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ABSTRACT 

A MULTI-OMICS APPROACH TO ASSESSING GROWTH, STRESS, AND 

DISTURBANCE IN SOIL MICROBIAL COMMUNITIES 

PETER FRANCIS CHUCKRAN 

 

Microbes in soil are well-known drivers of several ecosystem processes, yet our ability to study 

their genetic controls on a community level is relatively recent. The total DNA and RNA of a 

microbial community—referred to as the metagenome and metatranscriptome and collectively 

part of the field of study known as “omics”—can yield valuable insight into microbial 

physiology and function, community structure, and the evolutionary processes of 

microorganisms. This dissertation leverages metagenomics and metatranscriptomics to assess 

soil microbial communities with a particular focus on understanding how this approach can be 

used to better understand dimensions of growth, stress, and disturbance. The first chapter 

introduces this topic and reviews the current state of the literature and crucial knowledge gaps, as 

well as a brief description of the subsequent chapters. Chapter 2 describes an experiment where 

we observed the transcriptional controls of soil microbial communities in response to labile 

carbon inputs and found that inputs of glucose rapidly stimulated the transcription of nitrogen 

cycling genes. Chapter 3 is a broad-scale data analysis of genomic traits in bacterial communities 

from soil, marine, host-associated, and hot-spring microbial communities. We found that soil 

communities have relationships between genomic traits which are distinct from those in other 

ecosystems—indicating a unique set of selection pressures in soils. In Chapter 4 we follow-up on 

these results and examine the distribution of genomic traits in soils along multiple environmental 

parameters. This analysis showed that bacterial traits in soils are likely driven by carbon 
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limitation and soil pH. In Chapter 5 we reexamine the transcriptional response described in 

Chapter 2, this time focusing on how genomic traits such as nucleotide and codon selection 

impact the short-term response of soil microbes during growth and stress.  Together, these results 

highlight the numerous ways in which we can derive insights from multi-omics data and how 

these findings can enhance our understanding of microbial life in soils. 
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PREFACE 
 

These chapters are formatted as manuscripts to be submitted for publication in academic 

journals. Chapter 1 is a general introduction and review of the current literature and 

methodological approaches with citations formatted according to the Chicago Manual of Style. 

Chapter 2 is formatted for mSystems, where it was published in 2021. Chapter 3 is formatted for 

FEMS Microbes where it was published in 2022. Chapter 4 is formatted as a “Brief 

Communication” article for ISMEJ and is also available as a preprint via bioRxiv. Chapter 5 is 

formatted as a general research article with Chicago Manual of Style citation format. 
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CHAPTERS 
CHAPTER 1 

INTRODUCTION 
 

Microbes in the soil dictate nutrient cycling (Wagg et al. 2019), sequester carbon from 

the atmosphere (Crowther et al. 2019), form crucial relationships with plants (Compant et al. 

2019), and drive soil formation (Rillig and Mummey 2006). Although the importance of soil 

microorganisms to ecosystem function and global ecological processes has long been recognized, 

our ability to explore their genetic controls en masse is relatively recent. The cost of sequencing 

has dropped precipitously over the past decade and will likely only continue to become cheaper 

and more accessible (Tedersoo et al. 2021). This has resulted in the mass generation of 

metagenomic and metatranscriptomic data, effectively creating endless possibilities for analysis 

and a new computational challenge. Uncovering useful, concise, and informative metrics for 

assessing microbial communities is a central challenge in microbial ecology (Fierer, Wood, and 

Bueno de Mesquita 2021) and determining informative metrics for the assessment of “omics” 

data is similarly of high importance . 

This dissertation uses a number of approaches to probe multi-omics datasets with a 

particular focus on how these approaches may be used to identify trends in growth, stress, and 

disturbance. Growth, stress, and disturbance are factors crucial to microbial functionality and are 

consequently the focus of countless studies in soil microbial ecology. Growth is an important and 

well-known dimension for understanding carbon use efficiency (Zheng et al. 2019; Dijkstra et al. 

2015) and the formation/fate of soil organic carbon (Prommer et al. 2020; Hagerty et al. 2014), 

and is an important determinant for community dynamics (Hungate et al. 2021; Morrissey et al. 

2016; Koch et al. 2018). Short-term disturbances, such as extreme temperatures, and long term 

stresses, such as drought or nutrient limitation, exert unique pressures on microbial communities 
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(Schimel, Balser, and Wallenstein 2007); and the resistance and resilience to disturbance and 

stress greatly influence community composition (Shade et al. 2012; Allison and Martiny 2008) 

and functionality (De Vries et al. 2012).  

These themes were also chosen as they are at the heart of many of conceptual 

frameworks both in microbial and ecosystem-level ecology. Grime's 1977 Competitors-Stress 

Tolerators-Ruderal (C-S-R) framework, Malik et al. 2020 Yield-Acquisition-Stress (YAS) 

framework, copiotroph vs oligotroph (Lauro et al. 2009), and the r vs K strategist framework all 

rely, either partially or completely, on the response of an organism during growth, stress, and 

disturbance. Identifying metrics associated with these themes would therefore be an asset in 

determining how soil microbes fit into these conceptual frameworks and contribute to ecosystem 

function.  

Throughout these chapters there will be occasional mixed-use of the term stress, in that it 

will sometimes refer to both stress and disturbance. This is a side-effect of microbial ecology 

being at the intersection of microbiology and ecosystem-level ecology. In ecology, a disturbance 

is more easily defined as an event which results in the partial mortality of an organism, such as 

herbivore grazing, whereas stress is more of a continuous condition which limits activity, such as 

drought (Grime 1977). However, bacteria are rarely subject to disturbance under this definition 

since it is hard to remove part of a unicellular organism without it’s complete destruction 

(Schimel, Balser, and Wallenstein 2007). Further, the field of microbiology does not commonly 

use the term disturbance. Short-term changes in the environment which could be considered 

disturbances in macroecology would elicit a “stress-response” under microbial definition.  Very 

likely the two fields never conferred with each other on these definitions, perhaps because they 

never imagined we would ever have such a great capacity to sequence environmental microbial 



 3

communities. Plante 2017 suggests the term disturbance refer to a short-term change in the 

environment which immediately impacts fitness, and stress refer to a more continuous limitation 

on growth. The introduction and discussion will use these definitions of stress and disturbance; 

however, the dissertation chapters, having been written for publication in more microbiology-

focused journals (as opposed to ecology-focused journals), will often use “stress” in place of 

disturbance. The discussion will then put these results in context using Plante’s definitions. 

 

Description of Chapters 

Short-term transcriptional responses in soil microbial communities are rarely observed 

and, consequently, much of our understanding of this process has been derived from bacteria in 

culture. Chapter 2 uses metatranscriptomics to determine the short-term response of microbial 

communities to additions of labile carbon. Since accessible carbon tends to be a limiting factor 

for the growth of soil heterotrophic bacteria (Hobbie and Hobbie 2013; Demoling, Figueroa, and 

Bååth 2007), a sudden input of simple sugars can rapidly stimulate microbial activity. The 

alleviation of carbon limitation results in nitrogen becoming the predominantly limiting nutrient 

and the rapid uptake of available nitrogen (Kamble and Bååth 2014). This is an important 

phenomenon as soil microorganisms are often subject to short-term pules of labile carbon, such 

as through litter leachate or root exudates (Kuzyakov and Blagodatskaya 2015). Chapter 2 aims 

to observe the transcriptional controls of this response, capturing both a dimension of growth 

(due to the stimulation of activity with labile carbon) and disturbance (with the sudden activation 

of nutrient limitation). 

Similar to transcription, much of what we know about the genomic traits of soil microbes 

is based on findings from culture or marine systems. Genomic traits—such as genome size, GC 
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content, number of rRNA gene copies, codon usage, and number of regulatory genes—are 

potentially highly informatic metrics for assessing microbial life-strategy and function (Li et al. 

2019; Roller, Stoddard, and Schmidt 2016); however, the distribution of traits between soil 

microbial communities has yet to be properly assessed. The study of genomic traits across 

systems could reveal important selection mechanisms as well as assist in informing a trait-based 

framework in microbial ecology. There has been increased interest in a trait-based framework for 

soil microbes (Westoby et al. 2021) and identifying easily accessible genomic traits would 

provide a valuable contribution towards this goal. Chapter 3 and 4 seek to close this gap with a 

series of large-scale metagenomic data analyses.  

In Chapter 3, we assess the distribution of genomic traits in soil communities against 

those in marine, host-associated, and hot-spring environments. These systems were chosen as a 

point of comparison as they all have predominant drivers of genomic traits which might 

influence their distribution in predictable ways (Sabath et al. 2013; Batut et al. 2014; Giovannoni 

et al. 2005). For example, in marine systems nutrient limitation will often select for bacteria with 

reduced genomes and low GC content in order to curb the cost of reproduction (Giovannoni, 

Cameron Thrash, and Temperton 2014). Using community-derived averages for each trait, we 

compared over 100 metagenomes from the Joint Genome Institute (JGI) with the aims of: (1) 

determining if known relationships between genomic trait could be detected between 

communities (such as a positive relationship between genome size and GC content for marine 

communities) and (2) comparing these distributions to those of soils.  

This idea is explored further in Chapter 4. There, we turn to a larger collection of soil 

metagenomes accessed from the National Ecological Observation Network (NEON). By 

assessing the relationship between genomic traits and environmental properties, we aimed to 
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uncover the predominant drivers of these traits in soil bacteria and the key mechanisms shaping 

these relationships. Specifically, we test whether nutrient stress, in the form of carbon limitation, 

could be driving genomic traits of soil bacterial communities.  

Chapter 5 applies the concepts of the trait-based approach described in Chapters 3 and 4 

to the metatranscriptomes in Chapter 2. Traits such as codon usage and GC content (Chen et al. 

2016; Zhou et al. 2016) are known to influence rates of gene transcription. We use the 

metatranscriptome data described in Chapter 2 to see if these factors play an important role in 

growth and stress responses on the community-level. We also test whether these traits influence 

the transcription of bacterial genes in response to a sudden heat-shock. Through this analysis we 

aim to identify factors which contribute to growth and the response to disturbance. 

 These chapters describe several different analytical approaches for interpreting multi-

omics data with a focus on identifying factors associated with specific life strategies and 

response mechanisms. It is my hope that by assessing themes of growth, stress, and disturbance 

with these approaches, this dissertation might reveal unique insight into the factors which dictate 

microbial life in soil and contribute to understanding how soil microbes contribute to ecosystem 

processes. 
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ABSTRACT 
 

 Episodic inputs of labile carbon (C) to soil can rapidly stimulate nitrogen (N) 

immobilization by soil microorganisms. However, the transcriptional patterns that underlie this 

process remain unclear. In order to better understand the regulation of N cycling in soil microbial 

communities, we conducted a 48 h laboratory incubation with an agricultural soil where we 

stimulated the uptake of inorganic N by amending the soil with glucose. We analyzed the 

metagenome and metatranscriptome of the microbial communities at four timepoints that 

corresponded with changes in N availability. The relative abundances of genes remained largely 

unchanged throughout the incubation. In contrast, glucose addition rapidly increased 

transcription of genes encoding for ammonium and nitrate transporters, enzymes responsible for 

N assimilation into biomass, and genes associated with the N regulatory network. This 

upregulation coincided with an increase in transcripts associated with glucose breakdown and 

oxoglutarate production, demonstrating a connection between C and N metabolism. When 

concentrations of ammonium were low, we observed a transient upregulation of genes associated 

with the nitrogen fixing enzyme nitrogenase. Transcripts for nitrification and denitrification were 

downregulated throughout the incubation, suggesting that dissimilatory transformations of N 

may be suppressed in response to labile C inputs in these soils. These results demonstrate that 

soil microbial communities can respond rapidly to changes in C availability by drastically 

altering the transcription of N cycling genes.  

 

IMPORTANCE: 

A large portion of activity in soil microbial communities occurs in short time frames in response 

to an increase in C availability, affecting the biogeochemical cycling of nitrogen. These changes 
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are of particular importance as nitrogen represents both a limiting nutrient for terrestrial plants as 

well as a potential pollutant. However, we lack a full understanding of the short-term effects of 

labile carbon inputs on the metabolism of microbes living in soil. Here, we found that soil 

microbial communities responded to labile carbon addition by rapidly transcribing genes 

encoding proteins and enzymes responsible for inorganic nitrogen acquisition, including nitrogen 

fixation. This work demonstrates that soil microbial communities respond within hours to carbon 

inputs through altered gene expression. These insights are essential for improved understanding 

of the microbial processes governing soil organic matter production, decomposition, and nutrient 

cycling in natural and agricultural ecosystems. 
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INTRODUCTION 
 

 Inorganic nitrogen (N) availability in soil dictates several ecosystem-level processes such 

as plant growth (1), greenhouse gas emissions in the form of nitrous oxide (2), and 

eutrophication from runoff (3). The transformation of N by soil microbial communities is 

directly tied to the pool of bioavailable N in soils (4, 5). Thus, understanding the controls of N 

metabolism in soil microbes is key to determining, and potentially managing (6), the cycling of 

N in soils.  Although genes and regulatory mechanisms for microbial N cycling processes have 

long-been identified in laboratory studies (7–9), the short-term dynamics and controls of N 

cycling in complex soil communities remain poorly understood. The availability of shotgun 

sequencing technologies to analyze microbial functioning in soil communities provides an 

opportunity to enhance our understanding of microbially mediated soil N cycling.  

Measuring short-term responses of soil microbial populations to changes in the environment is 

crucial in understanding the role of microbes in biogeochemical cycling. Most biogeochemical 

transformations occur during short periods of intense microbial activity, when the active fraction 

of microbes may be up to 20 times higher than in bulk soil (10). This stimulation is often the 

result of a localized increase in nutrient concentrations, such as in the rhizosphere or an area of 

fresh organic matter decomposition. Despite the importance of these “hot moments”, only a few 

studies (e.g. 11, 12) have tracked changes in N-cycling gene transcription in soils. 

Notably, the short-term (hours to days) transcriptional response of N-cycling genes in response 

to labile C inputs has yet to be determined. Microbial communities experience sudden changes in 

C and N availability associated with plant root exudation (13), trophic interactions (14, 15), and 

litter leachate (16). Since soil microbes are typically limited by labile C and energy (17–19), the 

addition of a C-rich substrate is expected to stimulate growth and activity (20), increasing the 
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demand for N (21). Whether N is derived from the uptake of organic N present in the substrate or 

mineral N available in the soil depends largely on the C:N of the substrate (22). For example, in 

Yang et al. 2016 (23) soil microbial communities assimilated organic N during the 

mineralization of added glycine, but in the presence of glucose the mineralization of glycine was 

initially suppressed and ammonium served as the main source of N. Simple sugars such as 

glucose have accordingly been shown to influence protease activity (24). The metabolic 

pathways for N immobilization have been well characterized in vitro (25). A majority of N 

assimilation into biomass occurs through the conversion of NH4
+ into the amino acids glutamine 

and glutamate, which are used as sources of N for all other amino acids. Under low-to-moderate 

intracellular concentrations of NH4
+, the enzymes glutamine synthetase (GS; encoded by glnA) 

and glutamate synthase (GOGAT; gltS) convert NH4
+ to glutamate in a two-step reaction 

referred to as the GS-GOGAT pathway (26). Under high concentrations of NH4
+, the enzyme 

glutamate dehydrogenase (GDH; gudB, gdhA) converts NH4
+ directly to glutamate in a one-step 

reversible reaction (27).  

Since both the GS-GOGAT pathway and GDH require N as NH4
+, other forms of inorganic N 

must be converted to ammonium before conversion into biomass. In the case of nitrate and 

nitrite, the reduction to ammonium occurs through either assimilatory nitrate reduction or, under 

anoxic conditions, dissimilatory nitrate reduction to ammonium (DNRA; Table S1) (28). The 

conversion of atmospheric N2 to ammonium by diazotrophs is catalyzed by the enzyme 

nitrogenase (nifDHK) (29).  

The mechanisms regulating N uptake in response to C have been extensively studied in vitro (8, 

25). The complex regulatory network includes a specialized sigma factor (σ54; rpoN), three 

transcriptional regulators, and a phosphorylation cascade comprised of post-modification 
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enzymes, PII proteins, and a two-component regulator (30). The activity of many of the enzymes 

and proteins in the phosphorylation cascade is tightly controlled by cellular concentrations of 

glutamine and oxoglutarate (31). Since the concentration of oxoglutarate is impacted by the 

activity of the TCA cycle, the regulation of N cycling is directly tied to C metabolism (32). 

Carbon substrate addition is also thought to influence dissimilatory N cycling processes such as 

nitrification and denitrification. In nitrification, ammonia is oxidized to nitrite and then nitrate. 

Often the steps of this process occur in different organisms (33), however complete ammonia 

oxidizers have also been described (34, 35).”. In denitrification, nitrate is reduced to nitrite, nitric 

oxide, and then nitrous oxide and N2. Nitrification and denitrification, beyond their ability to 

draw from the pools of ammonium and nitrate, also represent important avenues of inorganic N 

loss from soils via nitrate leaching and the release of N2 and nitrous oxide, a potent greenhouse 

gas (36).  The addition of glucose is expected to have both positive and negative effects on 

nitrification. Rates of autotrophic nitrification tend to decrease as heterotrophs outcompete 

autotrophic nitrifiers for ammonium (37), but rates of heterotrophic nitrification may increase 

after labile C inputs (38).  Denitrification is more directly influenced by C availability and 

quality (39), and the abundance of mRNA transcripts associated with denitrification was 

stimulated with the addition of glucose in anoxic soil microcosms (40).   

Despite our knowledge of the mechanisms and controls of N cycling and N metabolism, we do 

not yet fully understand how these genes are regulated within complex soil microbial 

communities. Metatranscriptomics allows us to capture the transcriptional profile of a microbial 

community, providing insight into the potential activity of a community at a given moment in 

time (41–43). Many studies utilizing this technique have focused on the influence of ecosystem 

level characteristics/properties on transcription, such as land-use, above ground cover, 
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seasonality, and climate (e.g. (44–49)). Although these studies contribute greatly to our 

understanding of community gene transcription, there is additional need to study the dynamic 

short-term responses of microbial communities to changes in C and N availability (50). 

In order to fill this knowledge gap, we conducted a soil incubation study where we induced rapid 

immobilization of inorganic N by adding glucose. We selected glucose as it is a form of labile C 

commonly found in soils (51), and has been widely used to alleviate C limitation in soil 

microbial communities as a means to study growth (52, 53) and metabolic activity (50). We 

analyzed metagenomes and metatranscriptomes of the soil microbial community using high 

throughput shotgun sequencing to identify the response of N cycling genes over a 48-hour 

period. We hypothesized that the abundance of N-cycling genes in the metagenomes would not 

significantly change throughout the course of the 48-hour incubation, but that changes in activity 

would be immediately detected in the metatranscriptomes. We further hypothesized that there 

would be an upregulation of genes associated with inorganic N transport, N assimilation into 

biomass, and N metabolism regulation in response to labile C inputs, and that the abundance of 

these transcripts would track the concentrations of inorganic N. This work provides an in-depth 

look at the short-term transcriptional response of soil microbial communities during a central 

biogeochemical process in soils.  
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METHODS 
 

Soil Sampling and Site Description 

 Soils were collected in the fall of 2017 from a long-term crop rotation experiment at the 

West Virginia University Certified Organic Farm near Morgantown, West Virginia, USA 

(39.647502° N, 79.93691° W; 243.8 – 475.2 m a.s.l.) (54, 55). Samples were taken from plots 

subject to a four-year conventionally tilled crop cycle consisting of corn, soybean, wheat and a 

mix of kale and cowpea. Manure was added every two years (during corn and wheat planting), 

and rye-vetch was added as a winter cover crop before replanting corn in the spring. From each 

plot, 10 cores 0-10 cm depth were collected and pooled.  

 

Laboratory Incubation 

 Soil samples were shipped on ice to Northern Arizona University in Flagstaff, Arizona, 

USA. Soils from 3 plots were pooled, cleaned of roots and large debris, passed through a 2 mm 

sieve, and distributed between 64 glass Mason jars (500 mL), generating microcosms containing 

30 g of soil each. The soil was preincubated at lab temperature (~ 23 °C) for 2 weeks prior to the 

glucose addition.  

 The microcosms received 1.6 mL of 0.13 M glucose solution, which added 0.7 mg of 

glucose C g-1 dry soil and raised the moisture content to 60% water holding capacity. 

Concentrations of glucose in this range have been demonstrated to stimulate soil microbial 

communities without creating a detrimental increase in osmotic pressure (52). Moreover, a brief 

trial incubation was conducted to ensure that this concentration of glucose would stimulate CO2 

production. Soils were incubated at lab temperature (~ 23 °C) under ambient lighting, but never 

direct sunlight. Every 4 hours, over a 48 h period, 5 jars were randomly selected and 
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destructively sampled. From each jar, we measured headspace CO2 concentration, concentrations 

of NO3
- and NH4

+, and microbial biomass. A portion of each sample was immediately frozen 

using liquid N2 and stored at -80°C for DNA and RNA extraction. 

Since the addition of water may stimulate community activity and respiration, especially when 

starting with very dry soil (56, 57), we measured respiration in  a parallel incubation wherein the 

same volume of water was added without glucose. Headspace CO2 from these jars was measured 

and compared against the glucose additions in order to determine the overall effect of glucose 

and water on microbial respiration.  

 

Biogeochemical Measurements and Analysis 

 To measure soil NO3
- and NH4

+ concentration, 8 g of soil from each destructively 

sampled jar were added to 40 ml of 1 M KCl solution, shaken for 1 hour, and filtered through 

Whatman no. 1 filter paper. Extracts were analyzed on a SmartChem 200 Discrete Analyzer 

(Westco Scientific Instruments, Brookfield, Connecticut, USA). Microbial biomass was 

measured using an extraction-fumigation-extraction technique (58), consisting of a 0.5 M K2SO4 

extraction followed by a subsequent K2SO4 extraction with the addition of chloroform. The first 

extraction provided an estimate of the  K2SO4 extractable organic C and N from each sample, 

while the second extraction provided an estimate of microbial biomass C (MBC) and N (MBN). 

Concentrations of extractable organic C and N were measured on a TOC-L (Shimadzu Corp, 

Kyoto, Japan). The concentration of CO2 from the headspace of each microcosm was measured 

using a LI-6262 CO2/H2O Analyzer (Licor Industries, Omaha, Nebraska, USA) as described in 

Dijkstra et al. (2011) (59). 
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DNA and RNA Extraction and Sequencing 

 We extracted DNA and RNA just before (t0) and 8 (t8), 24 (t24), and 48 (t48) h after 

glucose addition (n=4). DNA and RNA were extracted using the RNeasy Powersoil Total RNA 

Kit (Qiagen) according to manufacturer instructions. DNA was separated from RNA using the 

RNeasy PowerSoil DNA Elution Kit (Qiagen). RNA samples were treated with RNase-Free 

DNase Set (Qiagen) to remove any DNA. Nucleic acid concentrations were determined with a 

Qubit fluorometer (Invitrogen, Carlsbad, California, USA), and purity was assessed with a 

NanoDrop ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, Delaware, USA). 

High-quality samples were sent to the Joint Genome Institute (JGI) for sequencing (60). Paired-

end, 2 x 151 bp, libraries were prepared using the Illumina NovaSeq platform (Illumina Inc., San 

Diego, California, USA). Raw sequence reads were uploaded to the JGI genome portal 

(https://genome.jgi.doe.gov/portal/) under GOLD project ID Gs0135756. A more detailed 

description of the sequencing can be found in the data release (61). 

 

Metagenome and Metatranscriptomic Analysis 

Metatransciptomes were assembled by JGI using MEGAHIT v1.1.2 (62) (parameters “megahit –

–k–list 23,43,63,83,103,123 ––continue –o out.megahit”) and metagenomes were assembled 

using SPAdes version 3.13.0 (63). Assembled metatranscriptomes and metagenomes were 

uploaded to the Integrated Microbial Genomes and Microbiomes (IMG/M) (64) pipeline for 

annotation. Full details of the bioinformatics pipeline, as well as SRA reference numbers can be 

found in the data release (61). From IMG/M we retrieved the number of reads for all genes 

attributed to functional orthologs in the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

Orthology database (65), as well as taxonomic annotations against the IMG database. Contigs are 
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available through the JGI genome portal, and taxonomic and functional annotations of these 

contigs are available on the IMG/M database (http://img.jgi.doe.gov), under GOLD project ID 

Gs0135756. JGI Genome ID’s for each sample, as well as sample metadata, can be found in 

Chuckran et al (2020; 61). 

Normalization of KEGG functional annotations was preformed using the Bioconductor (66) 

program DESeq2 (67) in R. DESeq2 uses a negative binomial distribution to normalize read 

counts and estimates average log2 fold change (LFC) between harvests.  Significant LFCs for 

each KEGG functional gene and transcript were determined through both a likelihood ratio test 

(for overall significance) and Wald test (for specific contrasts between timepoints) provided in 

DESeq2. Significance for both tests were assumed as a false discover rate (FDR) < 0.01. Prior to 

analysis, genes with less than 60 reads summed over all samples were discarded in an effort to 

reduce the FDR correction and improve detection of significant LFCs (68). 

To assess differences in genes and transcripts composition over time, we performed 

permutational multivariate analysis of variance (PERMANOVA) on our metagenomes and 

metatranscriptomes. PERMANOVAs were conducted using Bray-Curtis dissimilarity matrices of 

the square root transformed normalized read counts with 999 permutations. A SIMPER analysis 

was used to determine genes which most strongly influenced differences between harvests. 

PERMANOVAs and SIMPER analyses were conducted using the vegan package (69) for R.  

 To assess the response of N metabolism to the addition of glucose, KEGG Orthology 

identifiers (K numbers) were grouped according to KEGG pathways and modules associated 

with N cycling (70), and K numbers representing regulatory genes controlling N metabolism 

were identified (8, 25) (Table S1).  The response of C metabolism was determined by grouping 

K numbers by KEGG modules associated with glucose uptake, specifically the Entner-Doudoroff 
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pathway (KEGG module M0008), TCA cycle (M00009), pentose phosphate pathway (M00004), 

gluconeogenesis (M00003), and Glycolysis (M00001). From the TCA cycle, we also determined 

the response of isocitrate dehydrogenase (icd), which produces oxoglutarate, an important 

metabolite linking C and N metabolism (32). Counts and LFCs for K numbers were then 

averaged for each module to assess the overall response for each process. Results were 

visualized using the ggplot2 package (71) in R v 3.6.1 (72).  
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RESULTS 
 

Biogeochemical Measurements 

 The concentration of NO3
- decreased in the 24 hours after glucose addition and remained 

low for the remainder of the incubation (Fig. 1A). The concentration of NH4
+ also decreased 

during the first 24 hours of the incubation and increased thereafter (Fig. 1B).  Rates of CO2 

production increased from 4-16 hours and then decreased from 28-48 hours in response to 

glucose (Fig. 1C). We found that the addition of water only slightly influenced CO2 production 

(Fig. S1), indicating that the majority of the stimulation was due to the addition of labile C. 

K2SO4 extractable organic carbon decreased for the first 20 hours and plateaued thereafter (Fig. 

1D). Based on these biogeochemical measurements, we selected 4 timepoints (t0, t8, t24, and t48) 

from which we extracted DNA and RNA. These timepoints captured distinct phases of C and N 

availability that enabled us to test our hypotheses.  

Microbial biomass C (MBC) moderately decreased throughout the incubation (Fig. S2A) and 

microbial biomass N (MBN) remained constant (Fig. S2B). Bacteria may exhibit some 

stoichiometric plasticity in response to nutrient inputs (73), however a decrease in biomass C:N 

in response to C inputs is counter-intuitive. Since the method of microbial biomass extraction 

used involves two extractions on the same sample (one before and after fumigation), incomplete 

extraction of the added glucose in the first extraction could result in an artificially high estimate 

of biomass C. We believe that it is far more likely that microbial biomass and stoichiometry did 

not change, and that changes in estimated MBC are likely the result of unextracted glucose 

remaining from the initial K2SO4 extraction.  

 

Metagenomic and Metatranscriptomic Assembly and Annotation 
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 Out of 16 soil samples from which DNA and RNA were extracted, 12 were successfully 

sequenced and assembled for metagenomic analysis and all 16 for metatranscriptomic analysis. 

For the metagenomes, the proportion of genes successfully annotated against the KEGG database 

varied from 23.4% to 25.6% of all genes per sample. Of the 6,876 functional KEGG orthologs 

identified in the metagenome analysis, 671 genes were in higher abundance while 332 were 

present in lower abundance (FDR < 0.01) after the addition of glucose. Glucose caused a shift in 

the relative abundance of functional genes (PERMANOVA, F3.11 = 3.24, P < 0.01; Fig. 2A). The 

genes that were most different in gene abundance relative to t0 varied for each timepoint 

(SIMPER analysis; Table S3A), and not one of these genes was directly related to N uptake. 

Among these were the subunits of RNA polymerase rpoB and rpoC, which were in slightly 

lower abundance at t8 (LFC -0.1, FDR > 0.1), and the regulatory gene for the lac operon, lacI, 

which was in a greater abundance at t24 and t48 (LFC 0.7, FDR < 0.01). The largest changes were 

found at t24 for low-abundant spore gemination proteins (Table S3B), specifically gerKC 

(KO6297) and yfkQ (K06307) which were 8.8 and 7.4 LFC more abundant than at t0.  

The proportion of transcripts successfully annotated against the KEGG database varied between 

12.6% and 32% of all transcripts in a metatranscriptome. Transcripts for 5,448 functional genes 

were identified, of which 1,141 increased and 855 decreased in response to glucose. A 

PERMANOVA indicated significant shifts in the abundance of transcripts between timepoints 

(F3, 15 = 8.07, P < 0.01; Fig. 2B). Transcripts encoding for amt and glnA contributed the most to 

dissimilarity with t0 (SIMPER analysis), combined they explained 1% of the differences at t8, 1% 

of differences at t24, and 0.9% of differences at t48.  

 

Gene and Transcript Abundance of Nitrogen Cycling Processes 
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The abundance of N cycling genes was generally stable over time (Fig. 3A), with changes in 

gene abundance often being several orders of magnitude smaller than changes in transcript 

abundances. For metatranscriptomes, many genes associated with N uptake were highly 

upregulated in response to glucose (Fig. 3). Expression of genes encoding the GS-GOGAT 

pathway (GS - glnA; GOGAT - gltS, gltD, gltB) was consistently upregulated after glucose 

addition (FDR < 0.01), peaking at 8 h (Fig. 3B, Table S2). We did not find a similar trend for 

transcripts associated with glutamate dehydrogenase (GDH: gudB, gdhA). Instead we found 

variable increases and decreases in the expression for these genes which corresponded with 

different classes of GDH enzymes (Fig. 3B Table S2). In prokaryotes, GDH often uses NADH 

(EC 1.4.1.2), NADPH (EC 1.4.1.4) as cofactors, while GDH in eukaryotes can use both 

(NAD(P)H; EC 1.4.1.3) (74). Transcription of genes for EC 1.4.1.4 significantly increased early 

(t8, LFC 1.542 ± 0.312; FDR < 0.01), and transcription for EC 1.4.1.2 trended higher later (t48, 

LFC 2.229 ± 0.884; FDR < 0.1). The eukaryotic EC 1.4.1.2 gene GDH2 (K15371) was 

upregulated at t24 (LFC 1.350 ± 0.434; Table S2; FDR < 0.01) and EC 1.4.1.3 was slightly 

downregulated throughout (significantly at t8, FDR < 0.01). 

The abundance of transcripts encoding the ammonium transporter AmtB (amt) was significantly 

(FDR < 0.01) higher after glucose addition throughout the 48-h incubation (Fig. 3B, Table S2), 

peaking at t8, where it was 16-fold higher than at t0 (41,366 transcripts at t8 vs 2,539 at t0). A 

similar upregulation was found for genes associated with nitrate and nitrite transport across the 

membrane – 1500-fold increases compared to t0 (from 2.6 to almost 2800 transcripts per sample 

at t24; Fig. 3B).  

Genes associated with assimilatory nitrate reduction (Fig. 3; Table S2) were strongly upregulated 

at t8 and remained upregulated over the 48 h incubation period. In contrast, we found variable 
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responses of genes associated with DNRA. Most genes associated with the dissimilatory 

reduction of nitrate to nitrite were downregulated or not significantly affected, with a few 

exceptions. Nitrate reductase gamma subunits (narI/narV) were upregulated at t24 and t48, and the 

genes nirB and nirD, which encode the small and large subunit of the cytosolic enzyme nitrite 

reductase, were significantly (FDR < 0.01) upregulated throughout the incubation (LFC 6.18 to 

7.70; Fig. 3B). In contrast to these enzymes, abundance of transcripts that encode a periplasmic 

cytochrome c nitrite reductase (nrfA and nrfH) did not significantly change in response to C 

amendment.  

 Expression of all genes involved with nitrification were downregulated in response to 

glucose, and a majority of those genes (5 of 6) were significantly (FDR < 0.01) downregulated at 

some point during the incubation (Fig. 3B). Similarly, expression for most denitrification genes 

were downregulated throughout the incubation, with the exception of narI and narV, which 

encode for gamma subunits of nitrate reductase. 

 Transcripts for three genes that encode subunits of nitrogenase (nifK, nifD, and nifH) 

were detected, all of which were at very low abundance at t0, t8, and t48. Only at t24 did we 

observe a strong significant (FDR < 0.01) upregulation for all 3 genes, up to 410-fold higher than 

t0 for nifH (798 transcripts at t24 vs 1 at t0; Fig. 3B).  

 We found that the vast majority of N cycling gene transcription could be attributed to 

bacteria and archaea (Fig. 4). Dissimilatory processes were largely from Thaumarchaeota and 

Nitrospirae, while assimilatory processes tended to be represented by Proteobacteria, 

Actinobateria, and Acidobacteria. Nitrogen fixation was heavily dominated by Proteobacteria 

(Fig. 4).  
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Regulation of N Cycling Genes 

Generally, transcripts of genes associated with regulation of N metabolism increased after 

glucose addition (Fig. S3; Fig. 5). The abundance of ATase and UTase (glnD and glnE), used for 

post-modification of glutamine synthetase (GS) and regulatory PII proteins respectively, initially 

increased at t8 (2.18 ± 0.41 LFC and 4.31 ± 0.36 LFC; FDR < 0.01; Fig. S3; Fig. 5).  UTase 

(glnD) but not ATase (glnE), continued to be significantly upregulated at t24 (3.79 ± 0.36 LFC) 

and t48 (2.75 ± 0.36 LFC; Fig. S3). Similar upregulation was noted for PII proteins GlnB (glnB; 

LFC > 2.9; FDR < 0.01; Fig. S3) and GlnK (glnK; LFC > 3.9; FDR < 0.01; Fig. S3), and the 

NtrC family genes glnL (FDR < 0.01) and glnG (FDR < 0.01 at t8 and t24; Fig. S3). No 

significant changes in transcript abundances were found for the transcriptional regulators nac 

and lrp, while crp and rpoN were slightly downregulated (LFC < -1) at t8 and t24 (FDR < 0.01; 

Fig. S3; Fig. 5). 

 

C Metabolism 

 The LFC and total number of normalized transcripts for processes involved with glucose 

breakdown (KEGG modules M00001, M00003, M00004, M0008, and M00009). increased from 

t0 to t8 and t24 (Fig. S4; Table S4; Tukey’s HSD p < 0.05). Significant changes in transcript 

abundance after glucose amendment were found for the Entner-Doudoroff pathway and TCA 

cycle, including the enzyme isocitrate dehydrogenase (icd) which produces oxoglutarate, a 

metabolite which directly connects C and N metabolism (Fig. 5; Fig. S4B, Table S4). 
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DISCUSSION 
 

Over a period of 48-hours after glucose addition we observed a substantial decrease in  K2SO4 

extractable organic C, an increase in CO2 production rate, and an increase in the abundance of 

transcripts for genes associated with glucose breakdown. These changes coincided with a 

decrease in inorganic N and an increase in the transcript abundance of genes involved with 

inorganic N uptake, assimilation, and N metabolism regulation. These results demonstrate that 

soil microbial communities respond to labile C not only by upregulating genes associated with C 

metabolism, but also by rapidly increasing the transcription of genes responsible for N 

acquisition. Further, we found that genes for several forms of N acquisition (e.g., N fixation, 

assimilatory nitrate reduction, ammonium transport) were differentially transcribed over the 48 h 

incubation, indicating that changes in multiple microbially mediated N transformations occur 

within this small temporal window.   

 

Inorganic N Uptake and Assimilation 

 The GS-GOGAT pathway appeared to be the predominant pathway through which 

ammonium was assimilated into biomass. The other main avenue of ammonium assimilation into 

biomass, the enzyme GDH, did not show a similar increase in transcript abundance and the 

abundance of GDH transcripts was substantially smaller than that of GS-GOGAT. This suggests 

that GS-GOGAT may be the dominant pathway for assimilation of inorganic N in soil microbial 

communities responding to labile C inputs. This finding is consistent with the notion that GDH is 

most active when NH4
+ concentration is high and availability of C is low (27). Assays from soil 

microbial communities have also shown that GS activity increases in response to higher C to N 

ratios whereas GDH activity decreases (75). Further, we found that regulation of GDH 
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transcription appeared to be gene specific, with transcription for EC 1.4.1.4 increasing early and 

EC 1.4.1.2 increasing late. These results nicely follow concentrations of NH4
+

, as NADPH 

specific enzymes (EC 1.4.1.4) are generally used for ammonium assimilation (76) whereas 

NADH specific enzymes (EC 1.4.1.2) are commonly used for breakdown of glutamate to 

ammonium (77). These findings highlight the potential utility of measuring GDH and GS-

GOGAT gene transcription for tracking the C and N balance within microbial communities at a 

given moment in time, which could be a useful approach when, for example, assessing how 

specific land use practices influence microbial metabolism and N cycling. 

 Various mechanisms for transporting inorganic N across the cell membrane were 

upregulated in response to glucose inputs.  Notably, the gene amtB, which encodes for the 

ammonium transporter AmtB, was the second most abundant upregulated gene during the 

incubation (behind glnA). Similarly, we observed an upregulation of genes associated with 

nitrate and nitrite transport (KEGG module M00615) and assimilatory nitrate reduction, which 

coincided with a precipitous drop in the concentration of NO3
-.  Most genes involved with 

DNRA were not differentially expressed, indicating that nitrate reduction was primarily 

occurring under aerobic conditions. A notable exception were the genes nirB and nirD, which 

encode for the cytosolic enzyme nitrite reductase NirBD (78), which has been shown to be active 

in aerobic soils (79, 80) and may function as the nitrite reductase in assimilatory nitrate reduction 

(81).  Although the upregulation of N transport genes in response to glucose is certainly not 

novel (30), these results are the first demonstration of this response in a soil microbial 

community metatranscriptome. Further, these responses show the short timeframes (within 8 h) 

in which soil microbial communities can respond to changes in C and N availability. 
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The finding that glucose addition strongly upregulated genes encoding for nitrogenase, especially 

when NH4
+ concentrations were low, is consistent with the idea that nitrogen fixation increases 

when N concentrations are low (82). N fixation has been shown to be activated by the addition of 

other limiting nutrients such as carbon or phosphorous (83, 84). We therefore believe that the 

upregulation of nitrogenase genes is a response to low concentrations of NH4
+ and availability of 

labile C. The prompt upregulation, and subsequent downregulation, of nitrogenase genes also 

suggests that some portion of biological nitrogen fixation occurs rapidly in soils, or at the very 

least that the process is highly sensitive to concentrations of NH4
+.  

 

Connections Between C and N Metabolism 

Interestingly, transcripts associated with NH4
+ and NO3

- transport maintained their high 

abundances despite concentrations of NO3
- stabilizing and concentrations of NH4 increasing (24-

48 h into the incubation). One possible explanation is that the activity of these proteins is 

dictated through allosteric regulation which is tightly connected to the activity of both C and N 

metabolism (Fig. 5). For example, the ammonium transporter AmtB is allosterically inhibited by 

the PII protein GlnK which is indirectly controlled by internal concentrations of glutamine, an 

intermediate of N uptake through GS-GOGAT (Fig. 5), and oxoglutarate, an intermediate of the 

TCA cycle (Fig. 5; (32, 85)). In this way, internal concentrations of metabolites from both C and 

N metabolism may dictate N uptake. 

The transcription of N regulatory genes reflects the importance of intermediate metabolites in 

regulation. We found that abundance of transcripts for transcriptional regulators (such as nac, 

lrp, and crp) and σ54 were either not affected or slightly reduced (Fig. 5). In contrast, transcripts 

for genes in the phosphorylation cascade, which links C and N metabolism through intermediate 
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metabolites, were more abundant after the addition of glucose (Fig. 5). The upregulation of the 

two component regulatory NtrB (glnL, ntrB) and NtrC (glnG, ntrC) within this cascade is 

especially noteworthy, as this system regulates ~75 genes associated with N acquisition, 

including glutamine synthetase (Fig. 5) (86).   

Since the activity of this regulatory network is tightly controlled by internal concentrations of 

metabolites (30), it is not possible to determine the activity of many of these proteins through the 

metatranscriptome alone. However, it is noteworthy that almost all of the genes within this 

regulatory network were upregulated, even if the encoded protein potentially inhibited N 

transport or assimilation (e.g. GlnK; Fig. 5). This broad upregulation of genes in the 

phosphorylation cascade may be beneficial during C uptake, as it allows the concentration of 

nutrients and metabolites to control N uptake, thereby ensuring N uptake matches the supply of 

C (25, 32).   

 

Nitrification and Denitrification   

 Most genes associated with nitrification and denitrification were significantly 

downregulated. Since nearly all nitrifiers in this soil were autotrophic archaea (55), this finding is 

consistent with the premise that addition of glucose reduces rates of autotrophic nitrification by 

reducing the amount of available ammonium (37). It is not especially surprising that we did not 

find an upregulation of denitrification genes, as denitrification is most prevalent in anoxic 

systems with high availabilities of nitrate.   

 

Genetic Potential Versus Transcription 
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 Notably, although we did observe a slight shift in the functional composition of our 

metagenomes, these changes did not track those found in the metatranscriptomes in either 

magnitude or direction. Changes contributing the most to dissimilarity tended to be slight shifts 

in highly abundant genes, such as rpoB, rpoC, and lacI. We found interesting differences in the 

abundance of spore forming proteins as nutrient availability declined, however since many of 

these proteins were uncommon and in low abundance, the chance of obtaining a false positive is 

much greater and we are therefore cautious to draw any conclusions based on these data alone. 

Changes in gene abundance for most N cycling genes were absent. These results suggest that 

understanding the response of soil microbial communities to short-term changes in the 

environment necessitates looking beyond the metagenome, as consequential microbial responses 

occur through changes in gene-expression. This is in line with other studies where the 

composition of transcripts shifts over hours or days (12, 87), whereas shifts in metagenomic 

community composition have been shown to occur after weeks or months (88) .  

 Our work represents a preliminary look into the short-term transcriptional response of 

microbial communities in response to a change in C availability, however there are a number of 

considerations moving forward. More work needs to be done focusing on this response in a 

variety soils, as nutrient availability and other soil properties will undoubtably influence this 

process. For example, soils high in C and low in N would likely not demonstrate a similar 

response as observed for this agricultural soil. Understanding how ecosystem properties 

influence the dynamics of transcriptional profiles is therefore necessary in determining short-

term microbial contributions to biogeochemical cycling. Further, this work focused on a 

relatively short timeframe, however whether this increase in transcription persists or influences 

nutrient cycling on the scale of weeks to months remains to be seen. Finally, future efforts should 
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be made to observe these short-term effects in situ. Laboratory incubations are extremely useful 

for controlling environmental variables and isolating a particular response. However, it is likely 

that under field conditions, and in the presence of plant roots, factors other than C availability 

will affect the gene-expression at the same time and to different degrees, potential masking the 

response observed in this short-term laboratory experiment. 
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CONCLUSIONS 
 

Our results indicate strong and rapid upregulation of genes associated with uptake of inorganic 

N, assimilatory nitrate and nitrite reduction, GS-GOGAT pathway, and the regulatory network 

underlying N cycling. Further, the majority of upregulation occurred in pathways which are 

largely aerobic and heterotrophic, suggesting that these processes dominate the short-term 

response to labile C in these soils. Perhaps most importantly, this work highlights the importance 

of microbial gene transcription in controlling short-term biogeochemical cycling in soils. Within 

the 48 h incubation we found that microbially mediated transformations of N were well reflected 

in the metatranscriptome but not in the metagenome or in microbial biomass. The short-term 

transcriptional responses of soil microbes may therefore serve an important role in determining 

how biogeochemical fluxes respond to immediate changes in the environment.  
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Figure 1. Mean concentration (± SE) of nitrate (A),. ammonium (B), rate of carbon dioxide 

production (C), and K2SO4-extractable C (D) as a function of time after glucose amendments.  

 

Figure 2. NMDS using Bray-Curtis distance of normalized KEGG annotation abundance for 

metagenomes (A) and metatranscriptomes (B) at 0, 8, 24, and 48 hours after the addition of 

glucose.  

 

Figure 3. (A) Log2-fold changes (mean LFC ± SE) relative to t0 of normalized gene (left) and 

transcript (right) abundances versus normalized counts for N cycling genes from glucose-

amended soils. LFC and normalized counts represent the average between t8, t24, and t48 for each 

gene. (B) Log2-fold changes in transcript abundances for genes grouped by biologically relevant 

reactions and pathways. A black asterisk indicates a significant change relative to t0.  

 

Figure 4. Relative transcript abundance of major taxa for reactions and pathways of N-cycling at 

0, 8, 24, and 48 hours after glucose amendments.  

 

Figure 5. Abundance and log2-fold change of transcripts 8 h after glucose addition of C and N 

metabolism including glycolysis, the TCA cycle, N regulatory network, and GS-GOGAT. Color 

represents log2-fold change of transcript abundances relative to t0, and size indicates number of 

transcripts. Thin black arrows indicate reactants or products of pathways and grey arrows 

represent regulatory controls. Gene names are presented in white boxes (ex. glnA), whereas 

pathway or enzyme names are presented in bold (ex. GS or Glycolysis).  
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ABSTRACT 
 

Free-living bacteria in nutrient limited environments often exhibit traits which may reduce the 

cost of reproduction, such as smaller genome size, low GC content, and fewer sigma (σ) factor 

and 16S rRNA gene copies. Despite the potential utility of these traits to detect relationships 

between microbial communities and ecosystem-scale properties, few studies have assessed these 

traits on a community-scale.  Here, we analyzed these traits from publicly available 

metagenomes derived from marine, soil, host-associated, and thermophilic communities. In 

marine and thermophilic communities, genome size and GC content declined in parallel, 

consistent with genomic streamlining, with GC content in thermophilic communities generally 

higher than in marine systems. In contrast, soil communities averaging smaller genomes featured 

higher GC content and were often from low-carbon environments, suggesting unique selection 

pressures in soil bacteria. The abundance of specific σ-factors varied with average genome size 

and ecosystem type. In oceans, abundance of fliA, a σ-factor controlling flagella biosynthesis, 

was positively correlated with community average genome size – reflecting known trade-offs 

between nutrient conservation and chemotaxis. In soils, a high abundance of the stress response 

σ-factor gene rpoS was associated with smaller average genome size and often located in harsh 

and/or carbon-limited environments – a result which tracks features observed in culture and 

indicates an increased capacity for stress response in nutrient-poor soils. This work shows how 

ecosystem-specific constraints are associated with trade-offs which are embedded in the genomic 

features of bacteria in microbial communities, and which can be detected at the community level, 

highlighting the importance of genomic features in microbial community analysis.  
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INTRODUCTION 
 

Assessing microbial communities through a trait-based framework highlights important 

relationships between microbes and their environment which may not be detectable through 

taxonomic analyses alone (Green, Bohannan and Whitaker 2008; Raes et al. 2011; Barberán et 

al. 2014; Fierer, Barberán and Laughlin 2014; Krause et al. 2014; Martiny et al. 2015). Notably, 

genomic characteristics such as genome size, GC content, number of regulatory genes, and 

number of 16S rRNA gene copies, have been shown to be indicators for growth rates (Vieira-

Silva and Rocha 2010), life history strategies (Cobo-Simón and Tamames 2017) and population 

dynamics (Batut et al. 2014) of bacteria. Relationships between genomic features and 

environmental factors such as nutrient usage (Batut et al. 2014; Giovannoni, Cameron Thrash 

and Temperton 2014; Roller, Stoddard and Schmidt 2016), aboveground cover (Schmidt et al. 

2018; Li et al. 2019), temperature (Sabath et al. 2013), and precipitation (Gravuer and Eskelinen 

2017) have additionally demonstrated the potential utility of genomic traits for assessing the 

relationship between bacteria and their environment. 

The genome size of free-living bacteria may be reduced by a process called genomic 

streamlining, wherein nutrient limitation selects for smaller genomes as a way to reduce the cost 

of reproduction (Giovannoni et al. 2005). Streamlined genomes are associated with a number of 

traits which also reduce reproductive costs, most notably a lower GC content (which reduces 

nitrogen requirements and is less costly to synthesize), fewer regulatory genes (specifically those 

encoding σ-factors), smaller intergenic spacer regions, and fewer 16S rRNA gene copies 

(Giovannoni, Cameron Thrash and Temperton 2014). Consequently, bacteria with streamlined 

genomes are thought to have a higher resource use efficiency and lower maximum growth rates 

compared to bacteria with larger genomes and more rRNA gene copies (Lauro et al. 2009), 
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although evidence for this relationship remains mixed (Klappenbach, Dunbar and Schmidt 2000; 

Vieira-Silva and Rocha 2010; Yooseph et al. 2010; Karcagi et al. 2016; Kirchman 2016; 

Kurokawa et al. 2016). Streamlining has long-been known to be highly prevalent in marine 

systems (Morris et al. 2002) where the streamlined SAR11 clade, with a genome of only ~1.3 

Mbp, makes up 25% of all planktonic bacteria (Giovannoni 2017). As a result, much of the 

current knowledge regarding streamlining is based on marine systems, although the recently 

described streamlined (2.81 Mbp) Verrucomicrobia, Candidatus Udaeobacter copiosus, has been 

shown to be ubiquitous in soils, comprising up to 30% of recovered taxa in some grassland soils 

(Brewer et al. 2017)—indicating that genome reduction may also be an important force shaping 

soil bacteria.   

Temperature can also influence genome size due to increased fitness of small cells at high 

temperatures (Sabath et al. 2013). Accordingly, small cells and smaller genomes are typically 

associated with higher optimal growth temperatures. This relationship is most pronounced in 

thermophilic communities (Wang, Cen and Zhao 2015), but has also been demonstrated in 

marine systems (Swan et al. 2013; Morán et al. 2015; Huete-Stauffer et al. 2016) and more 

recently in soils (Sorensen et al. 2019). These patterns between genome size, GC content, and 

number of 16S rRNA gene copies as a result of temperature-induced genome reduction often 

resemble patterns in streamlined genomes (Sabath et al. 2013). 

Small genomes are also prevalent in host-associated bacteria. However, the processes 

underpinning the reduction in genome size involve several mechanisms, including drift, rapid 

mutation rate, or other mechanisms, which could be more important than streamlining (Batut et 

al. 2014). In environments where nutrients are abundant but population sizes small, deletions in 

bacterial genomes are more likely to become fixed in a population (Mira, Ochman and Moran 
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2001; Batut et al. 2014), a process particularly common in host-associated gut microbiota, where 

population sizes are small due to isolation (McCutcheon and Moran 2012). Bacteria subject to 

higher levels of mutation are more likely to be AT-rich since there is a mutational bias from GC 

→ AT (Kuo, Moran and Ochman 2009; Hershberg and Petrov 2010; Hildebrand, Meyer and 

Eyre-Walker 2010; Batut et al. 2014). Since the mechanisms driving the evolution of host-

associated bacteria often stray from streamlining, genome reduction in host-associated bacteria 

may yield different patterns in genome reduction. Specifically, streamlining, which is more a 

directional rather than stochastic process, will often select for specific genes (Batut et al. 2014).  

However, much of this knowledge concerning bacterial genomic traits has been derived from 

cultures or isolates. This presents substantial bias in our understanding of these relationships 

(Gweon, Bailey and Read 2017), especially for genomic traits of bacteria in complex microbial 

communities (Rinke et al. 2013), as most bacterial taxa have never been cultured or isolated. An 

alternative approach is to examine genomic traits on a community level in situ. By observing 

community-derived metrics of genomic traits we broaden our understanding of the distribution 

and implication of these traits as they occur in the natural world. This is an important practice for 

microbial ecology as there has been growing interest in trait dimensions which might improve 

our assessment of community function (analogous to those existing for plants; Westoby et al. 

2021), yet little work has been done to observe these traits on the community level. Such metrics 

could be valuable in the comparison of communities across landscapes and ecosystems. Genomic 

traits such as GC content, number of regulatory genes, and average genome size may be 

especially useful for this purpose, as they can often be easily estimated from metagenomic 

datasets and do not require an extensive knowledge of the taxa within the community. The 

relative ease with which these traits may be derived makes them ideal metrics for large-scale 
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comparisons. This represents a potentially valuable tool for linking microbial communities with 

ecosystem-level processes.  

The ability to leverage these traits to gain insight into function, assembly, or evolutionary 

relationships remains untested. A necessary step towards building a more comprehensive 

understanding of community-derived traits includes assessment of the distribution of these traits 

across systems, such has been done numerous times for isolates. Here we present a comparison 

of genomic traits from 116 metagenomes from soil, marine, host-associated, and thermophilic 

systems. These systems were chosen as they represent distinct environments which exert unique 

evolutionary pressures on genomic traits which might produce predictable outcomes: 

streamlining in oceans; temperature-induced genome reduction in thermophiles; drift in host-

associated communities. Several mechanisms have been shown to influence genome size in soils; 

however, the predominant force is not well understood. Isolate genomes in soils tend to be 

comparatively larger than other systems (Sabath et al. 2013) which is thought to be a result of the 

increased metabolic diversity (Barberán et al. 2014). The overall aim of this study is to assess 

whether genomic traits measured at the community level track relationships which have been 

observed in isolates. Accordingly, we hypothesize that, consistent with trends in isolates, the 

average genome size in soil microbial communities will be larger than in marine, host-

associated, or thermophilic communities. We also predict that GC content will be positively 

correlated with average genome size in free-living soil, marine, and thermophilic communities— 

consistent with trends from streamlined and thermophilic isolates. Finally, we predict that while 

both free-living and host-associated communities with small average genome sizes will 

demonstrate a low GC content, free-living communities will also exhibit additional streamlined 

traits such as a reduced number of σ-factor and rRNA gene copies.   
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MATERIALS AND METHODS 
 

Dataset Curation 

 Metagenomes from soil, marine, thermophilic, and host-associated communities were 

downloaded from the Integrated Microbial Genomes & Microbiomes (IMG/M) (Chen et al. 

2019) system. Data were used in accordance to JGI IMG/M data release policies 

(https://jgi.doe.gov/user-programs/pmo-overview/policies/) and studies were only used under the 

follow conditions: 1) The studies were previously published with a corresponding publication on 

the IMG database or; 2) We were granted written consent from the team which generated the 

data. This publication does not act as a primary publication for these studies and use of the data 

from the second group requires consent from the corresponding principal investigators of that 

study. We searched for soil and marine samples that were untreated and collected in situ systems 

(i.e. not an incubation or microcosm). If studies included any form of experimental manipulation, 

then only metagenomes from the control were selected. For thermophilic samples we searched 

for communities derived from natural hot-springs, and for host-associated samples we focused 

on animal-associated communities. We then selected samples which were both sequenced and 

assembled (MEGAHIT (Li et al. 2015) or SPAdes (Bankevich et al. 2012)) by the Joint Genome 

Institute (JGI) and where > 35 Mbp were assembled. Replicates appearing to be derived from a 

single sample (i.e. identical metadata and sample name) were discarded. In order to limit 

potential bias introduced by a specific study site or set of protocols of a given study, no more 

than 4 samples were used from any single geographical location and no more than 14 samples 

were selected from a single study. Ecosystem type was determined for soil samples using the 

available metadata and study description. In total, 116 samples from 30 different studies were 

used in this analysis (Supplemental Fig. 1; Supplemental Table 1&2).  
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 Average genome size for each metagenome was estimated using the program 

MicrobeCensus (parameters -n 50000000) (Nayfach and Pollard 2015) on QC filtered reads 

accessed through the JGI Genome Portal (Nordberg et al. 2014). MicrobeCensus uses the 

abundance of single-copy genes to estimate the number of individuals in a population, which is 

then divided by the total number of read base-pairs to provide an estimate of the average genome 

size in a metagenome.  

 From IMG/M, we accessed the size of the metagenomic sample (bp), GC-%, total 

number of 16S rRNA gene copies, and the total number of σ factors identified by the KEGG 

Orthology database (Table 1; KEGG - Kanehisa and Goto 2000). We estimated the number of 

genomes per metagenome by dividing the total base pair count of the metagenome by the 

estimated average genome size from MicrobeCensus. The average number of 16S rRNA gene 

copies per genome and the number of σ-factors gene copies per genome was then determined by 

dividing the total number of 16S rRNA or σ-factor gene copies by the estimated number of 

genomes.  

To ensure that any observed trends were not heavily influenced by the abundance of nonbacterial 

genomes, such as large eukaryotic genomes, we assessed the relationship between average 

genome size and the relative abundance of assembled bacterial reads. For each metagenome, we 

accessed the taxonomic assignments of mapped reads from IMG/M and then summed the total 

number of reads grouped by domain. The relationship between the relative abundance of bacteria 

and average genome size of the community was then calculated for each ecosystem to assign a 

cutoff which demonstrated the least amount of bias (as determined by linear regression). As a 

result, samples where bacteria made up less than < 95% of the assembled reads were discarded.  
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Since archaeal abundance in thermophilic microbial communities is often high, filtering samples 

with < 95% bacterial reads discarded a large number of thermophilic samples. Post filtering, only 

5 thermophilic samples were left for analysis – a sample size ultimately too small to generate 

conclusions. Rather than omitting the thermophilic environments from our analysis entirely, and 

because small archaeal genomes abundance have been shown to be correlated with higher 

optimum growth temperatures (Sabath et al. 2013), we decided to include thermophilic samples 

with > 5 % archaeal abundance in several of the comparisons. Although these data do not 

examine bacterial streamlining specifically, we find that they still provide valuable insight into 

how genomic traits are distributed in these communities. Mixed thermophilic samples (those 

including > 5 % archaea) are shown separately in figures and analyses. In comparisons of 

genome size versus bacteria-specific traits, such as 16S rRNA gene copies or abundance of 

sigma factors, we only report samples where bacteria comprise > 95% of annotated reads.  

 

 

Analysis 

Multiple regression was used to determine the relationship between genome size and genomic 

characteristics – specifically, GC content, 16S rRNA gene relative abundance, the relative 

abundance of the total number of σ-factor genes, and the relative abundance of specific σ-factor 

genes as listed in Table 1. Models were constructed with the command lm or lmer from the R 

(v3.6.1 (Team 2018)) package lme4 (Bates et al. 2020). For each response variable, we 

constructed multiple models considering all parameters and interactions. Final models were 

selected using Akaike information criterion (AIC) values. The addition of a new parameter 
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resulting in a reduction of the AIC value by at least 4 indicated a significantly better fit with 

increased model complexity.  

To assess the abundance of σ-factor genes between different ecosystems, we used both the multi-

response permutation procedure (MRPP) as well as the permutational multivariate analysis of 

variance (PERMANOVA). The MRPP was conducted using all samples while PERMANOVA 

was conducted using 11 randomly selected genomes from each ecosystem to ensure balanced 

design. Both analyses were conducted using Bray-Curtis dissimilarity matrices constructed from 

the relative abundance of each σ-factor. To visualize differences in the distribution of different 

types σ-factors between ecosystems we used nonmetric multidimensional scaling (NMDS) on 

Bray-Curtis distances. MRPP, PERMANOVA and NMDS were done using the vegan package 

(Oksanen et al. 2019) in R (v3.6.1).  

 

Isolates 

  To compare relationships between genomic characteristics of a microbial community 

with characteristics of isolates, we accessed over 6,000 isolates of bacteria, archaea, and fungi 

from the IMG/M system in June of 2020. Isolates were selected if they were (1) publicly 

available; (2) previously published; (3) sequenced by JGI. The associated publications for these 

isolates may be found in the Supplemental References. Metadata was used to group samples into 

one of three ecosystem types: soil, marine, thermophilic, or host-associated. To avoid potential 

bias introduced by large studies selecting for specific taxa, we randomly selected no more than 

20 isolates from a single study. Relationships between genomic characteristics were analyzed 

using multiple regression analyses as described above for the analysis of community-level traits. 
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ANOVA was used to assess differences in the distribution of genomic characteristics between 

isolates and metagenomic averages.    
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RESULTS 
 

Average Genome Size and GC Content 

 Average genome size was significantly different between ecosystems (ANOVA; F4,111 = 

135.9, p < 0.01). Specifically, average genome size was higher in soils compared to marine, host-

associated, or thermophilic communities (Fig. 1a, Tukey’s HSD p < 0.01). GC content (%) 

varied between each ecosystem (ANOVA; F4,111 = 140.3, p < 0.01), and was highest in soil, 

followed by thermophilic, host-associated, and then marine communities (Fig. 1b). The 

relationship between GC content and average genome size varied between ecosystems (Fig. 1c). 

A comparison of multiple models, using AIC values as selection criteria, indicated that GC 

content was best predicted by average genome size, ecosystem, and their interaction (F9,106 = 

136.1, p < 0.01, Supplemental Table 3). Specifically, GC content was positively correlated with 

average genome size in marine and thermophilic communities, negatively correlated in soil 

communities, and not significantly related in host-associated communities (Fig. 1c). The 

relationship between average genome size and GC content was offset between marine and 

thermophilic communities, wherein thermophilic communities had a higher GC content than 

marine communities with the same average genome size (Fig. 1c). The relationship between GC 

content and average genome size was strongly driven by the abundance of archaea in the mixed 

thermophilic samples (Supplemental Fig. 2). In soils, average genome size and GC content were 

significantly different between ecosystem types (ex. Deserts, grasslands, forests; ANOVA: Mbp 

- F7,38 = 24.35, p < 0.01; GC-% - F7,38 = 4.986, p < 0.01; Fig. 2).  

 The average genome size and GC content of the metagenomes fell within the range of 

isolates from each ecosystem (Fig. 3). However, the mean genome size and GC content derived 
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from metagenomes varied from isolates in both soil and thermophilic environments (ANOVA; p 

< 0.05), but not in marine environments.  

 

16S rRNA gene copies and Sigma factors  

 Host-associated communities had the highest number of 16S rRNA gene copies per 

genome, followed by soils and then thermophilic and marine communities (Supplemental Fig. 3). 

A comparison of AIC values indicated that ecosystem type alone was the best predictor of 16S 

rRNA gene copies per genome (Supplemental Fig. 3, Supplemental Table 3).   

The relative abundance of σ-factors genes per metagenome changed with estimates of average 

genome size and this relationship varied significantly between ecosystems (Fig. 4; Fig. 5a; 

Supplemental Table 3). Average genome size was significantly correlated with the relative 

abundance of σ-factors in thermophilic environments (R2 = 0.49), but not in soil, marine, or host 

associated environments (R2 < 0.2; Fig. 5a). The distribution of σ-factor types within a 

metagenome varied more between ecosystems than within (Fig. 4; Fig. 5b; MMRP, A = 0.34, p < 

0.01), and ecosystems differed significantly (Fig. 4; Fig. 5b; PERMANOVA, R2 = 0.50, p < 

0.01). 

 The relationship between average genome size and the relative abundance of individual 

σ-factors was dependent on both ecosystem type and the type of σ-factor (Fig. 5c, Supplemental 

Table 4). In host-associated communities, the relative abundance of only one σ-factor, sigH, was 

significantly (p= 0.018) negatively correlated with average genome size. Abundance of all other 

sigma factors were unchanged with genome size in host-associated communities (Supplemental 

Table 4). In soil communities the relative abundance of rpoH per metagenome significantly 

increased (p < 0.01) with larger average genome size, while the relative abundance per 
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metagenome of rpoS, sigH, sigB, and fliA decreased (p < 0.01). In marine communities, we 

found that the relative abundance of fliA, rpoE, and sigH significantly increased (p < 0.01) with 

genome size, and the abundance of rpoH, and rpoD significantly decreased (p < 0.01). Due to the 

small samples size of thermophilic communities, we did not include the relationships between σ-

factors and average genome size for thermophilic environments; however, correlation 

coefficients and statistics for all linear regressions between average genome size and σ-factor 

abundance for each ecosystem can be found in Supplemental Table 4. A visualization of average 

σ-factor copies per genome can be found in Supplemental Fig. 4.  

   

  



 63

DISCUSSION 
 

 The range of values for both genome size and GC content on the community level was 

substantially more narrow than those recorded for isolates, both from the literature (Sabath et al. 

2013) and the IMG database. However, we did observe considerable variation both between and 

within different ecosystems. The observed within-ecosystem variation is likely a product of the 

range of ecosystems included in the analysis. For example, soil metagenomes were derived from 

deserts, grasslands, forests, tropical forests, and polar deserts, and traits accordingly tended to 

separate out by these habitats (Fig. 2). This work demonstrates the variability that exists within a 

specific ecosystem type and highlights the potential utility of genomic traits in studies comparing 

multiple habitat types. Between ecosystems, microbial communities in marine, host, and 

thermophilic environments had a smaller average genome size and lower GC content than those 

in soil, consistent with our first hypothesis based on previous findings from studies using 

bacterial isolates and single-amplified genomes (Raes et al. 2007; Giovannoni, Cameron Thrash 

and Temperton 2014; Cobo-Simón and Tamames 2017). Although small genomes may persist in 

soil communities, larger genomes tend to be more abundant (Barberán et al. 2014; Brewer et al. 

2017); a feature often attributed to the advantage gained from the increased abundance of 

secondary metabolite genes in large soil genomes (Konstantinidis and Tiedje 2004). 

Since smaller genomes tend to have lower GC content (Bentley and Parkhill 2004), we expected 

to find a positive correlation between GC content and average genome size for each ecosystem. 

Contrary to our second hypothesis, we only found this relationship in marine and thermophilic 

communities. This relationship in marine communities is not especially surprising considering 

how many studies have observed the trade-off between the genome size and GC content of 

individuals in marine systems. However, our results demonstrate that these trade-offs are 
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detectable on a community scale and emphasizes the degree to which streamlining shapes 

community-averaged traits. In thermophilic communities, this relationship appeared confounded 

with the presence of archaea (Supplemental Fig. 2), thus making it impossible to distinguish 

between archaeal abundance or temperature as a driver for smaller genome size in these extreme 

environments. Additionally, higher temperatures might similarly result in smaller archaeal 

genomes (Sabath et al. 2013), further contributing to this signal. It is worth noting that the 

relationship between genome size and GC content in thermophilic communities was offset higher 

from marine systems, even for bacterial dominated thermophilic communities. This offset is 

perhaps the result of a requirement for thermal stability in hot environments which is provided 

by the GC triple-hydrogen bonds versus the AT double-bond (Wada and Suyama 1986; Musto et 

al. 2006).  

 Both GC content and average genome size in host-associated communities were low, a 

common feature of symbiotic bacteria (McCutcheon and Moran 2012). Although host-associated 

bacteria in small populations often have AT-rich genomes (Batut et al. 2014), the relationship 

between GC content and average genome size was not significant for host-associated 

communities.  Reduced genetic flow in these communities could mean that changes in nucleotide 

frequency and genome size develop independently in populations. Therefore, these trends might 

exist within, but not between, communities. In other words, host-associated environments might 

produce small AT-rich genomes, but these two traits do not covary between communities as in 

marine systems.  

Soil communities exhibited a negative relationship between average genome size and GC 

content. This does not necessarily exclude streamlining as a driver of genome size in soils but 

suggests other drivers of genome size and GC content. One explanation of this relationship is 
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that soil microbial communities skew towards smaller genomes with a higher GC content due to 

carbon limitation. A GC base  pair has a carbon to nitrogen ratio of 9:8 while an AT base pair 

has a ratio of 10:7. A reduction in GC content therefore decreases the amount nitrogen required 

for DNA synthesis, which has been suggested as an explanation of the low GC content in small 

genomes that is commonly exhibited in marine systems, where nitrogen is often limiting 

(Grzymski and Dussaq 2012). In contrast, C is generally considered to be the limiting factor for 

growth in soil bacteria (Demoling, Figueroa and Bååth 2007; Hobbie and Hobbie 2013). A 

higher GC content might therefore be advantageous when C is particularly limiting. This would 

explain the negative correlation between genome size and GC content in soils—as smaller 

nutrient-limited soil bacteria would gain a stochiometric advantage from GC rich DNA. In this 

dataset, communities from deserts, agricultural fields, and grasslands had a smaller average 

genome size and higher GC content (Fig. 2). These environments tend to have lower soil and 

microbial carbon to nitrogen ratios than forests (Xu, Thornton and Post 2013). Similarly, 

bacterial communities in forests tended to have larger average genome sizes and lower GC 

content. Although this mechanism for nucleotide selection has not been established in soils, 

selection for high GC content in response to C limitation is not unfounded (Hellweger, Huang 

and Luo 2018; Shenhav and Zeevi 2020). Moreover, microbial communities in bare soil have 

been shown to have a higher GC content than in vegetated soil (Chen et al. 2021), and larger 

genomes were associated with lower GC content in a recent pangenomic study (Choudoir et al. 

2021). It is important to note that many other environmental factors may fall along the 

environment gradient shown here, several of which might also influence GC content; such as 

temperature and moisture, which have been shown to influence nucleotide composition in 

terrestrial plants (Šmarda et al. 2014) and the genomic traits of microbes (Gravuer and Eskelinen 
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2017; Sorensen et al. 2019). Still, our data demonstrate a relationship between genomic traits in 

soil which is distinct to those of other systems and emphasizes the need to develop a more 

complete understanding of genomic features across soil microbial communities. A more 

thorough understanding of these relationships in soil might enhance our ability to use 

community-derived genomic traits in ecosystem science; for instance, in tracking growth, 

nutrient turnover, and microbial contributions to soil organic carbon on an ecosystem-scale.  

Another explanation is that fungal reads may reduce the overall GC content of a metagenome 

while raising estimates of average genome size. Although we attempted to avoid the influence of 

fungal genomes by limiting our dataset to metagenomes which were dominated by bacteria, and 

found that the abundance of eukaryotic reads to only slightly coincide with the relationship 

between average genome size (R2=0.12) and GC content (R2=0.14), it still is possible that even a 

low abundance of large fungal genomes affected our estimates. To assess this further, we applied 

a more stringent cut-off on the number of eukaryotic assigned reads (<1% of total) which 

resulted in no detectable relationship between the number or eukaryotic reads and average 

genome size and GC content (Supplemental Fig. 5a&b) and found that the relationship between 

average genome size and GC content stayed intact (Supplemental Fig. 5c).  

Inconsistent with our third hypothesis, we did not find that the relative abundance of σ-factors 

was associated with average genome size in free-living communities. However, we did observe 

that marine communities maintained a lower abundance of σ-factor gene copies in comparison to 

other ecosystems, even when average genome size was comparable. One explanation is that the 

reduction of σ-factor gene copies is particularly effective in reducing reproductive costs in 

marine systems. Marine systems are considered to be nutrient poor relative to soils and a general 

reduction in the proportion of σ-factors in bacterial genomes may function as an adaptation to 
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nutrient constraints.  We also found many trends between average genome size and the 

abundance of specific σ-factor genes in marine communities. In marine metagenomes, the 

relative abundance per genome of rpoD and rpoH, which encode for σD and σH respectively, was 

negatively correlated with average genome size. These trends are perhaps caused by the 

abundance of the streamlined SAR11 clade, which only contain σD and σH (Giovannoni 2017). 

Conversely, the abundance of the gene fliA, which encodes for the σ28 and regulates flagella 

biosynthesis (Ohnishi et al. 1990), increased with average genome size. This relationship reflects 

that found in marine systems, wherein nutrient scarcity selects for smaller, more streamlined, 

cells while increased nutrient availability selects for larger cells capable of chemotaxis (Lauro et 

al. 2009; Stocker 2012).   

 In soils, the relative abundance of many σ-factors were negatively correlated with 

estimates of average genome size. Most notably, we observed a decrease in the relative 

abundance of rpoS (σS) but no significant change in the abundance of rpoD (σD) with increasing 

average genome size. The balance between rpoS and rpoD may be a trade-off between stress 

tolerance and growth (Ferenci 2003; Nyström 2004). A higher ratio of rpoS to rpoD has been 

shown to increase the cell’s capacity to cope with stress but limit its ability to grow on a variety 

of carbon sources (Ferenci 2003; King et al. 2004; Maharjan et al. 2013). We see this reflected in 

the environments from which the metagenomes were samples, with microbial communities from 

high stress environments, such as deserts, having a higher abundance or rpoS compared to lower-

stress carbon-rich environments, such as forests (Supplemental Fig. 6).  

 Surprisingly, we found a high abundance of fliA gene copies in soil communities with 

smaller genomes, several of which were sourced from desert environments. Motility may be 

more valuable in nutrient limited environments, whereas in environments with high nutrient 
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inputs, nutritional competency may be more paramount. However, these results contrast with the 

commonly held notion that chemotaxis is most prevalent in mesic soils. One explanation is that 

motility may be especially important when water availability is ephemeral. A greater number of 

regulatory mechanisms would therefore be advantageous as it would allow for a rapid response 

to periodic pulses of moisture. Another possibility is that bacteria utilize biofilms surrounding 

fungal hyphae, or “fungal highways” (Kohlmeier et al. 2005), which could explain the 

persistence of flagellated bacteria even in xeric environments (Pion et al. 2013).   

 Finally, we found that the distribution of genomic traits estimated from soil and hot-

spring communities did not follow the distribution derived from isolates—potentially due to a 

decoupling of traits between the individual and community level. The relationship between 

genome size and GC content was also substantially different between soil isolates and isolates of 

soil bacteria. These results indicate that certain ecosystem trade-offs may be detectable using 

community-derived estimates of microbial traits as opposed to isolates and showcases how 

relating these traits to specific environments may reveal important ecosystem-level pressures on 

microbial community traits. 

  However, it is necessary to consider that the data used for this comparison were not 

sourced from the same studies and the sample size was fairly limited. If genomic traits are to be 

used as trait-dimensions in microbial ecology, more work must be done observing the 

distribution of these traits both within and between communities. Further, we found that many of 

the studies we were able to access were collected from more specialized communities. Although 

we believe that the comparison of these communities still has merit in showing the range of 

genomic traits for particular systems, they might not accurately reflect the true distribution of 

these traits in their respective environments globally.  
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CONCLUSIONS 
 

We found several compelling ecosystem-specific relationships between genomic traits of a 

microbial community, most notably with genome size, GC content and the distribution of σ-

factors. Several of these relationships align with evolutionary mechanisms which relate to known 

drivers in these environments, such as streamlining in oceans and drift in host-associated 

communities. We also observed trends in soils which were not in-line with known mechanisms 

of genome reduction, emphasizing the need to develop an understanding of the controls of 

genomic features in soils. In this way our work demonstrates the importance of genomic traits in 

the field of microbial ecology and ecosystem science; both in their potential to assess microbial 

communities via ecosystem-specific trade-offs, as well as their ability to reveal new selection 

pressures not detectable through the analysis of individuals.  
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LIST OF FIGURES 
 

Figure 1: 

Average genome size and GC-content calculated from environmental metagenomes. (A) 

Boxplots of the average genome size (Mbp) of microbial communities in different ecosystems. 

(B) Boxplots showing GC-% between systems. (C) GC-% as a function of average genome size 

(Mbp) of a metagenome, separated by system. Point shape and outline represent source system; 

point fill represents system including thermophilic samples with archaea.  
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Figure 2: 

GC content (%) as a function of average genome size (Mbp) in soils, with color indicating source 

environment. 
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Figure 3: 

The relationship and distribution of genome size and GC content for isolates and metagenomic 

averages for each system. In each panel, metagenomes (dark circles) are plotted against bacterial 

(light squares) and archaeal (light triangles) isolates. Regression lines between genome size and 

GC-% are shown for both metagenomes (dark lines) and isolates (light lines). Marginal density 

plots show the distributions of GC-% (right) and genome size (top) for isolates (light) and 

metagenomic averages (dark).  
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Figure 4: 

The relative abundance σ-factors in a metagenome separated by ecosystem. Each bar represents 

the abundance of σ-factors in a single metagenome, and metagenomes are ordered from smallest 

to largest (left to right) for each ecosystem. 
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Figure 5: 

The relative abundance of σ-factors (σ-factor count / gene count) as a function of average 

genome size and system. (A) The relative abundance of all σ-factors (total σ-factor count / gene 

count) in a metagenome against average genome size. Source environment indicated by color for 

host associated (red), soil (green), thermophilic (orange) and marine (blue) communities. (B) 

NMDS of Bray-Curtis 

distance of the relative 

abundance of σ-factors (σ-

factor count / total gene 

count) from a metagenome. 

(C) The relative abundance 

(σ-factor count / total gene 

count) of 9 σ-factors (rows) 

versus average genome size, 

separated by environment 

(columns). Statistical 

significance of a relationship 

(p < 0.05) is indicated with an 

asterisk.  
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Gene name, description, and KEGG ortholog identifier (K numbers) for each σ-factor used in the 
analysis. 
  

����-factor 

gene 

Functions regulated by ����-factor K Number 

rpoD Primary sigma factor, "Housekeeping" 
(Lonetto, Gribskov and Gross 1992) 

KO:K03086 

rpoE Envelope stress (Hayden and Ades 2008) KO:K03088 

fliA Flagella biosynthesis (Ohnishi et al. 1990) KO:K02405 

rpoH Heat shock (Grossman, Erickson and Gross 
1984) 

KO:K03089 

sigI Heat shock (Zuber, Drzewiecki and Hecker 
2001) 
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sigH Heat shock, oxidative stress (Fernandes et al. 
1999) 
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rpoN Nitrogen assimilation (Ronson et al. 1987; 
Totten, Cano Lara and Lory 1990),  
Motility (Totten, Cano Lara and Lory 1990), 
Quorum sensing (Heurlier et al. 2003) 

KO:K03092 

rpoS Stress response (Battesti, Majdalani and 
Gottesman 2011; Hengge 2014),  
Stationary phase (Lange and Hengge-Aronis 
1991) 

KO:K03087 

sigB Stress response (Hecker, Schumann and 
Völker 1996) 
Stationary phase (Boylan, Redfield and Price 
1993) 
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ABSTRACT 
 

Genomic traits, such as genome size, GC content, codon usage, and amino acid content, shed 

insight into the evolutionary processes of bacteria and selective forces behind microbial 

community composition. Nutrient limitation has been shown to reduce bacterial genome size and 

influence nucleotide composition, yet little research has been conducted in the soil environment, 

and the factors which shape soil bacterial genomic traits remain largely unknown. Here we 

determined average genome size, GC content, codon usage, and amino acid content from 398 

soil metagenomes across the United States from the National Ecological Observation Network 

(NEON) and observed the distribution of these traits across numerous environmental gradients. 

We found that genomic trait averages were most strongly related to pH, which we suggest results 

in both physiological constraints on growth as well as affects availability of nutrients in soil. 

Low pH soils had higher carbon to nitrogen ratios (C:N) and tended to have communities with 

larger genomes and lower GC-content, potentially a result of increased physiological stress and 

increased metabolic diversity. Conversely, smaller genomes with high GC content were 

associated with high pH and low soil carbon to nitrogen ratios, indicating potential resource 

driven selection against carbon-rich AT base pairs. We found that this relationship of nutrient 

conservation also applied to amino acid stoichiometry, where bacteria in soils with C:N ratios 

tended to code for amino acids with lower C:N. Together, these relationships point towards 

fundamental mechanisms which underpin nucleotide and amino acid selection in soil bacterial 

communities.   
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MAIN TEXT 
 

In bacteria, nutrient constraints exert influence on traits such as genome size, GC content, 

codon frequency, and amino acid content [1–3]. For free living bacteria, low nutrient 

concentrations often select for genomic traits which reduce the cost of reproduction, such as low 

GC content and smaller genomes [3]. Since the AT base pair has a carbon to nitrogen ratio (C:N) 

of 10:7 (1.42), whereas a GC base pair has a C:N of 9:8 (1.13), the AT base pair is more 

advantageous in nitrogen-limited environments. However, much of the existing and foundational 

literature on processes controlling genomic traits in free-living bacteria are based on the study of 

marine isolates [4] and aspects of this framework may not cleanly transpose onto soil bacteria. 

For example, we had previously found that community-averaged GC content and genome size 

were positively correlated between marine metagenomes, but surprisingly negatively correlated 

between metagenomes collected from soils [5]. Since the growth of soil bacteria is thought to be 

more limited by carbon than nitrogen [6, 7], we hypothesized that the distribution of genomic 

traits in soil bacteria might exhibit unique patterns reflecting carbon limitation: specifically, 

higher GC content and smaller genomes when carbon availability is low.  

To better understand the relationship between genomic traits of soil bacteria and edaphic 

characteristics, we analyzed 398 metagenomes collected and sequenced by the US-based 

National Ecological Observation Network (NEON) [8] across a broad geographic scale (Fig. 1A) 

and analyzed genomic traits alongside a range of environmental and soil properties. For each 

metagenome, QC filtered reads were assembled into contigs and annotated. Bacterial contigs 

were then used to generate a community-level estimate of bacterial GC content, codon 

frequency, and amino acid content. Using the chemical formulas for each amino acid, we 

calculated the total relative carbon and nitrogen content of amino acids for each metagenome 
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(see Methods). Average genome size of a community was estimated from the number of single 

copy genes recovered from the QC filtered metagenomic reads. Since this estimate uses all QC 

filtered reads and may therefore be biased by the presence of large fungal genomes, we 

calculated an additional estimate of bacterial genome size using 16S rRNA gene datasets 

produced from the same soil samples (sequenced separately from the metagenomes). By aligning 

community taxonomic data against a database of genome sizes from high-quality isolates, we 

were able to calculate a community weighted mean of genome size for the bacteria in a 

community. Genomic traits were then paired with NEON environmental data (soil chemistry, 

climate, etc.), as well as select meteorological data accessed from GRIDMET [9]. 

We hypothesized that microbial communities in carbon limited environments would exhibit 

smaller genome sizes, higher GC content, and amino acid composition with a lower carbon to 

nitrogen ratio (C:N). To test this, we assessed the relationship between extractable soil C:N 

(Cextr:Nextr) and genomic traits across all NEON sites (Fig. 1A). Most of the communities with 

small genome size and high GC content were located in the mountain-west. We further found a 

negative correlation between GC content and Cextr:Nextr (p < 0.001; Fig. 1B), and a positive 

correlation between Cextr:Nextr and both estimates of average genome size (p < 0.001; Fig. 1C).  

The C:N of the sum of all coded amino acids was positively correlated with soil Cextr:Nextr 

(R2=0.24, p < 0.001, Fig. 1D), and closely tracked metagenome GC content (R2=0.51, p < 0.001, 

Fig. 1E)—reflecting the resource alignment between the stoichiometry of nucleic acids in codons 

and their corresponding amino acids [10]. We found that synonymous codon usage skewed 

towards codons with a higher GC content—perhaps best represented by the strong preference for 

guanine and cytosine at fourfold degenerate sites (p < 0.01; Fig. 1F). Preferential selection for 

codons with higher AT content was most pronounced where soil C:N was high. For each amino 
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acid, codons with higher GC were more often negatively correlated with soil Cextr:Nextr compared 

to codons with lower GC, which more often were positively correlated with soil Cextr:Nextr (Fig. 

1G&H).  

These results are in line with our original hypothesis wherein lower C:N lead to communities 

averaging smaller genomes, higher GC, and lower C:N of amino acids. However, genomic traits 

in soil microbial communities may also be driven by other environmental factors, such as 

temperature [11, 12] and pH [13]. To assess the relationships between genomic traits and other 

environmental drivers, we used a machine learning, random-forest model approach to determine 

the environmental variables which explain the most variance in GC content and average genome 

size. With this model, we assessed the importance of over 100 environmental factors and 

geographic range in shaping genomic features. 

Random forest models indicated that GC content and the average genome size of a 

community were most strongly related to soil pH (Fig. 2A), where soils with low pH fostered 

communities with low GC content (Fig. 2B) and larger average genome size (Fig. 2C). Although 

changes in the average genome size of a community as determined by single copy genes could be 

biased by large fungal genomes at low pH, we additionally found a relationship between pH and 

genome size when genome size was determined by aligning 16S gene sequences with a database 

of isolates of known size. 

Soil pH represents the intersection of numerous environmental vectors and, accordingly, 

we hypothesize that there are several mechanisms underpinning the relationship between pH and 

genomic traits. First, low pH causes physiological stress in soil bacteria and is often associated 

with a greater number of repair mechanisms, such as chaperones [14]. This might preferentially 

select for bacteria with a greater investment in stress alleviation and maintenance, and thus larger 
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genomes. Second, low pH is often associated with the accumulation of soil organic carbon 

(SOC). Since soil pH is largely driven by the balance between precipitation and 

evapotranspiration [15], low pH often coincides with greater precipitation excess and primary 

production. Higher biomass inputs into acidic soils, combined with a reduction in the 

decomposition rate due to low pH, results in the build-up of SOC. The accumulation of SOC not 

only alleviates carbon limitation—which may reduce GC content—but also potentially favors 

larger genomes with increased metabolic diversity. It has been suggested that the requirement for 

increased metabolic diversity might explain why soil bacterial genomes tend to have large 

genomes [16] and, similarly, we found that soils with lower pH were associated with higher 

Cextr:Nextr (Fig. 2D), as well as larger genomes and lower GC content (Fig. 2D). Third, genomic 

traits in soil bacteria may relate to other forms of stress coinciding with pH. Aridity has been 

shown to drive streamlining in certain soil bacteria [17] and, as discussed above, influences the 

pH in soil. We did find a positive relationship between mean annual precipitation and average 

genomes size (Supplemental Fig. 1), although the relationship was not as strong as that for pH or 

soil Cextr:Nextr. Previous work has shown relationships between precipitation, pH, and genome 

size [13], and in a previous analysis we found that soil metagenomes collected from both hot and 

cold deserts often had smaller genomes and greater GC content than soils collected in more 

mesic systems [5]. 

Our work demonstrates that soil pH determines the broad-scale distribution of genomic 

traits between soil bacterial communities, which we suggest can be attributed to pH being a 

metric which captures multiple environmental parameters, such as soil nutrients, precipitation 

patterns, and physiological stress. Soil pH is well established driver of community composition 

in soils [18] and our results emphasize the degree to which pH dictates belowground microbial 
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life and perhaps influence evolution of soil bacteria. Additionally, we found several trends which 

suggest that selection pressure in soil bacterial communities might reflect carbon limitation. 

Whereas marine communities tend to harbor small AT-rich bacteria in response to nitrogen 

limitation [3], we found that soils low in carbon tended to select for communities where genomes 

were smaller but high in GC content. These results are derived from community averages and 

more work must be done to uncover both the mechanisms and taxonomic level at which such 

changes in genomic traits occur. However, it is evident that the distribution of genomic traits in 

soil remains distinct from marine systems, and that physiological stress and nutrient demand are 

likely written into the DNA of soil bacteria. 

 

METHODS 
 

Data for this project was gathered from the National Ecological Observation Network (NEON)—

an observational network collecting ecological data from across the United States, funded by the 

US National Science Foundation. NEON maintains 81 field sites in number of distinct biomes 

across the US. Terrestrial sites include a central meteorological station as well as many dispersed 

plots from which samples are collected [19]. A full description of NEON sites can be found at 

https://www.neonscience.org/field-sites/about-field-sites.  

Metagenomic traits 

From the NEON data portal (https://www.neonscience.org/data), we accessed the metadata for 

all available metagenomes as of January 2021. From these data we selected 398 metagenomes 

which demonstrated the greatest read depth while maximizing the number of collection sites (43 

total). In January of 2021, selected metagenomes were downloaded from the NEON data portal 

to the high-performance computing cluster at Northern Arizona University.  
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 Raw reads were QC filtered using Trimmomatic v0.39 (parameters: TruSeq2-

PE.fa:2:30:10 LEADING:10 TRAILING:10 SLIDINGWINDOW:10:20 MINLEN:50) [20]. We 

then used the program MicrobeCensus [21] to determine the average genome size of a microbial 

community from the QC-filtered reads. MicrobeCensus estimates the total number of single copy 

genes to create an estimate of average genome size from unassembled reads. Contigs were 

assembled from QC-filtered reads using MEGAHIT v1.2.9 (parameters: --k-list 21,29,39,59,79 --

min-contig-len 400) [22] and read depth for each contig was determined using BBMap v38.87 

[23]. Open reading frames (ORFs) were then identified using Prodigal v2.6.3 (parameters: -p 

meta) [24] and taxonomy was assigned to each ORF using Kaiju v1.7.4 using the default 

parameters [25].  

Using the read depth for each contig and the estimated taxonomic identity for each ORF, 

we calculated a depth adjusted GC content for the bacterial reads in a metagenome. Similarly, we 

calculated the depth-adjusted amino acid content for each metagenome. Using known chemical 

formulas for each amino acid and the depth-adjusted amino acid content, we calculated an 

estimate of the total C:N of the amino acids in each metagenome. For amino acids with fourfold 

degenerative sites (alanine, glycine, proline, threonine, valine), we calculated the frequency of 

nucleotides at the third position and averaged these values across the selected amino acids. This 

provided a metagenome-level estimate of nucleotide frequencies for fourfold degenerative sites. 

Since our estimate of average genome size for a metagenome was based on the QC 

filtered reads, large fungal genomes could potentially bias our estimate. To assure that trends we 

observed were not solely driven by the presence of large fungal genomes, we also estimated 

average genome size using a community-weighted mean derived from aligning bacterial 16S 

rRNA gene sequences against a database of genomes of known size. In August 2021 we 
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downloaded all available 16S gene sequences and associated metadata from the Genome 

Taxonomy Database [26] and compiled a database consisting of high quality (>95% complete, 

<5% redundant) bacterial genomes. We then accessed 16S rRNA gene datasets from the NEON 

data portal derived from the same plots as our metagenomes. Operational taxonomic units 

(OTUs; clustered at 97%) identified by NEON were then aligned to our high-quality database 

using BLAST. The best alignment (at >99% identity) was used as the assigned taxonomy. The 

genome size of each assigned OTU was then adjusted for read depth and used to calculate a 

community-weighted mean genome size with mean coverage (read depth) as the weight factor. 

 

Analysis with environmental characteristics 

From the NEON data portal and meteorological data, we gathered 205 environmental parameters 

associated with each site and date of collection. A full list of the NEON data products used in 

this analysis can be found in Supplemental Table 1. Data were accessed between January and 

April 2021. Where possible, edaphic characteristics were paired with metagenomes from the 

same soil sample. Otherwise, metagenomes were paired with data from plot or site level 

averages. Microbial PLFA biomarkers were used to calculate fungal to bacterial biomass ratios 

[27, 28].  Standard precipitation and standard precipitation evapotranspiration indices (SPI and 

SPEI) were gathered from GRIDMET [9] using Google Earth Engine [29]. Regression analysis 

was used to determine the relationship between soil carbon and genomic traits. All models were 

constructed in R (v 3.6.1) [30]. 

 Random forest models were constructed using the Tidymodels [31] and ranger [32] 

packages in R, with the objective of determining the environmental parameters which most 

strongly influenced genomic traits. A non-parametric, machine learning/random forest regression 
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model approach was selected given its proven ability to handle non-linear, complex interactions 

in space and time across multiple predictor variables [33]. Prior to tuning the random forest 

hyperparameters, predictors which did not provide data for at least two-thirds of metagenomes 

were dropped, and the remaining variables were scaled and centered prior to analysis. The full 

dataset contained several environmental measurements which were either very similar or 

functionally identical metrics collected at multiple levels (e.g., site, plot, and soil core). 

Redundant predictors were removed by first running a random forest which included all 

available predictors, which were then ranked by variable importance.  We calculated Pearson’s 

correlation coefficients between all predictors and then removed those which were highly 

correlated (R2 > 0.8) with a predictor which explained more variability. We then ran a random 

forest model which included only remaining predictors.  

Upon publication, all code and corresponding data generated through this analysis will be made 

publicly available through Github. 
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LIST OF FIGURES 
 

Figure 1:  

Distribution of genomic traits across sites and soil extractable carbon and extractable nitrogen 

ratios (Cextr:Nextr); (A) Geographic distribution of sites, with mean bacterial GC-% and estimated 

average genome size. (B) Relationship between Cextr:Nextr and bacterial GC content (%). (C) 

Relationship between Cextr:Nextr and genome size, estimated from the number of single copy 

genes per metagenome (black circles) and from 16S rRNA gene datasets and genome size 

estimated from isolates (open circles). (D) Relationship between Cextr:Nextr and bacterial amino 

acid C:N ratios averaged per metagenome. (E) Relationship between bacterial GC-% and pooled 

amino acid C:N ratios. (F) The distribution of nucleotides at the third position in fourfold 

degenerate codons across all metagenomes, with letters corresponding to groups identified via 

Tukey’s post-hoc test. (G) The relationship between codon frequency and soil Cextr:Nextr shown 

for aspartic acid and glutamic acid, with number of GC base pairs in each codon being indicated 

by color. (H) The relationship between codon frequency and soil Cextr:Nextr shown for each 

codon, with color indicating the slope of the relationship and an asterisk indicating significance 

(p < 0.05). Codons are arranged left to right in increasing number of GC base pairs. 
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Figure 1: 
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Figure 2: 

Results from the random forest model and relationships between soil pH and genomic traits; (A) 

Variable importance plot for the top 10 environmental parameters predicting GC content from 

the random forest model (RMSE = 0.017; R2 = 0.66). (B) The relationship between soil pH and 

GC content (%) of bacterial contigs. (C) The relationship between soil pH and both average 

genome size (derived from metagenomes) and community-weighted genome size (derived from 

the identification of 16S rRNA genes). (D) The relationship between soil pH and soil Cextr:Nextr 

with points colored by bacterial GC content and point size corresponding to average genome 

size. 
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CHAPTER 5 
CODON OPTIMIZATION IN SOIL METATRANSCRIPTOMES IN RESPONSE TO 

CARBON INPUTS AND STRESS 
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ABSTRACT 
 

Codon and nucleotide frequencies are known to influence the rate of transcription for functional 

genes, yet their impact on the transcriptional profiles of soil microbial communities remains 

unknown. High alignment of transcript codon frequencies to cellular tRNA anticodon 

frequencies—also known as codon optimization—has been shown to increase the rate of 

transcription and translation. Nucleotide composition may also influence transcription due to 

resource demands for synthesis of specific nucleotides. Here we test the prediction that high 

codon optimization and low-cost nucleotides will increases the rate of transcription in soil 

microbial communities. We subjected soils to two separate short-term changes in their 

environment: an input of labile carbon and a sudden increase in temperature from 20°C to 60°C. 

From metagenomes we were able to generate a reference set of expected codon frequencies for 

each taxon. We then used the similarity of transcript codon composition to this reference set to 

derive codon optimization for transcribed functional genes. We found that inputs of labile carbon 

resulted in higher level of transcript codon optimization, especially for highly upregulated 

nitrogen-cycling genes. Nucleotide frequency of differentially regulated transcripts were closely 

related to codon usage, as opposed to cost of nucleotide synthesis. Surprisingly, we also found a 

cluster of highly expressed genes with low codon optimization. In both experiments many of 

these transcripts encoded for proteins related to stress response, such as sporulation and heat 

shock. We suggest that this is a result of a stress-induced shift in the tRNA pool which better 

aligns with the codon frequencies of stress-response genes. These results demonstrate the 

importance of codon optimization for the transcription of functional genes in soil microbial 

communities and highlight its potential to be used as a metric in predicting the response of soil 

microorganisms.   



 106

INTRODUCTION 
 

Microbial communities in soil are frequently subject to short-term changes in their 

environment which promote growth and cause disturbance, and determining the factors which 

dictate the response of soil microbes to these changes is crucial for assessing both their short and 

long-term function (Shade et al. 2012; Schimel, Balser, and Wallenstein 2007). Although studies 

have examined how short-term environmental changes influence gene expression in soil 

microbial communities (Peng, Wegner, and Liesack 2017; Albright et al. 2018; Chuckran, 

Fofanov, et al. 2021), the influence of nucleotide, codon, and amino acid frequency on the 

transcription of functional genes remains unknown. These factors are known to relate to gene 

expression in isolates and represent a potentially underutilized metric in our understanding of 

how microbial communities may respond to change.  

A good alignment of gene codon frequency to the anticodons of the tRNA pool generally 

increases the rate of both transcription and translation (Plotkin and Kudla 2011) and is 

commonly referred to as codon optimization.  The level of codon optimization of a transcript has 

important consequences for translation; affecting the rate of elongation, protein folding, 

initiation, and termination (Yu et al. 2015; M. Zhou et al. 2013; Liu, Yang, and Zhao 2021). 

Codon optimization is also a strong determinant of mRNA abundnace. A high abundance of 

optimized codons generally increases mRNA stability (Dressaire et al. 2013; Presnyak et al. 

2015) and high codon optimization has also been shown to be independently related to higher 

levels of transcription (Z. Zhou et al. 2016; Newman et al. 2016). Codon usage has been used to 

predict growth rates of individual bacterial taxa in microbial communities (Weissman, Hou, and 

Fuhrman 2021); however, the impact of codon usage bias on the transcription of individual genes 

has yet to be assessed on a community level.  
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The selection of specific nucleotides and amino acids can additionally alter gene 

expression through differential requirement for carbon, energy, and nutrients. Highly expressed 

proteins tend to require less biosynthetically expensive amino acids (Raiford et al. 2012), and 

nucleotide selection favors nucleic acids with lower energetic costs of production (W. H. Chen et 

al. 2016). Nutritional constraints also influence protein amino acid composition for 

corresponding transporters (Baudouin-Cornu et al. 2001), and may have consequences for their 

rate of transcription. For example nitrogen limitation has been shown to favor the transcription of 

transporters with a low requirement of nitrogen (Read et al. 2017). Further, there is a positive 

relationship between the C:N of codons and the C:N of amino acids (Bragg and Hyder 2004; 

Shenhav and Zeevi 2020; Sueoka 1961), which would influence nutrient requirement for the 

production of mRNA. Although the relationship between amino acid content and GC content 

with nutrient availability has been demonstrated in soil metagenomes (Chuckran, Flagg, et al. 

2021), it is not yet known how these factors influence the short-term transcriptional response of 

soil microbial communities.  

 In a previous study, we showed that the addition of labile carbon in the form of glucose 

can rapidly stimulate the transcription of nitrogen cycling genes (Chuckran, Fofanov, et al. 

2021). The activity of soil heterotrophic bacteria are generally carbon-limited (Demoling, 

Figueroa, and Bååth 2007; Hobbie and Hobbie 2013) and the addition of a labile carbon may 

rapidly stimulate microbial activity. The sudden availability of carbon often causes a shift to 

nitrogen limitation that causes a rapid immobilization of available nitrogen (Kamble and Bååth 

2014). Here we present an analysis of this transcriptional response to a glucose addition with a 

focus on codon frequency, nucleotide composition, and amino acid composition. We also 

analyzed metatranscriptomes from a heat-stress experiment, where soils where heated to 60°C 
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for 30 minutes. We hypothesize that highly and early expressed transcripts will exhibit high 

codon optimization in response to both the glucose addition and heat stress. We also hypothesize 

that nucleic and amino acid composition of nutrient transporter transcripts will reflect the 

nutrient which they are transporting. For example, the GC content and amino acid content of 

highly upregulated nitrogen transporters will exhibit high carbon and low nitrogen content. 

Similarly, we expect a high C:N of the predicted amino acid sequences for the entire 

metatranscriptome when nitrogen becomes limiting. Through this analysis we hope to better 

understand the predictive power of codon composition, and nucleic and amino acid content in 

assessing the response potential of soil microbial communities. 
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METHODS 
 

A more in-depth description of the soil collection and glucose addition experiment can be found 

in Chuckran et al. 2021.  

Soil collection 

Soils were collected from the West Virginia Certified Organic Farm (Morgantown, West 

Virginia, USA, 39.647502°N, 79.93691°W; 243.8 to 475.2 m above sea level) in the fall of 2017. 

Soils were sampled from plots subject to a four-year conventionally tilled crop cycle of corn, 

soybean, wheat, and a mix of kale and cowpea, with manure additions every two years and a rye-

vetch winter crop cover (Walkup et al. 2020; Pena-Yewtukhiw et al. 2017). Ten cores 0-10 cm in 

depth were collected from each plot and pooled. Soils were shipped on ice to Northern Arizona 

University (Flagstaff, Arizona, USA). An equal amount of soil from each plot was pooled. Large 

roots and debris were manually removed and soil was passed through a 2mm sieve.  

 

Temperature experiment  

 Pooled soils were distributed in 10 glass Mason jars at 30 g of soil each. Samples were 

preincubated at ~23°C for 2 weeks. The lid of each jar was briefly opened after preincubation to 

refresh the headspace of the jar before treatment. Five of the samples were placed in an incubator 

at 20°C and 5 samples were placed at 60°C for 30 minutes. Soils were then destructively 

sampled and immediately frozen in liquid N2 for preservation for nucleic acid extractions. 

 

Glucose addition experiment 

A total of 30 g of the pooled soil was distributed among 65 glass Mason jars and allowed to 

preincubated at ~23°C for 2 weeks. After preincubation, we added 1.6 mL of 0.13 M glucose 
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(0.7 mg glucose C g-1 dry soil) to 60 of the samples. 5 samples which were left untreated as a 

control. Every 4 hours, the CO2 concentration in the headspace of each jar was measured and 5 

chambers were destructively sampled. During destructive sampling, a portion of the soil was 

frozen in liquid N for potential nucleotide extractions and another portion was reserved to 

measure concentrations of NO3
-, NH4

+, and microbial biomass.  

 

Metagenomes and metatranscriptomes  

RNA and DNA were extracted from 4 samples for each temperature (20°C and 60°C) and 

for four timepoints from the glucose incubation: 0 (t0), 8 (t8), 24 (t24), and 48 h (t48). The RNA 

and DNA for each sample were extracted using the RNeasy PowerSoil total RNA kit (Qiagen) 

and RNeasy PowerSoil DNA elution kit (Qiagen), respectively. DNase was removed using 

an RNase-free DNase set (Qiagen). A Qubit fluorometer (Invitrogen, Carlsbad, CA, USA) was 

used to assess quantity and NanoDrop ND-1000 spectrophotometer (Nanodrop Technologies, 

Wilmington, DE, USA) was used to assess sample purity. Samples were shipped to the Joint 

Genome Institute for sequencing on an Illumina NovaSeq platform (San Diego, CA, USA).  

 Sequence data was processed by the Joint Genome Institute and a detailed description of 

the sequencing and bioinformatics pipeline can be found in the associated data release (Chuckran 

et al. 2020). Raw sequences were QC filtered using BBtools v.38 (Bushnell 2014). 

Metatranscriptomes were assembled with MEGAHIT v.1.1.2 (Li et al. 2015) and metagenomes 

were assembled using SPAdes v3.13.0 (Bankevich et al. 2012). Coverage against assembled 

contigs was determined using BBMap v38 (Bushnell 2014). Contigs were annotated with the 

IMG Annotation Pipeline v5.0.1 (I.-M. A. Chen et al. 2019; Huntemann et al. 2016). 
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Calculating of codon optimization and amino acid content 

 We used three indices to calculate codon optimization: the Codon Adaptation Index 

(CAI; Sharp and Li 1987), the Frequency of Optimized Codons (FOP; Ikemura 1981), and the 

Measurement Independent of Length and Composition (MILC; Supek and Vlahoviček 2005). 

Each of these indices requires a reference set of frequencies from which to calculate codon bias. 

Often this would be generated using the anticodons of the tRNA pool (Bahiri-Elitzur and Tuller 

2021). However, we found that the tRNA annotations from both our metagenomes and 

metatranscriptomes did not cover a broad range of taxa, severely limiting our estimates of codon 

optimization. Instead, we used the genomic background codon frequencies of each taxon derived 

from the metagenomes. Although codon frequencies of the genomic background will not always 

accurately represent the tRNA pool, they have been successfully used in predicting growth rates 

in metagenomes (Weissman, Hou, and Fuhrman 2021) and should generally represent the 

preferred synonymous codon usage in the tRNA pool. BEDTools (Quinlan and Hall 2010) was 

used to isolate gene sequences in metagenomic contigs from general feature format files 

generated by the IMG analysis pipeline.  Using the taxonomic annotations and read coverage, we 

determined the relative frequency of each codon for each taxon in our metagenomes. We then 

removed taxa where the total depth-adjusted codon count was below 750,000, for a total of 720 

taxa. We also summarized codon frequencies at the phylum level, recovering codon frequencies 

for 46 phyla. Taxon-specific codon frequencies were then used to calculate codon indices for 

each transcript in the metatranscriptomes.   

The Codon Adaptation Index (CAI) was calculated by first determining weights for each 

amino acid from the reference dataset (i.e. the taxa-level codon frequencies from the 

metagenomes): 



 112

[1]     �� =   
��

�	
(��
���
����  ������)
 , 

where the weight of each codon, wc, is determined as its frequency in the genome, fc, divided by 

the maximum codon frequency of synonymous codons for the encoded amino acid. For example, 

glutamic acid is encoded by GAA and GAG. If the codon frequencies for a genome were 0.2 for 

GAA and 0.8 for GAG, the weights would be 0.25 and 1. These reference weights were then 

applied to each codon in a transcript. Building on the previous example, a transcript with the 

sequence “GAA GAA GAG” would yield a list of weights [0.25, 0.25, 1] for that transcript. The 

geometric mean of these weights represents the CAI for that transcript, as shown in equation 2: 

[2]     ��� = ( ∏ �� ) 
�

��
���  , 

where L is the length of the transcript, calculated as the number of codons. Values closer to 1 

indicate a high level of codon optimization. 

 FOP was determined as: 

[3]     ��� =  
# !� !"#$�$%&' �!'!()

*!#	+ (,�-&. !� �!'!()
  , 

where the optimized codon for each transcript was determined from the reference frequencies for 

the corresponding taxa. Like CAI, values closer to 1 indicate a higher level of codon 

optimization. FOP and CAI are generally well correlated (Bahiri-Elitzur and Tuller 2021). 

MILC (Supek and Vlahoviček 2005) was calculated by first calculating the bias of each 

amino acid, Ma, as in equation 4: 

[4]     /	 = 2 ∑ �� 23
��

4�
   ,  

where Oc is the number of codons, fc is the observed frequency in the transcript, and gc is the 

expected frequency of codon c. MILC is then calculated as in equation 5: 

[5]     /�5� =  
∑ 677

�
− � , 
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where L is the length of codons and C is a correction for overall bias in short sequences a calculated 

in equation 6: 

[6]     � =  
∑ (.79�)7

�
− 0.5 , 

where ra is the total number of synonymous codons for amino acid a. MILC values closer to 0 

indicate a higher level of similarity to the reference frequencies.  

Each index was calculated using a taxon-level reference set of frequencies. Genes with 

fewer than 80 codons were discarded. Codon frequency and bias calculations were conducted 

using custom-made Python scripts which are available at 

https://github.com/PChuckran/Chuckran_dissertation/tree/main/Chapter_4/code 

Using the amino acid sequence provided by the IMG annotation pipeline, we summed the 

number of each amino acid for all genes. Using the chemical formula of the amino acids, we then 

calculated the total stoichiometric ratios for each gene.  

Indices, GC content, and amino acid content were adjusted for read depth, and 

summarized by either KEGG Orthology (KO) number (Kanehisa and Goto 2000) and taxa; KO 

number and phylum; or KO number alone. Data was summarized using the python library 

pandas (McKinney 2011). 

 

Statistical analyses  

Differential expression of transcription was determined using DESeq2 (Love, Huber, and 

Anders 2014) using the total number of gene counts for each gene. A Wald-test was used to 

determine differences in expression between treatments and a false discover rate (FDR) of < 0.1 

indicated significance differences in the expression of a gene between two timepoints or 

treatments. Differences in codon indices, GC, and amino acid content between treatments were 
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determined using an analysis of variance (ANOVA). The relationship between log fold change 

was determined for each treatment using multiple linear regression. All statistical analyses were 

conducted in R version 4.1.0 (Team 2018) and visualized with the ggplot2 package (Wickham 

2016).   
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RESULTS 
 

Addition of labile carbon caused a rapid immobilization of both carbon and nitrogen, as 

well as the upregulation of 2549 genes and downregulation of 1273 genes (FDR < 0.1). An 

increase in temperature from 20°C to 60°C for 30 minutes resulted in the upregulation of 79 

genes and the downregulation of 15 genes (FDR < 0.1).  

 Metatranscriptome-level indices of codon optimization (i.e., the weighted mean of all 

genes in the metatranscriptome) increased with the addition of glucose across all indices at 8 

hours (Tukey’s HSD; p < 0.05; Fig 1a-c). Codon optimization for differentially regulated genes 

demonstrated variability between indices with a few notable trends. Upregulated genes had a 

higher level of codon optimization at t8 as compared to t0 (Fig 1d-f). Downregulated genes 

exhibited similar codon optimization at t0, t8, and t24, and had lower codon optimization at t48 for 

CAI and FOP (Fig 1d&e).  

 The temperature treatment did not influence the level of codon optimization of the whole 

transcript pool (Fig 1g-i). Although there were some differences in the codon optimization of 

differentially regulated genes in response to temperature, changes were not consistent between 

indices (Fig 1j-l).  

 The average frequency of optimized codons varied over time for individual genes. We 

highlight changes in codon optimization for genes which are central in nitrogen cycling, 

particularly nitrogen regulatory genes and the ammonium transport amt (Fig. 2). These genes, 

which were highly upregulated in response to glucose, also tended to have higher transcript 

codon optimization as compared to t0. The codon optimization of housekeeping and glutamate 

dehydrogenase transcripts was less variable and transcripts for glutamate dehydrogenase gudB 

and rocG (KO:K00260) demonstrated a decrease in codon optimization over time (Fig. 2). 
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 Although upregulated transcripts were associated with higher level of codon optimization 

overall (Fig 1), we found a negative relationship between codon optimization and expression 

(Fig. 3), measured as log2-fold change (L2FC) from time zero. This relationship was significant 

at all timepoints (p < 0.01) and was most pronounced at t24 (R2 = 0.17) and t48 (R2 = 0.22). The 

distribution of upregulated transcripts with respect to codon optimization showed a slight 

bimodal distribution at t24 and t48 (Fig. 3). Many of the highly upregulated genes with low codon 

optimization at t48 were related to sporulation or stress response (Fig. 4). In the temperature 

experiment, highly expressed heat-shock proteins had lower levels of codon optimization at 60°C 

(Fig. 5). 

 The GC content of the metatranscriptomes was higher at t8 than t0 (p < 0.05, Tukey’s 

HSD) with t24 and t48 overlapping between t8 and t0 (Fig. 6a). The GC content of transcripts for 

the nitrogen transporter amt were higher at t8, t24, and t48 than at t0 (p < 0.05; Fig. 6b). The total 

average amino acid C:N decreased initially 8 h after glucose addition, and subsequently 

increased for t24 and t48 (Fig. 6c).  
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DISCUSSION 
 

Our initial hypotheses were that fast-responding transcripts would reflect both codon 

optimization and resource stoichiometry. We found evidence for the former; however, we did not 

find a strong relationship between nucleic or amino acid stoichiometry and transcription for 

functional genes associated with ammonium transport.  

 

Codon usage 

Codon optimization increased after the addition of glucose and was generally higher for 

upregulated genes. Surprisingly, the level of upregulation (L2FC) and codon optimization were 

negatively correlated. This was especially pronounced later in the incubation when nitrogen 

becomes limiting. Although a large majority of upregulated transcripts had high codon 

optimization, this negative relationship between L2FC and optimization is still counter-intuitive, 

as we would expect a high level of codon optimization to be associated with higher upregulation. 

One potential explanation is that this relationship is a result of over-inflated L2FC values for 

transcripts that are in relatively low abundance.  Highly upregulated genes with few transcripts 

overall tended to have lower levels of codon optimization (Fig. S1). Since the calculated L2FC 

of transcripts in low abundance is intrinsically more sensitive to small changes, we could be 

detecting high stochasticity in our calculation of L2FC. However, this explanation still does not 

explain why transcripts with low codon optimization would be upregulated to begin with.  

We suggest that this anomaly is a result of shifting tRNA pools with stress—in this case—

nutrient limitation. Stress can alter tRNA pools by increasing the abundance of rare anti-codons 

and stress-response genes can be especially well optimized to this set of tRNA (Advani and 

Ivanov 2019). This optimization to the altered tRNA pool allows for more rapid upregulation of 
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these genes during stress. Since the background codon frequencies for a genome were used to 

calculate the expected codon composition, our estimates of codon optimization are not specific to 

the tRNA pool for a given moment in time. A shift in tRNA frequencies towards more rare 

anticodons could therefore result in the high upregulation of genes with low levels of codon 

optimization against the genomic background. This mechanism would also explain the higher 

abundance of these genes at t48, when nitrogen and labile carbon availability has been 

substantially depleted. Accordingly, when we examine the function of this cluster of transcripts, 

we find that a considerable portion of these transcripts encode for proteins involved with 

sporulation (Fig. 4).  

This hypothesis is further supported by the results of the heat-shock experiment. Although 

we did not observe a shift in codon optimization overall, we did find that highly upregulated heat 

shock proteins, such as groEL and DnaK (Richter, Haslbeck, and Buchner 2010), showed lower 

levels of codon optimization after heat-stress (Fig. 5). We believe that this result, in conjunction 

with the low optimization of sporulation transcripts, provides evidence for the importance of 

codon optimization in both growth and stress response of bacteria in soil microbial communities.   

This work also indicates the potential for codon optimization to be used to predict the 

response of soil microbial communities to changes in the environment. Codon usage has been 

previously leveraged to predict growth rates of soil microbes using codon frequencies in 

ribosomal proteins (Weissman, Hou, and Fuhrman 2021). Our work demonstrates that 

optimization is additionally important for the transcription of functional genes in soil microbial 

communities. By calculating codon optimization of genes for specific functions, we may be able 

to predict how microbial communities respond to change. For example, higher optimization in 

response to more optimal conditions and lower when stress and limitations increase. This is not 
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only important for predicting growth rates but could also be used for assessing the capacity of 

microbial communities to resist disturbance.  Resistance and resilience are central to microbial 

community dynamics (Shade et al. 2012) and the ability to predict community response to 

disturbance from codon frequencies could be a valuable tool in metagenomic analyses.  

 

GC content and amino acid stoichiometry 

 We observed an overall increase in GC content which was highly variable between genes 

and that GC content did not correspond to specific transporters as we hypothesized. For example, 

if the regulation of transcription of transporters was closely linked to resource stoichiometry, 

then we would expect a decrease, rather than an increase, in GC content (since the GC base pair 

is more nitrogen rich than the AT base pair). We believe that the observed change in GC content 

over time is more likely a reflection of increased codon optimization rather than resource 

conservation. The mean metagenomic GC content was 64%, whereas the metatranscriptomes 

ranged from 56-60%. Since the base codon frequencies used to calculate codon optimization 

were determined from all open reading frames in the metagenome, it stands to reason that an 

increase in optimization coincides with an increase in GC content. 

Amino acid stoichiometry only weakly followed the predicted relationship and never 

significantly deviated from that of t0. Although amino acid stoichiometry may be important cost-

saving measures for bacteria, they do not appear to be related to the response time of 

transcription. 

  

 CONCLUSIONS 
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 This work revealed several interesting relationships between codon optimization and the 

expression of functional genes in microbial communities. Community-level codon optimization 

increased after the addition of glucose, especially for genes encoding for nitrogen transport. This 

result indicates the importance of codon frequency for the rapid response of soil microbes to 

changing nutrient availability. Finally, we found that highly upregulated stress response genes 

had low levels of optimization, which we suggest could be due to shifting tRNA pools with 

stress. Together, these results demonstrate the importance of codon usage in the response of soil 

microbes to change and highlight the potential utility of codon usage for predicting the responses 

of soil microbial communities.   
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DATA AVAILABILITY 

Metagenomes and metatranscriptomes from the glucose addition experiment have been described 

previously in a data release: https://doi.org/10.1128/MRA.00895-20 

Sample data for the metagenomes and metatranscriptomes from the temperature increase 

experiment, including sequence read archive accession number, IMG identification number, and 

N50 values, can be found in Supplemental Table 1. 
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LIST OF FIGURES 
 
Figure 1: 
Changes in codon optimization with glucose addition or temperature increased. Note that values 
closer to 1 represent high levels of optimization for the Codon Adaptation Index (CAI) and 
Frequency of Optimized Codons (FOP), and values closer to 0 represent higher levels of 
optimization for the Measure Independent of Length and Composition (MILC). Codon 
optimization of all transcripts after the addition of glucose using the FOP (a), CAI (b), and 
MILC (c). Changes in codon optimization of KEGG annotated transcripts with color and shape 
indicating differential expression (FOP, d; CAI, e; and MILC, f). Codon optimization for all 
transcripts after 30 minutes at 20°C and 60°C (FOP, g; CAI, h; and MILC, i), and with respects 
to regulation for KEGG annotated transcripts (FOP, j; CAI, k; and MILC, l). 
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Figure 2 
 

Changes in the frequency of optimized codons (ΔFOP) at 8, 24, and 48 h after glucose addition 

for ammonium transporter amt, glutamate dehydrogenase, glutamine synthase, select 
housekeeping genes and nitrogen regulatory genes. 
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Figure 3 
The relationship between the Frequency of Optimized Codons (FOP) and log2-Fold Change at 8, 
24, and 48 hours after glucose addition. Color represents the regulatory response and density 
distribution curves of FOP are shown above each plot. 
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Figure 4 
The regulation of KEGG annotated transcripts for sporulation in relation to the Frequency of 
Optimized Codons (FOP) 48 h after glucose addition. Sporulation genes indicated with red 
points, with grey points representing all other KEGG annotated genes.  
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Figure 5 
 
Codon optimization (Frequency of optimized codons; FOP) of upregulated heat-shock proteins. 
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Figure 6 
The response of nucleotide and amino acid content in response to the addition of glucose. The 
GC content after the addition of glucose for all transcripts (a) and the ammonium transporter amt 
(b). The predicted amino acid carbon to nitrogen ratio (C:N) of all transcripts over time (c).  
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Figure S1 
Expression of upregulation genes as it relates to transcript abundance 48 hours after glucose 
addition. Frequency of Optimized Codons (FOP) indicated by color. 
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LIST OF TABLES 
Supplement Table 1 
Sample metadata for metagenomes and metatranscriptomes in temperature incubation experiment. 
 

Temperature Sample Type Rep IMG Genome ID  

GOLD Analysis 

Project ID 

NCBI Bioproject 

Accession 

NCBI Biosample 

Accession Gene Count N50 

20 Metagenome 1 3300034662 Ga0314783 PRJNA570395 SAMN12813568 762561 1288729 

20 Metagenome 2 3300034663 Ga0314784 PRJNA570396 SAMN12814693 747033 880870 

20 Metagenome 3 3300034479 Ga0314785 PRJNA570397 SAMN12813706 108601 1913854 

20 Metagenome 4 3300034661 Ga0314782 PRJNA570394 SAMN12813049 896719 505047 

60 Metagenome 1 3300034664 Ga0314786 PRJNA570398 SAMN12812626 792202 1170933 

60 Metagenome 2 3300031547 Ga0310887 PRJNA518696 SAMN10864355 5152793 1009918 

60 Metagenome 3 3300031943 Ga0310885 PRJNA539707 SAMN11532793 4298207 1282903 

60 Metagenome 4 3300032179 Ga0310889 PRJNA539708 SAMN11532414 3727730 1194338 

20 Metatranscriptome 1 3300031913 Ga0310891 PRJNA539710 SAMN11532358 2019847 232158 

20 Metatranscriptome 2 3300031538 Ga0310888 PRJNA518697 SAMN10864145 5457649 38430 

20 Metatranscriptome 3 3300034659 Ga0314780 PRJNA570392 SAMN12814267 930641 243448 

20 Metatranscriptome 4 3300031562 Ga0310886 PRJNA518695 SAMN10864146 5429091 145253 

60 Metatranscriptome 1 3300034660 Ga0314781 PRJNA570393 SAMN12814181 583797 282854 

60 Metatranscriptome 2 3300031944 Ga0310884 PRJNA539706 SAMN11532342 5024730 174757 

60 Metatranscriptome 3 3300034665 Ga0314787 PRJNA570399 SAMN12813567 480705 271809 

60 Metatranscriptome 4 3300032075 Ga0310890 PRJNA539709 SAMN11532103 8416504 230787 
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DISCUSSION OF RESULTS AND CONCLUSIONS 
 

 In the introduction, I discuss how growth, stress, and disturbance are the backbone of 

many of our current frameworks for microbial ecology (Lauro et al. 2009; Malik et al. 2020; 

Grime 1977; Fierer 2017) and the chapters of this dissertation focus on specific attributes 

associated with one or more of these themes. To close this dissertation, I will put our findings in 

the context of Grime’s 1977 CSR framework and the YAS framework posed by Malik et al. 

2020. Grime’s CSR framework (Figure 1) includes: (C) competitors which can effectively 

compete for resources; (S) stress tolerators which can withstand environmental stress and 

disturbance; and (R) ruderal strategists which can recover rapidly to disturbance. Similarly, the 

YAS framework proposes three similar dimensions (Figure 1): (Y) high yield strategists, which 

invests heavily in rapid response and central metabolism; (A) nutrient acquisition strategists, 

with high investment in extracellular enzymes and competition for resources; and (S) stress 

tolerators. We present our results against both frameworks in Figure 1 as described below. 

In Chapter 2 we find that certain taxa respond to inputs of labile carbon through rapid 

transcription of nitrogen cycling genes. In the YAS framework we could describe this response 

as a high yield strategy, whereas in the CSR framework this might be considered a competitor. 

Since the sudden input of a large amount of a limiting nutrient could be considered a disturbance 

from stasis, ruderal strategists may also have an advantage. Chapter 5 showed that codon usage 

is related to speed and direction of transcriptional responses for a given gene, and we could 

accordingly add codon optimization to these life-strategies. The results from that analysis also 

indicated that rapid stress-response may also be driven by codon optimization to a stress-induced 
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tRNA pool. The flexibility of the tRNA frequency and corresponding codon alignment in stress-

response genes may therefore be part of stress-tolerator strategists. 

Chapter 3 and 4 examined the biogeographic distribution of genomic traits. We found 

that soil microbial communities in nutrient limited conditions tended to have smaller genomes 

with a higher GC content, lower amino acid C:N, and a greater abundance of stress response 

sigma factor gene rpoS. We could consider these traits to be part of a stress-tolerator life 

strategy. In contrast, communities in low pH but high carbon environments had larger genomes 

with a lower GC content, and a high abundance of genes for the housekeeping sigma factor 

rpoD. These traits might therefore be part of a nutrient acquisition or competitor strategy.   

We do find shortcomings in our ability to classify our results in the context of these 

frameworks and other frameworks like them. For example, extremely low pH exerts unique 

stress in comparison to other forms of stress, such as drought. Both pressures would be 

considered a form of stress, yet they select for very different traits. Ultimately this is the inherit 

limitation that coincides with attempting to fit any large-scale problem along three axes. 

Although we can certainly group microbial life into a greater number of dimensions, that comes 

at the cost of interpretability or, in the extreme, overfitting. These are the shortcomings of using 

frameworks for describing highly complex systems and it is important to acknowledge that these 

frameworks can be simultaneously highly useful and deeply imperfect.   

Still, the results described in this dissertation point towards fundamental genomic 

attributes associated with the life-strategies of soil microbes. We show that transcription rate, 

codon usage, and genomic traits all play important roles in dictating fundamental responses of 

soil microbes, and we demonstrate how these processes can be detected in short temporal 

windows and across continental scales. These attributes and their associated mechanisms shed 
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light onto how omics can be used in assessing soil microbial communities and further our 

understanding of belowground life. 
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FIGURE 1: 
The results from this dissertation in the context of the YAS framework (top), and the CSR 
framework (bottom).  
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