=38.9) 

 

Next, we compared the UAV image‐derived mid‐scale forest structure metrics to the 

restoration treatment objectives stated in the forest restoration prescription (Table 2.5) to 

evaluate whether the objectives were achieved. Across the treated portion of the study area, the 

UAV image‐derived estimates of BA showed a reduction from 22.9 m²/ha to 13.2 m²/ha, falling 

within the 11–14 m²/ha target range for the overall stand‐level BA. Next, using a 5 m buffer 

along the stream course, we found that 138 trees were cut within this area. This reduction is more 

than the treatment objective, which emphasizes a retention of all stream course bank stabilization 

trees. The interspace areas, termed ‘regeneration openings’, cover roughly 9% of the study area, 
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and range in size from 0.07 to 0.33 ha, which fell outside of the 15% total area as targeted, but 

within the 0.2–0.4 ha range targets. There was an average of 5.3 trees per ‘regeneration’ polygon 

remaining after treatment and the target range was 3–5 trees. Similarly, the restoration goals in 

the different tree group areas were met, with the remaining groups being more irregularly shaped 

and smaller in area. However, the average spacing between tree groups was found to be lower 

(5.35 m) than the target (12–18 m). Finally, the interspace tree density was found to be higher 

(9.5 TPH) than intended (2–5 TPH). 

Table 2.5: A selection of the restoration treatment objectives outlined for the study area. The 

restoration treatment outcomes were estimated from the post‐treatment UAV image‐derived 

datasets. TPH, trees per hectare. 

Restoration Treatment Objective Restoration Treatment Outcome 

Final stand-level basal area (BA) = 11-14 m²/ha  Final BA = 13.2 m²/ha  

Retain all streamcourse bank stabilization trees Net loss of 138 trees 

Regeneration Openings should:  

    Be 15% of the treatment area 9% of treatment area 

    Range in size from 0.2-0.4 ha (up to 0.8 ha) range: 0.07-0.33 ha 

    Retain 3-5 reserve trees in openings larger than 0.4 

ha 
Average of 5.3 trees 

Tree Groups should:  

    Be irregularly shaped 
Fractal dimension index = 1.16 

(range 0.26) 

    Range in size from 0.04-0.4 ha (averaging 0.1-0.2 ha) 
Range: 0.03-0.37 ha (mean 0.13 

ha) 

    Distance b/t groups should be 12-18 m Avg. distance = 5.35 m 

Cut all remaining interspace trees, leaving 2-5 TPH Density = 9.5 TPH 
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2.5 Discussion 

2.5.1 Estimating fine-scale forest metrics 

We used high‐resolution UAV‐derived multispectral imagery and SfM models to quantify fine‐

scale vertical and horizontal forest structure across a gradient of forest density conditions. We 

found that forest density played a significant role in the accuracy of individual tree detection, 

height and canopy diameter estimation. Across the field plots of all densities, the UAV image‐

derived data initially identified 46% of all individual trees and resulted in an overall accuracy of 

60%. However, once parsed by density condition, the average accuracy increased to 92% in low‐

density plots and 71% for medium‐density plots, but remained low at 33% for high‐density plots. 

While other studies reported higher rates of overall true positive tree identification, even with 

plot‐level density class distinctions (Guerra‐Hernández et al., 2016; Mohan et al., 2017; Shin et 

al., 2018), the high‐density plots used in our study were on average much denser (up to 778 

TPH) than the high‐density conditions (>300 TPH) considered elsewhere. We provide the first 

accuracy assessment of UAV image and SfM data in very high‐density conditions and note that 

when stem density increases beyond approximately 500 TPH, UAV image‐derived estimates 

cannot provide adequate accuracies. 

The location of individual trees provided by the ITS was accurate overall, but was 

dependent on density conditions. Interestingly, the location accuracy improved as the density 

increased, with the mean error in tree coordinates for low‐, medium‐ and high‐density conditions 

at 2.44 m, 1.92 m and 1.54 m, respectively. We speculate that this is due to a combination of tree 

canopy size and complexity as well as the stem density. For example, the ITS algorithm 

identifies tree tops, but many tree canopies are interlocked and tree tops are located closer 
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together in high‐density conditions. In comparison, trees in the lower density conditions are 

much farther apart leading to larger mean errors in their locations. They are also most often the 

largest trees with big canopy diameters because they were intentionally left uncut during the 

restoration treatment. 

The UAV‐derived individual tree height estimates performed well overall, with no 

significant differences between the UAV‐derived and field‐measured pairs. Furthermore, 86% of 

the individual tree height estimates were within the 20% acceptable error range of the USFS 

Common Stand Exam guidelines. The 86% accuracy is also well within the accepted rates of 

remotely sensed data analysis (Congalton and Green, 2008). Taken together, these findings 

indicate that UAV image‐derived methods can be used by forest restoration practitioners for 

estimating tree height. However, when parsed by density class, the relationships between the 

field‐measured and UAV‐image derived tree heights were notably different between both the 

low‐ and medium‐density conditions versus the high‐density conditions (Figure 2.3). The results 

of the low‐ and medium‐density conditions are consistent with findings of other research (Zarco‐

Tejada et al., 2014; Panagiotidis et al., 2016; Wallace et al., 2016) and might be due to the 

relatively high point densities present in the SfM point clouds. The lack of agreement in the 

high‐density conditions appears to result from a combination of incorrectly identified tree tops, 

outlier points in the UAV dataset, and higher DTM error. 

Individual tree crown diameters were not well estimated overall, with high‐density 

conditions being the driver behind UAV‐derived and field‐measured differences. Overall, the 

agreement was poor except for in low‐density conditions. Other studies have reported more 

accurate SfM‐derived estimates of canopy diameter, but they included consistent tree spacing, 
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higher spatial resolution data and less dense conditions (Zarco‐Tejada et al., 2014; Díaz‐Varela 

et al., 2015), none of which were present in this study. This underscores the notion that 

individual tree crown diameters, especially when measured using UAV‐image‐based techniques, 

are subject to bias and error. Field techniques require a technician to visually determine a canopy 

dripline to estimate the canopy diameter. Since the UAV‐image derived point cloud is often 

noisy yet continuous in high‐density conditions, the canopy edges are obscured leading to 

inaccurate estimates of crown diameters. Other individual tree metrics such as crown bulk 

density and height to crown are of interest to regional forest managers due to their use in fire 

modeling and allometric equation development. However, since restoration practices occur at the 

mid‐ to landscape‐scales, canopy cover is a more important metric and further improvements in 

its estimates are needed. 

When compared to traditional USFS CSE accuracy standards, UAV image‐derived tree 

crown diameters were within the ±10% and ±20% acceptable accuracy ranges for only 14% and 

29% of the observations, respectively. Importantly, the high‐density conditions again provided 

less accurate estimation for both tree height and crown diameter. This highlights the need to 

refine UAV image‐derived estimates, especially for crown diameter, to ensure they provide a 

viable augmentation to CSE field measurement. This is especially important as UAV‐borne 

remote sensing methods continue to be leveraged in forest mensuration and inventorying 

applications. 

2.5.2 Estimating mid-scale forest metrics 

When estimating mid‐scale forest structure metrics, the UAV image‐derived estimates of canopy 

cover, TPH and BA in high‐density conditions were consistently significantly different from 



 

64 

 

field‐based estimates. In high‐density conditions, canopy cover was consistently overestimated, 

while in low‐density conditions it was underestimated (Figure 2.4). We believe that this arises 

from the fact that our field methods employed two measurements of canopy diameter to calculate 

an average estimate for each tree canopy, while UAV‐image derived estimates provide full 

coverage at 15 cm resolution pixels. Despite both methods being summarized to a plot‐level 

estimate, we believe that the UAV‐image derived data naturally provide a more complete and 

repeatable estimation overall. Using at‐nadir images with NDVI estimates can eliminate potential 

bias between different field‐based approaches (Fiala et al. 2006). Compared with the field‐based 

measurements of TPH and BA, the UAV‐based measurements underestimated these metrics in 

high‐density conditions. As mentioned previously, the high‐density conditions we measured 

were the highest observed thus far and allowed for a more realistic understanding of the limits of 

this methodology. Our observations in these conditions also highlight obvious areas of future 

improvement and demonstrate the UAV potential for restoration practitioners. 

2.5.3 Restoration treatment outcomes 

A central motivation of this study was to provide forest managers with a realistic evaluation of 

UAV image‐derived estimates and workflows as a tool for assessing mechanical forest 

restoration treatments and their outcomes. As is the case for other regional restoration projects, 

the treatment at our study site relied on a set of prescriptive guidelines and desired outcomes 

(Table 2.5). We found that the treatment led to a 70% reduction in TPH, 42% reduction in BA 

and a 30% reduction in percent canopy cover. This increased the number of forest patches by 

70%, where the average patch sizes are smaller in size with more complex shapes. Additionally, 

the total amount and complexity of forest patch interspace increased. 
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Restoration treatment outcomes showed an overall agreement with the restoration 

objectives. Five of the nine treatment goals that we assessed were successfully achieved (Table 

2.5). We believe that these are strong results especially since the other restoration treatment 

objectives were still relatively close to their goal and displayed the overall intended trend. For 

example, scrutiny of the net loss of bank‐stabilization trees, while counter to a specific treatment 

objective, revealed that the thinning operations favored shorter trees. Since the trees cut in these 

stream bank areas were shorter, they were likely considered undesirable according to a broader 

site‐wide goal. We also found that the creation of ‘regeneration opening’ areas was not as 

extensive as the prescription had intended, but the size and shape of the remaining ‘tree groups’ 

were on target. It is important to note that the prescription we assessed was developed for the 

entire 138 ha treatment unit, of which we only assessed 30 ha. Objectives not met in this analysis 

could, therefore, be met if the entire treatment unit was assessed following implementation. In 

addition, variability in metrics across the treatment unit is desired. While potentially not met in 

one part of the unit, the average condition or range in conditions across the unit may be met, 

when the whole unit is assessed. Future studies might benefit from assessing a greater portion of 

the area corresponding to the prescription. 

2.5.4 Other considerations for UAV applications 

High‐resolution multispectral UAV orthoimagery and SfM models offer an exciting new 

approach for forest inventorying and monitoring. As with any emerging technology, there are a 

number of specific shortcomings that we encountered which warrant attention. Similar to other 

studies, we found that environmental conditions (e.g., sun angle, wind, high ground reflectance), 

sensor resolution and flight plan characteristics all contributed to data processing, the quality of 
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final data products, and the derived tree structure estimates (Dandois et al.2015; Iglhaut et al., 

2019; Iizuka et al. 2018; Puliti et al. 2015). Perhaps most importantly, the nearly continuous 

canopy cover in higher‐density forest conditions provides significant uncertainty. Specifically, 

we observed a final (dense) 3D point cloud with little variability in texture across the dense 

forest canopy and not enough ground points. This yields a DTM with relatively homogenous 

values and lower accuracies in high‐density conditions (RMSE = 3.52), which influenced the 

overall accuracy (RMSE = 2.98 m) of the final DTM. In comparison, the accuracies observed in 

the low‐ and medium‐density conditions were greater (RMSE = 2.21). This is consistent with 

previous studies and indicates that the ground surface occlusion under dense canopy degrades 

DTM accuracy (Dandois and Ellis 2010; Wallace et al. 2016) and subsequently impacts 

estimates of individual tree locations and heights (Dandois et al. 2015; Wallace et al. 2016; 

Mohan et al. 2017). 

The homogenous DTM values also impacted tree segmentation, which underperformed in 

higher‐density areas. Tree height and crown diameter estimates were subsequently affected by 

the segmentation issues and interlocking canopies. Thus, improving the DTM accuracy would 

likely provide a more heterogeneous canopy in dense conditions, leading to improved tree 

location, height and canopy diameter estimates. Using a more accurate DTM from an alternate 

source, such as an airborne lidar dataset, would presumably provide more accurate tree location 

and estimations, although these alternatives are often too coarse in spatial resolution, publically 

unavailable, or prohibitively expensive. 

We experimented with varying parameters of the ITS algorithm, other ITS algorithms, as 

well as parsing the point cloud by density conditions. In the end, we decided that an overly 
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complicated workflow might deter forest managers from adopting this methodology and applied 

the single best ITS algorithm and parameterization to the entire point cloud. We suggest that 

future attempts can improve ITS results and the subsequent tree height and crown diameter 

estimations by adopting lower flight altitudes, higher sensor resolution and by leveraging flight 

conditions with higher sun angles or overcast skies. These conclusions echo those of other 

similar work and underscore the importance of numerous data acquisition parameters on final 

product quality and accuracy (Dandois et al. 2015; Puliti et al. 2015). Our findings highlight that 

on‐demand data acquisition, adaptable SfM workflows and a growing library of forest data‐

specific processing tools make UAV images a promising tool for estimating fine‐ and mid‐scale 

forest structure metrics especially in low‐ and medium‐density conditions. 

As the need for forest restoration continues to increase, and the abilities of UAV‐borne 

remote sensing are refined, the use of UAV‐derived forest structure measurements has the 

potential to optimize restoration planning and monitoring. Restoration planning is often 

challenged with an accurate estimate of pre‐treatment forest density conditions, which can now 

be rapidly acquired with a UAV. After an initial capital investment in UAV equipment and 

software of up to $30,000, data can be acquired and processed on demand which continually 

lowers long‐term operation costs. When compared to the costs of traditional plot‐level field 

surveys (~US$180 per plot), airborne lidar ($7.50–$6 per ha at 15,000–40,000 ha, respectively) 

or manned aerial imagery ($200,000–$500,000 over >10,000 ha), the costs associated with 

UAV‐borne data acquisition are lower (Sankey et al. 2017). In our region, the pace, timing and 

implementation of restoration treatments are often dependent on weather and logging contractor 

availability. Having a flexible, standardized and cost‐effective approach to assess and monitor 

restoration treatment outcomes can help forest managers operate more efficiently. Additionally, 
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the mid‐scale forest metrics and methodology we presented in this study can be applied to 

monitoring a wider array of forest restoration outcomes including wildfire risk and potential 

behavior, wildlife habitat characteristics and drought resilience components of a post‐restoration 

landscape. Providing such assessments at high spatial and temporal resolution could enable 

restoration planning and adaptive management to occur at both a faster pace and greater scale. 

2.6 Conclusions and Management Implications 

UAV applications provide three unique advantages in monitoring forest restoration. First, forest 

managers can acquire data for individual treatments to tailor subsequent treatments and achieve 

larger landscape‐scale benchmarks. Second, UAV data can be used to accurately quantify post‐

treatment conditions and compare them to prescription objectives. We found the most accurate 

fine‐ and mid‐scale estimates of forest structure to occur across low‐density conditions, which 

often correspond to post‐treatment conditions. Third, pre‐ and post‐treatment conditions can be 

directly compared for mid‐scale forest metrics, especially canopy cover. Our findings support 

previous findings that demonstrated coarser (1 m pixel) resolution manned aerial digital 

photography can be used at the landscape scale (400 ha +) to assess canopy cover and forest 

patch and interspace characteristics. UAV image‐derived mid‐scale metrics can be leveraged for 

the high spatial and temporal resolution to provide nearly continuous feedback to forest 

managers. Other study areas with understory shrub layers might also benefit from the high‐

resolution data that UAV sensors can provide, when classifying forest vegetation. 

Future UAV‐based research should focus on developing a spatially extensive sampling 

strategy to provide a more comprehensive evaluation of landscape‐scale forest restoration. It is 

also important to include different treatment types and regionally relevant topographic and 
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vegetative characteristics. This would allow for the detection of differences between varying 

prescriptions, allow for the workflow to be tailored to site‐specific conditions, and better 

facilitate landscape‐scale restoration monitoring. 

2.7 References 

Allen, C. D., Savage, M., Falk, D. A., Suckling, K. F., Swetnam, T. W., Schulke, T., … Klingel, 

J. T. (2002). Ecological Restoration of Southwestern Ponderosa Pine Ecosystems: A Broad 

Perspective. Ecological Applications, 12(5), 1418–1433. https://doi.org/10.1890/1051-

0761(2002)012[1418:EROSPP]2.0.CO;2 

Altschul, J. H., & Fairley, H. C. (1989). Man, Models and Management: An Overview of the 

Archaeology of the Arizona Strip and the Management of its Cultural Resources. 

https://doi.org/doi:10.6067/XCV8DV1M7H 

Bohlin, J., Bohlin, I., Jonzén, J., & Nilsson, M. (2017). Mapping forest attributes using data from 

stereophotogrammetry of aerial images and field data from the national forest inventory. 

Silva Fennica, 51(2). https://doi.org/10.14214/sf.2021 

Bottero, A., D’amato, A. W., Palik, B. J., Bradford, J. B., Fraver, S., Battaglia, M. A., & Asherin, 

L. A. (2017). Density-dependent vulnerability of forest ecosystems to drought. Journal of 

Applied Ecology. https://doi.org/10.1111/1365-2664.12847 

Carr, J. C., & Slyder, J. B. (2018). Individual tree segmentation from a leaf-off photogrammetric 

point cloud. International Journal of Remote Sensing, 39(15–16), 5195–5210. 



 

70 

 

Castello, J. D., Leopold, D. J., & Smallidge, P. J. (2006). Pathogens, Patterns, and Processes in 

Forest Ecosystems. BioScience, 45(1), 16–24. https://doi.org/10.2307/1312531 

Chianucci, F., Disperati, L., Guzzi, D., Bianchini, D., Nardino, V., Lastri, C., … Corona, P. 

(2016). Estimation of canopy attributes in beech forests using true colour digital images 

from a small fixed-wing UAV. International Journal of Applied Earth Observation and 

Geoinformation, 47, 60–68. https://doi.org/10.1016/j.jag.2015.12.005 

Churchill, D. J., Larson, A. J., Dahlgreen, M. C., Franklin, J. F., Hessburg, P. F., & Lutz, J. A. 

(2013). Restoring forest resilience: From reference spatial patterns to silvicultural 

prescriptions and monitoring. Forest Ecol Manag, 291(Canadian Journal of Forest Research 

39 2009), 442–457. https://doi.org/10.1016/j.foreco.2012.11.007 

Cooper, C. F. (1960). Changes in Vegetation, Structure, and Growth of Southwestern Pine 

Forests since White Settlement. Ecological Monographs, 30(2), 129–164. 

https://doi.org/10.2307/1948549 

Cooper, C. F. (1961). Pattern in Ponderosa Pine Forests. Ecology, 42(3), 493–499. 

https://doi.org/10.2307/1932235 

Covington, W. W., Fule, P. Z., Moore, M. M., Hart, S. C., Kolb, T. E., Mast, J. N., … Wagner, 

M. R. (1997). Restoring Ecosystem Health in Ponderosa Pine Forests of the Southwest. 

Journal of Forestry, 95(4), 23–29. 

Dahms, C. W., & Geils, B. W. (1997). An assessment of forest ecosystem health in the 

Southwest. Gen Technical Rep Rm-Gtr-295 Fort Collins Co U S Dep Agriculture Forest 



 

71 

 

Service Rocky Mountain Forest Range Experimental Station 97 P, 295. 

https://doi.org/10.2737/rm-gtr-295 

Dandois, J. P., & Ellis, E. C. (2013). High spatial resolution three-dimensional mapping of 

vegetation spectral dynamics using computer vision. Remote Sensing of Environment, 136, 

259–276. https://doi.org/10.1016/j.rse.2013.04.005 

Day, K., Berg, J., Brown, H., Crow, T., Morrison, J., Nowacki, G., … Wood, B. (2006). 

Ecosystem Restoration: A Framework for Restoring and Maintaining the National Forests 

and Grasslands. Retrieved from 

https://www.fs.fed.us/restoration/documents/RestFramework_final_010606.pdf 

Díaz-Varela, R. A., de la Rosa, R., León, L., & J, Zarco-Tejada, P. (2015). High-Resolution 

Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo 

Reconstruction: Application in Breeding Trials. Remote Sensing, 7(4), 4213–4232. 

https://doi.org/10.3390/rs70404213 

Diaz-Varela, R., Gonzalez-Ferreiro, E., Correia, A. C., Nunes, A., Tomé, M., Guerra-Hernandez, 

J., … Fontes, L. (2016). Using high resolution UAV imagery to estimate tree variables in 

Pinus pinea plantation in Portugal. Forest Systems, 25(2), eSC09. 

https://doi.org/10.5424/fs/2016252-08895 

Dickinson, Y., Pelz, K., Giles, E., & Howie, J. (2016). Have we been successful? Monitoring 

horizontal forest complexity for forest restoration projects. Restoration Ecology, 24(1), 8–

17. https://doi.org/10.1111/rec.12291 



 

72 

 

FAO: Food and Agriculture Organization of the United Nations. (2015). Global Forest Resources 

Assessment 2015. Retrieved from http://www.fao.org/3/a-i4808e.pdf 

Fitch, R. A., Kim, Y. S., Waltz, A. E. M., & Crouse, J. E. (2018). Changes in potential wildland 

fire suppression costs due to restoration treatments in Northern Arizona Ponderosa pine 

forests. Forest Policy and Economics, 87, 101–114. 

https://doi.org/10.1016/j.forpol.2017.11.006 

Fitzgerald, S. a. (2005). Fire Ecology of Ponderosa Pine and the Rebuilding of Fire-Resilient 

Ponderosa Pine. USDA Forest Service General Technical Report, 97756, PSW-GTR-198. 

Four Forests Restoration Initiative. (2013) (4FRI) Adaptive Management, Biophysical and 

Socio-economic Monitoring Plan December 2013. 

Fulé, P. Z. (2008). Does it make sense to restore wildland fire in changing climate? Restoration 

Ecology, 16(4), 526–532. https://doi.org/10.1111/j.1526-100X.2008.00489.x 

Fulé, P. Z., Crouse, J. E., Cocke, A. E., Moore, M. M., & Covington, W. W. (2004). Changes in 

canopy fuels and potential fire behavior 1880-2040: Grand Canyon, Arizona. Ecological 

Modelling, 175(3), 231–248. https://doi.org/10.1016/j.ecolmodel.2003.10.023 

Fulé, P. Z., Covington, W. W., & Moore, M. M. (1997). Determining reference conditions for 

ecosystem management of southwestern ponderosa pine forests. Ecological Applications, 

7(3), 895–908. https://doi.org/10.1890/1051-0761(1997)007[0895:drcfem]2.0.co;2 

http://www.fao.org/3/a-i4808e.pdf


 

73 

 

Girvetz, E. H., & Greco, S. E. (2007). How to define a patch: A spatial model for hierarchically 

delineating organism-specific habitat patches. Landscape Ecology, 22(8), 1131–1142. 

https://doi.org/10.1007/s10980-007-9104-8 

Grumbine, E. R. (1994). What Is Ecosystem Management? Conservation Biology, 8(1), 27–38. 

https://doi.org/10.1046/j.1523-1739.1994.08010027.x 

Guerra-Hernández, J., González-Ferreiro, E., Sarmento, A., Silva, J., Nunes, A., Correia, A. C., 

… Díaz-Varela, R. (2016). Using high resolution UAV imagery to estimate tree variables in 

Pinus pinea plantation in Portugal. Forest Systems, 25(2), 9. 

https://doi.org/10.5424/fs/2016252-08895 

Hudak, A., Smith, A. M., Evans, J. G., & Falkowski, M. J. (2006). Estimating Coniferous Forest 

Canopy Cover from LiDAR and Multispectral Data. American Geophysical Union, Fall 

Meeting 2006. 

Huffman, D. W., Moore, M. M., Covington, W. W., Crouse, J. E., & Fulé, P. Z. (2001). 

Ponderosa Pine Forest Reconstruction: Comparisons with Historical Data. Ponderosa Pine 

Ecosystems Restoration and Conservation: Steps Towards Stewardship, 3–8. 

Husch, B., Beers, T. W., & Kershaw, J. A. (2003). Forest Mensuration (4th ed.). New York: 

John Wiley and Sons. 

Iizuka, K., Yonehara, T., Itoh, M., & Kosugi, Y. (2018). Estimating Tree Height and Diameter at 

Breast Height (DBH) from Digital surface models and orthophotos obtained with an 



 

74 

 

unmanned aerial system for a Japanese Cypress (Chamaecyparis obtusa) Forest. Remote 

Sensing, 10(1), 13. https://doi.org/10.3390/rs10010013 

Kalies, E. L., & Rosenstock, S. S. (2013). Stand structure and breeding birds: Implications for 

restoring ponderosa pine forests. Journal of Wildlife Management, 77(6), 1157–1165. 

https://doi.org/10.1002/jwmg.577 

Kolb, T. E., Wagner, M. R., & Covington, W. W. (1994). Concepts of forest health: utilitarian 

and ecosystem perspectives. Journal of Forestry, 92(2), 10–15. Retrieved from 

http://scholarsarchive.library.oregonstate.edu/xmlui/handle/1957/17277 

Lagro, J. (1991). Assessing Patch Shape in Landscape Mosaics. Photogrammetric Engineering 

& Remote Sensing, 57(3), 285–293. Retrieved from https://www.asprs.org/wp-

content/uploads/pers/1991journal/mar/1991_mar_285-293.pdf 

Landres, P. B., Morgan, P., & Swanson, F. J. (1999). Overview of the use of natural variability 

concepts in managing ecological systems. Ecological Applications1, 9(4), 1179–1188. 

Larson, A. J., & Churchill, D. (2012). Tree spatial patterns in fire-frequent forests of western 

North America, including mechanisms of pattern formation and implications for designing 

fuel reduction and restoration treatments. Forest Ecology and Management, 267, 74–92. 

https://doi.org/10.1016/j.foreco.2011.11.038 

Lisein, J., Pierrot-Deseilligny, M., Bonnet, S., & Lejeune, P. (2013). A photogrammetric 

workflow for the creation of a forest canopy height model from small unmanned aerial 

system imagery. Forests, 4(4), 922–944. https://doi.org/10.3390/f4040922 



 

75 

 

Mast, J., Fulé, P. Z., Moore, M. M., Covington, W. W., & Waltz, A. E. M. (1999). Restoration of 

Presettlement Age Structure of an Arizona Ponderosa Pine Forest. Ecological Applications, 

9(1), 228–239. https://doi.org/10.1890/1051-0761(1999)009[0228:ropaso]2.0.co;2 

Matonis, M. S., & Binkley, D. (2018). Not just about the trees: Key role of mosaic-meadows in 

restoration of ponderosa pine ecosystems. Forest Ecology and Management. 

https://doi.org/10.1016/j.foreco.2018.01.019 

McGarigal, K., Cushman, S. A., & Ene, E. (2012). FRAGSTATS v4: Spatial Pattern Analysis 

Program for Categorical and Continuous Maps. Amherst, MA. 

Mohan, M., Silva, C., Klauberg, C., Jat, P., Catts, G., Cardil, A., … Dia, M. (2017). Individual 

Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an 

Open Canopy Mixed Conifer Forest. Forests, 8(9), 340. https://doi.org/10.3390/f8090340 

Moore, M. M., Huffman, D. W., Fulé, P. Z., Wallace Covington, W., & Crouse, J. E. (2004). 

Comparison of Historical and Contemporary Forest Structure and Southwestern Ponderosa 

Pine Forests. Forest Science, 50(2), 162–176. 

Næsset, E. (2004). Practical large-scale forest stand inventory using a small-footprint airborne 

scanning laser. Scandinavian Journal of Forest Research, 19(2), 164–179. 

https://doi.org/10.1080/02827580310019257 

Noss, R. F., Beier, P., Wallace Covington, W., Edward Grumbine, R., Lindenmayer, D. B., 

Prather, J. W., … Vosick, D. J. (2006). Recommendations for Integrating Restoration 

Ecology and Conservation Biology in Ponderosa Pine Forests of the Southwestern United 



 

76 

 

States. Restoration Ecology, 14(1), 4–10. https://doi.org/10.1111/j.1526-

100X.2006.00099.x 

Panagiotidis, D., Abdollahnejad, A., Surový, P., & Chiteculo, V. (2016). Determining tree height 

and crown diameter from high-resolution (UAV) imagery. International Journal of Remote 

Sensing, 1–19. https://doi.org/10.1080/01431161.2016.1264028 

Patton, D. R. (1977). Managing Southwestern Ponderosa Pine for the Abert Squirrel. Journal of 

Forestry, 75(5), 264–267. 

Pearson, G. A. (1923). Natural reproduction of western yellow pine in the Southwest. In Bulletin 

of the U.S. Department of Agriculture; no.1105. https://doi.org/10.5962/bhl.title.64666 

Pelz, K., & Dickinson, Y. (2014). Monitoring forest cover spatial patterns with aerial imagery: A 

tutorial. Technical Brief CFRI-TB-1401, p. 50. Colorado State University. 

Puliti, S., Ørka, H. O., Gobakken, T., & Næsset, E. (2015). Inventory of small forest areas using 

an unmanned aerial system. Remote Sensing, 7(8), 9632–9654. 

https://doi.org/10.3390/rs70809632 

Reutebuch, S. E., Andersen, H.-E., & McGaughey, R. J. (2005). Light Detection and Ranging 

(LIDAR): An Emerging Tool for Multiple Resource Inventory. Journal of Forestry, 103(6), 

286–292. Retrieved from https://academic.oup.com/jof/article-abstract/103/6/286/4598654 



 

77 

 

Reynolds, R. T., Meador, A. J. S., Youtz, J. A., Nicolet, T., Matonis, M. S., Jackson, P. L., … 

Graves, A. D. (2013). Restoring composition and structure in southwestern frequent-fire 

forests. USDA Forest Service, RMRS-GTR-3. 

Roccaforte, J. P., Fulé, P. Z., & Covington, W. W. (2010). Monitoring Landscape‐Scale 

Ponderosa Pine Restoration Treatment Implementation and Effectiveness. Restoration 

Ecology, 18(6), 820–833. https://doi.org/10.1111/j.1526-100x.2008.00508.x 

Roussel, J.-R., Caspersen, J., Béland, M., Thomas, S., & Achim, A. (2017). Removing bias from 

LiDAR-based estimates of canopy height: Accounting for the effects of pulse density and 

footprint size. Remote Sensing of Environment, 198, 1–16. 

https://doi.org/10.1016/J.RSE.2017.05.032 

Rupnik, E., Daakir, M., & Pierrot Deseilligny, M. (2017). MicMac – a free, open-source solution 

for photogrammetry. Open Geospatial Data, Software and Standards, 2(1), 14. 

https://doi.org/10.1186/s40965-017-0027-2 

Sánchez Meador, A. J., & Moore, M. M. (2011). Reprint of: Lessons from long-term studies of 

harvest methods in southwestern ponderosa pine–Gambel oak forests on the Fort Valley 

Experimental Forest, Arizona, U.S.A. Forest Ecology and Management, 261(5), 923–936. 

https://doi.org/10.1016/J.FORECO.2010.11.010 

Sankey, T., Donager, J., McVay, J., & Sankey, J. B. (2017). UAV lidar and hyperspectral fusion 

for forest monitoring in the southwestern USA. Remote Sensing of Environment, 195, 30–

43. https://doi.org/10.1016/j.rse.2017.04.007 



 

78 

 

Schubert, Gilbert H. 1974. Silviculture of southwestern ponderosa pine: The status of our 

knowledge. Res. Pap. RM-123. Fort Collins, CO: U.S. Department of Agriculture, Forest 

Service, Rocky Mountain Forest and Range Experiment Station. 71 p. 

Schultz, C. A., Jedd, T., & Beam, R. D. (2012). The Collaborative Forest Landscape Restoration 

Program: A History and Overview of the First Projects. Journal of Forestry, 110(7), 381–

391. https://doi.org/10.5849/jof.11-082 

Schultz, C. A., Coelho, D. L., & Beam, R. D. (2014). Design and Governance of Multiparty 

Monitoring under the (USDA) Forest Service’s Collaborative Forest Landscape Restoration 

Program. Journal of Forestry, 112(2), 198-206(9). https://doi.org/10.5849/jof.13-070 

Shin, P., Sankey, T., Moore, M. M., & Thode, A. E. (2018). Evaluating Unmanned Aerial 

Vehicle Images for Estimating Forest Canopy Fuels in a Ponderosa Pine Stand. Remote 

Sensing, 10(8), 1266. https://doi.org/10.3390/rs10081266 

Smith, W. B. (2002). Forest inventory and analysis: A national inventory and monitoring 

program. Environmental Pollution, 116(SUPPL. 1), S233–S242. 

https://doi.org/10.1016/S0269-7491(01)00255-X 

Snavely, N., Seitz, S. M., & Szeliski, R. (2006). Photo tourism. In ACM Transactions on 

Graphics (Vol. 25). https://doi.org/10.1145/1141911.1141964 

Stanturf, J. A., Palik, B. J., & Dumroese, K. R. (2014). Contemporary forest restoration: A 

review emphasizing function. Forest Ecol Manag, 331, 292–323. 

https://doi.org/10.1016/j.foreco.2014.07.029 



 

79 

 

Swetnam, T. W., Allen, C. D., & Betancourt, J. L. (1999). Applied historical ecology: Using the 

past to manage for the future. Ecological Applications, 9(4), 1189–1206. 

https://doi.org/10.1890/1051-0761(1999)009[1189:AHEUTP]2.0.CO;2 

Swetnam, T. W., & Betancourt, J. L. (2010). Mesoscale Disturbance and Ecological Response to 

Decadal Climatic Variability in the American Southwest. In Advances in Global Change 

Research (Vol. 41, pp. 329–359). https://doi.org/10.1007/978-90-481-8736-2_32 

Thiel, C., & Schmullius, C. (2016). Comparison of (UAV) photograph-based and airborne lidar-

based point clouds over forest from a forestry application perspective. International Journal 

of Remote Sensing, 1–16. https://doi.org/10.1080/01431161.2016.1225181 

USGS. (2017). Unmanned aircraft systems data post-processing. In USGS National UAS Project 

Office. Retrieved from https://www.faa.gov/uas/ 

Wallace, L., Lucieer, A., Malenovský, Z., Turner, D., & Vopěnka, P. (2016). Assessment of 

Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning 

and Structure from Motion SfM Point Clouds. Forests, 7(3), 62. 

https://doi.org/10.3390/f7030062 

Weldon, L. (2014). Ecological Restoration in the United States. Speech Presented at 

Ecosystems, Economy, and Society. Retrieved from 

https://www.fs.fed.us/speeches/ecological-restoration-united-states 

White, A. S. (1985). Presettlement Regeneration Patterns in a Southwestern Ponderosa Pine 

Stand. Ecology, 66(2), 589–594. https://doi.org/10.2307/1940407 



 

80 

 

White, J. C., Wulder, M. A., Vastaranta, M., Coops, N. C., Pitt, D., & Woods, M. (2013). The 

utility of image-based point clouds for forest inventory: A comparison with airborne laser 

scanning. Forests, 4(3), 518–536. https://doi.org/10.3390/f4030518 

Williamson, M., Rosenstock, S., & Kalies, L. (2011). Four Forest Restoration Initiative: 

Stakeholders’ Initial Science Needs Assessment. {4FRI} Science and Monitoring Working 

Group. 

Woolsey, T. S. (1911). Western Yellow Pine in Arizona and New Mexico. Retrieved from 

https://www.fs.usda.gov/treesearch/pubs/37531 

Zahawi, R. A., Dandois, J. P., Holl, K. D., Nadwodny, D., Reid, L. J., & Ellis, E. C. (2015). 

Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biological 

Conservation, 186, 287–295. https://doi.org/10.1016/j.biocon.2015.03.031 

Zarco-Tejada, P. J., Diaz-Varela, R., Angileri, V., & Loudjani, P. (2014). Tree height 

quantification using very high resolution imagery acquired from an unmanned aerial vehicle 

(UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 

55, 89–99. https://doi.org/10.1016/j.eja.2014.01.004 

 

  



 

81 

 

CHAPTER 3: UAV-based estimate of snow cover dynamics: Optimizing semi-arid forest 

structure for snow persistence 

3.1 Abstract 

Seasonal snow cover in the dry forests of the American West provides essential water resources 

to both human and natural systems. The structure of trees and their arrangement across the 

landscape are important drivers of snow cover distribution across these forests, varying widely in 

both space and time. We used unmanned aerial vehicle (UAV) multispectral imagery and 

Structure-from-Motion (SfM) models to quantify rapidly melting snow cover dynamics and 

examine the effects of forest structure shading on persistent snow cover in a recently thinned 

ponderosa pine forest. Using repeat UAV multispectral imagery (n = 11 dates) across the 76-ha 

forest, we first developed a rapid and effective method for identifying persistent snow cover with 

90.2% overall accuracy. The SfM model correctly identified 98% (n = 1280) of the trees, when 

compared with terrestrial laser scanner validation data. Using the SfM-derived forest structure 

variables, we then found that canopy shading associated with the vertical and horizontal metrics 

was a significant driver of persistent snow cover patches (R² = 0.70). The results indicate that 

UAV image-derived forest structure metrics can be used to accurately predict snow patch size 

and persistence. Our results provide insight into the importance of forest structure, specifically 

canopy shading, on the amount and distribution of persistent seasonal snow cover in a typical dry 

forest environment. An operational understanding of forest structure effects on snow cover will 

help inform forest management that can target snow cover dynamics in addition to forest health. 
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3.2 Introduction 

Runoff from seasonal snowpack in semi-arid regions provides drinking water and agricultural 

irrigation for at least one-sixth of the world’s population (Barnett et al., 2005). Snowpack also 

provides important ecosystem services, including water for vegetation, aquatic ecosystems, and 

shallow groundwater recharge (Bales et al., 2011; French & Binley, 2004; Newman et al., 1998; 

Price & Hendrie, 1983; Wilcox et al., 1997). Throughout the western United States, higher 

annual mean temperatures and changes to winter air humidity are contributing to an earlier and 

faster spring snowmelt (Harpold & Brooks, 2018). Regional climate projections indicate that 

these effects will become more pronounced (Barnett et al., 2008; Hidalgo et al., 2009; Safeeq et 

al., 2016) and inconsistent snowpack will contribute to higher rates of drought-induced tree 

stress and mortality (Allen et al., 2015). 

In the ponderosa pine (Pinus ponderosa) forests of northern and central Arizona, roughly 

half of the annual precipitation falls as rain during the summer, and the other half as snow during 

the winter (Hereford, 2014). For mature ponderosa pine trees, winter precipitation via snowpack 

is the dominant source of water throughout the year, underscoring the importance of snowpack to 

forest health (Ehleringer et al., 1991; Kerhoulas et al., 2013). In turn, forest cover influences the 

accumulation and ablation of snow on the ground surface, primarily by controlling canopy 

interception and by partitioning the solar radiation available at the ground surface (Essery et al., 

2003; Harpold et al., 2014; Molotch et al., 2007, 2009; Roth & Nolin, 2017; Varhola et al., 

2010). Additionally, the size, shape, spacing, and structure of forest patches (i.e., groups of trees) 

influence snow accumulation and ablation processes (Davis et al., 1997; Dickerson-Lange et al., 

2015; Essery et al., 2008; Lawler & Link, 2011; Veatch et al., 2009). 
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At the landscape-scale, snowpack distribution, depth, and snow water equivalent (SWE) 

are most accurately estimated using airborne lidar datasets. Similarly, recent advances in forest 

inventorying and monitoring have leveraged both terrestrial and airborne lidar datasets to 

produce georeferenced and scaled measurements of individual trees at the landscape scale (400+ 

ha) (Bauwens et al., 2016; Calders et al., 2018; Dassot et al., 2011; Donager et al., 2018; Liang et 

al., 2019; Næsset, 2004; Reutebuch et al., 2005; Sankey, 2012; Sankey et al., 2013). However, 

lidar is often expensive to acquire. Optical remote sensing of snow-covered area (SCA) is a 

proven method that can provide accurate estimates of spatial and temporal snowpack 

accumulation and distribution (Kongoli et al., 2012; Nolin, 2011; T. Sankey et al., 2015). 

However, SCA estimates lack the snow depth and SWE dimensions. In addition, airborne and 

satellite-based optical images generally have coarse spatial resolutions, fixed time intervals, and 

cloud interference that limit their applications in the southwestern USA, where snow rapidly 

melts in <2 weeks following a storm (T. Sankey et al., 2015). It is important to identify 

alternative means to rapidly and cost effectively monitor landscape-scale snow extent and 

persistence for assessing the relationship between SCA and forest structure changes. 

As a lower-cost alternative to airborne data, unmanned aerial vehicles (UAVs) are 

increasingly used to acquire high resolution images (Alonzo et al., 2018; Belmonte et al., 2019; 

Guerra-Hernández et al., 2016; Iizuka et al., 2018; Puliti et al., 2015; Sankey et al., 2017;  

Sankey et al., 2019; Sankey et al., 2021; Shin et al., 2018; White et al., 2013). UAV-borne 

photogrammetric Structure-from-Motion (SfM) modelling has also been successfully used in fine 

(0–4 ha) and mid-scale (4–400 ha) forest structure assessments (Belmonte et al., 2019; Carr & 

Slyder, 2018; Shin et al., 2018; Thiel & Schmullius, 2016; Wallace et al., 2016). Compared to 

lidar-derived 3D point cloud models, UAV SfM often provide similar accuracies in estimating 
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individual tree canopy heights, diameter, and volumes (Sankey et al., 2019; Thiel & Schmullius, 

2016; Wallace et al., 2016). In addition to characterizing forest canopy cover, tree canopy height 

and diameter, tree density, patch and gap sizes and geometry (Alonzo et al., 2018; Belmonte et 

al., 2019; Sankey et al., 2019; Shin et al., 2018), UAV datasets can also be used to measure snow 

cover and depth (Harder et al., 2016; Lendzioch et al., 2019; Miziński & Niedzielski, 2017). 

UAVs can provide very high resolution and near real-time SCA data (Niedzielski et al., 2018) 

and can be examined with similar methodologies used in airborne and satellite optical remote 

sensing to derive SCA. UAVs offer a flexibility essential for capturing both ongoing forest 

structure changes as well as day-to-day variability of the highly dynamic snow cover in semi-arid 

Southwestern forests (Baker & Ffolliott, 2003; Belmonte et al., 2019; Sankey et al., 2019). 

Here we quantify snowpack dynamics in a recently thinned and unthinned ponderosa pine 

forest to evaluate the potential benefits of the forest restoration treatment for snowpack. We use 

UAV-derived multispectral orthomosaic imagery to quantify snow cover dynamics and identify 

persistent snowpack, and three-dimensional Structure-from-Motion (SfM) models to examine the 

effects of forest structure, specifically via shading, on snowpack persistence. Our objectives were 

to: 

1. Quantify snow cover following three different winter storms and identify persistent 

snowpack across the study site; 

2. Examine forest structure shading effects on snowpack persistence; 

3. Model and predict persistent snowpack using the most influential forest structure metrics. 
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To assess the importance of specific characteristics and their spatial distribution, forest structure 

metrics were separated into groups that emphasize vertical and horizontal characteristics. We 

hypothesized that horizontal forest structure metrics would be more influential for predicting 

persistent snowpack than vertical forest structure metrics due to the variation in ground shading 

exhibited by trees, no matter their size or shape. In addition, we hypothesized that crown base 

height and crown volume would be important for predicting the size of persistent snow patches. 

3.3 Materials and Methods 

3.3.1 Study area 

Our study area is located in the Coconino National Forest in northern Arizona (Figure 3.1). The 

study area includes 76 ha of forest, characterized by relatively flat topography ranging in 

elevation between 2200 and 2275 m, with slopes of 0–10% across most of the study area. The 

vegetation is characterized by ponderosa pine (Pinus ponderosa), which dominates both the 

region and the study area, and includes sporadic Gambel oak (Quercus gambelii) and Rocky 

Mountain juniper (Juniperus scopulorum). The climate is sub-humid and characterized by 

distinct seasonal trends including early summer drought, with an average of 560 mm of 

precipitation (Western Regional Climate Center, 2020) falling half as snow during winter months 

and half as rain during the mid-summer monsoon season. The site had been undisturbed since its 

last naturally occurring fire in 1876, except for selective historical firewood harvesting (Sackett, 

1980). However, the site was subjected to a prescribed fire in 1976, in which 63% of the smaller 

surface fuels and 69% of the woody surface fuels (up to 8 cm in diameter) were consumed 

(Sackett, 1980). 
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Figure 3.1: An overview of the study site highlighting the locations and extents of the UAV 

Structure-from-Motion (SfM) data, terrestrial laser scanner (TLS) data, and field-based 

validation data. (A) shows an example of the field-measured and TLS validated plots. (B) shows 

the distribution of all field-measured and TLS validated plots within the SfM data extent, which 

includes both thinned and unthinned portions of the forest. A majority of our ground-based 

measurements are distributed across the larger, thinned portion of the study site. (C) shows the 

UAV and TLS instruments used in this study. 

A mechanical thinning restoration treatment at the study area began during the fall of 

2017 and was completed by the spring of 2018, yielding a 53-ha treated portion and 23-ha 

untreated portion for this study (Figure 3.1). Similar to other regional restoration treatments that 

promote diversity in tree group and interspace size, shape, and spacing, this treatment aimed to 

reinstate pre-settlement forest conditions and included a range of thinning goals that would 
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promote healthy overstory vegetation and the regeneration of understory vegetation (Allen et al., 

2002; Larson & Churchill, 2012; Reynolds et al., 2013; Sackett, 1980). Specifically, the 

restoration treatment prescription at our study area emphasized irregular tree group delineation, 

expansion of interspace, retention of all non-ponderosa pine species (e.g., Gambel oak and 

juniper), and significant reductions in smaller ponderosa pine trees within groups and 

interspaces. 

3.3.2 Data description and processing 

3.3.2.1 Snow covered area and persistent snow patches 

Our examination of the relationship between persistent snow cover and forest structure began 

with quantifying snow covered area (SCA) across the entire study site throughout the melt-off 

period following three significant (>20 cm new snowfall depth) independent winter storm events 

during the winters of 2017–2018 and 2018–2019. For each storm, a set of 15-cm resolution 

multispectral UAV orthomosaic images were acquired from the first day following the storm 

(i.e., maximum SCA) until the snow cover had fully disappeared (i.e., minimum SCA). To 

capture temporal changes in SCA following each storm, the interval at which images were 

acquired depended on the weather conditions in the preceding days, but we attempted to keep 

image date intervals consistent among independent storm events (Table 3.1). The final SCA 

dataset consisted of three ‘snow-series’ (one snow-series per storm event), yielding a total of 11 

different orthomosaic images. 

Table 3.1: Three storm events, subsequent image collection dates, and weather conditions. The 

total snowfall indicates the snow recorded for the storm event, while the mean temperatures and 

wind speeds are cumulative means between the image dates. Each storm event was imaged 
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several times from full snow coverage on the first day until the snow cover nearly melted off. 

The individual image dates were selected considering daily weather conditions and study site 

access. Periods of near-freezing daily temperatures yielded longer image date intervals so that 

noticeable changes in snow coverage could be observed. In contrast, periods of higher mean 

temperature values required more frequent image date intervals as the snow melted rapidly. 

Weather data were recorded at the regional National Weather Service Forecast office, 

approximately 15 km from the study site and compiled from NOAA’s Climate Data Online 

service. 

Storm Date Snowfall (cm) Image Date 
Mean Daily 

High (°C) 

Mean Daily 

Low (°C) 

Mean Wind 

Speed (m/s) 

01/20/2018 28.9 

01/22/2018 0.7 -17.4 3.3 

01/24/2018 7.8 -15.8 2.1 

01/26/2018 5.8 -12.3 4.9 

01/29/2018 10.0 -9.8 3.6 

12/27/2018 73.4 

01/01/2019 0.4 -14.7 3.3 

01/03/2019 5.1 -17.1 3.6 

01/05/2019 11.1 -9.2 1.8 

01/14/2019 6.8 -5.7 2.6 

02/05/19      93.9 

02/07/2019 1.9 -10.3 5.9 

02/25/2019 4.1 -11.0 3.8 

03/04/2019 10.7 -4.3 3.6 
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Data comprising the snow-series orthomosaic images were collected using a Sensefly 

eBee RTK fixed-wing UAV platform (SenseFly, Lausanne, Switzerland) fitted with a Parrot 

Sequoia multispectral sensor (Parrot Drones SAS, Paris, France). Each flight mission was pre-

programmed using Sensefly’s proprietary software, which controlled flight plans and customized 

all flight and data parameters. Flight specifications included high latitudinal and longitudinal 

overlaps (85% and 90%, respectively) in order to generate the SfM outputs, an average flight 

altitude of 120 m, and operation centered around solar noon on each image date. There was an 

average of ~350 images captured for each flight based on the predetermined flight path, with 

wind conditions largely responsible for the total number of images collected. During each flight, 

four georeferenced images were recorded at each photo location in the green (530–570 nm), red 

(640–680 nm), red edge (730–740 nm), and near infrared (770–810 nm) spectral bands. These 

images were post-processed using Sensefly’s eMotion 3 software, which automatically excluded 

a few distorted images from each flight (SenseFly, Lausanne, Switzerland). 

The images were then used to create the final datasets in Agisoft PhotoScan v1.4.0 

photogrammetric processing software (Agisoft LLC, St. Petersburg, Russia) for each image date. 

All images from each flight were scanned for matching ‘tie-points’, oriented in three-

dimensional space via bundle-adjustment, and then mosaicked together (Belmonte et al., 2019). 

The general workflow in the software includes image alignment to create a sparse point cloud, 

incorporation of GCP locations, image alignment optimization, gradual filtering out of inaccurate 

and error-inducing points, and a full image realignment (Belmonte et al., 2019). This workflow 

generated a final orthomosaicked image in 15 cm spatial resolution in all four spectral bands and 

dense 3-dimensional (3D) point cloud data photogrammetrically generated from the high 
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resolution images using Structure-from-Motion (SfM) algorithms. We optimized the SfM 

algorithm parameters based on our previous results (Belmonte et al., 2019). 

The snow-series images were used to first classify SCA across the study site in each 

image and subsequently delineate persistent snow cover patches. All images (n = 11) were 

classified into five classes: vegetation, sunlit bare ground, shaded bare ground, sunlit snow, and 

shaded snow, using a random forest supervised classification performed in Google Earth Engine 

(Massey et al., 2018; Sankey et al., 2018). The random forest classifier was parameterized based 

on previous remotely sensed image classification examples, with the number of trees set to 100 

and the number of variables per split set to the square root of the number of variables (Massey et 

al., 2018; Sankey et al., 2018). The training dataset consisted of manually digitized polygons (n = 

492 total) for each of the five classes. The image resolution (15 cm/pixel) allowed for the 

training dataset classes to be easily delineated. The final binary snow versus non-snow rasters 

were created by combining pixels classified as both sunlit and shaded snow into a single ‘snow’ 

class, while pixels in the remaining classes were combined into a single ‘non-snow’ class. The 

accuracy of this binary classification was assessed using a set of randomly generated snow/non-

snow samples (n = 500) from the image with roughly half its pixels snow covered, allowing for 

an unbiased accuracy assessment. Image classification relied on a multi-band image stack 

created from the four original spectral bands (green, red, red edge, near infrared) and six 

additional bands derived from the original four: normalized difference vegetation index (NDVI) 

(Rouse, 1974), soil adjusted vegetation index (SAVI) (Huete, 1988), Gray Level Co-Occurrence 

Matrix (GLCM) (Haralick, 1973) variance, GLCM homogeneity, GLCM contrast, and GLCM 

entropy. The GLCM texture bands were included to increase the effectiveness of the 
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classification algorithm in discriminating the different combinations of bare ground, snow, and 

their shaded equivalents. 

Finally, persistent snow cover was delineated using a single snow cover image 

composite. This image composite was created by stacking each binary classification (n = 11) and 

counting when each pixel was snow-covered out of the 11 total dates in the image composite. A 

simple post-processing procedure was used to eliminate spurious pixels and reduce noise along 

edges of snow pixels. Specifically, we conducted a progressive moving-window majority 

filtering using windows of 3 × 3 and 5 × 5 cells. From this image composite, persistent snow 

patches were identified by selecting isolated groups of adjacent pixels with snow cover in 10 or 

11 out of the total 11 images (Figure 3.2). Groups of pixels less than 200 m² were numerous and 

observed to melt completely between image dates, thus they were eliminated from the analysis. 

The resulting patches were refined using a general boundary cleaning procedure to eliminate 

spurious edges, then vectorized and attributed with an identification number and an area estimate 

(m²). 
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Figure 3.2: UAV multispectral image analysis workflow. First, the original multispectral bands 

and the calculated indices were stacked into a single raster image, one for each image date (n = 

11) and classified using a supervised random forest model to generate binary snow/non-snow 

classes. From the binary classification from each image date, the pixels with 10 or 11 snow-

covered days (out of 11) were grouped to create the boundaries of individual persistent snow 

patches. 

3.3.2.2 Forest structure metrics 

Forest structure metrics were quantified across the entire study site using the UAV SfM point 

cloud data and validated using both field measurements and a terrestrial laser scanner (TLS) 

point cloud dataset. The vertical forest structure metrics examined in our study are tree crown 

height (CH), crown diameter (CD), crown base height (CBH), the ratio of tree base height to 

crown height (CBH:Z), and crown volume (CV). The horizontal structure metrics in our study 
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include trees per hectare (TPH), canopy cover (%) per area (CC), average of five nearest 

neighbor distances (KNN), Clark and Evans Index (CEI), a canopy height-based solar radiation 

footprint (SRF), and an average distance from the northern canopy edge (NCE). 

The UAV SfM point cloud data were collected across the entire study site with the same 

platform and sensor used for snow-series data collection and following completion of the 

mechanical thinning restoration treatment (Belmonte et al., 2019). The final orthomosaic has 

error estimates of 1.14 m and 1.80 in the X, Y, and Z dimensions, respectively (Belmonte et al., 

2019). In addition, the SfM point cloud was used to create a digital terrain model (DTM) using 

the Cloth Simulation Filter (CSF) tool in CloudCompare v2.9.1 (Belmonte et al., 2019). The CSF 

tool was parameterized using ‘relief’ for Scenes, a Cloth Resolution of 1 m, and a Classification 

Threshold of 0.7 m. The accuracy of the DTM (R² = 0.95 and a RMSE = 2.98 m) was assessed 

by comparing points extracted from the DTM to corresponding points from differentially 

corrected Trimble GeoXH GPS elevation values collected from the trees in the field-based 

validation dataset. 

Individual tree segmentation was performed on both the SfM and TLS point clouds using 

the Li et al. (Li et al., 2012) algorithm in the lidR package (Roussel et al., 2017) in RStudio (R-

Studio Team, 2015). The segmented point clouds were then used to estimate each tree’s location 

(X, Y in UTM 12N m), maximum crown height (CH in m), and average of its widest and 

narrowest crown diameters (CD in m) using the rLiDAR package in R-Studio (Mohan et al., 

2017). Each tree’s crown base height (CBH in m) was estimated from the point cloud data using 

a novel multiple changepoint detection algorithm (Runge et al., 2020). This algorithm used the 

area of two-dimensional convex hulls, which were calculated at every 50 cm along a tree’s 
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height to isolate the height at which trunk points transitioned into canopy points. Finally, each 

tree’s CV (m³) was then estimated by calculating the volume of the three-dimensional convex 

hull made from each tree’s points above its CBH value. 

3.3.2.3 Forest structure metrics validation 

We assessed the accuracy of the SfM point-cloud-derived tree metrics by comparing them to 

both the field-measured and terrestrial laser scanner (TLS) point cloud-derived tree metrics 

(Figure 3.3). The TLS point cloud data provided accurate high-resolution estimates of all field-

measured forest structure metrics and spatially extended the field-measured metrics while also 

alleviating known accuracy issues associated with UAV SfM-derived crown base height (CBH) 

and crown volume (CV) estimates (Shin et al., 2018). Since we used a newer TLS instrument 

that has not been previously evaluated, an assessment of the omission and commission error rates 

was performed between the field-measured and TLS-derived datasets as well as between the 

TLS- and SfM-derived datasets. This facilitated direct comparison between trees from the TLS 

and SfM point clouds. 
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Figure 3.3: Calculating the individual tree metrics for the final analysis involved using both the 

field-measured and terrestrial laser scanner (TLS) point cloud-derived datasets. Individual trees 

detected in the TLS point cloud were compared to field-measured trees for an omission and 

commission analysis. Their crown height (CH), average crown diameter (CD), and crown base 

heights (CBH) were compared to assess the accuracy of the TLS point cloud-derived estimates. 

The same comparison was made between matching trees in the TLS point cloud and Structure-

from-Motion (SfM)-derived point cloud datasets, with the only difference being the addition of 

crown volume (CV). 

The TLS point cloud data was acquired within 0.64 ha field plots (n = 16) covering a total 

area of 5.17 ha and spread along a gradient of forest density present across the study site. The 

TLS data were collected using a Leica Geosystems BLK360 Imaging Laser Scanner (Leica 

Geosystems AG, 2020), which has a range of up to 60 m radius. The BLK360 captures 360,000 
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points per second at 830 nm wavelength with 300 and 360 degrees of vertical and horizontal 

field of view, respectively, and with 6mm-10m accuracies. Each TLS validation plot included at 

least three scans, which were tied together and georeferenced using four distinct reference 

targets. Reference targets were 50 × 50 cm reflective panels bolted to adjustable tripods at 1 m 

above ground, and their positions were recorded using a Trimble GeoXH GPS unit. We 

determined the locations and configuration of the scanner and reference targets using guidelines 

developed in our previous study (Donager et al., 2018). Using Cloud Compare software, the 

scans were co-registered using the target center points, then merged into a single point cloud and 

georeferenced using the GPS coordinates of the target; the overall X, Y, and Z positional 

accuracy of the 16 point clouds is 0.46 m. The average point spacing of all point clouds was 0.03 

m with a range of 0.025–0.046 m, and each was subsampled to 0.01 m to reduce redundant 

points and ensure consistent point spacing across scans. 

The TLS point cloud data were validated using field-based measurements taken from 137 

trees within 30 × 30 m validation plots (n = 16), covering a total of 1.44 ha. The field-based 

validation plots were centered within the TLS validation plots, providing as much overlap 

between the datasets as possible. Using the Trimble GeoXH handheld GPS unit with an attached 

Trimble laser range finder module, each tree’s geographic position (X,Y,Z coordinates), CH, 

CD, and CBH were measured and differentially corrected in GPS Pathfinder Office. 

3.3.3 Data analysis 

3.3.3.1 Forest structure predictor variables 

The effect of forest canopy shading on persistent snow patches was quantified using distinct tree 

shading influence areas. Previous research shows that a tree’s ground shading influence extends 
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between 1 and 2 times its crown height during the winter season in forests of the southwestern 

U.S. [55,69,70]. To support and refine this, we used three different spatial extents of localized 

tree shading to assess the size of persistent snow patches. These tree shading influence areas 

(TSIAs) were established with respect to each individual persistent snow patch and included 

trees located within a distance of 1, 1.5, and 2 times their crown heights. To ensure that only the 

trees capable of influencing a persistent snow patch were included, trees were selected based on 

whether their shadows were within solar azimuth angle extents specific to study site location and 

snow-series image date. The resulting minimum bounding extents were termed TSIA1.0, 

TSIA1.5, and TSIA2.0 (Figure 3.4). Once trees were selected in each TSIA, their vertical forest 

structure metrics were averaged to produce a final dataset. 
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Figure 3.4: A persistent snow patch and the trees influencing it at the three different ranges: 1, 

1.5, and 2 times the height (CH) of the tree. A tree was included within each respective tree 

shading influence area (TSIA), if its CH multiplied by 1, 1.5, or 2 was extended into the snow 

patch and if the bearing of its location (XY) to the patch was within the range of daily solar 

angles. 

In addition to the vertical forest structure metric summaries, each TSIA was assigned a 

set of horizontal arrangement metrics to quantify the spatial distribution of trees. Forest density 

was estimated by calculating trees per hectare (TPH) and average canopy cover (CC) in percent, 

while spacing of trees was measured using the average nearest neighbor (KNN) distance in 

meters from each tree to its five nearest neighbors. The clustering of trees was measured using a 

unitless Clark and Evans Index (CEI) value, with values < 1 indicating ordering and values > 1 

indicating clustering. The amount of ground shading was expressed using an average solar 

radiation footprint (SRF) value in w/m² for each TSIA polygon. The SRF was created using a 

sitewide canopy height model and the solar radiation toolset in ArcMap 10.8 to calculate the 

cumulative amount of incoming solar radiation (w/m²) during each snowstorm event (Olpenda et 

al., 2018; Abdollahnejad et al., 2018). The ground surface pixel values were averaged across the 

three storms and then across each TSIA polygon. Finally, each pixel’s distance to the northern 

canopy edge (DNCE) was calculated and averaged across each TSIA using a binary canopy 

cover raster based on the methodology developed by Mazzotti et al. 2019. The DNCE values 

provided a fine-scale metric that describes the directional within-stand differences of forest 

canopy spatial arrangement, and are well suited for assessing the effect of forest canopy radiative 

transfer. 
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3.3.3.2 Model framework 

An initial exploratory data analysis revealed sources of significant multicollinearity between 

forest structure metrics (independent variables) as well as numerous complex and non-linear 

relationships with persistent snow patch area (dependent variable). A variable selection process 

was used to eliminate the highly correlated and less descriptive forest structure metrics using 

variable inflation factor (VIF) scoring. To find a suitable model, we parameterized generalized 

linear models, random forest, support vector machine, and Multivariate Adaptive Regression 

Spline (MARS) algorithms for regression and tested their predictive accuracies using the Caret 

package (Kuhn, 2008) in RStudio. We selected the MARS model framework since it provided 

both the most accurate predictive accuracy as well as offering variable importance scores, which 

helped us interpret results into meaningful forest management recommendations. 

The MARS model performs nonparametric multivariate regression without underlying 

assumptions of the data and is useful for regression problems with high-dimensional datasets and 

multiple predictor variable interactions. Our modeling framework assessed the relationship 

between persistent snow patch size (m²) and forest structure metrics for each of the three 

different tree shadow influence areas (TSIAs). Initial attempts at model fitting and prediction 

presented inconsistent results, with model hyperparameters and predictive accuracies fluctuating 

based on different randomly selected training and testing datasets, which can be apparent when 

using machine learning methods on smaller datasets (Breiman, 2001). Due to our relatively small 

sample size (n = 99), we adopted a split-sample validation procedure that was repeated 500 

times. This provided 500 different randomly selected testing and training data partitions, model 

construction, and predictive accuracy assessments. While the number of repetitions is usually 

arbitrarily chosen, we found that 500 repetitions provided a large enough sample size to clearly 
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discriminate between trends in variable importance. Each model iteration utilized an exhaustive 

grid search to select the optimal set of hyperparameters, allowing for the inclusion of all possible 

predictors as well as for two-way interactions between predictors. An optimal model was then 

selected from each iteration by minimizing the generalized cross-validation error estimate, from 

which variable importance scores ranging from 0 to 100 were calculated for each model term. 

Model results were summarized based on the frequency of both the hyperparameter value 

and the variable importance scores. Separately, the optimal model framework for each iteration 

was used for prediction on the testing dataset. Instead of arriving at a single ideal model that 

definitively explains the relationship between persistence snow patch area and forest structure, 

this approach provides a robust conceptual understanding of the relationship. 

3.4 Results 

3.4.1 Snow cover classification and persistent snow patches 

The snow cover classification accuracy assessment was performed using the third image from 

the second storm due to its mostly even distribution of snow/non-snow pixels. The snow 

classification performed well, with an overall accuracy of 90.2% and a kappa coefficient of 0.80. 

Relatively low rates of omission error were observed for the non-snow and snow classes at 13% 

and 6%, respectively, while similar rates of commission error were observed for the non-snow 

and snow classes at 6% and 14%, respectively (Table 3.2). 

Table 3.2: Accuracy of the snow/non-snow classification across the 76-ha study site. The image 

used to generate the error matrix included an even amount of snow and non-snow pixels, 

providing the least biased estimation of classification error. 
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Class Value Non-Snow Snow Total User’s Accuracy 

Non-Snow 236 14 250 94% 

Snow 35 215 250 86% 

Total 271 229 500  

Producer’s Accuracy 87% 94%   

Overall Accuracy: 90.2% 

 

With the average daily high temperatures similar across all storm events (6.1 °C, 5.8 °C, 

and 5.7 °C for storms 1–3, respectively), storm 1 had the lowest initial snowfall amount (28.9 

cm) and the lowest reduction in site-wide SCA (−51%) over 8 days. In contrast, storms 2 and 3 

had greater initial snowfall amounts, 73.4 cm and 93.9 cm, respectively, and site-wide reductions 

in SCA were consistently higher and for longer time periods: −59% over 15 days and −70% over 

26 days, respectively (Table 3.1). 

The proportion of SCA in the treated portion of the study site on Day 1 was consistent 

across all storms, ranging from 91.2% to 89.4% to 90% for storms 1, 2, and 3, respectively. The 

proportion of SCA across the untreated portion of the study site on Day 1 of each storm was 

consistently lower, with values ranging from 43.4% to 62.3% to 58.1% for storms 1, 2, and 3, 

respectively. The effect of treatment condition on the magnitude of SCA reduction is evident 

both within and across storm events. The treated portion of the study site consistently exhibited a 

wider range of reductions in SCA within each storm compared to the narrower range in 

reductions observed in the untreated portion. The average of each storm’s total SCA reduction in 

the treated portion was −76.5% compared to −38.6% in the untreated portion (Figure 3.5). 



 

102 

 

 

Figure 3.5: The percent of the treated and untreated regions of the study site that are classified 

SCA for each UAV snow-series image following a storm. This data is grouped by storm, and 

partitioned by forest treatment condition to illustrate the reductions in SCA within and across the 

storms. SCA patterns following storm events show a greater SCA reduction in the treated portion 

of the study site than in the untreated portion. Evident also are the relatively similar initial 

amounts of classified SCA on the first image date after a storm in the treated portion, contrasting 

the initial amounts in the untreated portion. 

Distinct persistent snow patches were identified from the final composite of classified 

snow-series images from grouped pixels that were covered in snow for 10 or 11 of the total days 
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(n = 11) (Figure 3.6A). A total of 99 individual snow patches were delineated across the entire 

study site, covering 8.4% (6.36 ha) of the total area and ranging in size from 203 to 2699 m² (SD 

= 469.7 m²), with an average size of 646.9 m² and a majority (82%) being less than 1000 m². The 

patches delineated across the treated portion of the study site (n = 67) had an average size of 722 

m² and covered 9.2% (4.84 ha) of the treated area (Figure 3.6B). In contrast, the patches in the 

untreated portion of the study site (n = 32) had an average size of 474 m² and covered 6.6% (1.52 

ha) of that area (Figure 3.6B). 

Figure 3.6: Each UAV image (n = 11) was classified into snow/non-snow pixels (A) and the 

resulting rasters were assembled into a single composite, in which persistent snow patches were 

identified (B). The orthomosaic image used as the base imagery is from storm 2, day 3 (1 May 

2019) and its binary snow classification (A) was used for the classification accuracy assessment 

because it contained a nearly even snow/non-snow (49/51%) area distribution. 
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3.4.2 Forest structure metrics summary 

The TLS-derived point cloud correctly identified 88% (n = 120) of trees from within the field-

measured validation plots. The final TLS dataset consisted of 1293 trees identified within the 

TLS plot data extents (n = 16 validation plot, totaling 5.17 ha). The SfM-derived point cloud 

correctly identified 98% (n = 1280) trees within the TLS point cloud data extent, and the final 

dataset included a total of 8847 trees across the 76-ha study site. The individual tree metrics 

compared between all datasets are identical except for CV, which was calculated from TLS and 

SfM point clouds (Figure 3.2). 

The accuracy of the individual tree structure metrics used in the final model are a product 

of a multi-scale accuracy assessment, which compared the field-measured, TLS-derived, and 

SfM-derived estimates. The relationships between the field-measured and TLS-derived tree 

metrics were generally strong, while the relationships between the TLS- and SfM-derived tree 

metrics varied. 

The final set of forest structure predictors used for modeling were selected to balance 

both accurate tree dimension estimation as well as to maximize the model’s predictive capacity. 

The vertical forest structure metrics were selected by first examining the relationships between 

SfM- and TLS-derived estimates, then by assessing their multicollinearity and variance inflation 

factor (VIF) scores. For example, the weak relationship between SfM- and TLS-derived CD (R² 

= 0.14; RMSE = 1.62 m) indicated that it should not be used as a predictor variable. In addition, 

CD was highly correlated with CV (R² = 0.72) and had a high VIF score (12.3), indicating that it 

would negatively impact model accuracy and interpretability. For the entire study site, the 
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complete set of vertical and horizontal forest structure metrics included as model predictors are 

summarized by TSIA size (1, 1.5, and 2). 

3.4.3 Relationship between snow and forest structure 

The most frequent number of model terms for TSIA 1.0 was 5 (50% of all model iterations), for 

TSIA 1.5 were 6 (35% of all model iterations), and for TSIA 2.0 were 7 (35% of all model 

iterations), while the most frequent interaction degree term was 1 for all TSIA groups. The 

average model error estimates calculated across all model iterations grouped by TSIA size were 

0.14 for TSIA 1.0, 0.11 for TSIA 1.5, and 0.14 for TSIA 2.0. As the influence region size 

increased, more predictor variables were needed to stabilize the model and there was less 

consensus in the number of predictors selected. 

For all TSIA sizes, the forest structure metrics with the highest variable importance 

scores were the mean canopy cover (CC), mean solar radiation footprint (SRF), and trees per 

hectare (TPH) values (Figure 3.7). While this remained relatively consistent overall, differences 

in variable importance scores existed across TSIA sizes as evidenced by the differences between 

variable importance scores from TSIA groups within CEI, mean SRF, and mean TPH metrics. 

Specifically, the greater importance was observed for CEI at the largest spatial scale and the 

lesser importance of mean SRF and mean TPH at the smallest spatial scale. 
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Figure 3.7: Variable importance scores calculated for the forest structure metric predictor 

variables used in fitting the final MARS model framework. The variable importance score ranges 

from 0 to 100, with higher scores indicating that the predictor was more influential in model 

construction (n = 500). The chart depicts the frequency with which each forest structure metric 

was within the respective range of the importance score. The data are partitioned by tree shading 

influence area (TSIA) size to better illustrate the interaction with forest structure metric. Overall, 

the most influential forest structure metric predictors are canopy cover (CC), mean solar 

radiation footprint (SRF) value, and mean trees per hectare (TPH). 

The models describing forest structure at TSIA 1.5 performed best overall with a mean 

prediction accuracy R² = 0.70 (RMSE = 267 m²) (Figure 3.8), followed by those at TSIA 1.0 and 

TSIA 2.0 with mean prediction accuracies of R² = 0.66 (RMSE = 286 m²) and R² = 0.61 (RMSE 

= 307 m²), respectively. Of note is the increasing variability in model predictive accuracy on 
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both ends of the persistent snow patch area, especially on the larger end where wide fanning 

indicates greater uncertainty. 

 

Figure 3.8: A collection of the simple linear relationships reflecting each model’s predictive 

ability for the TSIA 1.5. Each line represents the prediction accuracy of a single model, and the 

red points are the value pairs for the predicted vs. observed persistent snow patch sizes (m²). The 

mean performance statistics for the entire set of prediction models in TSIA 1.5 is R² = 0.70 and a 

RMSE = 267 m². 
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3.5 Discussion 

Seasonal snowpack provides vital water resources for both human- and ecosystem-oriented 

services in semi-arid environments. Quantifying the spatially heterogenous and often ephemeral 

nature of this snow at the mid- (10–1000 ha) and landscape-scales (400+ ha) requires accurate 

spatially extensive and temporally dense datasets (T. Sankey et al., 2015). The structure and 

arrangement of trees in dry forests are central components influencing snow cover and persistent 

snowpack. In this study, we demonstrate an accurate method to provide near real-time estimates 

of mid-scale snow covered area (SCA) and assess how forest structure influences persistent snow 

patch size in a thinned ponderosa pine forest on the southern edge of the North American 

continental snow distribution. We found that forest structure metrics emphasizing the spatial 

arrangement of trees and tree groups were more influential on persistent snow cover (Figure 3.7), 

and that these effects were most pronounced when considering trees within 1.5 times their height 

to persistent snow cover (Figure 3.8). 

We first quantified snow-covered area (SCA) across the discontinuous forest of our 76-ha 

study site using UAV snow-series datasets. In forested environments, SCA is often 

underestimated in remote sensing data propagating from lower resolution satellite and airborne 

imagery, with trees masking the ground surface and tree shadows being misclassified as ‘non-

snow’ (Hall et al., 2001; Huang et al., 2017; Metsämäki et al., 2002; Vikhamar & Solberg, 2003). 

The overall accuracy of our high-resolution binary snow classification was 90.2%, indicating 

strategic UAV data acquisition, associated high-resolution imagery, and a relatively 

straightforward classification process can be used to quantify SCA in forested areas (Eker et al., 

2019). Furthermore, by capturing inter-storm reductions in SCA (Figure 3.5), we demonstrate 
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this approach can effectively delineate regions harboring the most persistent SCA and do so at a 

fine spatial resolution (Figure 3.6). This level of detail and accuracy provided the foundation for 

our assessment of forest structure impact on persistent snow cover patches. 

Except for crown diameter (CD), we found good overall agreement between the UAV 

SfM estimates and our validation datasets. Horizontal forest structure metrics were more 

influential than vertical structure metrics in predicting persistent snow patch size (Figure 3.7). 

Specifically, tree canopy cover (CC), trees per ha (TPH), and solar radiation footprint (SRF) 

were the most explanatory variables. This result supports our hypotheses that snow cover and, 

therefore, subcanopy shortwave radiation, is moderated by the spatial arrangement of trees more 

than by the vertical structure of individual trees. 

While the horizontal metrics of CC, TPH, and SRF were the most influential predictor 

variables, they were also the metrics with the greatest variability when grouped by persistent 

snow patch size. These are metrics of foliar cover and tree stem density that directly influence 

subcanopy shading, which subsequently impacts the relatively shallow, intermittent, and 

spatially heterogeneous snow cover found at our study site. In addition to the horizontal metrics, 

we expected the mean CEI and mean KNN distance values to be influential because they 

describe the location and spacing of trees. However, their lack of influence might indicate a need 

to adjust the scale and scope at which these metrics are calculated. For example, the spacing of 

groups of trees might be a more valuable metric than the spacing of individual trees when 

considering sub-canopy ground shading. 

In contrast to the horizontal metrics, variables in the vertical metric group were only 

slightly or moderately useful predictors of persistent snow patch size (Figure 3.7). We 
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anticipated that forest patches composed of trees with noticeably different vertical structures 

would result in differences in the forest canopy shading and ultimately statistically significant 

impacts on persistent snow patch size. This is illustrated in Figure 3.9, where the amount of 

shading seemingly provided by trees with higher CBH:CH ratio and lower CV values (Panel A) 

is noticeably lower compared to the amount of shading provided by trees with overall larger 

crowns (Panel B). The post-treatment forest structure conditions in Figure 3.9A are more 

common than those in Figure 3.9B. A potential cause for this could be a combination of the 

relatively homogenous vertical structure metrics observed across the study site (Figure 1B) and 

the relatively low agreement (R² = 0.50; RMSE = 3.23 m) between the TLS and field-measured 

CBH values. 
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Figure 3.9: A comparison of trees and their shadows with different vertical structure metrics, 

namely CBH:CH and CV. The perceived difference in forest canopy shading between trees with 

high CBH:CH and low CV values (Panel A) are compared to those trees with overall larger 

crowns (Panel B). These canopy shading differences were expected to result in vertical forest 

structure metrics being significant in the modeling of persistent snow patch size. 

Mean canopy height (CH) had strong agreement between both the field-measured and 

TLS-estimated values and the TLS- and SfM-estimated values, as well as low variability when 

grouped by persistent snow patch size. Accurate tree height estimates are not surprising given the 

ability for SfM and TLS to accurately estimate tree height regardless of forest density (Belmonte 

et al., 2019; Donager et al., 2018; Sankey et al., 2017) and the relatively homogenous post-

settlement forest structure conditions present across the study site. Given the low variable 

importance scores, mean CH appeared unimportant when modeling persistent snow patch area. 

However, we believe the importance of mean CH is evidenced in the superior predictive ability 

of the TSIA 1.5 category. More specifically, using tree CH to define the north–south width of 

forest canopy gaps (in the northern hemisphere), specifically to 1.5 times the average crown 

height of adjacent trees, provides the most consistent estimates of both snow cover and snow 

persistence. Early research shows that snow persisted in ’zones of retention’ corresponding to 1.5 

to 2 times the height of adjacent tree stands in ponderosa pine forests (Ffolliott et al., 1965). 

While these early studies assumed that persistent snow retention zones were driven by forest 

structure, mainly tree CH, we use high-resolution UAV-based estimates of CH to confirm the 1.5 

CH value as well as to identify horizontal metrics contributing to persistent snow. Our results 

indicate that mean tree CH and tree patch spacing at 1.5 times CH are important considerations 
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in forest restoration, in addition to the horizontal metrics described above, for maximizing snow 

cover retention and water yield. 

As thinning-based restoration is expanded throughout dry forests that harbor seasonal 

snowpack, it is crucial to understand how restoration-driven canopy reduction will impact forest 

water balance (Sankey et al., 2020) and snowmelt water inputs into shallow groundwater 

reservoirs. Previous research shows that snow accumulation in discontinuous or disturbed forests 

can be greater in less dense forests and within large canopy openings (Mazzotti et al., 2019; T. 

Sankey et al., 2015). The restoration thinning at our study site significantly reduced both canopy 

cover (from about 40% to 10%) and tree density (from about 212 TPH to 65 TPH), while 

increasing the number of forest patches (from 39 to 133) and decreasing the mean forest patch 

area (from 0.68 ha to 0.13 ha) (Belmonte et al., 2019). While this study focused on developing 

remote sensing techniques to quantify snowpack dynamics, contrasting the treated versus the 

untreated portions of our study area suggest important treatment impacts that should be 

confirmed by more replicated comparisons. Specifically, our results show there was more overall 

persistent snow cover in the thinned portion of the study site compared to the untreated portion 

(10% and 7%, respectively). Our results generally support and provide further insight into 

restoration-based reductions in forest density to promote snow cover. For example, the largest 

persistent snow patches were located adjacent to forest patches with 31–33% canopy cover (CC), 

while the smallest were located adjacent to patches with 50–52% CC, a trend which is supported 

by the optimal snow persistence CC value of 24% provided by regional satellite-derived 

estimates (Belmonte et al., 2019). 
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Our findings suggest that tailoring future forest restoration treatments to promote 

persistent snow cover in southwestern U.S. dry forest ecosystems should continue to focus on 

horizontal forest structure metrics like forest density and canopy cover at the landscape-scale 

(>1000 ha). Our results also underscore and refine the importance of horizontal forest structure 

metrics like CC, TPH, and SRF, regardless of spatial scale. However, we propose these criteria 

be emphasized during the creation of forest patches at relatively fine patch scale (<4 ha). It is 

critical to regional restoration efforts to continue implementing the commonly accepted 

standards in southwestern dry forest restoration, like promoting variation in interspace size, tree 

group size and within-group tree spacing (Eker et al., 2019). In addition, we propose landscape-

scale restoration treatment goals should also be implemented at fine spatial scale, operating 

within and among individual forest patches. For example, assuming a restoration treatment 

reflects diversity in forest patch size, spacing, and density, an overarching goal may be to 

achieve 24–33% CC across a 1000-ha treatment area. While this level of CC could be measured 

across the entire treatment area, having individual forest patches at 24–33% CC and distributed 

with distances at 1.5 times the average tree height within the patch should also promote localized 

persistent snow cover. 

3.6 Conclusions 

This study considered the inclusion of detailed forest structure metrics in quantifying persistent 

snow cover in a dry southwestern U.S. forest. We found the size (m²) of persistent snow patches 

can be effectively predicted using targeted forest structure metrics. Specifically, the most 

effective predictor metrics included tree shadows that are 1.5 times the tree heights, as well as 

tree density and canopy cover within this shaded area. While our findings underscore the 
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importance of forest canopy shading on persistent snow cover, they also indicate the relationship 

between persistent snow cover and fine-scale forest structure is likely more complex, rooted in 

different variables, or present at different spatial scales. Maximizing persistent snow cover in dry 

forest environments can be achieved by controlling subcanopy shading at the ground surface 

through an optimal set of fine-scale forest structure and spacing metrics. Future research and 

restoration efforts can achieve this by coupling our UAV-based methodology for quantifying 

persistent snow cover with more descriptive measurements of snow dynamics, such as snow 

depth and snow water equivalent. 

Our results support the utility of thinning-based forest restoration in dry southwestern 

forests to promote snow cover retention and forest health. We show there is a wide range of 

persistent snow patch sizes across thinned forest, and that differences in fine-scale forest 

structure are important for maximizing snow persistence. Adjusting existing restoration thinning 

prescriptions to reflect landscape-scale goals in fine-scale forest patches will help further this 

objective while promoting broader ecosystem health and resiliency. 
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CHAPTER 4: Soil moisture response to seasonal drought conditions and forest structure in 

a thinned semi-arid forest 

4.1 Abstract 

Prolonged drought conditions in semi-arid forests can lead to widespread vegetation stress and 

mortality. However, the distribution of these effects is not spatially uniform. In this study, we use 

high spatial temporal resolution soil water potential time-series data to assess the effects of fore-

summer drought period on the timing, magnitude, and extent of drying throughout the top 100 

cm of the soil profile. Additionally, we use high-resolution terrestrial lidar measurements of 

forest structure to develop relationships between soil drying and fine-scale forest structure. We 

found that at all depths (25, 50, and 100 cm) soil drying onset occurs significantly earlier in dry 

years and significantly more days are observed below a critical drying threshold for ponderosa 

pine trees. These results were observed during two abnormally dry years. Additionally, we show 

that significantly drier soils are found in areas with higher stand-level basal area, canopy cover, 

and tree density conditions. We also show that overall drier soils were found in areas with 

shorter trees. Overall, our results suggest that prolonged and seasonal drought conditions can 

compound to create significant soil moisture deficits, and that tailored restoration thinning can be 

used to increase and prolong the availability of deep soil water to trees during drought using 

specific tree density and size parameters. 

4.2 Introduction 

Persistent water stress in vegetation can degrade the health and functioning of water-limited 

forest ecosystems (Allen et al., 2010; Porporato et al., 2001). While drought conditions are not 
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abnormal in water-limited forest ecosystems, climate change-driven increases in air temperature 

and variability in vapor pressure deficit are likely contributing to hotter and more frequent 

droughts as well as shifts in the average regional conditions leading to ecological drought 

(Bradford et al., 2020a; Breshears et al., 2005; Vicente-Serrano et al., 2010, 2013; Zhang et al., 

2021). When consistent soil moisture deficits occur in the vegetation root zone, especially during 

the growing season, the physiological processes controlling vegetation functioning, structure, 

and overall health are negatively impacted (Chapin, 1991; Chapin et al., 1987; Maherali & 

DeLucia, 2001; Williams et al., 2001). Adverse impacts to plants can accumulate during 

prolonged drought conditions (Adams et al., 2009; Palmer, 1965), and are exacerbated when low 

soil moisture occurs simultaneously with high air temperatures (Breshears et al 2018). 

Consequently, drought conditions can promote unsustainable levels of tree water stress and 

eventually coincide with or contribute to widespread growth declines and eventual mortality, 

especially in the semi-arid forests of the American Southwest (Allen et al., 2015; Clark et al., 

2016; Ganey & Vojta, 2011; Koepke & Kolb, 2013; Mueller et al., 2005; Williams et al., 2010). 

Spatio-temporal feedbacks drive differences in the movement and partitioning of water 

along the soil-vegetation-atmosphere continuum, helping determine the availability of soil 

moisture to vegetation across a landscape (Entekhabi et al., 1996; Guswa et al., 2002; Koster et 

al., 2004; Seyfried et al., 2005; Thornthwaite, 1952; van der Schrier & Barkmeijer, 2007; Wilcox 

et al., 2003). This high spatial and temporal variability in water cycling is enhanced in semi-arid 

ecosystems where high atmospheric moisture demand and infrequent, seasonally restricted 

precipitation contribute to lower baseline soil water levels and large fluctuations in soil moisture 

availability (Corradini, 2014; Loik et al., 2004). In some semi-arid ecosystems, up to 95% of 

annual precipitation inputs are used for vegetation transpiration and soil evaporation, with up to 
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one third from the top ~10 cm of the soil profile (Allen et al., 1998; Oki & Kanae, 2006; Stoy et 

al., 2019; Wang et al., 2014; Wei et al., 2017; Raz-Yaseef et al., 2009, 2012). In turn, these 

ecosystem-wide soil moisture dynamics promote variation in the spatial distribution of 

vegetation across the landscape (D’Odorico et al., 2007a; Quevedo Tejada Cetaqua et al., 2008; 

Sandvig & Phillips, 2006; Snyder & Tartowski, 2006). Additionally, spatially variable soil 

moisture levels can translate into patterns in vegetation water stress and mortality at the 

landscape-scale (400+ ha) (Andrews et al., 2020; Bales et al., 2011; Goulden & Bales, 2019). 

Landscape-scale spatial variability in vegetation water stress and mortality is enhanced at 

the fine-scale (< 4 ha) by the distribution and orientation of forest patches, which also determines 

the amount of ground shading by forest canopy cover (Andrews et al., 2020; N. Raz-Yaseef et 

al., 2010; Teuling, 2005). In areas shaded by dense forest canopy, lower rates of soil evaporation 

are observed with water yield increases also found based on location-specific climatological and 

topographical conditions (D’Odorico et al., 2007; Duff et al., 1997; Goeking & Tarboton, 2020; 

Qubaja et al., 2020; Sahin & Hall, 1996; Tyagi et al., 2013). At the fine-scale and within 

individual forest patches, these effects are more nuanced and differences in soil moisture levels 

can be driven by the structure and distribution of individual trees (Breshears et al., 1997; Gray et 

al., 2002; Teng-Chiu Lin et al., 1992). For example, within denser forest patches with higher 

canopy cover, increased canopy interception and tree water uptake result in lower overall soil 

moisture levels. In contrast, higher soil moisture levels are often observed in less dense forest 

patches with lower canopy cover as well as within gaps directly adjacent to their north side (Gray 

et al., 2002; Raz-Yaseef, et al., 2010). 
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In semi-arid ponderosa pine forests of the southwestern U.S., melt water from seasonal 

snowpack is a primary input to soil moisture levels throughout the soil profile. As with soil 

moisture, the spatial distribution of seasonal snowpack is governed by the size, shape, spacing, 

and structure of trees and tree groups (Davis et al., 1997; Dickerson-Lange et al., 2015; Essery et 

al., 2003, 2008; Lawler & Link, 2011; Molotch et al., 2009; Roth & Nolin, 2017; Veatch et al., 

2009; Belmonte et al., 2021). Forest stands with low or discontinuous canopy cover as well as 

interspaces adjacent to the north side of tree groups tend to have higher rates of snow 

accumulation, ablation, and persistence (Dickerson-Lange et al., 2017; Gottfried & Ffolliott, 

1981; Revuelto et al., 2015). Differences in the spatial distribution of persistent snowpack are 

reflected in non-uniform soil water inputs during spring snowmelt (Newman et al., 2004). This 

effect is exacerbated by the high evapotranspiration rates during the fore-summer drought period, 

which significantly reduces the soil moisture levels in the upper soil horizon (< 40 cm) (Brandes 

& Wilcox, 2000). While the main source of water for southwestern pine forests originates from 

deeper in the soil profile, continued reductions in near-surface soil water inputs could interrupt 

recharge rates (Eggemeyer et al., 2009; Kerhoulas et al., 2013; Stahle et al., 2009). This has 

prompted forest managers to seriously consider the effects of landscape-scale soil water 

limitation and prioritize water management in forest ecosystems to reduce water stress and 

preserve productivity and resilience (Grant et al., 2013; Goeking & Tarboton, 2020). Quantifying 

the fine-scale patterns in forest-structure driven soil moisture variability can provide forest 

managers with actionable insight into the ecohydrological implications of thinning-based 

restoration practices. 

Many forest ecosystems across the western United States have become overly dense and 

in turn increasingly vulnerable to widespread mortality from disease, drought, and catastrophic 
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wildfire (Fulé et al., 2004; Kolb et al., 1994; Larson & Churchill, 2012; Moore et al., 2004; 

Reynolds et al., 2013; Swetnam & Allen, 1999; Swetnam & Betancourt, 2010). This has 

prompted the scientific community, government officials, and the public to increase funding for 

landscape-scale forest restoration (Allen et al., 2002; Covington & Moore, 2006; Fitch et al., 

2018; Fulé, 2008; Schultz et al., 2012). A central component of forest restoration includes the 

selective thinning of overly dense stands to help reduce the risk of catastrophic wildfire, enhance 

wildlife habitat, promote vegetation health, and stabilize the water balance in treated forests. 

While the overarching goals of restoration treatments allude to promoting ecohydrological health 

and resiliency, they do not specifically address how selective thinning can be used to achieve 

this. As more forest is designated for restoration and the effects of climate warming continue to 

stress these ecosystems, a better understanding of the forest structure-soil moisture variability 

relationship is imperative for promoting landscape-scale ecohydrological health (Bradford et al., 

2020b). 

Thinning treatments applied to southwestern ponderosa pine forests have been shown to 

increase soil water availability and in turn reducing water stress and increasing carbon uptake of 

the remaining forest (Dore et al., 2012; Feeney et al., 2011; Zausen et al., 2005). These results 

are important for assessing the effects of specific thinning treatments on landscape-scale forest 

vulnerability to drought-induced growth declines and mortality, however they did not directly 

infer soil moisture response to fine-scale forest structure differences and how this differs along 

the soil profile (Gleason et al., 2017). Distinguishing such nuance will help tailor future 

restoration efforts to ensure that thinning utilizes specific tree structure and spatial patterns, 

potentially benefiting ecosystem water balance and promoting resilience to climate change 

effects (Kerhoulas et al., 2013; Simonin et al., 2007). 
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Using a total of 112 soil water potential sensors, this study provides a detailed, 

quantitative measurement of soil moisture availability and its persistence in response to drought 

and forest structure conditions in a post-restoration environment. Specifically, we quantify soil 

moisture in the top 100 cm of the profile across a range of forest density conditions at a 

previously thinned restoration site over two consecutive years of 2019 and 2020, both of which 

experienced at or below average precipitation, providing an opportunity to evaluate critical 

differences in soil moisture during high-stress years (Figure 4.1). 

 

Figure 4.1: Total accumulated precipitation for Flagstaff, AZ area beginning at the start of the 

water year (October 1). The mean accumulated precipitation values are summarized beginning 

for the water year of 2000 and ending for values recorded in early 2021 (Source: NOAA).  

Additionally, we assess how fine-scale forest structure components drive differences in 

the timing, magnitude, and amount of soil drying across soil depths during the critical drying 

period following spring snowmelt. In this study, this critical time of the year is termed the fore-



 

139 

 

summer drought period and starts on April 1, ending at the onset of the North American 

Monsoon which usually arrives in late July. Soil moisture deficits experienced during the fore-

summer drought period are believed to contribute to prolonged vegetation stress and eventual 

mortality (Andrews et al., 2020; Allen et al., 2015); so minimizing the magnitude of moisture 

deficit during this critical period will help promote broader ecosystem health and resiliency. 

4.3 Materials and methods 

4.3.1 Study site description 

The study area is located in the Coconino National Forest about 6.5 km from the City of 

Flagstaff in northern Arizona, USA (12S 438346 N., 3901732 E. UTM). It includes 76 ha of 

forested land with flat topography (0-10% slopes) and ranges in elevation between 2,200-2,275 

m above sea level with an ephemeral watercourse running towards the southwest through the site 

(Figure 4.2). The region has a sub-humid climate with an average of 560 mm of precipitation and 

is characterized by strong seasonal trends including a winter snow, early summer drought, and 

late-summer monsoonal seasons (http://www.wrcc.dri.edu). Ponderosa pine (Pinus ponderosa) 

dominates both the region’s and study area’s vegetation, while the study area is punctuated by 

occasional Gambel oak (Quercus gambelii) and Rocky Mountain juniper (Juniperus 

scopulorum). Arizona fescue (Festuca arizonica), mountain muhly (Muhlenbergia montana), 

mutton bluegrass (Poa fendleriana), bottlebrush squirreltail (Sitanion hysterix), and Buckbush 

(Ceanothus fendleri) comprise the understory vegetation, which is typical of the region’s 

ponderosa forest. The last naturally occurring wildfire was recorded in the study area in 1876, 

however a prescribed fire was performed in 1976 that eliminated 63% of the smaller surface 
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fuels and 69% of the larger woody surface fuels (up to 8 cm in diameter) (Dieterich, 1980; 

Sackett, 1980). 

As a part of ongoing forest restoration efforts, a mechanical thinning treatment was 

implemented across the study area during 2017-2018. This provided our study site with a 53-ha 

treated area of thinned forest adjoining a 23-ha untreated portion. The overarching goal of the 

restoration treatment was to reduce the risk of catastrophic wildfire by re-creating the less dense 

pre-settlement forest conditions and promote healthy overstory vegetation and the regeneration 

of understory vegetation (Allen et al., 2002). More specific treatment objectives included 

creating a wide size range of tree groups and interspaces, while promoting diversity in tree group 

shapes and their spatial arrangement across the treatment unit (Belmonte et al., 2019; Larson & 

Churchill, 2012; Reynolds et al., 2013). The restoration treatment for the study site prescribed 

creating irregular tree groups, increasing overall interspace, retaining all non-ponderosa pine 

species, and significantly reducing the number of smaller ponderosa pine trees site wide. 
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Figure 4.2: Study site map showing the location and extent of soil moisture and forest structure 

field data collection across the study site (Panel B), which is within the larger 4FRI forest 

restoration area near Flagstaff, AZ, USA (Panel C). All soil water potential sensors are 

connected to data loggers (n = 16) (Panel A) located in areas with varying forest density. Forest 

structure data collection was centered on each data logger, with lidar and validation datasets 

overlapping to facilitate accuracy assessment. 

4.3.2 Soil water potential data 

Soil water potential (SWP) and soil temperature (ST) were measured using an array of dielectric 

water potential sensors (n = 112) installed at the center of the forest structure data plots (n = 16) 

during the spring of 2018 (Figure 4.1). Each Meter Terros 21 (formerly Decagon MPS-6) sensor 
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measures soil water potential (SWP) in kilopascals (kPa) with an accuracy of 0.1 kPA and soil 

temperature (ST) in degrees Celsius (°C) with an accuracy of 0.1 °C (Decagon Devices, 2017). 

SWP values indicate the amount of pressure required to remove water from the soil. The more 

negative a SWP value, the more energy is required for plant roots to move water from the soil. 

Each plot has two co-located sensors at depths of 25 cm and 50 cm at three different locations (n 

= 6), and one additional sensor installed at depth of 100 cm (Figure 4.1). As a result, each plot 

has a total of seven sensors. Each sensor was programmed to record hourly measurements of 

both SWP and ST on a data logger located within each plot. The data from each plot was then 

wirelessly transmitted to a main data logger located at the center of the study site, which 

compiled and transmitted the data over the cellular network to an offsite database (Yamamoto et 

al., 2010). 

The full SWP dataset consists of hourly measurements throughout the year when sensors 

were operational (Figure 4.3). Here, we focus on the period lasting from April 1 through the end 

of the fore-summer drought in each year, since this is known to be a critical time for tree water 

availability. In this study, the fore-summer drought is defined as the period beginning when the 

spring snowmelt ceases and the soil is typically near full saturation  (April 1), and lasts until the 

onset of the North American Monsoon season, which typically occurs in the mid-late summer. At 

our study site, the end of the fore-summer drought period was detected in SWP data by 

monsoonal precipitation that ranged between 5-10 mm. This estimate is based on precipitation 

data from the nearest weather station, located 5.6 km to the west. Sporadic equipment 

malfunction during the course of data collection resulted in slightly different numbers of sensors 

functioning each year. To mediate this issue, each sensor was characterized by its depth and a 

combination of localized forest structure metrics (described in section 4.3). Each sensor’s data 
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was analyzed to control for quality and quantity, and unrealistic values or large data gaps were 

thrown out entirely. The final time-series dataset consists of the average daily SWP value for 

each sensor throughout the fore-summer drought season (Figure 4.3). 

 

Figure 4.3: The complete soil moisture (SWP) and temperature (ST) time-series datasets for 

2019 and 2020, with the respective fore-summer drought seasons depicted with dashed lines. 

Precipitation and air temperature data from the nearest (5.6 km away) National Oceanic and 

Atmospheric Administration (NOAA) climate data station (GHCND:USS0011P02S) is also 

shown for the full time frame. Since precipitation data are often localized during monsoonal 

storms, the soil moisture response recorded at the study site varies from the precipitation 

recorded at the NOAA station. However, it provides insight consistent with soil moisture 

responses as well as context for inter-annual trends. Importantly, both 2019 and 2020 

precipitation totals were among the lowest on record, 77% and 59% of normal in 2019 and 2020 

respectively, likely exacerbating the underlying drought conditions at the study site. 
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The final time-series dataset was then used to generate three different metrics, as our key 

response variables, that quantify: 1) the timing of soil drying, 2) magnitude of soil drying, and 3) 

overall moisture level at each sensor location. The first metric is termed Onset, and it is a 

measure of when soil moisture drying occurred after April 1. Onset corresponds to the number of 

days it took a sensor to begin a downward trajectory and fall below a threshold value of -0.1 

MPa into a drying trend (more negative MPa values). This value is not significant to a physical 

property of soil drying rather it is used as a proxy for the inflection point which marks a sensor’s 

downward path towards drying. The second metric measures the number of days below-1.0 MPa, 

which is a critical drying threshold (CDT) causing vegetation stress in ponderosa pine forests 

(Breshears et al., 1997; Feeney et al., 1998; Gaylord et al., 2007; Gyenge et al., 2002; Sala et al., 

2005). The final metric is the average soil moisture or SWP value (MPa), termed meanSWP, 

experienced by a sensor starting from the day it crosses the Onset threshold and stopping at the 

end of the fore-summer drought period. 

4.3.3 Forest structure metrics 

Forest structure was estimated for each plot using terrestrial laser scanner (TLS) point cloud data 

collected from 0.28 ha plots (n = 16; 4.48 ha) centered on each SWP data logger (Figure 4.4). 

The TLS data were collected during the summer of 2019 using a Leica Geosystems BLK360 

Imaging Laser Scanner (Leica Geosystems AG, 2020). Each TLS plot included three or more 

scans that were merged together to ensure full coverage and georeferenced with fixed reference 

targets on adjustable tripods at 1 m above ground. Targets were four 50 x 50 cm reflective 

reference panels strategically located within each plot for optimal scan-to-scan visibility 

(Donager et al., 2019). The location of each reference target was recorded at its center point (1 m 
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AGL) and corrected using the Trimble GeoXH handheld GPS unit and GPS Pathfinder Office 

software. TLS data post-processing was performed using CloudCompare and consisted of 

creating a single georeferenced point cloud for each plot. Each scan was aligned with another 

using the four ground target center points as common points, until all scans were merged into a 

single point cloud. Then, each point cloud was georeferenced using the GPS coordinates of the 

target; the overall X, Y, and Z positional accuracy of the point clouds (n = 16) is 0.46 m. Finally, 

the average point spacing of all point clouds was 0.03 m (ranging 0.025 – 0.046 m), and they 

were subsampled to 0.01 m to ensure consistent point spacing across scans. 

To estimate forest structure metrics, the TLS point clouds were first post-processed and 

classified into ground/non-ground points, then an individual tree segmentation was performed 

using the Li et al. (2012) algorithm in the lidR package (Roussel et al., 2017) in RStudio (R-

Studio Team, 2015). The resulting segmented point clouds were then used to estimate each tree’s 

location (X, Y in UTM 12N m), crown height (m), and average of its widest and narrowest 

crown diameters (m) using the rLiDAR package in R-Studio (Mohan et al., 2017). Finally, the 

diameter at breast height (DBH in cm) was estimated at 1.37 m above the ground level for each 

segmented tree using the TreeLS package in RStudio (Conto et al., 2017). The TLS point cloud 

data were validated using field-based measurements taken from 137 trees located within 30x30m 

validation plots (n = 16; 1.44 ha) and were also centered at SWP data logger locations. Using the 

Trimble GeoXH handheld GPS unit with an attached laser range finder module, each tree’s 

geographic position (X,Y,Z coordinates), crown height, and diameter were measured and 

differentially corrected in GPS Pathfinder Office. Additionally, each tree’s diameter at breast 

height in cm was measured using a diameter tape at a height of 1.37 m above the ground level. 
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To assess the differences in sensor-level soil moisture related to forest structure, a set of 

forest structure summaries were calculated specific to each sensor’s location (Figure 4.4). To 

accomplish this, trees were selected from each TLS point cloud within a 10m radius footprint 

unique to each sensor. Once the trees were selected, their crown height, diameter at breast height, 

and crown volume were averaged. Next, the stand basal area (m2/ha), trees per hectare, and 

percent canopy cover were calculated across the 10m radius footprint. Separately, the total 

incoming ground-surface solar radiation (w/m2) was calculated for the dates comprising the fore-

summer drought period to quantify the effects of forest canopy shading. This was accomplished 

using a ray-tracing algorithm relying on the TLS point cloud data to calculate the accumulated 

hourly solar radiation based on the high-resolution structure of each tree (Seyednasrollah & 

Kumar, 2014; Seyednasrollah et al., 2013). Additionally, the total area (m2) of persistent snow 

cover was calculated across the plot to quantify the potentially lingering effects of forest-

structure-driven snow persistence from the winter season (Belmonte et al., 2021). This was 

accomplished using data from a previous UAV-image-derived time-series analysis of snow cover 

at the same study site (Belmonte et. al., 2021). Finally, after each sensor’s forest structure 

metrics were calculated, each metric was categorized into three groups based on the statistical 

distribution of its values. 
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Figure 4.4: Forest structure metrics were calculated using plot-level lidar data collected at each 

soil moisture data logger location (n = 16). Additionally, validation measurements were collected 

in 30x30 m plots to assess the accuracy of lidar-derived forest structure estimates. Panel A 

depicts a segmented tree from the lidar point cloud data, while Panel B provides an illustration of 

all the lidar-derived forest structure metrics estimated at a single plot. Panel C shows the 

terrestrial laser scanner (TLS) instrument and one of the ground targets used during data 

collection. 

4.3.4 Data analysis 

Differences in the soil moisture metrics (Onset, critical drying threshold, and meanSWP) for 

each year (2019 and 2020), soil depth (25cm, 50cm, 100cm), and forest structure metrics (crown 

height, DBH, crown volume, basal area, trees per hectare, canopy cover, solar radiation, and 

snow cover) were assessed using a series of one-way ANOVA tests. First, differences in soil 
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moisture response were compared between the 2019 and 2020 fore-summer drought seasons 

using data from sensors across all depths. Secondly, data from both years was used to test for soil 

moisture differences among soil depths. Finally, data from both years was used to test for 

significant differences in soil moisture in response, parsed by depth, to forest structure metrics, 

which were grouped according to low, medium, and high conditions. Assumptions of equality in 

depth, year, and forest structure group-level variances and normality in residuals were tested 

using Bartlett’s and Shapiro-Wilk tests, respectively. Additionally, inspection of group-level 

histograms and boxplots were used to identify any indications of non-normality. In the case of 

significant differences among soil depth groups, Tukey’s HSD post-hoc test was performed to 

assess group-level differences. 

4.4 Results 

4.4.1 Soil moisture data summary 

After April 1, the two consecutive fore-summer drought seasons spanned 120 days and 115 days 

in 2019 and 2020, respectively. The 2019 fore-summer drought season ended on July 30, 2019, 

while in 2020 it ended on July 25, 2020, with the first soil-wetting rainstorm aligning with 

increased SWP levels and decreases in both soil and air temperatures (Figure 4.3). The SWP 

measurements from the 2019 fore-summer drought season consisted of time-series data from 66 

total sensors: 31 sensors at 25 cm, 26 sensors at 50 cm, and 9 sensors at 100 cm. The 2020 fore-

summer drought data set included 66 total sensors: 30 sensors at 25 cm, 24 sensors at 50 cm, and 

12 sensors at 100cm. Figure 4.5 illustrates the mean SWP values summarized by year and depth 

and includes both the onset and critical drying thresholds to illustrate the differences in these 

metrics by year and depth.  
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Figure 4.5: Soil moisture time-series data from 2019 and 2020 fore-summer drought seasons, 

with the x-axis day of year for the start of the fore-summer drought period (April 1) being day 91 

and day 92 for 2019 and 2020 respectively. Each line shows the mean daily soil water potential 

(SWP) measurement (colored by depth) and illustrates the soil ‘drying down’ between spring 

snow melt (April 1) and late summer monsoon. Rain events can be observed when a curve 

sharply turns upward toward 0 MPa, which indicates soil becoming more saturated. The critical 

drying threshold (CDT) depicted at -1.0 MPa is the point at which ponderosa pine trees begin to 

experience moisture-related stress. 

4.4.1.1 Soil moisture differences between years 

Combining data from all sensors, we observed a significant difference in Onset between the 2019 

(M=177.1, SD=17.8) and 2020 (M=158.2, SD=19.1) fore-summer drought seasons (F(1,130) = 

78.8, p = 4.6e -15). On average, Onset started 18.8 days (p = 0.00) earlier in 2020 than in 2019. 
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There was also a significant difference in CDT between the 2019 (M=19.6, SD=13.5) and 2020 

(M=27.3, SD=19.1) fore-summer drought seasons (F(1,130) = 10.5, p = 0.001). On average, 

there were 7.7 additional days in 2020 (p = 0.003) spent below the CDT than in 2019. There 

were no significant differences in mean SWP between the 2019 and 2020 seasons. 

4.4.1.2 Soil moisture differences among depths 

When considering data by soil depth, there were significant differences in the Onset between 

sensors at 25 cm (M=157.9, SD=14.4), 50 cm (M=168.3, SD=13.8), and 100 cm (M = 194.2, 

SD=26.4) (Figure 4.6). Sensors at 25 cm had an Onset 10.1 days (p = 0.0002) and 37.7 days (p = 

0.00) earlier than sensors at 50 and 100 cm, respectively. Sensors at 50 cm had an Onset 27.5 

days (p = 0.00) earlier than those at 100 cm. There were significant differences in the number of 

days spent below the CDT between sensors at 25 cm (M=29.9, SD=15.8), 50 cm (M= 21.4, 

SD=15.9), and 100 cm (M=9.6, SD=12.7) (Figure 4.6). Sensors at 25 cm spent an additional 8.5 

days (p = 0.008) and 20.9 days (p = 0.0005) under the critical drying threshold than sensors at 50 

cm and 100 cm, respectively. Sensors at 50 cm spent an additional 12.5 days (p = 0.004) below 

the critical drying threshold than those at 100 cm. Additionally, there were significant 

differences in the mean SWP values between sensors at 25 cm (M= -1.1, SD= 0.37), 50 cm (M=-

0.95, SD=0.44), and 100 cm (M=-0.59, SD=0.56), with sensors at 100 cm being 0.54 and 0.36 

MPa wetter than those at 25 and 50 cm, respectively (Figure 4.6). 
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Figure 4.6: Mean differences in each soil moisture metric by depth, with Panel A showing 

differences for Onset Day (DOY), Panel B showing differences for the number of days spent 

under the CDT, and Panel C showing differences in the mean SWP (MPa). Significant were 

found for each depth-level comparison.  

4.4.2 Forest structure - soil moisture differences 

Forest structure metrics were derived using trees segmented from the lidar point cloud, which 

correctly identified 98% (n = 1280) of the trees from within the field-measured validation plots 

(n = 16 validation plots, totaling 5.17 ha). An accuracy assessment compared a subset of tree 

metrics between the lidar-derived and field-measured trees including tree crown height (m), 

crown diameter (m), DBH (cm), and geographic location (X,Y in UTM 12N m). Relationships 

between the lidar-derived and field-measured trees were generally strong, with a R² = 0.95 for 

tree crown height. A full summary of the accuracy assessment process and forest structure metric 

relationships are reported in Belmonte et al., 2021. Forest structure summaries were then 

calculated specific to each SWP sensor location. Figure 4.7 illustrates how forest structure was 

distributed throughout the entire sensor collection. 
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Figure 4.7: Histograms of the forest structure metric summaries calculated at each sensor 

location (n = 84), with sensor depths differentiated by color. Key indicators of the post-treatment 

forest structure are apparent in the distributions of mean canopy cover (CC), basal area (SBA), 

and trees per hectare (TPH), all of which reflect the overall lower forest density conditions across 

the study site compared to the conditions observed prior to the restoration thinning project 

(Belmonte et al., 2019). 
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When considering the Onset day for sensors at 25 cm, there were significant differences 

related to tree crown height (F(2,57) = 6.8, p = 0.002), diameter at breast height (F(2,57) = 2.9, p 

= 0.05), solar radiation (F(2,57) = 7.8, p = 0.0009), basal area (F(2,57) = 11.6, p = 0.0006), trees 

per hectare (F(2,57) = 11.5, p = 0.0008), and canopy cover (F(2,57) = 22.1, p = 9.77e-06), with 

significant group-level differences present for crown height, basal area, trees per hectare , and 

canopy cover (Table 4.1). For sensors at 50 cm, there were significant differences in Onset day 

related to tree crown height (F(2,48) = 15.8, p = 5.89e-06), basal area (F(2,48) = 23.1, p = 4.72e-

05), trees per hectare (F(2,48) = 13.8, p = 0.0005), snow cover (F(2,48) = 4.7, p = 0.01), and 

canopy cover (F(2,46) = 7.3, p = 0.001), with significant group-level differences in tree crown 

height, basal area, trees per hectare, and canopy cover (Table 4.1). There were no significant 

differences in Onset day for sensors at 100 cm due to forest structure. 

When considering the number of critical drying threshold for sensors at 25 cm, there 

were significant differences related to tree crown height (F(2,57) = 9.6, p = 0.002), diameter at 

breast height (F(2,57) = 5.4, p = 0.006), and canopy cover (F(2,57) = 7.5, p = 0.0013), with 

significant differences among groups within tree crown height and diameter at breast height 

(Table R1). For sensors at 50 cm, there were significant differences related to tree crown height 

(F(2,46) = 17.9, p = 1.5e-06), snow cover (F(2,46) = 10.4, p = 0.0001), and basal area (F(2,46) = 

14.9, p = 8.7e-06), with significant differences among tree crown height and snow cover groups 

(Table 4.1). Again, there were no significant differences in the number of CDT days related to 

FS in sensors at 100 cm. 

Finally, when considering the mean SWP values, sensors at 25 cm had significant 

differences related to tree crown height (F(2,57) = 3.9, p 0.001) and diameter at breast height 
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(F(2,57) = 4.5, p = 0.01) (Table 4.1). For sensors at 50 cm, the significant differences in mean 

SWP values were related to tree crown height (F(2,46) = 7.3, p = 0.001) and basal area (F(2,46) 

= 4.5, p = 0.01), with significant differences among groups for tree crown height and basal area 

(Table 4.1). For sensors at 100 cm there were no significant differences in mean SWP values. 

 

Figure 4.8: Differences in Onset day (Panel A), number of critical drying threshold days (Panel 

B), and mean SWP (Panel C) related to tree crown height (CH). Significant Tukey’s pairwise 

comparisons are shown by the starred bars. Mean tree crown height was the most prevalent 

predictor of soil moisture metric differences across all sensor depths. 

 

Figure 4.9: Notable forest structure-driven differences in each soil moisture metric. For Onset 

day (Panel A), basal area (BA) had significant pairwise differences for sensors at 25 & 50 cm, 



 

155 

 

with higher BA translating to significantly earlier drying Onset day. Additionally, there were 

significant pairwise differences in tree diameter at breast height related to the number of critical 

drying threshold days (Panel B) and mean SWP (Panel C) for sensors at 25 cm. Here, trees with 

larger diameter at breast height contributed to more days spent under the threshold and lower 

(drier) overall SWP values. 

Table 4.1: Summary of the significant Tukey’s post-hoc group-level comparisons for the 

combinations of SM and FS metrics parsed by sensor depth. Forest metric group value ranges are 

as follows: tree crown height (CH), short (< 15 m), medium (15—20 m), tall (> 20 m); diameter 

at breast height (DBH) small (< 30 cm), medium (30—45 cm), large (> 45cm); basal area (BA) 

low (< 8 m²/ha), medium (8—16 m²/ha), high (> 16 m²/ha); trees per hectare (TPH) low (< 60), 

medium (60—130), high (> 130); canopy cover (CC) low (< 15%), medium (15—30%), high (> 

30%), solar radiation (sRad) low (< 180 w/m²), medium (180—220 w/m²), high (> 220 w/m²); 

snow cover (SC) low (< 25%), medium (25—60%), high (> 60%).  

SM Metric 
Sensor 

Depth 

FS 

Metric 
Tukeys Post-hoc Comparisons 

Mean 

Difference 

(p <0.05) 

Onset Day 25 cm CH tall vs. short trees +13.2 days 

  BA high vs. low density -10.5 days 

   high vs. medium density -14.9 days 

  TPH high vs. medium density -12.2 days 

  CC high vs. medium cover -15.5 days 

 50 cm CH medium vs. short trees +13.6 days 

   tall trees vs. short trees +23.6 days 

   tall trees vs. medium trees +10.1 days 
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  BA high vs. low density -12.6 days 

   high vs. medium density -18.6 days 

  TPH high vs. low density -14.5 days 

   high vs. medium density -13.8 days 

  CC high vs. medium cover -12.7 days 

CDT Days 25 cm CH tall vs. short trees -19.2 days 

   tall vs. medium trees -14.6 days 

  DBH large vs. small trees +11.3 days 

   large vs. medium trees +15.8 days 

 50 cm CH tall vs. short trees -28.7 days 

   tall vs. medium trees -11.7 days 

   medium vs. short trees -17.1 days 

  BA high vs. low density +12.9 days 

   high vs. medium density +26.3 days 

  TPH high vs. low density +18.1 days 

   high vs. medium density +17.7 days 

  CC high vs. medium cover +16.9 days 

  SC medium vs. low snow +19.8 days 

   high vs. low snow +15.1 days 

Mean 

SWP 
25 cm CH tall trees vs. short trees  +0.33 Mpa 

   tall trees vs. medium trees  +0.29 Mpa 

  DBH large vs. small trees -0.29 Mpa 

   large vs. medium trees -0.28 Mpa 

  sRad high vs. low exposure -0.28 Mpa 

   high vs. med exposure -0.44 Mpa 

  CC medium vs. low cover +0.36 Mpa 

 50 cm CH tall vs. short trees  +0.59 Mpa 

   tall vs. medium trees +0.41 Mpa 
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  BA medium vs. low density +0.41 Mpa 

  SC medium vs. low snow -0.52 Mpa 

   high vs. low snow -0.69 Mpa 

 

4.5 Discussion 

In this study, we assess soil drying during two consecutive fore-summer drought periods in the 

midst of regional multi-year drought (Chikamoto et al., 2017). We also examine relationships 

between soil moisture and forest structure to improve our understanding of local-scale soil 

moisture variability. Our results show three important relationships between fine-scale patterns 

in soil drying and post-thinning forest structure: significant differences in drying trends between 

two fore-summer drought seasons, significant differences in soil drying trends across soil depths, 

and significant differences in soil drying based on forest structure conditions (section 4.4.2). The 

timing, magnitude, and amount of soil drying are critical to assessing the severity of seasonal 

drought and provide context for the impacts of multi-year drought. We measured soil water 

potential (SWP) across 53 ha of thinned and 23 ha of unthinned forest with a network of SWP 

sensors installed along the top 100 cm of the soil profile. Our results highlight important trends 

in soil moisture response to fore-summer drought conditions, which we discuss below. In doing 

so, our findings provide insight into the potential impacts that landscape-scale restoration can 

have on soil moisture persistence during the region’s driest period of the year. 

4.5.1 Multi-year drought impact 

There was below average precipitation (77% and 59% of normal, in 2019 and 2020 respectively) 

in both water years preceding each fore-summer drought period, although the length of the fore-
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summer drought periods was roughly equal in 2019 and 2020 (120 vs. 115 days, respectively). 

These notably dry conditions provided an excellent opportunity to study both the general 

response of SWP to limited water resources as well as to forest structure because it provided a 

clear overall drying signal. We first show that soil drying behavior was significantly different 

between the fore-summer drought seasons of 2019 and 2020 despite no significant differences in 

overall measured SWP levels and length of fore-summer drought period. This is reflected in both 

the timing of soil drying Onset, which occurred ~19 days earlier in 2020 than in 2019, as well as 

~8 more days spent below the critical drying threshold (CDT) in 2020 than in 2019. The below 

average precipitation in 2019 and its continued trend likely set the stage for the significantly 

lower soil moisture observed in 2020. Additionally, after the 2019 fore-summer drought period, a 

further soil drying trend was observed with many sensors recording SWP values below the 

critical drying threshold of -1.0 MPa (Figure 4.3). Interestingly, the non-significant difference in 

overall mean SWP values between the fore-summer drought periods in the two years hints at an 

underlying and consistently low soil moisture availability when considering the entire soil 

profile. Continued multi-year meteorological drought conditions can exacerbate soil drying in the 

deeper and more stable portions of the soil profile, increasing the likelihood for tree mortality 

from prolonged soil moisture deficits (Breshears et al., 2018; Fettig et al., 2019; Goulden & 

Bales, 2019). 

 Next, we show that differences in soil moisture metrics among soil depths occur 

regardless of year and forest density conditions (Figure 4.5). More specifically and consistent 

with previous studies (Breshears et al., 1997; Goulden & Bales, 2019), soil moisture 

measurements from shallower sensors exhibited significantly earlier soil drying Onset, more 

days spent below the CDT, and lower mean SWP values compared to the deeper sensors (Figure 
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4.6). Our results underscore overall wetter conditions and greater resistance to drying occurred at 

increasing soil depth and this was consistent despite the ongoing meteorological drought 

conditions and differences in forest structure. This is shown in the overall significantly wetter 

conditions in sensors at 100 cm; some of those sensors never entered a drying phase or spent 

time under the CDT. Consistently, previous research showed that soil drying occurs more rapidly 

and completely at and near the surface due to increased exposure to solar radiation and the 

greater density of roots (Capehart & Carlson, 1997; Huang et al., 2018; Martinez et al., 2008). 

This was observed in nearly all of the sensors at 25 cm having an early Onset drying date, 

spending more time below the CDT, and exhibiting more complete drying overall (Figure 4.3). 

Importantly, we show that the sensors at 50 cm can reflect both the extreme drying trends 

observed in sensors at 25 cm as well as the underlying stability characteristic in sensors at 100 

cm. Given the multi-year drought conditions experienced during both fore-summer drought 

periods, these effects were likely exacerbated by the range in forest structure and density 

conditions present across the study site from the previously implemented restoration thinning 

project (Belmonte et al., 2020). 

4.5.2 Forest structure effects 

Our results show soil moisture at a local scale was significantly and consistently impacted by 

five specific forest structure metrics: mean tree crown height, mean tree diameter at breast 

height, basal area, canopy cover, and trees per hectare. Importantly, all the effects of forest 

structure on soil moisture metrics were observed at 25 and 50 cm, with no significant effects 

related to soil moisture flux at 100 cm. At both 25 and 50 cm, the forest structure metrics related 

to density conditions (basal area, canopy cover, and trees per hectare) appeared most frequently 
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as significant variables influencing soil moisture flux (Table 4.1). Higher levels of basal area, 

canopy cover, and trees per hectare all translated to an earlier onset of soil drying and more days 

spent below the CDT at 25 and 50 cm, while the effects on mean SWP values were more 

nuanced. Interestingly, higher basal area and canopy cover values translated to wetter mean SWP 

levels at shallow sensors. However, these significant differences were related to only ‘medium’ 

and ‘low’ categories and can possibly be explained by conditions in the medium basal area and 

canopy cover groups providing just enough shading to harbor shallower soil moisture content. 

While the soil moisture response at 100 cm did not show significant effects related to forest 

structure metrics, there were clear trends similar to those at 25 and 50 cm. However, these trends 

were observed towards the most extreme ends of the forest density gradient, where less dense 

forest exhibited wetter overall soil conditions than denser forest (Figure 4.10). Additionally, the 

higher average tree crown height values also translated to overall wetter soil moisture conditions 

at 100 cm. This hints at the potential for managing deeper soil moisture via restoration thinning 

practices. 
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Figure 4.10: Illustration of four different 100 cm soil matric potential (MPa) time-series data, 

two from the plots with the lowest forest density conditions (panels A and B) and two from the 

highest forest density conditions (panels B and C). Soil matric potential data (middle panel) was 
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averaged across both fore-summer drought seasons for each sensor to illustrate the soil moisture 

response at that location. Trees per hectare (TPH), basal area (BA), canopy cover (CC), average 

tree crown height (CH), and average diameter at breast height (DBH) were summarized across 

the 20 m radius area centered on each sensor. 

 Tree crown height is the one metric related to individual tree structure that consistently 

influenced soil moisture response. Specifically, sensors near taller trees had a later onset of soil 

drying, spent less days below the CDT, and had wetter overall soil moisture levels (Table 4.1). 

Taller trees have larger shadow footprints, and thus provide more ground shading during the 

fore-summer drought period. This suggests an important benefit to soil moisture persistence from 

‘strategic’ ground shading. This not only reinforces the complex relationships between soil 

moisture and forest / tree structure, but also the potential in tailoring restoration thinning to 

promote soil moisture persistence. 

 Persistent snow cover levels also had a significant effect on soil moisture response at 50 

cm, with more days below the CDT and overall lower mean SWP levels at locations with higher 

amounts of persistent snow cover throughout the winter season. Counter intuitively, this points to 

overall drier soil conditions in locations with greater amounts of persistent snow. Our previous 

observations at this study site show that the primary drivers of persistent snow cover during the 

winter months were associated with moderate levels of forest density (Belmonte et al., 2021). 

While this overlaps with our current findings related to soil moisture levels, we found no direct 

linkages between persistent snow cover and soil moisture via specific forest structure conditions. 

Instead, our results point to a disconnection between forest-structure-driven trends observed in 

persistent snow cover during the winter months and those observed in soil drying during the 
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fore-summer drought period. This underscores an important knowledge gap related to the 

temporal scale of ecosystem moisture inputs as well as the larger ecohydrological impacts felt by 

forest structure. Addressing this gap will be vital to enable forest management for moisture 

regardless of the season. 

4.5.3 Management implications 

Forest managers will increasingly need to address the nexus of ecosystem water inputs and forest 

structure as restoration thinning projects continue to be implemented across the dry forests of the 

western United States and regional climates trend toward hotter and drier conditions. Our results 

suggest that managers can target soil moisture levels at 50 cm to most effectively impact and 

monitor forest ecohydrological cycles. Soil drying at 25 cm was rapid and highly variable in 

response to weather and forest structure conditions, ultimately shedding little insight into the soil 

moisture trends deeper in the profile. However, soil moisture in sensors at 50 cm reflected both 

more stability yet also significant responsiveness to forest structure conditions. Our results 

indicate that forest managers can continue to implement restoration prescriptions focused on 

density reductions and anticipate less severe soil drying at 50 cm after restoration treatments 

(Table 4.1). Continued monitoring of soil moisture levels at 50 cm can also shed light on the 

effects of multi-year drought conditions as well as the anticipated effects on soil drying deeper 

into the soil profile. 

 The lack of significant forest structure effects in sensors at 100 cm underscores our 

finding that wetter and more stable conditions occur deeper into the soil profile. However, 

further assessment into the forest structure-driven soil moisture differences in 100 cm sensors 

reveals nuanced but similar forest density-related patterns as were observed in the shallow 25 
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and 50 cm sensors. Subsetting soil moisture data from sensors in the highest forest density (n = 

2) and the lowest forest density (n = 2) conditions, we show that there are notable differences in 

soil drying patterns (Figure 4.10). Specifically, sensors at 100 cm in the highest density forest 

conditions have an earlier soil drying onset, spend more time under the CDT, and appear drier 

overall than sensors in the lowest density conditions. Similar to shallower sensors, we assume 

that the factors contributing to the drier conditions in denser forest include greater rates of snow 

interception by canopy as well as increased water usage and transpiration rates from the greater 

number of trees. Importantly, these patterns are observed at opposing ends of the forest-density 

gradient present at our study site, which reflect heavily thinned and overly-dense unthinned 

forest. While we did not find statistically significant differences among these 100 cm sensors 

given the limited sample size (n = 2 for each end), our results clearly indicate that there is an 

optimum forest structure that land managers can target to achieve. Our results suggest that this 

optimum might be found at approximately 30% canopy cover and < 100 trees per hectare. 

Together, these observed trends emphasize the potential benefits of thinning-based restoration on 

moderating soil drying deep into the soil profile while also pointing to critical unknowns as 

multi-year drought conditions persist and significant soil drying pushes deeper into the profile. 

4.6 Conclusions 

We assessed soil moisture response to seasonal drought conditions as well as the impacts of 

forest structure changes across a thinned semi-arid forest. Using dense soil water potential time-

series data from the top 100 cm of the soil profile, we found significant differences in the timing, 

magnitude, and overall soil moisture levels across different seasonal drought periods among soil 

depths and resulting from forest structure conditions. We observed nearly complete drying at all 
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25 cm locations, a mixture of drying conditions at 50 cm, and a general resistance to drying at 

100 cm. Additionally, we found that lower forest density and taller trees were associated with 

overall wetter soil moisture conditions in soils up to 50 cm deep. Taken together, this reinforces 

the notion of resilience to deep soil drying in semi-arid forests while also suggesting that this 

resilience can be fostered with substantial reductions in forest density. Therefore, we recommend 

that forest restoration practitioners interested in promoting soil moisture stability focus on 

continued density reductions and monitoring soil moisture response at 50 cm. A better 

understanding of these relationships is important given that the continued multi-year drought 

conditions are likely and the prospect of drying trends translating deeper into the soil profile is 

strong as drought persists. Future research should untangle the complex relationships between 

deeper soil moisture and fine-scale forest density and structure. In particular, it should focus on 

the soil moisture response to the spatial and directional arrangement of trees as well as the size 

and structural composition of their canopies. This information can help to inform highly effective 

forest thinning plans that aim to both reduce density and maximize the positive impacts of tree 

canopy shading and size on soil moisture. 
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CHAPTER 5: DISCUSSION 

 

The three chapters in this dissertation each address a specific aspect of an applied remote sensing 

framework aimed at improving forest monitoring, management for water resources, and overall 

ecosystem health. The first study in this dissertation uses high-resolution UAV-borne 

multispectral imagery and SfM models to quantify fine- and mid-scale forest structure changes 

resulting from a thinning restoration project in a ponderosa pine forest in northern Arizona. 

Regarding fine-scale forest structure metrics, I find that UAV images and derived data products 

are effective at identifying the location (Table 2.2) and estimating the height of individual trees 

(Figure 2.3), but not effective for quantifying tree crown width (Table 2.3). I show that increased 

forest density degraded the accuracy of all fine-scale forest structure metric estimates, and that 

estimates from the highest-density conditions (up to 778 TPH) are subject to a variety of data 

quality-related deficiencies. More specifically, I show that UAV images are effective at 

estimating forest structure in conditions where tree stem density is below 500 TPH. I find similar 

density-related limitations in my assessment of UAV image-derived mid-scale forest structure 

metrics, specifically in the under-estimation of percent canopy cover in high-density conditions 

(Figure 2.4). When these results are considered in the context of assessing the effectiveness of a 

forest restoration treatment, I show that despite deficiencies in high-density conditions, this 

methodology can be used to efficiently and effectively monitor forest structure changes resulting 

from thinning-based restoration. Specifically, pre- and post-treatment forest density, patch and 

interspace conditions can be assessed rapidly and accurately with the UAV image-derived 

methodology proposed here. Land managers such as the Nature Conservancy and the US Forest 

Service can effectively deploy UAV platforms to rapidly and accurately estimate the variables I 
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evaluate in this chapter. This can save time and funding in evaluating thinning treatment progress 

and prescription guidelines.  

My chapter 3 uses high-resolution remote sensing datasets to begin the examination of 

forest ecohydrological variables in response to thinning-based restoration practices. In this study, 

I develop and demonstrate a methodology that uses UAV image-derived data to quantify mid-

scale snow covered area (SCA) and identify specific regions of persistent SCA. I illustrate that at 

our 76-ha forested study site, snow can be classified from high-resolution UAV imagery with up 

to 90.2% accuracy and that persistent snow patches can be identified using multi-day ‘snow-

series’ imagery datasets (Figure 3.6). Modeling results show that percent canopy cover, trees per 

hectare, and cumulative solar radiation were the most important predictors of persistent snow 

patch size. Also, model predictions were most accurate when considering forest structure metrics 

from trees within a distance of 1.5 times their height to the persistent snow patch. Finally, my 

results show that the largest persistent snow patches were located adjacent to forest patches with 

31-33% canopy cover and that there was more overall persistent snow cover in thinned versus 

unthinned forest (10% and 7%, respectively). This underscores that restoration thinning can 

promote snow cover and that future restoration efforts can use fine-scale forest structure 

assessments to tailor prescriptions to maximize persistent snow cover. Specifically, in such 

efforts and prescriptions, land managers can seek to establish forest patches with a mean canopy 

cover of 31-33% and tree density of <500 trees/ha. Furthermore, forest patches can be optimally 

created with distances 1.5 times their height between patches to maximize snow accumulation 

and persistence on the ground. These methods and findings can be employed by restoration 

practitioners interested in adding a snow cover component to their prescription planning and 

adaptive management frameworks. Additionally, these methods can be used to assess snow cover 
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changes in key sub-watersheds to help inform larger watershed runoff forecasting throughout the 

snow melt season. 

The final study in this dissertation extends the examination of forest thinning and 

ecohydrological variables into soil moisture response during the critical seasonal drought period 

following snowmelt. I assessed soil drying in the top 100 cm of the soil profile during two 

consecutive fore-summer drought periods, and how forest structure influences the local-scale soil 

moisture variability. Dense soil water potential (SWP) time-series measurements characterized 

the timing, magnitude, and overall soil moisture levels across a gradient of forest structure 

conditions, providing insight into soil moisture persistence in a thinned forest throughout the 

driest time of the water year. I show that soil drying occurs earlier and more completely in the 

fore-summer drought period proceeding a water year with existing meteorological drought 

conditions. This trend is also evident within the soil profile, with shallower sensors showing 

significantly drier soil conditions regardless of year and forest density conditions. When 

considering forest structure-related differences, I show that for sensors at 25 and 50 cm, higher 

stand basal area, percent canopy cover, and trees per hectare values all translate into significantly 

earlier soil drying onset and more days spent below a critical drying threshold. Importantly, these 

trends were also observed in sensors at 100 cm, but they were not statistically significant (Figure 

4.10). Sensors at 25 cm showed rapid and highly variable response to meteorological and forest 

structure conditions, while sensors at and below 50 cm showed a clearer and more stable signal. 

Overall, my results show that forest managers can use fine-scale forest structure metrics, 

specifically density-related metrics, to promote soil moisture levels at and below 50 cm (Table 

4.2). In addition to serving as the foundation for future long-term analyses of seasonal and multi-
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year drought impacts to restored forests, these data and results can immediately help inform 

restoration planning efforts of the soil moisture benefits of strategic forest density reduction. 

Taken together, these studies use cutting-edge remote sensing techniques and 

unprecedented high density soil moisture measurements to assess forest structure changes from 

thinning-based restoration as well as assess the impacts of forest structure on specific 

ecohydrological feedbacks. These studies provide explicit methodological frameworks to 

quantify forest structure, and importantly, how forests can be managed to optimize water 

resources through snow and soil moisture persistence in the winter and spring seasons. 

5.1 Management Implications 

This research focused on using applied remote sensing techniques and methodologies to improve 

forest management practices in the dry forests of the Southwestern U.S., and assess how water 

resource availability can be influenced by restoration thinning practices. Before gauging the 

effects of thinned forests on water resource availability, a reliable method for quantifying forest 

structure is needed. In Chapter 2, I first demonstrate a methodology for quantifying the forest 

structure changes from restoration thinning and for assessing the effectiveness of a treatment. 

This methodology provides forest managers an accurate and cost-effective tool for measuring 

and comparing restoration thinning outcomes at different scales. Managers can acquire data at 

the fine-scale (< 4ha) to inform adaptive management benchmarks specific to a thinning project, 

allowing for adjustments to thinning guidelines for other successive projects to meet broader 

landscape-scale (400+ ha) goals. Importantly, with minor changes based on forest density 

conditions and desired data product resolution, the methodology developed here can be adapted 

and enhanced to provide mid- and landscape-scale estimates of forest structure. This is important 
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to inform restoration planning as the scale and scope change in response to management 

directives. 

 Next, the quantification of forest structure is extended into the development of a remote 

sensing methodology for quantifying persistent snow cover. First, this methodology can be an 

important tool for forest managers to use when assessing persistent snow resulting from different 

intensities and patterns of restoration thinning. This could allow for an optimal set of parameters 

to be established for regional thinning projects and tailored as site-specific conditions change. 

Second and more generally, my results show that snow cover can be promoted through strategic 

thinning-based forest density reductions in Southwestern dry forests. Importantly, these results 

show that forest structure metrics often used for structuring mid- and landscape-scale thinning 

outcomes, like canopy cover and stand-level tree density, can be used to create fine-scale forest 

patches that maximize persistent snow cover. 

 Finally, to extend the understanding of forest structure effects on water resource 

availability, the final chapter provides insight into soil moisture dynamics throughout the driest 

time of the year and in response to thinned forest conditions. While the specific remote sensing 

methods and analyses developed here can be readily applied to gauging soil drying patterns in 

other restored forests, the key outcomes of this study can provide forest managers with soil 

moisture-related benchmarks for restoration planning. Results indicate that managers can use 

thinning to target soil moisture response at 50 cm, and that monitoring is also best achieved at 50 

cm. The benefits to targeting and monitoring soil moisture response at 50 cm were due to both a 

responsiveness to forest structure differences as well as stability reflected at points deeper in the 

soil profile. Importantly, this study showed that overall reductions in forest density are consistent 
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with wetter soil conditions, and that strategic ground shading corresponding with approximately 

30% canopy cover and < 100 trees per hectare can moderate soil drying at the fine-scale. This 

can provide forest managers with an additional tool to achieve a broad range of ecosystem 

benefits from restoration thinning and guard against the effects of anticipated multi-year drought 

conditions. 

 While the methodologies and analyses developed in this research reflect conditions in a 

typical Southwestern ponderosa pine forest and restoration thinning project, minor changes to 

data collection and analytical structure can widen the geographical scope. More specifically, 

increasing the spatial resolution both UAV and lidar-based forest structure measurements can 

extend these methods to denser forest conditions and areas with greater diversity in overstory 

trees. Considering quantifying the effects of forest structure on snow, the addition of snow depth 

and snow water equivalence measurements could greatly enhance the understanding of snow 

dynamics in regions with greater and more consistent snowpack. The forest structure effects on 

persistent snow and soil moisture drying are likely intensified in the Southwestern dry forest 

ecosystems by a combination of high solar angles, high vapor pressure deficits, and an overall 

drier climate. However, both restoration and drying trends emerging in other forested ecosystems 

can provide an opportunity to further refine the methods and management recommendations 

presented in this research.    
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CHAPTER 6: CONCLUSIONS 

The work summarized in this dissertation reflects the accomplishment of several goals critical to 

the continued development of forest management practices in the Southwest as well as the 

ecohydrological processes governing regional water resource availability. First, I have developed 

a novel method for assessing the outcomes of thinning-based restoration practices in 

Southwestern ponderosa pine forests. This methodology uses commercially available equipment 

and software, can be readily applied to ongoing mid-scale forest restoration projects, and 

customized according to site- and prescription-specific considerations. Additionally, this method 

can be easily improved upon and added to with updates to the remote sensing technology 

available, providing restoration managers an evolving toolset for adaptive management. Second, 

I have developed a novel method for measuring and assessing persistent snowpack at fine- and 

mid-scales. Importantly, I used data produced from this novel method to assess the fine-scale 

relationship between forest structure and persistent snowpack. While I took an important step 

towards understanding the forest structure drivers of snow persistence, more work is needed to 

better understand these complex relationships before they can be considered at the landscape 

scale. 

Finally, I conducted a crucial investigation of the soil moisture response to seasonal 

drought and its relationship with forest structure conditions. Core to this investigation is my 

launching of the instrument network that has generated an unprecedented soil matric potential 

dataset, including data from over 100 individual sensors spread across 76 ha of thinned and 

unthinned forest. This dataset and subsequent analyses showed that the timing, magnitude, and 

overall level of soil drying was significantly lower in the year following continued 
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meteorological drought conditions and showed that soil drying significantly decreases with 

depth. Importantly, this study also confirmed that less-dense forest structure conditions translate 

to wetter soil moisture levels. More work is needed to continue soil water potential data 

collection, make assessments across multiple years, and better understand the complex 

relationships to forest structure. 

Together, these studies provide a detailed look into the applications of high-resolution 

remote sensing to quantifying forest biophysical variables and how future forest management can 

be tailored to maximize water resources throughout the semi-arid forests of the Southwestern 

U.S. As climate change effects continue to threaten our natural systems, resource managers can 

leverage advances in applied remote sensing and sensor networks to more effectively promote 

broader ecosystem resiliency. 


