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ABSTRACT
ABRUPT THAW AND THE PERMAFROST CARBON FEEDBACK
HEIDI GREIMEL RODENHIZER
Air temperatures in the Arctic are rising more than two times faster than the global
average (IPCC, 2021), and this is causing permafrost to thaw both gradually, with incremental
increases in ALT, and abruptly, with rapid collapse of ice-rich permafrost ground forming
discrete thermokarst features. When permafrost carbon that has been frozen for years to
thousands of years thaws, it becomes susceptible to microbial respiration and release to the
atmosphere as greenhouse gases. This depends, in part, on how much of the permafrost region
will undergo abrupt thaw and how susceptible abruptly thawed permafrost carbon is to
respiration, as hydrology can shift rapidly with abrupt thaw and lead to conditions more or less
suited to plant growth, ecosystem respiration, and methanogenesis. This dissertation investigated
the rate of ground subsidence and the impact it has on thawed permafrost carbon stocks, the
extent and morphology of abrupt thaw in a warming tundra ecosystem and the role it plays in
CO- and CHag release to the atmosphere at the landscape scale, and the fine scale responses of
hydrology to abrupt thaw and how this determines the spatial heterogeneity of CO> fluxes. In a
permafrost warming experiment, subsidence of up to ~1 m per decade masked the full rate of
permafrost thaw and was responsible for doubling the rate of carbon thaw. On the landscape as a
whole, abrupt thaw covered 7% of the landscape, with the largest extent being due to water
tracks. On an annual scale, abrupt thaw resulted in higher CO, and CHa release, although CO>
uptake was higher during the growing season. This highlights the importance of winter emissions

in determining tundra carbon balance, particularly when and where abrupt thaw occurs.



Additionally, abrupt thaw caused diverging hydrologic regimes, with the most deeply subsided
regions becoming consistently wet and adjacent areas of high relief becoming intermittently dry
and wet. Both growing season GPP and Reco Were higher in intermittently dry and wet areas,
while they were suppressed in the consistently wet areas, relative to areas which did not undergo
abrupt thaw, but it is likely that both hydrologic regimes resulted in higher carbon release at the
annual scale. Because abrupt thaw could result in emissions of about the same magnitude as
gradual thaw over the next century, it is important that abrupt thaw be considered in Earth

System Models and climate agreements.
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PREFACE

The chapters included in this dissertation are formatted for publication in scientific peer-
reviewed journals. The first chapter is a general introduction which provides the scientific
framework of the dissertation. The second chapter, “Carbon thaw rate doubles when accounting
for subsidence in a permafrost warming experiment”, was published in the Journal of
Geophysical Research: Biogeosciences in 2020. The third chapter, “Abrupt permafrost thaw
accelerates carbon dioxide and methane release at a tussock tundra site”, is formatted for
submission to Arctic, Antarctic, and Alpine Research. The fourth chapter, “Divergent Hydrologic
Responses to Abrupt Permafrost Thaw Drive Spatially Heterogeneous Carbon Dioxide Fluxes”,
is formatted for submission to Global Change Biology. The fifth chapter is a combined
discussion of the results and conclusions of all chapters. Some redundancy will result from

combining these manuscripts within the university formatting requirements.
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CHAPTER 1: INTRODUCTION

Arctic air temperature is rising twice as fast as the global mean rate (Overland et al.
2016), thawing permafrost. Permafrost is ground that is <0°C for at least two consecutive years,
but often permafrost soils have been frozen for thousands of years (Schuur & Mack, 2018).
Permafrost soils contain between 1460 and 1600 Pg of C across the circumpolar region, because
decomposition is limited by sub-zero temperatures, allowing the slow accumulation of organic
matter from plants and animals (Hugelius et al., 2014; Schuur et al., 2015, 2018), and this is
about twice as much carbon as contained in the atmosphere (Houghton, 2007). As permafrost
thaws, decomposition of these organic carbon stores will lead to greenhouse gas emissions that
will exacerbate human-caused climate change (Schuur et al., 2015). However the magnitude,
rate, and the form of future permafrost carbon emissions is an area of ongoing research. The
magnitude, rate and form of permafrost carbon emissions are controlled by the balance between
gross primary production (GPP; carbon dioxide uptake by photosynthesis) and ecosystem
respiration (Reco; carbon dioxide release through autotrophic and heterotrophic respiration),
which depends on the size of the unfrozen carbon pool and the environmental conditions (i.e.
hydrology and oxygen availability) to which soil organic matter is exposed (Schuur et al., 2018).
This is a complex area of research that has been difficult to incorporate into Earth System models
(Olefeldt et al. 2016, Turetsky et al. 2020), however, a better understanding is needed in order to
inform climate change policy (Natali et al. 2021).

Permafrost temperatures are warming due to climate change (Osterkamp, 2007;
Osterkamp & Romanovsky, 1999), and this is causing gradual permafrost thaw, or a deepening of
the seasonally thawed active layer (Nyland et al., 2021; Turetsky et al., 2020). As the active layer

deepens, soil C that has been frozen for long periods of time is thawed, allowing it to decompose
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and enter the modern carbon cycle (Hayes et al., 2014; Lee et al., 2010). However, at the same
time, deeper ALT exposes additional nutrients which can stimulate plant growth (Salmon et al.,
2016; Schuur et al., 2007). Plant productivity in the Arctic, especially that of shrubs, has
increased through time, as observed by increases in the normalized difference vegetation index
(NDVI; a measure of plant “greenness”) from the satellite record (Berner et al., 2020; Bunn &
Goetz, 2006; Goetz et al., 2005) and field studies which show that increasing temperature and
nutrient availability stimulates plant productivity (DeMarco et al., 2014; Natali et al., 2011,
Schuur et al., 2007). Although there is still uncertainty about whether increased GPP might be
able to offset respiration of old permafrost carbon in the future, most lines of evidence point to
increasing carbon emissions from permafrost ecosystems as the active layer deepens (Schuur et
al., 2018).

The relationship between permafrost thaw and carbon release is further complicated by a
process known as abrupt thaw or thermokarst (Olefeldt et al., 2016; Turetsky et al., 2020). Much
of the volume of permafrost can be composed of ice, and as the active layer deepens, this ice
melts and the ground surface subsides, forming depressions (Kokelj & Jorgenson, 2013). Once
initiated, thermokarst features can thaw very rapidly due to internal feedbacks (Farquharson et
al., 2019; Jorgenson et al., 2020; Shur & Jorgenson, 2007). One such feedback is thermoerosion,
which is the combined impact of heat flow and mechanical erosion by flowing water (Kokelj et
al., 2009; Kokelj & Jorgenson, 2013; Morgenstern et al., 2021). Another internal feedback is
increased heat transfer through ponding or disturbance to insulating layers of plants or organic
matter can increase heat transfer (Kokelj & Jorgenson, 2013). The environmental disturbance
which occurs in thermokarst features has implications for carbon cycling (Schuur et al., 2008).

Disturbance to plants and eventual succession, rapid mobilization of carbon and nutrients from
2



permafrost, and water-logging are some examples of environmental changes that impact carbon
fluxes (Cassidy et al., 2016; Euskirchen et al., 2017; Lee et al., 2011; Schuur et al., 2007; Vogel
et al., 2009).

Hydrologic shifts following abrupt thaw will play a large role in determining the form of
permafrost C release. Carbon in permafrost soils can be released both as CO, and as CH4 when
decomposition occurs, with dry soils releasing C primarily as CO2 and waterlogged soils
releasing C as both CO, and CH4 (Harden et al., 2012; Schédel et al., 2016). Since CHa is 34
times more powerful a greenhouse gas than CO> over a 100-year timescale (Myhre et al., 2014),
waterlogged soils which release less total C than dry soils can still have a stronger impact on the
climate through the strong greenhouse forcing of CHa relative to CO; (Taylor et al., 2018).
Because of this, the relative contribution of CO2 and CHj to total permafrost C release will be
important in determining the magnitude of the permafrost C feedback (Schuur et al., in review).

The purpose of this dissertation research was to investigate the impact of abrupt thaw on
carbon fluxes from the plot-scale to the landscape-scale in three research projects. In the first
research project (Ch. 2 of the dissertation), subsidence was quantified at CIPEHR using GPS and
the impact of subsidence on both the depth to permafrost and the rate of permafrost carbon thaw
was determined. In the second research project (Ch. 3 of the dissertation), thermokarst features
were mapped across an 81 km? site using a novel algorithm which can identify depressions from
a single elevation image and this classification was combined with carbon fluxes measured by
eddy covariance to determine the impact of abrupt thaw on ecosystem carbon balance. Finally, in
the third research project (Ch. 4 of the dissertation), the spatial nature of abrupt thaw, hydrologic
changes, and carbon dioxide fluxes were investigated using chamber based measurements of

carbon dioxide fluxes at CiPEHR.



This work was done at a permafrost warming experiment and nearby natural thaw
gradient near Eight Mile Lake (EML) in Healy, AK. The Carbon in Permafrost Experimental
Heating Research (CiPEHR) is a soil and air warming experiment established in 2008, which
was designed to simulate future climate change (Natali et al., 2011). Soil temperatures have been
passively warmed every winter using snow fences which increase snow depth and insulate soils
from winter air temperatures well below 0°C, and air temperatures have been warmed during the
growing season using clear, open-top chambers. The plots were monitored extensively for
changes in environmental conditions, plant biomass, and carbon dioxide fluxes throughout the
growing season every year through 2021. At the natural thaw gradient, there are three sites with
different abrupt thaw histories, minimal thaw (no thermokarst formation), moderate thaw
(thermokarst began in ~1985), and extensive (thermokarst began prior to 1951), which have been
monitored since 2003 (Schuur et al., 2007). An eddy-covariance tower located near the thaw
gradient has been used to monitor carbon dioxide and methane fluxes and has a footprint that
spans areas with and without thermokarst features. Additionally, the National Ecological
Observatory Network (NEON) began monitoring a site ~1 km from CiPEHR in the summer of

2017, including collecting airborne LIiDAR data and high-resolution imagery.
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Key Points:
e Subsidence causes a shifting reference frame for measurements of permafrost thaw
e The rate of permafrost carbon thaw doubles when subsidence is accounted for
e Subsidence of up to 6 cm yr was observed in a permafrost warming experiment, due to

both ice and soil loss


mailto:hgr7@nau.edu)

Abstract

Permafrost thaw is typically measured with active layer thickness, or the maximum
seasonal thaw measured from the ground surface. However, previous work has shown that this
measurement alone fails to account for ground subsidence and therefore underestimates
permafrost thaw. To determine the impact of subsidence on observed permafrost thaw and
thawed soil carbon stocks, we quantified subsidence using high-accuracy GPS and identified its
environmental drivers in a permafrost warming experiment near the southern limit of permafrost
in Alaska. With permafrost temperatures near 0°C, 10.8 cm of subsidence was observed in
control plots over 9 years. Experimental air and soil warming increased subsidence five-fold and
created inundated microsites. Across treatments, ice and soil loss drove 85-91% and 9-15% of
subsidence, respectively. Accounting for subsidence, permafrost thawed between 19% (control)
and 49% (warming) deeper than active layer thickness indicated, and the amount of newly
thawed carbon within the active layer was between 37% (control) and 113% (warming) greater.
As additional carbon thaws as the active layer deepens, carbon fluxes to the atmosphere and
lateral transport of carbon in groundwater could increase. The magnitude of this impact is
uncertain at the landscape scale, though, due to limited subsidence measurements. Therefore, to
determine the full extent of permafrost thaw across the circumpolar region and its feedback on
the carbon cycle, it is necessary to quantify subsidence more broadly across the circumpolar

region.

Plain Language Summary
Permafrost soils, which are perennially frozen soils found throughout cold regions,
contain vast quantities of carbon and ice. When permafrost thaws, carbon can be lost to the

atmosphere, contributing to climate change. This means it is important to track permafrost thaw,
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which is often done using active layer thickness, or the depth of the seasonally thawed surface
layer of soil. However, ice volume can be lost from thawing permafrost, causing the soil surface
to drop. Conventional measurements do not account for this surface drop and the rate of thaw
could therefore be underestimated. We found that experimentally warmed soils dropped at a rate
of 6 cm per year, mostly due to loss of ice volume, but also due to the loss of soil mass. When
accounting for the change in soil surface height over time, the full depth of permafrost thaw was
49% greater. The increased depth of thaw resulted in more than twice as much carbon being
thawed as was estimated with standard methods that did not account for subsidence. These
findings suggest that permafrost is thawing more quickly than long-term records indicate, and

that this could result in additional carbon release contributing to climate change.

1. Introduction

Arctic temperatures are rising about 2.5 times faster than the global average (IPCC,
2013), and experimental evidence shows that this is causing permafrost ecosystems to shift from
an atmospheric carbon (C) sink to a C source (Belshe et al., 2013; Commane et al., 2017,
Euskirchen et al., 2017; Schuur & Mack, 2018). Much of the Arctic is underlain by permafrost
soils, where freezing conditions have maintained a slow but consistent C sink by protecting soil
C from microbial respiration for up to thousands of years (Hicks Pries et al., 2012; Schuur et al.,
2015; Tarnocai et al., 2009; Zimov et al., 2006). Permafrost soils contain 1440-1600 Pg C
globally (Schuur et al., 2018), which is about twice as much C as is in the atmosphere
(Houghton, 2007). However, rapidly increasing temperatures in the Arctic have begun to thaw
permafrost and alter ecosystem C balance, determined from the relative contributions of plant
production and ecosystem respiration. While plant productivity is expected to increase under

future climate change, changes in microbial respiration are likely to be an order of magnitude
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higher, causing permafrost ecosystems to shift to a C source over the next century (Belshe et al.,
2013; Schuur et al., 2018).

Active layer thickness (ALT), the depth of seasonal permafrost thaw, has been closely
monitored as one of the key variables for understanding the impact of climate change on
permafrost thaw and ecosystem C dynamics (Brown et al., 2000; Nixon & Taylor, 1998). ALT
plays an important role in regulating the response of plant production and respiration to climate
change in the Arctic. As the region warms, ALT tends to increase (Brown et al., 2000;
Romanovsky et al., 2003; Shiklomanov et al., 2012; Streletskiy et al., 2008), thawing both C and
nutrients (Salmon et al., 2018). Greater access to nitrogen can increase plant growth (Chapin et
al., 1995; Shaver et al., 1992), while increasing C availability to microbes increases respiration
of C that had been thermally protected from decomposition (Hicks Pries et al., 2013; Hicks Pries
et al., 2016). Therefore, the Circumpolar Active Layer Monitoring (CALM) network was
established to track changes in ALT and near surface permafrost at over 200 sites (Brown et al.,
2000).

Permafrost thaw also induces physical changes to the soil profile, impacting its structural
stability by causing the ground to compact and subside (Kokelj & Jorgenson, 2013). It is widely
accepted that subsidence occurs as permafrost soils thaw, and ice volume is lost (Jorgenson &
Osterkamp, 2005; Kokelj & Jorgenson, 2013; Nelson et al., 2001), because permafrost soils
contain up to 80% ice by volume (Schuur et al., 2008). Depending on the distribution of ice
across the landscape, and other environmental factors including local topography, the
morphology of subsidence can vary considerably (Jorgenson & Osterkamp, 2005; Kokel] &
Jorgenson, 2013). Many types of thermokarst occurring in soils with high and variable ice

content result in highly visible disturbances, including thaw slumps and thermokarst lakes, pits,
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and gullies (Jones et al., 2012; Jorgenson & Osterkamp, 2005; Ward Jones et al., 2019). These
thermokarst features occur in areas estimated to cover ~20% of the circumpolar region (Olefeldt
et al., 2016). However, in soils with relatively low to medium ice content, particularly rocky or
gravelly areas, thaw can lead to more gradual, nonpatterned subsidence (Jorgenson &
Osterkamp, 2005), which has also been termed isotropic subsidence (Shiklomanov et al., 2013;
Streletskiy et al., 2017). Nonpatterned subsidence, due to the lack of visually obvious features, is
more challenging to detect without monitoring elevation changes (Jorgenson & Osterkamp,
2005; Shiklomanov et al., 2013). It is also conceivable that areas of recent or gradual permafrost
thaw could appear to be nonpatterned to observers on the ground, as subsidence may not have
progressed sufficiently to be visible. The combined extent of gradual and nonpatterned
subsidence is unknown because elevation change is not monitored extensively in permafrost
regions, but due to recent, rapidly changing temperatures in the Arctic, it is potentially broad.

Soil loss could also contribute to subsidence through the release of C to the atmosphere
and lateral transport of C in water, if losses are high enough to significantly decrease the volume
of organic matter within the soil profile. A significant contribution of peat loss to subsidence has
been shown previously in a drained ombrotrophic bog (Grgnlund et al., 2008), but to the best of
our knowledge, no studies have previously attempted to quantify the impact of soil loss on
subsidence in permafrost ecosystems, so it is uncertain whether currently observed rates of soil
loss are sufficient to decrease soil volume at a detectable level. However, both release of C to the
atmosphere and export in water tend to be higher in areas of thermokarst than in adjacent,
undisturbed areas (Abbott & Jones, 2015; Abbott et al., 2015; Cassidy et al., 2016; Euskirchen et
al., 2017), meaning that these areas should be the first to show the effect of soil loss on

subsidence.



Subsidence is rarely quantified when monitoring permafrost thaw, and this is problematic
because long-term measurements of ALT have been shown to underestimate the rate of
permafrost thaw (Shiklomanov et al., 2013; Streletskiy et al., 2017; O’Neill et al., 2019). The
typical method of monitoring ALT is to insert a metal probe into the ground until it hits
permafrost and measure the distance from the soil surface to the bottom of the probe (Hinkel &
Nelson, 2003). However, long-term monitoring in some areas has shown little to no change in
ALT despite increases in air and permafrost temperatures (O’Neill et al., 2019; Shiklomanov et
al., 2013; Streletskiy et al., 2017). Subsidence can explain the lack of change in ALT, as it causes
a changing reference frame for ALT probe measurements through time, thereby masking the full
depth of thaw (O’Neill et al., 2019; Shiklomanov et al., 2013; Streletskiy et al., 2017). Therefore,
relying solely on ALT as a measure of permafrost thaw is also likely to underestimate the amount
of soil C being mobilized in permafrost. To account for this discrepancy, some studies have used
thaw tubes to measure thaw penetration, the sum of subsidence and ALT (Nixon & Taylor, 1998),
however, most studies still rely on ALT without accounting for subsidence.

Subsidence drastically alters the hydrologic conditions within the active layer (Hinkel &
Hurd, 2006; Johansson et al., 2013; O’Neill & Burn, 2017), and thereby regulates the fate of
permafrost C upon thaw. In Earth System models, permafrost thaw results in drier soils as the
permafrost table drops and drainage is increased (Schédel, Koven, et al., 2018), however,
experimental data show that subsidence often results in wetter soils and the formation of ponds
or lakes, at least in the short term (Hinkel & Hurd, 2006; Johansson et al., 2013; Jorgenson et al.,
2013; Mauritz et al., 2017). Wetter conditions increase soil temperatures and accelerate thaw
through the high latent heat of water (Subin et al., 2013), and anaerobic conditions in saturated

soils cause more C to be released as methane (CHa) rather than carbon dioxide (CO>) (Blanc-
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Betes et al., 2016; Johnston et al., 2014; Kutzbach et al., 2004; Taylor et al., 2018). Although
anaerobic conditions simultaneously slow the rate of decomposition, the increased production of
CHa, which is 45 times more powerful a greenhouse gas than CO- over a 100-year timescale
(Myhre et al., 2013), more than outweighs the lower rates of C release (Schuur et al., 2008;
Taylor et al., 2018). Therefore, both the magnitude and form of C release depend upon how
hydrologic conditions develop as permafrost thaws and the ground subsides.

Here we quantified subsidence and thaw penetration over nine years at a permafrost
warming experiment near Healy, AK. This site is located within the discontinuous permafrost
zone where permafrost temperatures are near 0°C, providing ideal conditions to investigate the
impact of experimental warming on subsidence, permafrost thaw, and C dynamics. The overall
goal of this study was to determine the factors that drive subsidence and the impact of subsidence
on permafrost thaw and the permafrost C feedback to climate. We specifically aimed to
determine 1) the amount of subsidence which occurred over 9 years of permafrost warming and
the impact of air and soil warming on this process, 2) the relative contributions of ice loss and
soil loss to subsidence, and 3) the impact of using thaw penetration, rather than ALT, on
estimates of C exposure in the deepening active layer. We hypothesized that 1) soil warming
would accelerate subsidence over control conditions, but that air warming would not alter soil
temperature sufficiently to impact the rate of subsidence, 2) ice loss would be responsible for
nearly all of the observed subsidence and the impact of soil loss on subsidence would be too
small to detect, even in areas of thermokarst, and 3) using thaw penetration rather than ALT
would increase the estimate of recently thawed C in the active layer by a large margin, because
previously observed rates of both subsidence in degrading permafrost and ALT expansion into

the permafrost are on the order of centimeters per year.
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2. Study Site

The Carbon in Permafrost Experimental Heating Research (CiPEHR) site is located near
Healy, Alaska, USA just outside Denali National Park (WGS84, 63°52°59”N, 149°13°32”W).
The site is underlain by permafrost owing to the elevation of the foothills of the Alaska Range
(670 m, Geoid 12B). The mean annual temperature is -0.94°C with a non-summer (Oct.-Apr.)
average temperature of -10.09°C, and a summer (May-Sept.) average temperature of 11.91°C
(Healy and McKinley Stations, Western Regional Climate Center and NOAA National Centers
for Environmental Information) (Mauritz et al., 2017). The ecosystem is classified as moist
acidic tussock tundra, with the predominant vegetation types being the tussock forming
Eriophorum vaginatum and the deciduous shrub, Vaccinium uliginosum (Salmon et al., 2016;
Schuur et al., 2007). Soils are Gelisols, with an organic layer of approximately 0.35 m above
cryoturbated mineral soils that are composed of glacial till and windblown loess (Natali et al.,
2011; Plaza et al., 2017).

CIiPEHR was established in 2008 to study ecosystem C responses to rising Arctic
temperatures by experimentally warming both soil and air temperatures (Natali et al., 2011). Six
snow fences 1.5 m tall and 8 m long were set up every winter in three replicate blocks (A, B, C)
that contain two fences, each 5 m apart (Figure 1). The snow fences trap snow on the leeward
side, insulating the ground from very cold winter temperatures. Snow depth on the soil warming
side typically reached the height of the snow fences by mid-winter, regardless of the ambient
snow depth in any particular year (Figure 2). Snow was removed each April to avoid additional
water input and delayed snow melt. At each snow fence, four 0.36 m? plots were located on the
soil warming side and four plots were located on the control side. Additionally, two of the four

plots on either side of the fence received air warming using 0.5 m tall clear polycarbonate open
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top chambers which were placed over the plots throughout each summer season. After the first
two years, deep soil (20 and 40 cm) temperatures remained an average of 0.78°C warmer in soil
warming plots throughout the summer season (Mauritz et al., 2017; Natali et al., 2011). By 2015,
after 7 years of treatment, soil warming had resulted in a non-summer season increase of 1.49°C
in surface soil temperatures (5 and 10 cm) and 1.05°C in deep soil temperatures (20 and 40 cm)
(Mauritz et al., 2017). On average, air warming increased air temperatures by 0.3°C during the

first summer season and likely does not cause significant soil warming (Natali et al., 2011).

3. Materials and Methods
3.1. Elevation Measurements and Subsidence Calculation

Subsidence was estimated as the change in elevation derived from high-accuracy GPS
measurements (Rodenhizer et al., 2019a). We measured elevation at each experimental block at 2
m intervals in an approximately 30x30 m grid in 2009, 2011, and each of 2015-2018 using a
Trimble high-resolution differential global position system (dGPS) with real time kinematic
correction. A base station was placed at a United States Geological Survey geodetic marker
(WGS84, 63.88793°N, 149.2383°W) <1 km from CiPEHR in order to continuously correct for
atmospheric disturbances. Each elevation grid point was measured for 3-5 seconds on top of the
moss layer. In 2009 and 2011, post-processing was completed with a methodology developed by
UNAVCO using Trimble Geomatics Office (Dayton, Ohio). Beginning in 2015, post-processing
was completed using a more highly automated methodology developed by the National Park
Service using Trimble Business Center (Sunnyvale, California). Trimble Business Center
replaced Trimble Geomatics Office when it was discontinued, necessitating a new processing
protocol and, despite the shift to a new software platform and a more highly automated protocol,

the underlying processing methodology was the same. We transformed all GPS data to the
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Alaska Zone 4 State Plane coordinate system with the GRS80 ellipsoid and geoid 12B. We
interpolated elevation surfaces using the gstat package (Graler et al., 2016; Pebesma, 2004) in R
(R Core Team, 2018) by building exponential models of empirical semivariograms and
interpolating between the points using anisotropic kriging in two directions (across- and down-
slope) (Bivand et al., 2008). Standard error of kriging was calculated for each cell and is reported
with subsidence values (Figure S1). Subsidence was calculated from the elevation surfaces
relative to 2009 using the raster package (Hijmans, 2019). Subsidence for years missing GPS
points was interpolated linearly cell-by-cell.

GPS accuracy of individual points was very high, although inconsistencies in data
collection may have impacted the accuracy of subsidence. GPS accuracy was measured with two
checkpoints located within a few meters of the base station and measured for 2 minutes
continuously. GPS horizontal accuracy averaged 0.010 m and vertical accuracy averaged 0.0016
m, however, GPS points were not measured in consistent locations throughout the years of
sampling. Through 2016, the grid points were set up by hand using a measuring tape, meaning
that points were measured in slightly different locations from year to year. The roughness of the
tundra vegetation surface means that elevation can differ by tens of centimeters at points that are
only slightly offset from one another, and this could contribute variability to the final subsidence
product. For example, sample semivariograms of the raw elevation data indicate that points
separated by ~1 m differ by 5-7 cm on average, with certain pairs of points differing by nearly 1
m. In 2017 we realized the potential impact of this data collection method, and from 2017 on, the
grid points were loaded onto the GPS ahead of time to allow quick navigation to the same point
year after year. It is impossible to estimate the error associated with gap filling elevation in years

without GPS data, as the cell-by-cell interpolation does not build linear models with all of the
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available data points, but rather fills in missing values by drawing a line through the two closest
(temporally) non-missing data points. However, we expect that the error introduced by this step
is insignificant relative to the error introduced by the varying offset of GPS points from one year
to another.
3.2. Active Layer Thickness and Water Table Depth

Changes in permafrost thaw and hydrologic conditions were characterized with ALT and
water table depth measurements between 2009 and 2018. Thaw depth was measured at each of
the plots by inserting a metal probe into the ground until it hit frozen soil and ALT was quantified
as the thaw depth in mid-September (week 36 of the year) at maximum depth of thaw (Natali &
Schuur, 2012; Natali et al. 2012; Pegoraro et al., 2019). Water table depth, the depth to ground
water, was measured within PVC lined wells three times a week during the summer season
(Schadel, Mauritz, et al., 2018). Between 2009 and 2012, water table depth was measured within
two water wells on each side of the snow fences, and between 2013 and 2018, within three water
wells on each side of the snow fences.
3.3. Soil Cores

We collected soil cores in May 2009 to measure ice and C content prior to experimentally
induced permafrost thaw (Plaza et al., 2017). Two cores were taken per fence, one on the soil
warming side and one on the control side. The thawed surface layer (~15 cm) was collected
using a serrated knife and the frozen ground underneath was cored using a Tanaka drill with a 7.6
cm diameter hollow bit until gravel halted progress (~85 cm). Cores were stored frozen until
processing in the laboratory. The surface vegetation was clipped to the bottom of the green moss,
and cores were sectioned in a 5 cm increment at the surface, and 10 cm increments thereafter.

Each depth increment was subsampled for moisture content, bulk density, and C content (Hicks
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Pries et al., 2012; Pegoraro et al., 2019). Soil gravimetric water content was measured as the
water mass over the wet soil mass (g H20 g Wet Soil ™), because using the wet soil mass in
gravimetric water content determination performs better in ice-rich mineral soils (Phillips et al.,
2015). Bulk density of dry soil was calculated as the mass of a soil sample of known volume (i.e.
the total core volume for the section of core, including ice and rocks, as derived from the core
dimensions; g cm) separated from the mass and volume of rocks. Carbon content was
determined using an elemental combustion analyzer (used to combust the samples; ECS4010,
Costech Analytical Technologies, Inc., Valencia, CA, USA) coupled with an isotope ratio mass
spectrometer (used to measure the C content; Delta V advantage, Thermo Scientific Inc.,
Waltham, MA, USA).
3.4. Soil Core Calculations

We combined GPS measurements with data on ice and C content from the soil cores to
determine the role subsidence has in the quantification of permafrost thaw, as well as the
potential driving factors of subsidence. Using the tidyverse package (Wickham, 2017) within R
(R Core Team, 2018), we accounted for the effect that the shift in soil surface height had on ALT
measurements, calculated the total amount of bulk soil C thawed over the study period, and
partitioned total subsidence into the contributions from loss of ice and loss of soil.

To determine the full depth of permafrost thaw over the course of the experiment, we
calculated thaw penetration as:

ThawPenetration = ALT + Subsidence Eqg.1

where ALT is the depth of thaw during week 36 of the year (late August or early September) and
subsidence is the cumulative interannual subsidence through the date of ALT probing (2009-

20xx). To determine the cumulative interannual subsidence for each plot in each year, we
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extracted the value of subsidence in each year from the kriged surface at the location of each plot
(Rodenhizer et al., 2019b). We calculated the amount of bulk soil C that thawed between 2009
(initial) and each following year (final) as the sum of C content at depths between the initial and
final thaw penetration (Figure S2). Carbon content from 2009 was used so that the initial
quantity of C in the permafrost was accounted for, even though some of the C that thawed
between 2009 and the end of the experiment was lost following thaw, either to the atmosphere or
laterally in water. This calculation was repeated using ALT and the difference between the two
calculations was taken in order to determine the impact of accounting for subsidence on the
magnitude of C exposure upon permafrost thaw.

Potential subsidence due to ice loss was determined by calculating the volume of ice
divided by the soil core area (ice height) from the soil cores taken in 2009 (representing initial
conditions prior to warming). This calculation was based on the volume of ice contained in
thawed permafrost, which was considered to be the layer of soil between the initial (2009) thaw
penetration and the final (2013 or 2018) thaw penetration (Figure S2). We used final values of
both 2013 and 2018, because many of the soil cores were only deep enough to reach the depth of
2013 thaw penetration. We calculated the volume of ice which can contribute to subsidence in
two different ways to determine a maximum and minimum value of potential subsidence. The
volume of ice for the maximum value was calculated using the total ice content, and should be an
overestimate of potential subsidence, because a significant portion of permafrost ice should exist
within soil pores that will not collapse upon ice loss (Kokelj & Burn, 2003). The minimum value
included only the estimated ice volume associated with excess ice (total ice — pore ice) and

should theoretically be a closer estimate of potential subsidence.

17



To calculate the maximum potential subsidence due to ice loss, we had to first calculate
the total mass of ice within the thawed permafrost. We started with the equation for gravimetric
water content:

WaterMass(g)
SoilMass(g) + WaterMass(g)

GWC(%) = Eq. 2

and replaced water mass with ice mass because, at the time of coring, all of the water content of
the thawed permafrost layer was frozen in permafrost. We then rearranged equation 2 to solve for

ice mass:
IceMass(g) = GWC (%) * Eq. 3

where BD is the average bulk density of the thawed permafrost layer. Finally, the total ice height

was calculated from the ice mass calculated in equation 3:

3
IceMass(g) * 0.92 (%)

TotallceHeight(m) = Eq. 4

100 (%) x SoilCoreArea(cm?)

where 0.92 is the density of ice, and the whole equation is divided by 100 to convert from cm to
m.

To remove the possibility of overestimating potential subsidence by including pore ice
volume in the calculation, we partitioned the total ice height into components of pore ice and
excess ice. As excess ice content was not measured following Kokelj & Burn (2003) when soil
samples were originally taken, we instead estimated the excess ice by assuming the pore space of
these soils is 50% of the soil volume (Text S1). This value was chosen because soils at a similar
site ~1 km SE of CiPEHR are silt loam soils based on sand, silt, and clay percentages (NEON,

2017Db), and silt loam soils are estimated to have 50% pore space (Brady & Weil, 2008). Any ice
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which did not fit into the estimated pore space was assumed to be excess ice and was included in
the calculation of potential subsidence (Figure S3):

Excesslce(cm?)

100 (%) x SoilCoreArea(cm?)

ExcesslceHeight(m) = Eq.5

where excess ice was calculated using equations S1-S4 and the soil core area was calculated
from the diameter of the soil core.

To determine the contribution of soil loss to subsidence, we estimated the volume of
organic soil from which measured C losses derived. Minimum and maximum C losses were
estimated from previously published values derived from eddy covariance near CiPEHR (sum of
CO2 and CHg fluxes) or soil core measurements at CIPEHR, respectively (Plaza et al., 2019;
Taylor et al., 2018). Eddy covariance towers are used to measure C fluxes at the landscape scale
and, therefore, incorporate fluxes from varied microsites (Belshe et al., 2012). The eddy
covariance tower is located ~1 km from CiPEHR and averages C fluxes in a footprint with a
radius of approximately 200-350 m (Celis et al., 2017). Although the eddy covariance tower does
not measure fluxes at CiPEHR, the vegetation composition, elevation, aspect, and C flux
dynamics are very similar at both sites (Celis et al., 2017). At this site, CO> fluxes from eddy
covariance are lower than those measured from soil cores, likely in part because eddy covariance
measurements do not account for loss of C through lateral transport in ground water (Plaza et al.,
2019). However, the C loss estimate from soil cores is about twice as large as that from eddy
covariance, indicating a large lateral flux of C in water that has not been verified through other
methods. Therefore, we used both estimates to constrain C flux estimates, with eddy covariance
data as the lower bound and soil core data as the upper bound.

The potential height of soil previously occupied by lost C was calculated as:
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CLoss( Zg )
m2 x yr

gc 9
CContent (gsoil) * BD (m3)

SoilHeight(m) =

* 9(yrs) Eq. 6

where C loss was the average rate of C loss from either eddy covariance or soil cores, C content
was average soil C content in 2009, BD was the average bulk density in 2009, and 9 yrs was the
length of the experiment. We divided by C content in order to account for the total mass of soil
material that the C fluxes derived from and by the bulk density to estimate the height of soil
within the core which had been lost to C fluxes or lateral transport. Because this estimate uses
the height of organic soil, not just C, and we have no direct measurements of the loss of elements
other than C, both of these estimates could still be high. Average C content and bulk density were
averaged from the soil cores at a depth of 5-35 cm, because this layer contains the highest
organic matter content and we assume that mineral losses from soil are negligible (Plaza et al.,
2019).
3.5. Statistical Analyses

We used mixed effects models to analyze the effects of experimental warming on
subsidence and permafrost thaw. All mixed effects models were performed using the Ime4
package (Bates et al., 2015) and we included a random effect for repeat measures and for the
nested structure of the experiment (plot or soil core nested within fence nested within block). In
each model, we examined the model residuals to test for normality and heteroscedasticity.

The impact of experimental air and soil warming on the rate of subsidence was
investigated to determine the effect that future warming is likely to have on subsidence. Plot
level subsidence was used as the dependent variable and the effects of time, treatment (control,

air warming, soil warming, air + soil warming), and the interaction between time and treatment
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were considered to evaluate whether rates of subsidence differed in each experimental treatment.
Data for all plots were included in the model at each time-step, yielding a total of 48 data points
for each year that were evenly distributed across the four treatments. Model fit was evaluated
with Akaike Information Criterion (AIC); parameter significance for the best model was shown
with 95% confidence intervals determined by bootstrapping with 1000 simulations using the
Ime4 package (Bates et al., 2015). Differences in slope between groups were determined using
the 95% confidence interval in the emmeans package (Lenth, 2018).

The contribution of ice loss to subsidence was estimated using a mixed effects model of
subsidence by ice height. Separate models were tested using the total ice height and excess ice
height. Subsidence was extracted from the kriged surface at each soil core location and the effect
of treatment was considered. This model had a total sample size of 24 soil cores, with half
belonging to the control treatment and half to the soil warming treatment. AIC was used to
determine the best fitting model and model parameters were evaluated using 95% confidence
intervals determined by bootstrapping with 1000 simulations using the Ime4 package (Bates et

al., 2015).

4. Results
4.1. Subsidence

Subsidence was observed across all blocks and treatments over 9 years of permafrost
warming (Figure 3; Movie S1; Movie S2; Movie S3). Subsidence occurred at 1.2 cm yr (CI:
1.7, 0.7) in control plots and 1.4 cm yr? (CI: 2.0, 0.9) in air warming plots, and the rate did not
differ significantly between these two groups (Figure 4; Table S1). Subsidence in soil warming
plots occurred at 5.4 cm yr? (Cl: 5.9, 4.8), which was over 4 times the rate of the control plots

and was significantly different than all other treatments. Air + soil warming plots had the greatest
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rate of subsidence at 6.1 cm yr* (CI: 6.7, 5.6), which was ~5 times the rate of control plots and
was also significantly different than all other treatments. The greatest subsidence observed across
the footprints of the blocks was 89.2 + 3.5 cm (mean £ SE of kriging) over 9 years (Figure 3;
Figure 4). Starting in 2016, the formation of ponds on the soil warming side of Blocks B and C
became evident. Elevation increases of up to 32.6 £ 5.1 cm were also observed within the first
several years, however this likely only reflects errors in the GPS time series, as most cells with
elevation increases showed <10 cm of increase and the remaining cells occurred near the outer
edge of the sampling locations where kriging variance is quite high in some years (Figure 3;
Figure S1).

4.2. Permafrost and Carbon Thaw

Thaw penetration was significantly larger than ALT, the traditional method for measuring
permafrost thaw (Figure 5). In control plots, ALT was 74.5 £ 1.2 cm and thaw penetration was
88.6 £ 2.3 cm and in soil warming plots, ALT was 92.4 + 2.7 cm and thaw penetration was 137.4
+ 4.3 cm by 2018 (Figure 5). Using thaw penetration to determine the depth of permafrost thaw
over the course of the experiment increased observed thaw by 19 + 3% in control plots and 49 +
4% in warming plots. This could mean that rates of permafrost thaw are being underestimated
across the circumpolar region, as subsidence is typically not quantified but can be expected
wherever permafrost thaw is occurring.

Using thaw penetration to calculate C exposure in the active layer increased the amount
of C thaw observed over the course of the study. We found an average of 50.2 + 1.0 kg C m?2in
the active layer in control plots in 2009 (Figure 5). By 2018 there was 67.8 + 0.9 kg C m in the
active layer as calculated with ALT and an average of 74.3 + 1.1 kg C m™2 in the active layer as

calculated with thaw penetration. Using ALT, 17.5 + 1.3 kg C m2 thawed over the course of 9
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years and 24.0 + 1.4 kg C m thawed using thaw penetration. This meant that in control plots,
using thaw penetration to calculate the quantity of newly thawed C resulted in an increase of 37
+ 10% relative to estimates calculated with ALT. In warming plots, we found an average of 41.0
+ 0.8 kg C m in the active layer in 2009. By 2018 there was 67.8 + 1.3 kg C m™ in the active
layer as calculated with ALT and 98.1 + 1.7 kg C m as calculated with thaw penetration.
Therefore, over the course of 9 years we calculated 26.8 + 1.5 kg C m™ thawed using ALT and
57.1 + 1.2 kg C m thawed using thaw penetration. This meant that in warming plots, using thaw
penetration to calculate the quantity of newly thawed C resulted in an increase of 113 + 6%
relative to estimates calculated with ALT. Although ignoring subsidence does not impact direct
measurements of soil C content, using ALT rather than thaw penetration to calculate C exposure
in the active layer underestimates the rate of C exposure.
4.3. Drivers of Subsidence

Ice loss was the main environmental driver of subsidence at the site, but soil loss was a
significant driver of subsidence, as well. Excess ice height did not correlate with subsidence, but
total ice height did (Table S2; Table S3). The magnitude of subsidence was 95% (CI: 52, 138) of
total ice height and this relationship did not differ between control and soil warming treatments
(Figure 6; Table S3). Given that total ice height is necessarily an overestimate of the contribution
of ice to subsidence, as some of the total ice volume must occupy pore space and not contribute
to subsidence, the contribution of soil loss to subsidence was used to adjust the estimate of the
contribution of ice loss to subsidence. Using eddy covariance data on C loss, we estimated that
9% of the measured subsidence could be due to soil loss, and using soil cores, we estimated 15%.

If 9-15% of subsidence was due to soil loss, 85-91% of the measured subsidence remained to be
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explained by ice loss, and this corresponded to the loss of ~80-85% of the total ice volume from
the thawed permafrost soil layer.
4.4. Hydrologic Response to Subsidence

Subsidence at CiPEHR universally resulted in wetter soils, as subsidence caused the
ground surface to drop closer to the water table, and this has consequences for energy transfer
and C fluxes. In the most extreme cases in some of the soil warming plots, subsidence resulted in
the formation of thermokarst ponds by 2016 and, despite 2017 and 2018 summer seasons having
average to below average precipitation (Celis et al., 2018), the ponds rarely dried out in some
plots. Even in areas that were not inundated, the water table depth moved closer to the soil
surface over 9 years of warming, as the ground surface dropped closer to the water table in all
treatments (Figure 7). The average water table depth in control plots in 2009 was 27.6 + 0.4 cm
and in 2018 it was 18.4 + 0.3 cm, 33% closer to the soil surface. In the soil warming plots, the
average water table depth in 2009 was 25.4 + 0.5 cm and in 2018 it was 6.6 + 0.3 cm, 74% closer
to the soil surface. The increasingly wet conditions are increasing CHa fluxes due to anoxic
conditions (Taylor et al., 2018) and are likely speeding the rate of thaw through increased energy

transfer in water (Jorgenson et al., 2010; Jorgenson et al., 2006; Subin et al., 2013).

5. Discussion
5.1. Subsidence Masks Total Permafrost Thaw

Subsidence was ubiquitous across treatments at CiPEHR and slight increases in
temperature were sufficient to dramatically accelerate this process. Both control and
experimental warming plots are subsiding at CiPEHR, with gradual subsidence occurring in
control plots and more rapid subsidence leading to thermokarst formation in soil warming plots.

Gradual subsidence in the control plots left no visible features, despite an average of over 10 cm
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of subsidence over 9 years. Rates of subsidence in soil warming plots were over 4x higher than
in control plots and ~5x higher in air + soil warming plots, leading to visible thermokarst
formation in the most extreme cases. Thermokarst depressions became inundated starting around
2016 and were similar to other thermokarst features that have been identified in the area without
experimental warming (Osterkamp et al., 2009). Based on previous research showing that open
top chambers mostly affect air temperatures and not soil temperatures (Marion et al., 1997;
Hobbie & Chapin, 1998; Shaver et al., 2000), we had not expected air warming to affect
subsidence. Despite this, air + soil warming plots subsided more quickly than soil warming plots,
although air warming alone had no impact on the rate of subsidence. This could be due to
slightly higher deep soil temperatures during the summer season in air + soil warming plots
relative to soil warming plots (Mauritz et al., 2017). It is also possible that open top chambers in
inundated air + soil warming plots could reduce surface water flow sufficiently to increase water
temperature and thereby increase thaw and subsidence at those locations, although we have no
measurements of water temperature to confirm this.

ALT measurements at CIPEHR underestimate the thaw of permafrost, and the C it
contains, due to the large magnitude of subsidence across all treatments. After 9 years, thaw
penetration was 49% greater than ALT in soil warming plots and 19% greater than ALT in
control plots. This is similar to the findings of two studies that did not experimentally warm
soils, with thaw penetration being ~20% to >50% greater than ALT (O’Neill et al., 2019;
Streletskiy et al., 2017). Additionally, we showed that this increased rate of permafrost thaw
corresponded to a doubling of the rate of C thaw. This highlights the importance of
complementing ALT measurements with subsidence measurements not just for understanding

permafrost thaw, but also for understanding the permafrost C feedback to the climate. The
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CALM network has made historical ALT measurements in many sites across the circumpolar
region. Some of the CALM sites, such as the sites set up in the Mackenzie Valley by the
Geological Survey of Canada, use thaw tubes that concurrently track elevation changes (Nixon &
Taylor, 1998), but not all sites are accompanied by subsidence measurements. Without
concurrent subsidence measurements, it is impossible to determine whether trends in ALT reflect
trends in permafrost thaw, especially in the case of gradual, visually undetectable subsidence.
Given that thermokarst features are estimated to cover ~20% of the permafrost zone (Olefeldt et
al., 2016) and the potential for gradual subsidence to exist without any indication, it is necessary
that quantification of subsidence occur at a broader scale and be accounted for when quantifying
permafrost thaw. With the expanding availability of LIDAR to determine subsidence rates across
entire landscapes, this problem is becoming more tractable, but it is still necessary to track
elevation for validation at sites distributed across the circumpolar region.
5.2. Ice Loss and Soil Loss Drive Subsidence

Over 9 years of experimental warming at this site, ice loss was the main contributor to
subsidence, accounting for 85-91% of the total subsidence. In permafrost soils, ice exists both
within pore spaces and as excess ice that cannot fit within pore spaces, and it is excess ice that is
expected to contribute to subsidence (Kokelj & Burn, 2003). However, when we estimated
excess ice content using a published value of pore space, excess ice height was far too low to
account for subsidence and did not correlate with subsidence (Figure S4; Table S2). This
indicates that the published value of pore space we used in our calculations may have been
higher than the actual pore space in soils at CIPEHR. Therefore, our estimate of the contribution
of ice loss to subsidence was calculated using the total ice volume to get an overestimate, and

then adjusted downward using the estimate of the contribution of organic matter loss to
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subsidence. Ice loss due to permafrost thaw is recognized as the main contributor to subsidence,
including thermokarst formation, where erosion is limited (Jorgenson & Osterkamp, 2005;
Kokelj & Jorgenson, 2013; Osterkamp et al., 2009). Since the landscape is relatively flat at this
site (~5% slope), we do not observe erosion to be a significant contributor to subsidence as it is
in coastal permafrost and retrogressive thaw slumps, for example. The spatial variability of
subsidence at this site is likely due to the uneven distribution of ice (observed values of total
permafrost ice content prior to thaw in soil cores range from 248-778 g kg) and the locations
with the highest ice content in the newly thawed active layer tended to experience the most
subsidence, as has been observed in previous studies (Jorgenson & Osterkamp, 2005). This
heterogeneity both of ice content and subsidence indicates that although subsidence in the
control plots was not noticeable without measurements, it cannot be classified as isotropic
subsidence, and will likely result in thermokarst pits with continued thaw.

We estimated that 9-15% of the total subsidence was due to soil loss, with the lower
bound being estimated from C fluxes to the atmosphere only, and the upper bound being
estimated from both C fluxes to the atmosphere and laterally in water. In reality, the soil loss is
likely due to both C fluxes to the atmosphere and lateral transport of C in water (Cory et al.,
2013; Lee et al., 2010; Plaza et al., 2019; Vogel et al., 2009), but additional direct measurements
of lateral rates of C loss at the site are needed to strengthen our confidence in the magnitude of
this effect on subsidence. Although this type of partitioning has not previously been published
for permafrost ecosystems, we did find one study from a drained ombrotrophic bog in Norway,
where 38% of subsidence over a 25 year period following drainage was due to peat loss
(Grgnlund et al., 2008), indicating that the decomposition of C rich soils can contribute quite

significantly to subsidence. Additionally, the contribution of soil loss to subsidence at this site is
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supported by several studies in tundra ecosystems that have found lower C content in soils within
thermokarst features (Mu et al., 2016; Pizano et al., 2014).

The soil loss we observed can be explained by both the lateral loss of C in the form of
dissolved and particulate organic C (Cory et al., 2013; Plaza et al., 2019) and CO and CH4
fluxes to the atmosphere (Lee et al., 2010; Vogel et al., 2009). Lateral loss of C has been both
directly observed at the site, with greater summer season dissolved organic C concentrations in
soil warming plots than control plots (Romano, 2018), and also inferred due to greater C loss
from soil cores than can be explained by CO> and CHj4 fluxes (Plaza et al., 2019). Loss of C to
the atmosphere is supported by measurements of CO- fluxes both in the area at large (Celis et al.,
2017) and at CiPEHR specifically, which show more C loss from warming plots where
subsidence is higher (Mauritz et al., 2017). Methane fluxes also correspond to deeper ALT and
wetter microsites, and these environmental conditions were observed in soil warming plots
which have subsided the most (Taylor et al., 2018).

5.3. Circumpolar Implications

Due to the widespread nature of subsidence in the permafrost zone, ignoring subsidence
in measurements of permafrost thaw could be resulting in underestimates of thawed C stocks
across the circumpolar region. The size of this underestimate depends mostly upon ice content in
permafrost, which is often quite high. For example, on the Beaufort coast of Alaska, ice content
varies from 43% in sandy areas to 89% in yedoma (Kanevskiy et al., 2013). Because large
portions of the permafrost zone contain high ice volume and loss of ice upon thaw drives the
majority of subsidence, it follows that the soil surface height, which serves as a reference for
ALT measurements, is shifting across the region. Therefore, it is necessary to quantify

subsidence and incorporate it into measures of permafrost thaw, as is done with thaw penetration.
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Using thaw penetration as the measure of permafrost thaw across the permafrost region will also
improve estimates of the thawed C pool (Nixon & Taylor, 1998). This is especially important
because it is estimated that thermokarst features cover ~20% of the permafrost zone and contain
~50% of the C stored in permafrost (Olefeldt et al., 2016) and areas of thermokarst are likely to
be the places with the largest discrepancy between ALT and thaw penetration. Of course, while
the discrepancy between ALT and thaw penetration is not as great in areas of gradual subsidence,
the potential for subsidence to occur without visual indication and the paucity of subsidence
measurements means that it could be occurring at broad scales without human knowledge.
Additionally, as more C is thawed in permafrost soils and exposed to increasingly wet conditions
caused by subsidence, the release of C as both CO2 and CH4 could increase, thereby amplifying
the warming potential of C fluxes from permafrost ecosystems (Burke et al, 2019; Cassidy et al.,
2016; Turetsky et al., 2020; Walter Anthony et al., 2016).

The impact of subsidence on observed permafrost thaw at this relatively southern site
serves as a clue of what the future may hold for more northerly sites. Our control plots represent
current conditions at the southern extent of permafrost in the discontinuous permafrost zone and,
despite the prevalence of abrupt thaw at higher latitudes (Olefeldt et al., 2016; Turetsky et al.,
2020), gradual thaw and the resulting subsidence are likely occurring more quickly in the
discontinuous permafrost zone than sites at higher latitudes. However, even in more northerly
areas with relatively cold permafrost and shallow active layers, subsidence is already having a
noticeable impact on observed permafrost thaw. Previously quantified rates of subsidence on the
North Slope of Alaska have ranged from a low of 1-4 cm per decade (Liu et al., 2010) to >2.0 cm
yr over 5 years (Streletskiy et al., 2008), and in the western Canadian Arctic subsidence of 0.4

cm yr! has been observed over 25 years (O’Neill et al., 2019). These rates are likely to increase
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in the near future, resulting in faster C release and irreversible changes to permafrost structure
and ecosystem function (Schuur & Mack, 2018; Turetsky et al., 2020). Ecosystem function is
likely to shift as hydrologic conditions change following subsidence, making it necessary to
incorporate subsidence into estimates of C fluxes in Earth System Models (Ekici et al., 2019).
Incorporation of subsidence into Earth System Models must also be accompanied by increased
field monitoring to assess model performance and should occur both through the expansion of

the network of thaw tubes and remote sensing of subsidence, for example through LiDAR.

6. Conclusions

We observed subsidence rates of 1.2-6.1 cm yr! at a permafrost warming experiment near
the southern extent of permafrost, with the lowest rates occurring in control plots and the highest
rates occurring in air + soil warming plots. A 5x increase in subsidence was instigated with
warming of only 1-2°C in both air and soil temperatures, as permafrost temperatures are already
near 0°C. The subsidence was explained by the combined impact of ice and soil loss, with ice
loss driving the majority of subsidence. Additionally, subsidence is causing a shifting reference
frame for ALT measurements, the traditional measure of permafrost thaw. Ignoring the impact of
subsidence on permafrost thaw underestimates total permafrost thaw over timescales as short as
a few years to a decade. We found that using thaw penetration to measure the permafrost thaw in
control and permafrost warming plots increased observed permafrost thaw by 19-49% and the
observed amount of newly thawed C by 37-113%. Because of the potential for subsidence to
impact much of the permafrost zone and the C it contains, it is imperative that studies of
permafrost thaw incorporate measurements of subsidence in order to understand the full impact

of climate change on permafrost stability and C release from permafrost ecosystems. Future
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efforts to quantify subsidence should focus on using LiDAR data, which allow the quick

quantification of subsidence over broad scales.
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Figure 2.1. The location of the three blocks of CiPEHR and the eddy covariance tower located
~1 km away with the topography shown using a hillshade derived from National Ecological
Observatory Network (NEON) airborne Light Detection and Ranging (LiDAR) (NEON, 2017 a).
The site is just west of Healy, AK, and Eight Mile Lake is visible at the top left. Axis labels
indicate location (m) in UTM Zone 6N. The three insets at the top show the location of soil cores
(dots) and plots (open diamonds) within each block over high resolution aerial photographs
available from NEON (NEON, 2018). The solid black lines show the location of snow fences
and the dashed lines indicates the maximum extent of the GPS transects. The inset at bottom left
shows the location within Alaska.
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Figure 2.2. Snowpack on the leeward side of the snow fences in April 2016, just prior to snow
removal. Photo credit: M. Mauritz.
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Figure 2.3. The change in elevation relative to 2009 at the three blocks (A, B, C). Years with gap-
filled data are not included. Negative values for elevation change indicate areas that have
subsided. The locations of snow fences are indicated with solid black lines. The location of
control plots and soil warming plots are indicated in the top left facet by blue and red rectangles,

respectively, and these relative locations are the same for all blocks.
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Figure 2.4. A mixed effects model of subsidence (A elevation) by time and treatment. All
intercepts were forced to zero, as the subsidence is necessarily zero during the first year. Control
plots are shown in blue, air warming in green, soil warming in red, and air + soil warming in
brown. Each point is a measurement from a single plot. The slope of each treatment is shown in
the legend and bands around the regression lines indicate 95% confidence intervals. Superscript
letters indicate significant differences in slope. The interaction of time by treatment had a
significant impact on subsidence. The slopes of the control and air warming treatments did not
differ from each other, but the slopes of the soil warming and the air + soil warming treatments
were different from each other and the other treatments.

35



Control Warming

0- |I||I||I\|I\|I\‘II‘I|‘Il‘l\lll IIIIllIl\Il\Il\lll|l|‘l||l||l| |

- 100

&
o
1

Permafrost Thaw (cm)

3
[ |
|
e

e+

HH

I\IJ T

8

(Zw/g 63) uoque) pemey |

. ALT . Thaw Penetration } i }

-1507 e~ ALT - Thaw Penetration 3%

N il g A S B B Y B O B
FEIIRFTSORNFTS SFSTSRFTSORS

Figure 2.5. The impact of subsidence on observed permafrost thaw and C thaw. The points show
permafrost thaw, as measured by ALT and thaw penetration, through time in control and soil
warming plots. The bars show the amount of bulk soil C in the active layer, as measured from
soil cores, and extrapolated to the field using ALT and thaw penetration. Error bars show SE.
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Figure 2.6. A mixed effects model of subsidence by total ice height (sum of 2009 ice volume
between the 2009 and 2018 thaw penetration/soil core area). The band around the regression line
indicates the 95% confidence interval. Subsidence was 95+ 43% the magnitude of total ice
height, and experimental treatment did not have an effect on the relationship.
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Figure 2.7. The average soil profile in control and soil warming plots. The active layer is
between the soil surface and the thaw penetration, both shown as bold lines, and is broken into
the layer above the water table and the layer below the water table. The unsaturated active layer
(above the water table) is shown in brown, the saturated active layer (below the water table) is
shown in blue. Permafrost is shown in gray. The original soil surface is indicated with the dashed
line, and the soil surface (upper bold line) has dropped from the original soil surface due to
subsidence. The dotted line shows the ALT and the lower bold line shows the thaw penetration.
The ALT is shallower than thaw penetration within the soil profile, because using ALT relies on
the assumption that the soil surface has not shifted from the original soil surface. The thaw
penetration reflects the full depth of permafrost thaw, because it accounts for the change in
height of the soil surface. Gray error bars indicate standard error of subsidence, water table
depth, ALT, and thaw penetration measurements.
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Highlights
e The thermokarst detection algorithm uses one elevation map to identify abrupt thaw
e Water tracks were the most extensive form of abrupt thaw

e Abrupt permafrost thaw promotes carbon dioxide and methane release

Abstract

Abrupt thaw could cause permafrost ecosystems to release more carbon than is predicted
from gradual thaw alone. However, our ability to map thermokarst features is limited in scope
and the observed responses of carbon fluxes to abrupt thaw are variable. We developed a
thermokarst detection algorithm which identifies thermokarst features from a single elevation
dataset with 71.5% accuracy, and applied it in Healy, Alaska, USA. Additionally, we investigated
the landscape level variation in carbon dioxide and methane fluxes due to abrupt thaw using
eddy covariance. 7% of the site was classified as thermokarst, with water tracks being the most
extensive form of thermokarst, although small pits were much more numerous. Abrupt thaw
promoted higher carbon uptake during the growing season, when increases in gross primary
productivity outpaced increases in ecosystem respiration in vegetation-dense water tracks.
However, this was outweighed by higher carbon release in thermokarst features during the non-
growing season. Additionally, abrupt thaw promoted methane production nearly year-round. Our

findings support the hypothesis that abrupt thaw of permafrost carbon will contribute to the
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permafrost climate feedback above and beyond that associated with gradual thaw and highlights
the need to map thermokarst and incorporate abrupt thaw into Earth System Models.

Keywords: Arctic, Permafrost, Thermokarst, Carbon Dioxide, Methane

1. Introduction
1.1. Permafrost Carbon

Permafrost thaw has been widely documented across the permafrost zone as the climate
has warmed (Hinkel and Nelson 2003; Luo et al. 2016; Nixon and Taylor 1998; Osterkamp and
Romanovsky 1999; Streletskiy et al. 2008; Veremeeva et al. 2021). This is an issue of growing
global importance as it impacts communities located on unstable permafrost ground, and global
climate through the release of greenhouse gases (Natali et al. 2019; E. A. G. Schuur and Mack
2018). Permafrost is estimated to contain 1460-1600 Pg of organic carbon (Edward. A. G.
Schuur et al. 2018), which is approximately twice as much carbon as is in the atmosphere
(Houghton 2007). While permafrost ecosystems have historically been a carbon sink, permafrost
thaw is making organic carbon available to microbial use, and release to the atmosphere
(Edward. A. G. Schuur et al. 2018).
1.2. Gradual vs. Abrupt Permafrost Thaw

Permafrost thaws both gradually and abruptly. Gradual thaw has been observed across
much of the permafrost zone, as the seasonally thawed active layer deepens incrementally (Luo
et al. 2016). This type of thaw leads to relatively uniform and steady changes across the
landscape. However, in areas of high ice content, permafrost often thaws abruptly, as the loss of
excess ice causes ground subsidence and thermokarst (the formation of depressions) (M. Torre
Jorgenson, Shur, and Pullman 2006; Nelson, Anisimov, and Shiklomanov 2001). Thermokarst

accelerates the rate of permafrost thaw through shifts in hydrology, most commonly ponding or
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increases in flow, increasing the rates of heat flow and/or erosion in a positive feedback cycle (M
Torre Jorgenson et al. 2010; M T Jorgenson and Osterkamp 2005; S. V. Kokelj and Jorgenson
2013). Although abrupt thaw is not a new phenomenon, the formation of thermokarst features
has accelerated as the climate has warmed and extreme weather events have become more
common. Abrupt thaw occurs sporadically across the landscape because abrupt thaw is limited to
areas where permafrost ice content is high (M T Jorgenson and Osterkamp 2005). Abrupt thaw
also tends to occur sporadically through time, as initiation of thermokarst development occurs
most often following triggers such as climate extremes or disturbance, but development can
occur rapidly following initiation due to positive feedbacks. Weather extremes that trigger abrupt
thaw activity include unusually warm (Farquharson et al. 2019; M. Torre Jorgenson et al. 2020;
Kanevskiy et al. 2017; Lantz and Kokelj 2008; Lara et al. 2016; Swanson 2021; Veremeeva et al.
2021; Ward Jones, Pollard, and Jones 2019), wet (Kanevskiy et al. 2017; Swanson 2021;
Veremeeva et al. 2021), and/or snowy years (M. Torre Jorgenson et al. 2020). Additionally,
disturbance to vegetation cover and the ground surface are known to initiate abrupt thaw
(Kanevskiy et al. 2017).

Once initiated, abrupt thaw can result in thermokarst features with widely variable
morphological characteristics through internal feedbacks that depend on site-specific factors
including topography, soil characteristics, soil ice content, erosion, and thermoerosion (M T
Jorgenson and Osterkamp 2005; S. V. Kokelj and Jorgenson 2013), resulting in different rates of
permafrost carbon thaw, soil temperatures, and hydrologic conditions. On hillslopes, water
drainage plays an important role in thermokarst, leading to elongated features in which ponding
is not common or extensive (S. V. Kokelj and Jorgenson 2013). In many cases, permafrost soils

are directly exposed to the atmosphere due to rapid erosion, accelerating thaw and disallowing
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plant establishment (M T Jorgenson and Osterkamp 2005). On flat terrain, inundation is common
in thermokarst features, resulting in a less elongated shape (S. V. Kokelj and Jorgenson 2013).
These features tend to expose permafrost soils to the atmosphere less often, as erosion is limited,
and allowing plant establishment (M T Jorgenson and Osterkamp 2005). Regardless of
morphology, all thermokarst features expose older carbon stored frozen in permafrost soils to the
dynamics of the modern carbon cycle.
1.3. Permafrost Thaw and Carbon Cycling

Abrupt thaw occurs preferentially in areas of high carbon content, perhaps because wet
soils have the potential for both higher ice and carbon content, and increases the likelihood that
permafrost carbon is released to the atmosphere. It is estimated that ~20% of the permafrost zone
is impacted by abrupt thaw processes, but these areas contain up to half of the carbon stored in
permafrost soils, with wetland thermokarst landscapes accounting for a disproportionately high
amount of carbon (Olefeldt et al. 2016). When these soils thaw abruptly, carbon release to the
atmosphere tends to increase (Cassidy, Christen, and Henry 2016; Eugénie S. Euskirchen et al.
2017; Turetsky et al. 2020), although thermokarst morphology and associated environmental
conditions regulate the eventual fate of thawed carbon at individual sites (Olefeldt et al. 2016;
Rodenhizer et al. 2020; Turetsky et al. 2020). Field studies have found a range in the response of
carbon fluxes to abrupt thaw across sites, likely due to the range of environmental conditions
present. In terms of overall ecosystem carbon balance, both increases (higher carbon release)
(Cassidy, Christen, and Henry 2016; Eugénie S. Euskirchen et al. 2017) and decreases (higher
carbon uptake) in net ecosystem exchange (NEE; the net exchange with the atmosphere) have
been observed within thermokarst features (Lee et al. 2011; Vogel et al. 2009). Conflicting

responses of NEE are unsurprising, as NEE is the difference between Gross Primary Production
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(GPP; photosynthetic uptake of ) and ecosystem respiration (Reco; release of through respiration
by autotrophs and heterotrophs), both of which can respond to abrupt thaw in divergent ways.
GPP has been found to increase in response to abrupt thaw in some studies (Eugénie S.
Euskirchen et al. 2017; Lee et al. 2011; Vogel et al. 2009), while it has decreased in others
(Cassidy, Christen, and Henry 2016). Increases in GPP can be caused by increased access to
nutrients released from the thaw front (Hewitt et al. 2019; 2018; Salmon et al. 2016), or by
drought alleviation caused by uneven ground subsidence (Eugénie S. Euskirchen et al. 2017; Lee
et al. 2011). Decreases in GPP can be caused by erosion disturbing plant growth (M T Jorgenson
and Osterkamp 2005) or by either drought or flooding caused by uneven ground subsidence
(Eugénie S. Euskirchen et al. 2017; Mauritz et al. 2017). Similarly, Reco has shown both positive
(Abbott and Jones 2015; Eugénie S. Euskirchen et al. 2017; Lee et al. 2011; Vogel et al. 2009)
and negative responses to abrupt thaw (Abbott and Jones 2015; Cassidy, Christen, and Henry
2016; Jensen et al. 2014). High rates of erosion in certain thermokarst morphologies can cause
export of carbon off-site and limit Reco (Abbott and Jones 2015), while deeper thaw and higher
soil temperatures within thermokarst features can allow higher respiration throughout the fall,
winter and spring (Vogel et al. 2009; Webb et al. 2016).

Where and when permafrost soils thaw gradually and abruptly is important for
understanding the fate of thawing permafrost carbon. When permafrost thaws gradually, carbon
and nutrients released incrementally from the permafrost thaw front can stimulate plant growth
and carbon uptake at the same time as heterotrophic respiration (E. A. G. Schuur and Mack
2018). Because gradual thaw is nearly ubiquitous across the permafrost zone and changes occur
incrementally, it is simpler to include in Earth System Models than abrupt thaw (Natali et al.

2021; E. A. G. Schuur et al. 2008). Abrupt thaw complicates the balance between carbon uptake
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and carbon release within permafrost ecosystems, by promoting the rapid thaw of carbon rich
soils differentially across the landscape and through time and by causing divergent flux
responses depending on thermokarst morphology and associated environmental conditions
(Cassidy, Christen, and Henry 2016; Eugénie S. Euskirchen et al. 2017; Lee et al. 2011; Vogel et
al. 2009). Because abrupt thaw is more complex than gradual thaw and the spatial distribution is
poorly understood, it is difficult to incorporate into Earth System models (Natali et al. 2021;
Olefeldt et al. 2016). Therefore, it is necessary to gain a better understanding of where abrupt
thaw occurs, which morphological characteristics occur where, how extensive abrupt thaw is,
and the impact abrupt thaw has on carbon release from thawing permafrost.
1.4. Spatial Distribution and Remote Sensing of Thermokarst Features

Relatively little is known about the spatial distribution and extent of thermokarst features
across the circumpolar region because not all forms of thermokarst are equally visible and due to
the difficulty of data collection and processing of high-resolution data over large areas. Across
smaller areas (~1,000,000 km? or less), high-resolution remote sensing can detect discrete
thermokarst features through the observation of subsidence (change detection) or the direct
observation of spectral signatures associated with differences in the plant, soil, or water cover
from the surrounding landscape (Abe et al. 2020; Belshe, Schuur, and Grosse 2013; Grosse,
Morgenstern, and Lantuit 2008; Grosse, Schirrmeister, and Malthus 2006; Jones et al. 2015;
2013; Steven V. Kokelj et al. 2020; Polishchuk et al. 2017). Using subsidence to detect
thermokarst requires two digital terrain models (DTMs, a raster image of ground surface
elevation) from different points in time at a long enough interval that the magnitude of
subsidence is greater than the accuracy of the elevation data. These DTMs can be produced using

a variety of remote sensing methods (i.e. Light Detection and Ranging (LIDAR), Interferometric
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Synthetic Aperture Radar (INSAR)). Identifying spectral patterns associated with thermokarst
features requires only a single spectral image (i.e. airborne multispectral and hyperspectral), but
are still limited in the spatial extent over which they can be applied. This is because the spectral
patterns used in classification vary over time and space and training separate classifications for
each image quickly becomes unwieldy. Therefore, while both repeat imagery and spectral
classification methods are highly effective, they are limited in spatial extent. The only study
spanning the entire circumpolar region to date relied on expert evaluation to create a map of
thermokarst likelihood (Olefeldt et al. 2016), as fully quantitative methods do not exist at that
scale.
1.5. Application of A New Thermokarst Detection Method

In this study, we developed a method for detecting thermokarst with fewer spatial
limitations by identifying thermokarst depressions from a single elevation image. This method
removes the reliance on site-specific relationships and decreases the required number of
elevation images. We applied this algorithm at an 81 km? site located on permafrost undergoing
abrupt thaw within the discontinuous permafrost zone. In addition, we investigated the impact
that abrupt thaw is having on this ecosystem through multiple lines of inquiry. First, we analyzed
the morphology of all thermokarst features to determine which types of thermokarst features are
responsible for the most permafrost carbon thaw. Second, we estimated the change in
microtopography and thermokarst percent cover since 2008. Third, we used an eddy covariance
(EC) tower to estimate the impact of abrupt thaw on carbon fluxes, as we know that permafrost
thaw is causing carbon release, but we have not yet investigated the effect of abrupt thaw

specifically, as opposed to gradual thaw.

46



2. Site

The Eight Mile Lake study site is located North of Denali National Park, USA, at 450-
1180 m in the foothills of the Alaska Range (WGS84, 63°52'59"N, 149°13'32"W). Slopes are
between 0° and 74°, with a median of 5°. Hillslopes between 3° and 10° cover half of the study
area. The mean annual temperature is -0.94°C, with a growing season (May-Sept.) average
temperature of 11.91°C and a non-growing season (Oct.-Apr.) average temperature of -10.09°C
(Mauritz et al. 2017). Due to the high elevation, much of the study site is moist acidic tussock
tundra, although it is located within the boreal forest biome. The site contains some forested
areas, particularly near Panguingue creek in the East. The site is located within the discontinuous
permafrost zone, but is underlain by continuous permafrost. Soils sampled within tundra at the
site are Gelisols and are composed of an organic layer approximately 0.45-0.65 m thick above
cryoturbated mineral soils that are composed of glacial till and windblown loess (Natali et al.
2011). The site contains an experimental soil and air warming experiment, the Carbon in
Permafrost Experimental Heating Research (CiPEHR), established in 2008 (Natali et al. 2011),
and a natural permafrost thaw gradient, which has been monitored since 2004 (E. A. G. Schuur et
al. 2007). An EC tower near the natural thaw gradient has measured CO- fluxes since 2008 and
CHys since 2015 (T. Schuur et al. 2021). In 2017, the National Ecological Observatory Network

(NEON) began monitoring a site a few kilometers away, providing publicly available data.

3. Methods
3.1. Remote Sensing Data

We utilized airborne LiDAR-derived DTMs from NEON for thermokarst detection and
subsidence modeling (NEON 2020a). LiDAR data were collected in July of 2017, 2018, and

2019 in a roughly 10x10 km area centered on their observation site just East of Healy, AK and
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containing both CiPEHR and the permafrost thaw gradient. The LiDAR data were collected

using an Optech ALTM Gemini discrete LIDAR scanner from a Twin Otter aircraft flying at

approximately 1000 m above ground level, resulting in approximately 1-4 returns per square
meter. NEON processed the raw LiDAR data into the DTMs we utilized at 1 m resolution by
removing vegetation returns and interpolating a continuous surface.

We used two images for validation of the thermokarst feature detection. First, we used
high resolution camera data available from NEON (NEON 2020b). The Optech Gemini high
resolution digital camera images were collected from the same platform as the LiDAR
acquisitions in 2017, 2018, and 2019, and provided color images at 10 cm resolution. Despite the
exceptional resolution, visibility of thermokarst features was limited where vegetation was thick,
because the images were acquired near peak greenness. When NEON imagery was insufficient to
determine the presence or absence of thermokarst, we used an October, 2018 Worldview 2
image, which allowed better visibility through vegetation despite lower resolution and was
provided through the Nextview license and accessed through NASA's High-End Computing
Program as a part of the Arctic Boreal Vulnerability Experiment. The Worldview 2 sensor has a
high-resolution panchromatic band at 0.46 m resolution and 8 spectral bands at 1.84 m
resolution, including a red, green, and blue band, which we used to create a pan-sharpened image
at 0.46 m resolution.

3.2. Thermokarst Detection Algorithm

We developed the thermokarst detection algorithm, which detects thermokarst features by
identifying local elevation minima from a single DTM (Figure 1). Because the thermokarst
detection algorithm does not rely on site-specific relationships and requires only one elevation

image, it has the potential to be applicable at sites across the permafrost zone. An R-package of
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the algorithm is publicly available on github (github.com/HRodenhizer/thermokarstdetection).
The algorithm has three steps which were developed using the raster package in R (Hijmans
2021): 1) median elevation is calculated in one or more circular neighborhood(s) of user-defined
size around each cell of a DTM, 2) microtopography is calculated by subtracting the
neighborhood median elevation from the elevation within each cell, and 3) elevation minima are
classified as cells in which microtopography falls below a user-defined threshold.

Using the high performance computing cluster at NAU, we applied the thermokarst
detection algorithm separately on each of three annual DTMs (2017-2019). We calculated
median elevation multiple times using different neighborhood sizes (15, 25, and 35 m radii), in
order to test the ability of different window sizes to discern thermokarst features of varying size
(Table S1). Both the elevation and median elevation rasters were cropped to a 9x9 km tile in
order to ensure that no edge cells were missing values before continuing. Microtopography was
calculated for each of the median elevation rasters. Local elevation minima were determined by
reclassifying microtopography using two different thresholds (0 and -5 cm) such that values
below the threshold (reflecting local elevation minima or potential thermokarst) received a value
of 1 and values above the threshold (reflecting local elevation maxima or non-thermokarst)
received a value of 0.

Site-specific post-processing (not included in the R-package) was used to filter out
elevation minima which were unlikely to be caused by thermokarst processes. The landscape
filter masked elevation minima that coincided with non-thermokarst lakes, steep slopes, and
deeply-incised river valleys. Steep slopes in this area are unlikely to contain thermokarst due to
the fact that they tend to be extremely rocky and have low soil ice content. Although

thermoerosion likely plays a role in forming river valleys, mechanical erosion is likely the main
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driver of elevation changes in riverbeds, so these features were removed to ensure a conservative
classification. Any elevation minima which fell within one of the filters were removed to create
the thermokarst classifications. The hydrology toolset in ArcMap (ESRI, Redlands, CA) was
used to model flow accumulation for the river filter, but all other filter steps were completed in R
using the raster, sp, and sf packages (Edzer Pebesma 2018; E. Pebesma and Bivand 2005).

To create the slope filter, we calculated slope from the 2018 DTM using the terrain
function and, using trial and error to determine a reasonable cut-off value, reclassified the raster
to assign values > 25° to 1 and values < 25° to 0. Some small areas with slopes > 25° were
removed from the slope filter by using the erode function followed by the dilate function in the
raster package, so that the filter would only remove larger and more consistently steep areas. The
resulting raster was then buffered to 25 m in order to ensure that areas near steep slopes with
potentially high rates of erosion (such as relatively flat riverbeds at the bottom of gullies) were
also removed.

To create the river filter, we first filled in sinks in the 2017 DTM using the fill tool in
ArcMap 10.6.1, as this is required for hydrologic analysis to avoid cells with undefined drainage
direction. We used the flow direction tool to determine the direction of flow from the filled DTM
and the flow accumulation tool to calculate flow accumulation values from the flow direction
raster. The flow accumulation raster was then reclassified in R using several different cut-off
values to identify rivers of varying sizes, with flow accumulation values greater than the cutoff
being assigned to 1 (river) and values less than the cutoff being assigned to 0 (not river). We
determined flow-accumulation cutoff values of 7,000,000, 8,000,000, and 20,000,000 based on
the level of incision as determined by visual inspection of the high-resolution camera data. Each

of the three river rasters was buffered, as this analysis only allows rivers to be one cell wide in
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any location, but the actual riverbeds are typically wider. Since the riverbed width tends to
increase with increased flow, we used a visual inspection of the imagery to decide on a 50 m
buffer for the smallest rivers, a 100 m buffer for medium-sized rivers, and a 250 m buffer for the
largest rivers. These three buffered river layers were combined into one raster such that a cell
that had a value of 1 in any layer remained 1 and a cell that was 0 in all layers remained a 0.

To create the non-thermokarst lake filter, we intersected lake and stream maps of the
study site. We assumed all sinks were lakes, and sinks were determined by subtracting the 2018
filled DTM from the 2018 DTM and converting this raster to polygons using the sf package. The
river raster with the lowest cut-off value was converted to a vector river layer, and the lake
polygons and rivers were intersected to retain only those lakes which intersected a river, i.e. a
lake with an inlet and/or outlet. These polygons were converted back to raster format, with 1
representing non-thermokarst lakes and O representing everything else. The resulting raster had a
few holes in the only non-thermokarst lake at the site, Eight Mile Lake, so we dilated the raster
twice and then eroded the raster twice to fill in any holes.

Finally, the three filter rasters (steep slopes, river buffer, and non-thermokarst lakes) were
combined such that any cell with a value of 1 in at least one layer remained 1 and any cell with a
value of 0 in all layers remained 0. This combined landscape filter was overlaid with the filled
elevation minima rasters in order to remove the thermokarst classification from any cells
unlikely to be thermokarst due to landscape features. The filter raster was subtracted from the
elevation minima rasters on a cell by cell basis and reclassified such that values of 1 reflected
thermokarst features which remained after filtering and values of O reflected cells that were non-
thermokarst, regardless of whether they had never been classified as thermokarst or were filtered

out.
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Visual inspection of the thermokarst classification at this point indicated that many of the
thermokarst features contained small groups of cells that were classified as non-thermokarst
within an otherwise contiguous thermokarst feature. We filled in these holes as well as possible
by using the dilate and erode functions within the mmand package (Clayden 2020). We ran dilate
twice and then ran erode twice using the rook's case for adjacency. The dilate function works by
centering a kernel on each non-zero value in order to extend the non-zero values to all cells
specified in the kernel, while the erode function does the opposite by centering on zero values to
erase all cells within the kernel. In addition to filling in non-thermokarst holes within larger
thermokarst features, this process results in reducing the number of thermokarst polygons
associated with a single, fragmented thermokarst feature (for example a single water track that
the thermokarst classification identified as many smaller, adjacent thermokarst features).

The thermokarst classifications derived using different neighborhood sizes were
combined into multiple classifications using different combinations of neighborhood sizes (see
Table S1 for all combinations), because we expected that a smaller neighborhood size would
result in a greater number of small thermokarst features and more holes in the middle of large
thermokarst features, while a larger neighborhood size would result in fewer small features and
fewer holes in large features. These combinations were validated alongside each of the models
which used one neighborhood size (Table S1).

In order to select the best method of thermokarst detection, we determined the presence
of thermokarst using the high-resolution aerial and satellite imagery in 200 sample cells. We used
~100 samples in each of the thermokarst and non-thermokarst classes. The sample order was
scrambled and any information that would identify the sample cell's classification was removed

prior to visual inspection of each point. We first studied the NEON camera image, due to its
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higher resolution, but if identification proved difficult due to thick vegetation, we also studied
the Worldview 2 image. We considered any visible small ponds, gullies, and depressions to be
thermokarst in our validation process. In addition, any cells that fell within more heavily
vegetated water tracks (tracks that route water downslope but may or may not have surface
water) were considered thermokarst, even though it was nearly always impossible to see through
the vegetation in either validation image in these regions. Given the presence of increased
vegetation, which likely indicates a deeper active layer and, therefore, subsidence, we decided to
include all these cells in the thermokarst category. We calculated the overall, producer's (how
likely a real feature on the ground is to be classified correctly on the map), and user's (how likely
a class shown on the map will be present on the ground) accuracies for each of the thermokarst
rasters (Congalton and Green 2019), including the combined rasters. The raster classification
with the highest overall accuracy was converted to vector format (polygons) and holes smaller
than 25 m? within polygons were filled in to reduce polygon complexity for subsequent analysis
using the packages sp and sf (Edzer Pebesma 2018; E. Pebesma and Bivand 2005). The
thermokarst classification map (raster format) with the highest overall accuracy and producer's
accuracy was converted to vector format (polygons) and, within a single polygon, holes smaller
than 25 m? were filled in using the packages sp and sf to reduce polygon complexity for
subsequent analysis.
3.3. Analyses

All analyses were performed in R (R Core Team 2021). Spatial data were handled using
the raster and sf packages, while non-spatial data were handled using the tidyverse (Wickham et

al. 2019) and data.table (Dowle and Srinivasan 2021). Visualizations were created with ggplot2
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(part of the Tidyverse), viridis (Garnier et al. 2021), ggnewscale (Campitelli 2021), and ggpubr
(Kassambara 2020).
3.3.1. Thermokarst Morphology Analysis

Using the vector thermokarst classification map created in section 3.2, morphological
characteristics of thermokarst features were calculated on a polygon by polygon basis. The size
of each feature was calculated as the number of 1 m? cells within each polygon. To determine
thermokarst shape for each feature, we used the Polsby-Popper test, which is a metric of the
"compactness” of a shape. This metric falls between 0 and 1, with values near 0 indicating
shapes that are not very compact (long or convoluted thermokarst features such as water tracks)
and values near 1 indicating a high degree of compactness (round thermokarst features such as
thermokarst pits and lakes). Thermokarst depth was approximated using microtopography,
because microtopography is the difference between the actual elevation of a cell and the median
elevation in the neighborhood surrounding it at one point in time. This should be more accurate
than the subsidence observed over the study period, because many thermokarst features at this
site are decades old, while our LiDAR data only span two full years. However, microtopography
is an underestimate of depth because the 1 m? resolution results in average elevations which
exclude the most extreme values (Wu and Li 2009) and inundation and/or thick moss growth
often obscures the ground surface. In each cell, we extracted the minimum microtopography
from the three layers created with different neighborhood sizes in section 3.2 and calculated the
mean for each polygon. Feature volume was calculated as the product of feature size and mean
depth. Finally, we binned thermokarst features separately by size and shape classes. Within each

class, we determined the prevalence as the number of features of that class divided by the total
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number of features, thermokarst percent cover as the sum of thermokarst feature sizes divided by
the area of the study site, the mean depth, and the mean volume.
3.3.2. Thermokarst Subsidence Analysis

We compared subsidence (2017-2019) between non-thermokarst areas, the edges of
thermokarst features, and the centers of thermokarst features. Subsidence was calculated as the
difference between the 2017 and 2019 LiDAR-derived DTMs. We identified the edges of
thermokarst features as the 1 m wide ring of cells that fell immediately outside the thermokarst
feature outline. Subsidence was then extracted from a stratified random sample of ~500 cells in
each thermokarst class (total: 1500) and the average subsidence and standard error were
calculated for each class. Differences in the magnitude of subsidence between groups were tested
using a pairwise contrast in emmeans (Lenth 2021). To validate the LIiDAR-derived subsidence,
we calculated subsidence over the same time period using high-precision GPS measurements
taken at CIPEHR (Rodenhizer, Mauritz, et al. 2021).
3.3.3. Eight Mile Lake Watershed Decadal Change Analysis

We investigated thermokarst development since 2008, as these changes could impact
hydrology and carbon fluxes. To estimate change in the extent of thermokarst features, we
compared our results to a previous study, which quantified thermokarst features within the Eight
Mile Lake Watershed using a high resolution spectral classification from 2008 (Belshe, Schuur,
and Grosse 2013). We calculated the percent cover of thermokarst (mean of 2017-2019) within
the Eight Mile Lake Watershed using the methods described in the Thermokarst Morphology
Analysis section (3.3.1). To calculated the change in microtopography since 2008, we used an
approximate footprint of the EC tower (225 m radius circle) which ensured the inclusion of all

areas previously investigated in Belshe et al. (Belshe et al. 2012). For this analysis, we re-
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calculated microtopography following Belshe et al. (Belshe et al. 2012), which differs from
section 3.2 in that mean elevation was calculated by aggregating elevation to 30 m resolution and
then resampling to 1.5 m resolution, instead of using a moving circular window to calculate
median elevation. The change was calculated as the difference between the 2008
microtopography raster and the 2017-2019 average microtopography raster. To investigate the
relationship between surface roughness and extent of abrupt thaw, the approximate EC tower
footprint was split into 360 1° slices. Within each slice, we calculated the thermokarst percent
cover following the methods described in section 3.3.1 and surface roughness as the standard
deviation of microtopography.
3.3.4. Carbon Flux Analysis

We used EC tower data to investigate the role that abrupt thaw plays in regulating CO>
and CHys fluxes at the site. Raw (10Hz) flux tower measurements taken between May 1, 2017 and
April 30, 2020 were processed to 30 minute NEE in EddyPro 7 (Rodenhizer, Celis, et al. 2021).
During the growing season day (GS Day), Reco Was estimated using a Night Respiration model
from the same time period, and GPP was taken as the difference between NEE and Reco. At night
and during the non growing season (NGS/Night; defined as PAR < 10), GPP was assumed to be
0 and Reco Was set equal to NEE (Reichstein et al 2005). For more details about the post-
processing and QA/QC of the CO> flux data see Schuur et al. (2021). 30 minute CHs fluxes
between May 1, 2016 and December 31, 2019 were filtered using the REddyProc package
(Wutzler et al. 2018) and gap filled using artificial neural networks as a part of FLUXNET-CH4
(Delwiche et al. 2021).

To estimate carbon fluxes by thermokarst percent cover, we used the two-dimensional

parameterization for Flux Footprint Prediction in R (Kljun et al. 2015) to model the flux footprint
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for each flux and calculate the contribution of thermokarst affected land to the flux. The
boundary layer height was calculated following Appendix B of Kljun et al. (2015) for neutral and
stable conditions and set to 1500 m for convective conditions. At each half hour time step, the
flux footprint raster was multiplied by the average 2017-2019 thermokarst classification and all
cells were summed to calculate the thermokarst percent cover for that flux.

We used linear regression to investigate the impact of abrupt thaw on carbon fluxes. CO>
fluxes were separated into GS Day and NGS/Night groups in order to separate conditions with
and without photosynthesis. For each group (GS Day, NGS/Night) and carbon dioxide flux
(NEE, GPP, and Reco), excepting NGS/Night GPP, which is theoretically impossible, we tested a
maximum model of carbon flux ~ thermokarst percent cover*month, because we expected
variation in the impact of thermokarst on fluxes throughout the year depending on divergent soil
thermal conditions within and outside of thermokarst features. For CHs4 fluxes, we removed
pulses of CHs release or uptake which were more than 3 standard deviations from the mean in a
2-week rolling window. We tested a maximum model of CH4 flux ~ thermokarst*month. Due to
the small number of methane pulses and extreme non-normality of the data, we did not run
statistical models for methane pulses. For each regression model, we tested residuals for the
assumption of normality and spatial autocorrelation. Because model residuals were not normally
distributed, we bootstrapped confidence intervals for model coefficients rather than using p-
values for hypothesis testing. We did not find strong evidence of spatial autocorrelation in the
model residuals. We used backward stepwise selection based on AIC to remove unnecessary

variables and select the best model.

4. Results

4.1 Validation of Thermokarst Classification
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We found that thermokarst classification performance differed depending on both the
neighborhood size used to calculate median elevation and the threshold used to classify elevation
minima, with models that combined multiple neighborhood sizes generally performing better
than models which used only a single neighborhood size. The thermokarst classifications ranged
in overall accuracy from 61.5% (large neighborhood) to 71.5% (both small combination and
complete combination) (Table 1, Table S1). Because there was a tie between two combinations
for the best classification, we chose the complete combination (which included all three
neighborhood sizes) based on the following lines of reasoning: 1) the small combination, which
lacked thermokarst detected at the largest neighborhood size, tended to leave gaps in large,
contiguous thermokarst features, and the complete combination was better able to fill these in,
and 2) both of the best performing classifications were more likely to miss the presence of
thermokarst features than to identify non-thermokarst as thermokarst, indicating that the less
conservative combination was a better choice in order to balance missing fewer thermokarst
features and the possible inclusion of false positives.

4.2. Site-Wide Thermokarst Statistics and Morphological Characteristics

Overall, we found that thermokarst features covered 7% of the landscape, or 5.7 km?,
with considerable variability depending on slope and glacial history (Figure 2). The dendritic
pattern of water tracks were found across large swaths of the low-angle hillslopes at the site.
Small thermokarst pits occurred in clumps, most frequently along the inner EML moraine
(Thorson 1986). Additionally, thermokarst features were evident along paths of human
disturbance, including roads and dogsled/ATV tracks. Across all thermokarst shapes, the average
feature size was 25 m2. The deepest thermokarst feature had a maximum depth of 3.6 m. Across

the site, thermokarst features averaged 0.07 m deep at their deepest point and had an average
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depth of 0.03 m. Erosion seemed to play a minor role in thermokarst formation as the slopes with
high thermokarst activity were shallow (3-10°) and exposure of mineral soils or disturbance to
plants was only observed in recently inundated thermokarst pits.

Across the entire study area, we observed subsidence (2017-2019) of 0.03 m in non-
thermokarst areas (p < 0.0001) and 0.02 m in thermokarst edges (p = 0.066) but subsidence of
0.01 m in thermokarst centers was not significant (p = 0.33). The rate of subsidence did not differ
statistically between any of the thermokarst classes (Figure S1). Using our GPS data at CIiPEHR
over the same time frame, we observed subsidence across all thermokarst classes, with
thermokarst centers and thermokarst edges subsiding more quickly (0.05 m) than non-
thermokarst areas (0.01, p < 0.0001). The magnitude of LiDAR-derived subsidence at CIiPEHR
was 0.01-0.02 m smaller than the GPS derived subsidence (p < 0.0001), but showed the same
patterns across classes.

We found that thermokarst morphology varied by both feature size and shape (Figure 3).
Small features were the most prevalent (51%) and prevalence declined exponentially as size
increased. The largest class, 100,00 m? - 1 km?, had a total of only 9 features (0.001%). For
shape, the most compact features, which tended to be small thermokarst pits and ponds, were
most prevalent (52%), and the least compact features, which tended to be extensive water tracks,
were the least prevalent (1%). Thermokarst percent cover showed very different patterns than
prevalence across size and shape classes. Mid-sized thermokarst features (1000 - 10,000 m?) had
the greatest extent (2%), while both larger and smaller features were less common. For shape,
percent cover showed a pattern of exponential decay from the least compact features (5%) to the
most compact features (0.1%). Percent volume of thermokarst features showed similar, but more

pronounced, patterns to percent cover. Relatively large features (1000 - 10,000 m? and 10,000 -
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100,000 m?) had the highest percent volume (38% each), while smaller and larger features had
lower percent volume. For shape, the least features had the highest percent cover by far (85%)
and percent volume dropped exponentially, such that the most compact shape class accounted for
very little of the thermokarst volume (<1%). Mean depth of thermokarst features varied
considerably by size class, but very little by shape. Thermokarst feature classes smaller than
1000 m? all had a mean depth of less than 0.05 m, while thermokarst feature classes between
1000 m? and 1 km? all had mean depths near or greater than 0.15 m. In contrast, all thermokarst
shape classes had a mean depth around or below 0.05 m, with only a slight tendency toward
shallower features at shapes in between the two extremes.
4.3. EML Decadal Change

Within the EML watershed, we found a higher degree of thermokarst impact than across
the study area as a whole. Within the watershed, 12%, or 1.3 km?, of the landscape was impacted
by thermokarst, compared to 7% within the larger study area, and exactly the same as in 2008.
Much of the watershed was covered by water tracks and a small stream feeding into EML, which
was likely responsible for the elevated thermokarst percent cover relative to the rest of the study
area. Additionally, the watershed has a higher ratio of road miles to area than the rest of the study
area and the road is flanked by thermokarst features for nearly its entire length. Finally, there are
more dogsled/ATV tracks in the vicinity of the lake and road than in other regions of the study
area, although these features cover much less area than water tracks.
Thermokarst percent cover and roughness varied considerably across the EC tower footprint,
with higher thermokarst percent cover and roughness occurring N and NW of the tower (Figure
4). This trend was driven by a system of deeply incised water tracks primarily in the N and NW

regions of the EC tower fetch and a patch of small thermokarst features in the NE region of the
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fetch (Figure 2c, S3). There was a non-linear relationship between surface roughness and
thermokarst. Surface roughness increased with increasing thermokarst to about 30% cover and
then declined somewhat with greater thermokarst percent cover. Since 2008, we found that
average microtopography at the EC tower increased by 1.62 cm (Belshe et al. 2012), which may
indicate that the landscape is subsiding more quickly than older thermokarst features.
4.4. Response of CO; Fluxes to Abrupt Thaw

Abrupt thaw drove higher CO- release (Figure S4), with thermokarst percent cover being
a strong predictor of all CO> fluxes (NEE, GPP, Rec), particularly during the GS Day (Figure 5).
All selected models included thermokarst percent cover, month, and the interaction between the
two. Thermokarst percent cover explained more variation in GPP (r2 = 0.56) and Reco (GS Day:
r2 = 0.49; NGS/Night: r2 = 0.24) than in NEE (GS Day: r2 = 0.39; NGS/Night: r2 = 0.22).
During the GS Day, GPP and Reco increased with thermokarst percent cover, with the response
peaking during the growing season. During the NGS/Night, there was a noticeable seasonal trend
in the relationship between thermokarst percent cover and Reco, With very little impact of
thermokarst on Reco during the winter and early spring and stimulation of Reco by thermokarst
during the GS and early fall, particularly August and October. During the GS Day, abrupt thaw
stimulated GPP more than Reco, resulting in higher carbon uptake, particularly during peak
growing season in July. During the NGS/Night, however, abrupt thaw stimulated carbon release
in all months except February. In February, the relatively strong stimulation of the CO; sink by
thermokarst appears to be confounded by wind speed and wind direction. This was because
winter storms, which release CO. trapped in snow or cracks in the soil, primarily came from the

SW which happens to have low thermokarst percent cover. On an annual scale, the impact of
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abrupt thaw on Reco Was stronger than the impact on GPP, resulting in greater CO> release
(Figure S4).
4.5. Response of CH4 Fluxes to Abrupt Thaw

Abrupt thaw was a significant, but small, predictor of CH4 fluxes, with the strongest
relationship occurring during the growing season and fall (Figure 6, r2 = 0.071). For all months
except January and February we found that CHa release increased with thermokarst percent
cover, with the strongest relationships between June and October, and weaker relationships in the
winter and early spring. In contrast, in January and February CHs release was exceptionally high
at low thermokarst percent cover, which was largely due to high wind speed during storms
coming from directions with low thermokarst percent cover, likely releasing CH4 trapped in
snow. During the GS Day, CHa pulse release showed some evidence of being influenced by
thermokarst percent cover, as higher release tended to occur from areas of higher thermokarst
percent cover (Figure S5), but soil moisture had a stronger influence on CHa pulse release.
During the NGS, wind speed had a strong influence on CHa pulse release and thermokarst

percent cover did not appear to play a strong role.

5. Discussion
5.1. Thermokarst Morphology and Impact on Carbon Fluxes

We found that at least 7% of the site was impacted by thermokarst and the impact of these
features on carbon thaw and flux varied by thermokarst size and shape (Figure 3). Small
thermokarst pits, most common on the inner EML moraine and previously glaciated low-angle
slopes to the East of the moraine, were by far the most numerous thermokarst features. Given the
glacial history of these areas, these features could be the result of the thaw of buried glacial ice

based on the glacial history of the site (Harris and Murton 2005; Thorson 1986) and the presence
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of glacial till (Osterkamp et al. 2009). By area, a much smaller number of larger, less compact
features accounted for the vast majority of thermokarst impacted land. These features tended to
be extensive systems of water tracks which were longer and deeper than the smaller pits.
Because of this, these features had an outsized impact on the ecosystem by thawing more
permafrost and the carbon it contains. At this site, we previously found that subsidence
associated with abrupt thaw can thaw carbon at twice the rate expected from that of gradual thaw
alone (Rodenhizer et al. 2020). With 7% of the landscape currently undergoing abrupt thaw, this
could mean that, at the landscape-level, permafrost carbon is thawing 7% faster than increases in
active layer thickness indicate. It is important to note, however, that this rate will change as thaw
progresses into deeper soils with lower carbon content.

Thermokarst percent cover, in combination with month, explained between 22% and 56%
of GPP, Reco, and NEE, indicating that it captures some of the long-term variability associated
with a wide variety of environmental predictors of carbon fluxes, although it only explained 7%
of CH4 flux (Figure 5). Given that carbon fluxes respond to many environmental variables in
complex ways, the high r2 values in our linear models indicated that thermokarst was a proxy
variable for several environmental variables, with the ability to explain ~50% of GS Day GPP
and Reco When month is also considered. Because thermokarst typically occurs over the course of
years to decades, it may be a proxy for environmental variables such as deep soil temperature,
talik formation, and nutrient availability, which exert slower, long-term control on fluxes than
environmental variables like light level or air temperature, which can change drastically
throughout the course of a day (Belshe et al. 2012; Lee et al. 2011; Lee, Schuur, and Vogel

2010).
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Net carbon dioxide release was promoted by abrupt thaw at this site (Figure S4). Changes
in NEE depend on the balance between GPP and Reco, both of which can shift in divergent
directions in response to abrupt thaw. Although we found that plant growth was promoted within
thermokarst features during the growing season daytime, resulting in higher annual GPP, it was
not sufficient to offset higher Reco at night and during the non-growing season (Figure S4, Figure
7). This reinforces the idea that winter respiration rates have a very important role in determining
annual CO; balance across the northern permafrost region (Natali et al. 2019; Watts et al. 2021).
This site is already a CO> source in most years (Plaza et al. 2019; T. Schuur et al. 2021), due to
the combined impacts of gradual and abrupt thaw. Our findings isolated the response of CO> flux
to abrupt thaw abrupt thaw and indicate that this site is likely to become an even stronger CO-
source as abrupt thaw expands. Higher NEE (more release of CO>) from thermokarst features has
also been found in previous studies at EML (Trucco et al. 2012; Vogel et al. 2009) and elsewhere
(Cassidy, Christen, and Henry 2016; Eugeénie S. Euskirchen et al. 2017) and in modeling studies
(Parazoo et al. 2018; Turetsky et al. 2020), supporting our results. At the same time, the opposite
pattern (lower NEE) has also been documented at EML (Lee et al. 2011) and elsewhere (E. S.
Euskirchen et al. 2014; Wickland et al. 2020). The varied net CO- response of thermokarst
features across sites is likely due in part to thermokarst morphology, which regulates
environmental conditions such as soil temperature (Lee et al. 2011; Mauritz et al. 2017), soil
moisture (Eugénie S. Euskirchen et al. 2017; Mauritz et al. 2017; Rodenhizer et al. 2020), and
rates of erosion (Abbott and Jones 2015). Because these changes in environmental conditions can
result in either increases or decreases in GPP and/or Reco, the overall effect on NEE is highly
variable, and the opposite responses observed across sites and through time is not unexpected.

Despite the wide variability of NEE response to abrupt thaw, the balance of the evidence
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suggests that the ability of abrupt thaw to rapidly thaw permafrost carbon results in substantial
release of carbon that was previously stored in permafrost soils.

Abrupt thaw promoted higher GPP during the growing season (Figure 5), as highly-
vegetated water tracks were the most extensive form of thermokarst. Although we have
previously observed die-off of plants in young, recently inundated thermokarst features at this
site (Rodenhizer et al. 2020; M. Taylor et al. 2021), GPP was stimulated by abrupt thaw in the
current study, likely due to the response of extensive (and typically older) water tracks (Curasi,
Loranty, and Natali 2016). Higher GPP in water tracks at this site was likely due to warmer soil
temperatures (Lee et al. 2011), the release of nutrients from the deepening thaw front (Hewitt et
al. 2019; 2018; Salmon et al. 2016), low rates of erosion allowing the establishment of wet-
adapted plants (M T Jorgenson and Osterkamp 2005). Because this site is relatively wet, we do
not believe that the alleviation of drought in thermokarst features played a strong role in
increasing GPP, as was observed in Euskirchen et al. (2017). Since water tracks are the most
widespread thermokarst morphology at our site, this site is likely seeing an overall increase in
photosynthesis and vegetation biomass as abrupt thaw progresses.

Abrupt thaw promoted Reco Year-round (Figure 5), outpacing increases in GPP and
resulting in the loss of old permafrost carbon (Figure S4). Increases in Reco Were due partially to
higher root respiration associated with higher plant growth in water tracks (Hicks Pries et al.
2016; 2015; 2013; Lee, Schuur, and Vogel 2010). However, increasing year-round heterotrophic
respiration must be responsible for the overall shift to higher net carbon release, despite its
smaller magnitude. This is because carbon release through autotrophic respiration offsets only
about half of carbon uptake through photosynthesis (Collalti and Prentice 2019). The increase in

heterotrophic respiration is likely due to higher availability of carbon as a microbial energy
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source, increasing soil temperatures, and the presence of taliks, which provide unfrozen soil
conditions year-round (Natali et al. 2019; E. F. Pegoraro et al. 2020). Although erosion can limit
Reco through the rapid export of permafrost carbon (Abbott and Jones 2015), this did not appear
to play a noticeable role due to the low rates of erosion at this site. Because this site is relatively
wet and prone to anaerobic conditions (which can protect soil carbon from mineralization), the
increase in heterotrophic respiration has previously been shown to be particularly strong during
dry years when waterlogging is alleviated (E. F. Pegoraro et al. 2020). Some of the carbon being
respired from thermokarst has likely been stored in permafrost for hundreds to thousands of
years (Hicks Pries, Schuur, and Crummer 2013; E. Pegoraro et al. 2019; E. F. Pegoraro et al.
2020), particularly as the thaw front deepens rapidly into layers of older carbon.

Abrupt thaw promoted higher CHs release nearly year-round (Figure 6), likely due to
anoxic conditions in waterlogged soils and longer periods of unfrozen conditions in thermokarst
(M. A. Taylor et al. 2018; M. Taylor et al. 2021). Unlike the varied responses of NEE to
thermokarst, there is high agreement that CH4 release is promoted by abrupt thaw in the literature
(Burke et al. 2019; Cooper et al. 2017; Kutzbach, Wagner, and Pfeiffer 2004; Lindgren et al.
2016; Nauta et al. 2015; Wickland et al. 2020). We found that the stimulation of CH4 release by
abrupt thaw was strongest between spring thaw and early winter. Although CHa production
occurs in taliks throughout the winter, it is often trapped by snow cover until spring thaw,
explaining the strong response of CHs flux to abrupt thaw that we observed in March-May (Pirk
et al. 2017; Raz-Yaseef et al. 2017; Song et al. 2012; Tagesson et al. 2012; M. A. Taylor et al.
2018; Tokida et al. 2007). Additionally, warmer soil temperatures and the presence of taliks in
thermokarst features promotes more rapid and deeper thaw throughout the growing season (E. A.

G. Schuur et al. 2007). Combined with higher soil moisture increasing the likelihood of anoxic
66



conditions in thermokarst depressions (E. A. G. Schuur et al. 2007), this provides conditions
prone to CH4 production (M. A. Taylor et al. 2018). During the early winter, an increase in the
length of the zero curtain (the time during freeze-up when soils are unfrozen but near 0°C),
particularly in thermokarst features, could be allowing methanogenesis to continue later into the
non-growing season (Arndt et al. 2019; Bao et al. 2021; Zona et al. 2016). The increase in CHa
release has the potential to shift the radiative forcing of the site significantly, even though CH4
fluxes are much smaller than CO> fluxes. Methane is 45 times more powerful a greenhouse gas
than COz over 100 years (Myhre, Shindell, and Pongratz 2014; Neubauer and Megonigal 2015),
meaning that a small shift from CO; production to CH4 production under wet soil conditions can
have a large impact on the radiative forcing of carbon emissions. As CHg is responsible for 61%
of the radiative forcing due to carbon emissions at this site (M. A. Taylor et al. 2018), the
stimulation of CHj4 release by abrupt thaw is likely to have a large impact on the radiative forcing
of the site, despite the smaller magnitude of fluxes and weaker relationship. Overall, we found
that ecological changes associated with abrupt permafrost thaw are playing an important long-
term role in exacerbating net carbon release, even as GPP increases.
5.2. Subsidence and Thermokarst Development Through Time

Across the study site, we saw evidence of expansion and initiation of thermokarst, rather
than deepening of established features. Greater extent of thermokarst resulted in lower surface
roughness and could indicate that hydraulic connectivity is slowly increasing at the site, as
thermokarst features expand and taliks interlink (Devoie et al. 2019). This could eventually result
in better drainage and drier surface soils (Teufel and Sushama 2019). We draw on three lines of
reasoning to support the conclusion that the extent of abrupt thaw is increasing, which are

outlined here and described in detail in the following paragraphs. First, across the site,
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subsidence occurred most rapidly in areas not classified as thermokarst and old thermokarst
features did not subside noticeably. However, small, recently initiated thermokarst features (~1
decade old or less) within CiPEHR subsided rapidly. Second, aerial imagery dating to 1954 and
anecdotal evidence at the site indicates the initiation of thaw pits and the expansion of water
tracks upslope through time. Additionally, the observed lack of change in thermokarst extent
between Belshe et al. (2013) and the current study is explained by differences in methodology
resulting in the current study being more conservative in the classification of thermokarst. Third,
a slight increase in microtopography from Belshe et al. (2012), despite widespread subsidence, is
consistent with the initiation of new thermokarst features and the expansion, but not deepening,
of old thermokarst features.

Across the study site, the lack of subsidence in thermokarst centers between 2017 and
2019 indicated that pre-existing thermokarst features did not deepen significantly, while the
highest rate of subsidence in non-thermokarst areas indicated that there may be thermokarst
initiation and expansion occurring (Figure S1). The lack of subsidence in thermokarst centers
across the site may indicate that these older features have already thawed near-surface permafrost
with the highest ice content and reached a more stable depth (French and Shur 2010). This
supports the idea that older thermokarst features were primarily expanding rather than
deepening. In addition, new features may have formed across the landscape, contributing to the
higher rate of subsidence in non-thermokarst areas. At CIPEHR, however, the rates of subsidence
indicate they were both deepening and expanding, as thermokarst features were initiated recently
(experimental warming started in 2008), and were still actively forming (Osterkamp et al. 2009).
Our inability to statistically distinguish the rate of subsidence between thermokarst classes using

LiDAR data may be partially due to the opposite responses of thermokarst features of different
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ages and partially a consequence of insufficient image resolution to precisely distinguish
thermokarst edges.

Documenting change in thermokarst over a decade was a challenge because
methodological differences resulted in a more conservative classification than in Belshe et al.
(2013). There is evidence of thermokarst expansion at the site from aerial photography dating
back to 1954 in tandem with both rising air and permafrost temperatures (Osterkamp et al. 2009).
On the ground more recently, we have documented increases in active layer thickness and
subsidence of over 1 cm yr -1 (Rodenhizer et al. 2020) and seen the expansion of water tracks on
the ground (necessitating the relocation of the EC tower). Additionally, our classification
indicated that water tracks extended farther upslope than in 2008 and we found a larger number
of small features, which could indicate thermokarst expansion and initiation. However, this was
counterbalanced by a larger number of non-thermokarst cells within thermokarst features in the
overall extent, which seems to be due primarily to differences in the theoretical approach to
thermokarst classification. Belshe et al. (2013) used spectral data to classify thermokarst based
primarily on the visible changes to vegetation associated with thermokarst. This means the
presence of thicker, greener vegetation in water tracks (Curasi, Loranty, and Natali 2016),
resulted in a thermokarst classification with fewer gaps in their study. In our study, on the other
hand, areas within a thermokarst feature would get classified as non-thermokarst if their
elevation was even slightly higher than the surrounding landscape, despite increased vegetation
productivity that would indicate the location is undergoing abrupt thaw. While resolution must
also play some role in the different distribution of thermokarst between the two studies, we were
able to confirm that resolution did not impact the overall extent by finding very little change in

thermokarst extent when we resampled our classification to 3 m resolution (as in Belshe et al.
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2013). Taken together, all of this leads us to conclude that our thermokarst classification is more
conservative than that of Belshe et al. (2013) and that thermokarst percent cover within the EML
watershed has likely exceeded 12% (as found in both studies) in the past decade.

The slight increase in microtopography since 2008 could also be an indication of the
increasing extent of thermokarst with limited deepening of older features (Figure S3). As
thermokarst features have expanded and the landscape as a whole has subsided, the average
landscape elevation has decreased, while thermokarst features may no longer have been
subsiding where ground ice had already thawed (Figure S1). Since microtopography was
calculated as the average neighborhood elevation subtracted from the local elevation, a decrease
in average elevation necessarily results in an increase in microtopography for cells which
subsided more slowly than the landscape average. Therefore, we conclude that the slight increase
in microtopography was an indication of the increasing ubiquity of thermokarst at the site.

5.3. Discussion of validation and utility

The thermokarst detection algorithm presents a unique opportunity for the detection of
thermokarst anywhere a single ground elevation map is available, rather than relying on change
detection from two or more elevation maps at different time points. Removing the necessity of
repeat-imagery to identify thermokarst means that this method could be applied to a broader
range of sites than is otherwise possible, as airborne LIiDAR availability is limited and satellite
imagery does not achieve the necessary spatial resolution (Kadb 2008; Westermann et al. 2015).
However, applying the analysis on multiple DTMs and combining the classifications into one
result, as we did, can help alleviate errors. Additionally, it may be possible to scale this method
to larger regions as access to elevation data improves. Unfortunately, the ArcticDEM (Porter et

al. 2018) is not suitable for detecting many types of thermokarst features, as it uses the elevation
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of the vegetation canopy rather than the ground surface. It could, however, potentially be used to
detect features with high levels of erosion or inundation that have limited vegetation or features
which are deeper than the tallest vegetation. This would build upon our current understanding of
the distribution of thermokarst, as circumpolar studies of thermokarst have not yet mapped
discrete features. There are, however, some limitations to the thermokarst detection algorithm.
First,a high-resolution elevation data set is required, because poor resolution could lead to the
detection of larger landscape features, like valleys, rather than thermokarst, as in the case of the
similar topographic position index (De Reu et al. 2013). In this study, we used elevation at 1 m
resolution. We expect it would be possible to use up to 10 m resolution data to detect large
features, based on the fact that thermokarst features 100 m? or smaller covered only ~1.5% of our
site (Figure 3). These larger features were responsible for the vast majority of permafrost thaw,
indicating that they may play a larger role in carbon dynamics, despite the prevalence of small
thermokarst pits. Second, the necessity of high-resolution data requires more processing power
than is readily available at this point, although Google Earth Engine could alleviate this issue.
Despite these limitations, the increasing availability of high-resolution elevation data across the
circumpolar region means that this method can be applied across an increasingly broad range and
shows promise for improving our understanding of the distribution and extent of thermokarst

across the Arctic.

6. Conclusion

Abrupt thaw is contributing to carbon release above that caused by gradual thaw at EML.
At least 7% of the site as a whole and at least 12% of the EML watershed is undergoing abrupt
thaw, with evidence of new thermokarst initiation and expansion driving abrupt thaw processes

rather than deepening of older thermokarst features. We identified a large number of small,
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relatively shallow thermokarst pits, but deeper and larger water tracks were more extensive and
were responsible for thawing more permafrost than small features. There was strong evidence
that abrupt thaw correlated with increases in both GPP and Reco, but because Reco responded
more strongly to thaw, the net result was higher CO: release. This is likely due to the high
percent cover of water tracks, which tend to have much thicker vegetation, enhancing
photosynthesis during the GS and ecosystem respiration both during and outside the GS.
Additionally, abrupt thaw accelerated the release of CHa in nearly all months, which is
responsible for about 61% of the greenhouse gas radiative forcing of the site (M. A. Taylor et al.
2018). As the climate continues to warm, thermokarst features will expand to cover more of the
landscape, thaw more permafrost carbon, and push more permafrost ecosystems towards
becoming carbon sources for the first time in thousands of years. With many modeling studies
and field studies, including this one, indicating that abrupt thaw could increase carbon release
significantly, it is imperative to understand where abrupt thaw is occurring and to work to

include abrupt thaw processes in Earth System Models.
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Figure 3.1. A conceptual diagram of the thermokarst detection algorithm (black), which is
available as an R package, with the non-thermokarst landscape filters (light gray) and final
processing steps (dark gray), neither of which are included in the R package. As part of the R
package, 1) median elevation is calculated for each cell of a DTM using a moving circular
neighborhood (we tested 15, 25, and 35 m radii individually and in combination), 2)
microtopography is calculated by subtracting the median elevation from the DTM, and 3)
elevation minima are classified as microtopography values below a threshold (we tested 0 cm,
local elevation equal to the median elevation, and -5 cm, local elevation 5 cm below the median
elevation). As part of the post-processing not included in the R package, 1) steep slopes, deeply
incised rivers, and non-thermokarst lakes were filtered out from the elevation minima, 2)
combinations of thermokarst classifications were created to determine the best combination of
neighborhood size and threshold value to detect different thermokarst sizes and, 3) the best
classification was converted to vector format for analysis.
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Table 3.1. Accuracy of the thermokarst detection algorithm when using the best combination of
neighborhood sizes. “Ground” indicates the number of cells which are of that class on the ground
and “map” indicates the number of cells which are of that class on the map. User’s accuracy is
the accuracy from the point of view of a map user: how likely a class shown on the map will be
present on the ground. The commission error is the complement of this value (100% - user’s
accuracy): how likely a class on the map is classified incorrectly. Producer’s accuracy is the
accuracy from the point of view of the map maker: how likely a real feature on the ground is to
be classified correctly on the map. The omission error is the complement of this value (100% -
producer’s accuracy): how likely a real feature on the ground is misclassified.

Ground
Non-Thermokarst Thermokarst  Total
Non-Thermokarst 80 36 116
Map Thermokarst 21 63 84
Total 101 99 200
User’s Accuracy Commission Error
Non-Thermokarst 80/116 = 69.0% 31.0%
Thermokarst 63/84 = 75.0% 25.0%
Producer’s Accuracy Omission Error
Non-Thermokarst 80/101 = 79.2% 20.8%
Thermokarst 63/99 = 63.6% 36.4%

Overall Accuracy 71.5%
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Figure 3.2. A) The mean depth of thermokarst features (2017-2019) across the study extent (9 x 9
km black box). The EML watershed is outlined in black with the EC tower and approximate
tower footprint shown as a point within a circle. The three gray points show the location of the
three experimental blocks at CIPEHR. Colored squares indicate insets shown in B-D. B) The
largest thermokarst pond we identified in one of the most heavily thermokarst affected areas
within the study extent. In addition to naturally formed features, dogsled/ATV tracks are visible
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throughout the area. 26% of the inset was classified as thermokarst. C) Thaw ponds and water
tracks which drain into EML surrounding the EC tower. 19% of the inset was classified as
thermokarst. D) Extensive small thermokarst pits on the terminal moraine East of EML (the
greener, shrubby area), dogsled/ATV tracks, and thermokarst pits caused by soil warming at
CIiPEHR. 11% of the inset was classified as thermokarst.
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Figure 3.3. A & B) Prevalence (percent of features by count), C & D) percent cover (percent
cover of thermokarst within that class relative to the entire study area - the sum of the classes is
overall percent cover of 7%), E & F) percent volume, and G & H mean depth of thermokarst
features by size and shape class. Labels in A & B indicate the number of features within each
class.
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Figure 3.4. A) Thermokarst percent cover in 1° increments at the EC tower, B) surface roughness
in 1° increments at the EC tower, and C) the relationship between percent thermokarst cover and

surface roughness at the EC tower, with the grayscale indicating the direction from which the
measurement came (relative to the tower).
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Figure 3.5. Coefficients for the linear regressions of GPP, NEE, and Reco by thermokarst percent
cover. Positive intercepts indicate a source when no thermokarst is present and negative
intercepts indicate a sink when no thermokarst is present. Positive slopes indicate that fluxes
trend toward a larger source or smaller sink as thermokarst percent cover increases, depending on
the sign of the flux. Negative slopes indicate that fluxes trend toward a smaller source or larger
sink as thermokarst percent cover increases.
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Figure 3.6. Coefficients for the linear regression of non-pulse CHa fluxes by thermokarst percent
cover and month. Positive values for intercepts indicate a source when no thermokarst is present
and negative values for intercepts indicate a sink when no thermokarst is present. Positive values
for slopes indicate that fluxes trend toward a larger source or smaller sink as thermokarst percent
cover increases, depending on the sign of the flux. Negative values for slopes indicate that fluxes
trend toward a smaller source or larger sink as thermokarst percent cover increases.
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Abstract

Permafrost thaw causes the seasonally thawed active layer to gradually deepen,
mobilizing carbon and nutrients and causing Arctic ecosystems to become smaller carbon sinks
relative to historical conditions or even to become carbon sources. Additionally, ground
subsidence initiated by ice loss as permafrost thaws can cause these soils to thaw and collapse
abruptly. Abrupt permafrost thaw can both accelerate carbon and nutrient mobilization relative to
gradual thaw and rapidly shift soil moisture, with potentially opposing impacts on carbon fluxes.
The uncertainty of hydrologic trajectories during and following thaw is one aspect which makes
it difficult to predict the effect of abrupt thaw in suppressing or exacerbating carbon losses. In
this study, we investigated the role of shifting hydrologic conditions in controlling growing
season carbon dioxide fluxes during a 13 year permafrost warming experiment that initiated
abrupt thaw. The active layer deepened differentially across treatments, leading to variable rates
of subsidence and the formation of thermokarst depressions. In turn, differential subsidence
caused a gradient of moisture conditions, with some plots becoming consistently inundated
within thermokarst depressions and others exhibiting generally dry, but more variable soil
moisture conditions outside of thermokarst depressions. Consistently wet conditions in the top 15
cm suppressed gross primary productivity and ecosystem respiration, resulting in lower growing
season net ecosystem exchange (lower carbon uptake), while intermittently dry conditions in the
top 15 cm promoted both gross primary productivity and ecosystem respiration with an overall
increase in net ecosystem exchange (higher C uptake). On an annual basis, however, we found
that both wet plots and dry plots released carbon, because abrupt thaw increased winter
heterotrophic respiration. These findings indicate that Earth system models, which do not

simulate subsidence and predict consistently drier active layer conditions, likely overestimate
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growing season carbon uptake and underestimate winter respiration in abruptly thawing

landscapes.

1. Introduction
1.1. Abrupt Thaw and the Permafrost Carbon Feedback

Globally, permafrost soils contain 1,440-1,600 Pg carbon (Schuur et al., 2018), which is
about half of the global soil carbon stock (Hugelius et al., 2014; Kéchy et al., 2015), and about
twice as much carbon as is found in the atmosphere (Houghton, 2007). Permafrost soils
accumulated carbon slowly over thousands of years due to frozen conditions that inhibit
microbial decomposition (Ping et al., 2015; Schuur et al., 2008). However, temperatures in the
Acrctic are rising 2.5x faster than the global average (Ballinger et al., 2021) causing permafrost
temperatures to rise and the active layer (seasonally thawed surface soil) to deepen at many sites
(Biskaborn et al., 2019; M. T. Jorgenson et al., 2006; Luo et al., 2016; Nyland et al., 2021;
Romanovsky et al., 2010), introducing previously frozen carbon to the contemporary carbon
cycle. In an escalating response known as the permafrost carbon feedback, newly thawed
permafrost carbon is decomposed and released to the atmosphere as the greenhouse gasses CO>
and CHg, leading to further warming(Schuur et al., 2008, in review; Schuur & Mack, 2018).

Permafrost can thaw both gradually, as the active layer deepens incrementally year after
year, and abruptly, as ice, which provides structural support within the soil profile, melts and the
ground surface subsides. Where abrupt thaw occurs, differential subsidence across the landscape
can lead to the formation of thermokarst depressions over the course of hours to years (Kokelj &
Jorgenson, 2013; Schuur & Abbott, 2011); in this paper we will use the term “abrupt thaw” to
refer to rapid, differential subsidence generally, while thermokarst will be used to refer to

specific depressions caused by abrupt thaw. While this process is a natural part of permafrost
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ecosystems, the rate and extent of abrupt thaw are increasing due to climate change (Farquharson
etal., 2019; M. T. Jorgenson et al., 2006, 2020; Kanevskiy et al., 2017; Lantz & Kokelj, 2008;
Lara et al., 2016; Swanson, 2021; Veremeeva et al., 2021; Ward Jones et al., 2019). Although
abrupt thaw is expected to occur in only about 20% of the permafrost region, these areas have
exceptionally carbon rich soils and are believed to contain about 50% of total circumpolar
permafrost carbon (Olefeldt et al., 2016). Abrupt thaw could therefore rapidly mobilize large
stocks of permafrost carbon, potentially doubling the permafrost carbon feedback (Turetsky et
al., 2020). However, concurrent plant disturbance and shifts to nutrient availability and
hydrologic conditions make it difficult to predict the carbon cycle response to abrupt thaw across
sites (M. T. Jorgenson & Osterkamp, 2005; Kokelj & Jorgenson, 2013; Lawrence et al., 2015;
Natali et al., 2021; Olefeldt et al., 2016).

The effect of abrupt thaw on the carbon cycle varies considerably across sites due to the
differential response of plant and microbial communities to variable shifts in environmental
conditions (Abbott & Jones, 2015; Cassidy et al., 2016; Euskirchen et al., 2017; Jensen et al.,
2014; Lee et al., 2011; Vogel et al., 2009). The overall impact of abrupt thaw on net ecosystem
exchange (NEE; the net exchange of CO2 between an ecosystem and the atmosphere) depends on
the balance between gross primary productivity (GPP; the total amount of CO> fixed through
photosynthesis) and ecosystem respiration (Reco; the total amount of COz respired by autotrophs
and heterotrophs): NEE = GPP - Reco. GPP can be suppressed or promoted by abrupt thaw
through a number of environmental changes. These environmental changes include increases in
nutrient availability (higher GPP), increases in soil moisture (higher or lower GPP), higher soil
temperature and a longer unfrozen period (higher GPP), increases in physical disturbance to soils

(lower GPP), and/or later snowmelt (lower GPP) (Collins et al., 2021; Euskirchen et al., 2017;
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Hewitt et al., 2018; M. T. Jorgenson & Osterkamp, 2005; Kelsey et al., 2021; Mauritz et al.,
2017; Rodenhizer et al., 2020). At the same time, Reco can also be suppressed or promoted by
abrupt thaw through many of the same environmental changes: nutrient availability (higher Reco),
shifts in soil moisture (higher or lower Reco), deeper snow depth and higher soil temperature
(higher Reco), and physical disturbance (lower Reco) (Abbott & Jones, 2015; Emmerton et al.,
2016; Mauritz et al., 2017; Rodenhizer et al., in review). However, plant and microbial
communities may respond to environmental changes at different rates or to different degrees, as,
for example, microbes can continue to respire throughout the winter if soils do not freeze, or
physical disturbance may kill plants entirely, suppressing GPP more than Reco (Cassidy et al.,
2016; Vogel et al., 2009). Overall, annual estimates of NEE in a few field studies have shown
lower NEE (less uptake or higher emissions) in thermokarst affected areas (Cassidy et al., 2016;
Euskirchen et al., 2017; Rodenhizer et al., in review). However, the wide variety of mechanisms
driving the response of CO; fluxes to abrupt thaw indicates that this response is likely to be
variable across the landscape. Therefore, it is necessary to better understand these mechanisms,
in order to better constrain the net impact of abrupt thaw on the carbon cycle across space and
into the future (Lara et al., 2020).
1.2. Divergent Hydrologic Responses to Permafrost Thaw

One of the main factors driving the relationship between abrupt thaw and carbon cycling
is the complicated response of hydrologic conditions to abrupt thaw. In permafrost ecosystems,
the water table is perched on top of the permafrost, which is relatively impermeable, such that
lateral flow only occurs in the active layer (Walvoord & Kurylyk, 2016). As the active layer
deepens in upland permafrost sites, the water table should follow the receding permafrost,

resulting in drier surface soil conditions. However, thermokarst depressions can form where high
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ice content causes subsidence, which results in the ground surface dropping closer to the water
table. Therefore, areas with limited subsidence may get drier as the water table drops, while areas
with high rates of subsidence will form thermokarst depressions and get wetter as water pools in
these areas (Evans et al., 2020; M. T. Jorgenson et al., 2001; M. T. Jorgenson & Osterkamp,
2005; Vogel et al., 2009). With continued thaw, thermokarst depressions begin to expand and
merge, increasing hydraulic connectivity as the permafrost table deepens across broader areas
(Connon et al., 2018). In this more advanced stage of abrupt thaw, higher hydraulic connectivity
allows better drainage and can lead to uniformly drier conditions than prior to thaw. However,
due to spatial and temporal variability in the rate of subsidence across permafrost landscapes,
there is likely to be a wide range of divergent hydrologic conditions found within permafrost
ecosystems as a consequence of abrupt thaw.

Hydrologic conditions affect moisture availability, oxygen conditions, nutrient and
carbon availability, and soil temperatures (Kokelj & Jorgenson, 2013), all of which directly
impact the plant and microbial communities responsible for driving carbon fluxes. Relatively dry
conditions (excluding drought) result in high rates of Reco and GPP, as oxygen is abundant within
the active layer, while water-logged conditions can suppress Reco and GPP due to anoxic
conditions within the active layer (Kotani et al., 2019; Mauritz et al., 2017; Natali et al., 2015;
Schédel et al., 2016). On the other hand, higher ground heat fluxes due to inundation can cause
soils to warm, deepening the active layer, increasing the stock of thawed carbon and nutrients
available to microbes, and lengthening the time that the active layer remains unfrozen or even
causing the formation of taliks (pockets of soil which remain unfrozen year-round) (Subin et al.,

2013). This could potentially offset suppressed CO> production due to low-oxygen conditions.
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How these complex and sometimes conflicting influences on CO; fluxes will resolve across
heterogeneous landscapes undergoing abrupt thaw remains an area of high uncertainty.

In this study, we investigated the impact of abrupt thaw on soil hydrologic conditions and
the impact of deeper permafrost thaw and shifts in soil hydrologic conditions on growing season
(GS) and annual CO fluxes in a 13 year permafrost warming experiment in an upland tundra
ecosystem. Due to the length of this experiment, we were able to observe the initial response of
CO:- fluxes to warmer soil and air temperatures as well as the response to abrupt thaw, which
only developed after several years of experimental manipulation and resulted in a patchwork of
moisture and thaw responses. We hypothesized that deeper permafrost thaw would promote GS
GPP and Reco in drier locations, while wet conditions would suppress GPP and Reco, resulting in
higher GS NEE (more uptake) in drier locations and lower GS NEE (less uptake or release) in
wet locations. We also hypothesized that annual NEE would be lower (higher release) in areas
undergoing abrupt thaw, particularly in wet locations, as the period during which soil
temperatures are above 0°C should be longer and allow higher respiration during the shoulder

season and throughout the winter.

2. Methods
2.1. Site and Experimental Design

The Carbon in Permafrost Experimental Heating Research (CiPEHR) is located in moist
acidic tussock tundra at ~700 m in the foothills of the Alaska Range near Healy, AK. The site is
underlain by permafrost due to cool temperatures at this elevation. Soils are classified as Gelisols
with an organic layer ~0.45-0.65 m thick (Schuur et al., 2009). Mean annual temperature during
the study was -1.71°C (2009-2021), with a GS average of 9.70°C (May-Sept.) and a non-

growing season (NGS) average of -9.89°C (Oct.-Apr.)(Figure S1; Table S1). Mean annual
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temperatures ranged from -4.08°C in 2013 (z = -1.50) to 1.04°C in 2019 (z = 1.74). Average
annual rainfall was 278 mm, with all rainfall occurring during the GS in seven of the thirteen
years. In the remaining years, less than 10% of rainfall occurred during the NGS in all but one
year in which 21% of annual rainfall occurred during the NGS.

CiPEHR was established in 2008 to warm soil and air temperatures passively to simulate
future warming caused by climate change (Natali et al., 2011). Soil warming was achieved with
snow fences, which increase snow depth and insulate the ground from extremely cold winter air
temperatures. Excess snow in the warming treatments was shoveled off each spring to ensure
similar water inputs and date of snowmelt in control and soil warming treatments. The
experiment consisted of three replicate blocks with two snow fences each. Each snow fence
consisted of eight plots, four on the control side of the fence, and four on the soil warming side
of the fence. Air warming was achieved within half of the plots on each side of each snow fence
using 0.36 m? x 0.5 m tall clear open-top chambers (OTCs) which were deployed during the
snow free period of each year. Additional details on the experimental design can be found in
Natali et al. (2011).

This experiment was initially designed with four discrete treatments: control, air
warming, soil warming, and air + soil warming. Over the course of the experiment however,
differential ground subsidence related to the heterogenous ground ice distribution and
experimental warming resulted in a wide variety of environmental responses of permafrost thaw
and surface soil moisture (Rodenhizer et al., 2020). These factors did not always respond
uniformly within treatments, but rather a gradient of responses was observed both across and

within treatments. To capture the gradient of environmental responses to warming and explain
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the variability in CO> flux responses, we used environmental variables as continuous explanatory
variables throughout most analyses rather than considering treatments as categorical effects.
2.2. Environmental Monitoring

Meteorological variables were monitored continuously using a HOBO Onset station
(Bourne, MA, USA) and summarized to half-hourly time steps. Air temperature was measured
year-round at 2 m, photosynthetically active radiation (PAR) was measured year-round, and
rainfall was measured during the GS. Missing data were gap-filled using an eddy covariance
tower and meteorological tower at a natural permafrost thaw gradient located about 1 km distant
(Schuur et al., 2021) or nearby NOAA climate stations when necessary. Cumulative end-of-
season snow depth was measured along transects located at each fence (control and soil
warming) in April immediately prior to snow shoveling. Chamber air temperatures were
measured during CO- flux measurements at 15 cm height within each OTC using shaded
thermistors and were gap-filled using plot-level linear models comparing OTC air temperatures
to HOBO air temperatures.

Metrics of permafrost thaw were monitored with measurements of soil temperature, thaw
depth, and subsidence. Soil temperature was measured at 5 and 10 cm depths in all plots and at
20 and 40 cm depths in half of the plots of each treatment using type T copper-constantan
thermocouples. Thaw depth was measured once or twice weekly throughout the snow-free
season using a metal probe inserted into the soil until it hit the frozen layer. Elevation was
measured at point locations in a 2x2 m grid across each of the experimental blocks using a
Trimble high-precision differential GPS in late July or early August of 2009, 2011, and 2015-
2020 (Rodenhizer et al., 2020). Elevation values were interpolated using ordinary kriging to

create a continuous elevation surface for each year and subsidence was calculated as the
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difference in elevation relative to 2009 (Hiemstra et al., 2009). Plot-level subsidence was gap-
filled in years without measurements using linear interpolation.

Hydrologic conditions were monitored with measurements of soil moisture at two depths
and water table depth. These measurements reflect differences in water inputs and hydraulic
connectivity, although they do not directly measure lateral movement of water within the soil
profile. Soil gravimetric water content (GWC) was estimated in the top 5 cm of the moss/soil
layer in each plot using site-calibrated DC half-bridge resistance measurements (MVogel et al.,
2009). The sensors for GWC at this site do not produce exact values of soil moisture, but the
relative values between measurements can be compared. Soil volumetric water content (VWC)
was measured in the top 15 cm in half of the plots of each treatment using Campbell Scientific
CS616 water content reflectometer probes calibrated to the site. Water table depth (WTD)
relative to the moss/soil surface was measured manually three times weekly throughout the
snow-free season (May 1- Sept 30 except when frozen) in wells that were installed at each fence
throughout the experiment (minimum 2 wells in soil warming and 2 wells in control at each
fence).

Aboveground plant biomass (AGB) was estimated at the plot level using a non-
destructive point-intercept method during peak GS (July) in 2009-2013, 2017, and 2021 (Salmon
et al., 2016; Schuur et al., 2007). Point-intercept counts were completed for each species of
vascular plant and for all mosses combined. Vascular biomass was dominated by the tussock
forming sedge Eriophorum vaginatum, and other common plant species included Vaccinium
uliginosum, Betula nana, Carex bigelowii, Rubus chamaemorus, Empetrum nigrum,
Rhododendron subarcticum, Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus

microcarpus. We did not distinguish between moss species for this study, but the dominant
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species at the site included Sphagnum fuscum, Pleurozium schreberi, and Dicranum spp. (Deane-
Coe et al., 2015).
2.3. Carbon Flux Measurements and Processing

An automated system was used to measure GS NEE and Reco in each experimental block
(Mauritz et al., 2017; Natali et al., 2011). Each automated system consisted of eight flux
chambers, which were rotated between plots every couple of days. To measure fluxes, air was
circulated between the chamber and an infrared gas analyzer (L1-820, LICOR corp., Lincoln,
NE, USA) for 1.5 minutes and CO> concentration was measured every 2 seconds. Measurements
were logged on a Campbell Scientific CR1000 data logger. Because only one chamber could be
measured at a time, the automated system cycled through all chambers every 1.6 hours. In 2019,
a smaller subset of plots (n = 12) were measured in order to reduce field work effort. To
maximize the range of environmental conditions and fluxes represented by the subset of plots
that were measured in 2019, we selected plots across the entire range of mean annual WTD and
ALT. This resulted in a bias in the treatment-level flux estimates in 2019 as compared to years
where we measured all plots. We reduced this bias by gap-filling missing plot-level fluxes to
determine annual averages for 2019 using relationships with environmental conditions (see
3.6.2).

All processing of carbon flux data was performed in R (R Core Team, 2021) using the
data.table (Dowle & Srinivasan, 2021) and tidyverse packages (Wickham et al., 2019). Flux
modeling for gap-filling and flux partitioning was completed using the minpack.Im package
(Elzhov et al., 2016). CO- flux was calculated as the slope of CO. concentration throughout the
measurement period (ppm CO; sec’?) and converted to NEE (umol m™ s-2) using the chamber

volume and air pressure. Raw flux measurements were filtered to remove erroneous
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measurements. All measurements with unrealistic CO2 concentrations (<300 ppm or >550 ppm),
low chamber air flow rate (<500 mL min), or during periods of high wind speeds (>7 m s)
were removed. Additionally, all flow rates, CO2 concentrations, and CO> fluxes were visually
inspected in ~10 day periods to remove outliers.

In order to estimate continuous half-hourly flux in each plot, we gap-filled NEE using a

light response curve with photosynthetically active radiation (PAR),

axXPARXGPmax
(axPAR)+GPmax

Eq. 1. NEE =
where a is photosynthetic efficiency, or the photosynthetic rate at half of GPmax, GPmax is the
maximum potential photosynthetic rate, and R is the basal rate of respiration. In order to allow
for differences between plots (caused by treatment or natural variability) and throughout the GS,
NEE was modeled monthly in each plot throughout the GS (May-Sept.). Only measurements
taken during the day were included in this modeling step. For the purposes of modeling, day was
defined as PAR >= 5 umol m s-? and night as PAR < 5 pmol m s-2. The resulting parameters
were used to gap-fill half-hour time steps without a flux measurement.

Reco Was modeled at the plot-level using a temperature sensitivity (Q10) model with soil
temperature measured at a depth of 10 cm,
EQ. 2. Rpeo = ABXTsoil
where A is the basal respiration rate and B is the Q10 temperature response. NEE measurements
taken at night were assumed to be Reco Without any contribution from photosynthesis and were

used for this modeling step. The resulting parameters were used to gap-fill nighttime respiration

during half hour periods without flux measurements and to estimate daytime respiration.
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GPP was estimated as
Eq. 3. GPP = NEE — R,,
during the day (PAR>= 5) and was set to 0 during the nighttime. This method resulted in some
negative values for GPP. Though not biologically meaningful, these negative values reflect
uncertainty associated with the measurements and models and were left in the dataset in order to
avoid bias in flux sums.

We estimated NGS (Oct.-Apr.) respiration at the plot-level using a soil temperature
response curve determined at an eddy covariance tower at the site (Schuur et al., 2021). Half-
hourly winter respiration measured at the eddy covariance tower was modeled using the
ecosystem respiration Q10 model (Eg. 2.) with 5 cm soil temperature. These parameters were
used to estimate half-hourly fluxes for each plot using plot-level 5 cm soil temperature
measurements.

2.4. Data Merging and Derived Variables

Half-hourly flux data were joined with all other environmental variables for each
individual plot. For the purposes of this analysis, we defined each year as a period beginning on
Oct. 1% and ending on Sept. 30" so that the environmental conditions of the prior winter could be
considered when modeling fluxes. For environmental variables measured less frequently than
every half-hour (i.e., thaw depth), a rolling join was used such that the closest value (in time)
was associated with each half-hourly flux, so long as there was no more than two weeks between
the two measurements. Missing values with no measurement within two weeks were not gap-
filled. Because WTD was measured in water wells which were not directly located in each plot,
WTD values were assigned to individual plots by a combination of proximity and representative

microtopography for each year. Half-hourly chamber temperatures were gap-filled using plot-
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level linear regressions between site-level air temperature (HOBO) and temperatures measured
within the chambers. Growing degree days (GDD) were calculated as the cumulative sum of
temperatures above 0°C, and freezing degree days (FDD) were calculated as the cumulative sum
of temperatures below 0°C on an annual basis. Thaw penetration was calculated as the sum of
subsidence and ALT.

Merged half-hourly flux and environmental data were aggregated to monthly and annual
values. ALT, subsidence, thaw penetration, and AGB were already single annual values, fluxes
and precipitation were summed, and for all other environmental data, the mean and standard
deviation were calculated. The standard deviation was included as a metric of intraseasonal
variability within individual plots. Additionally, we calculated three time-lagged variables for the
current and prior months to infer the effect of antecedent conditions on fluxes. These variables
included mean GWC (GWCazwm), mean VWC (VWCzwm), and GDD (GDD2wm), which was
calculated as the cumulative sum of temperatures above 0°C in the prior and current months
only. Finally, meteorological data were summarized to seasonal (GS and NGS) and annual values
for analysis of the variability of climatic conditions from year to year.

2.5. Thermokarst Classification

To determine the impact of abrupt thaw processes on environmental conditions and CO>
fluxes, the landscape across CiPEHR was classified according to its abrupt thaw status in 2017-
2019 and 2021 following the methods in Rodenhizer et al. (in review). The classification used 1
m resolution airborne LiDAR data available from the National Ecological Observatory Network
to classify each cell as non-thermokarst (Non-TK), thermokarst margins (TK Margin), and
thermokarst centers (TK Center), where margins were considered any cells within 1 m of a

thermokarst depression outline. We determined the classification within each plot in each of the
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four years with remote sensing data. To determine thermokarst classification in 2020 (when no
remote sensing data were available), we gap-filled on a plot by plot basis using linear
interpolation.
2.6. Flux Analysis

We used gradient boosted regression tree models (GBMs) to investigate environmental
drivers of CO- fluxes, using the gbm package (Greenwell et al., 2020), as this machine learning
method allows for non-linear relationships and tipping-point behavior. 2009 was not included in
this analysis or any of the other flux analyses because CO- fluxes were depressed in 2009, likely
due to disturbance from experimental set-up activities (Celis et al., 2017; Mauritz et al., 2017).
We modeled GPP, NEE, and Reco Separately using cumulative monthly (n = 6912) and
cumulative GS (n = 576) fluxes from each plot. The monthly models included a mix of
explanatory variables intended to test the impact of diverging soil environmental conditions
during abrupt thaw on CO fluxes, in addition to variables which drive seasonal climate patterns.
The variables included in the monthly models were the mean and standard deviation of GWC,
VWC, WTD, and soil temperature (10 cm), as well as TD, annual subsidence, thaw penetration
to date (TD + annual subsidence), monthly precipitation sum, monthly GDD, monthly FDD,
annual AGB, mean air temperature, GWCzm, VWCam, and GDD2m. The explanatory variables
included in the cumulative GS models were thaw penetration, subsidence, ALT, total
precipitation, previous winter snow depth, previous winter minimum soil temperature (10 cm),
AGB, and the mean and standard deviation of GWC, VWC, WTD, air temperature and soil
temperature (10 cm). For all models, we randomly sampled 80% of the data rows for use in
model training and reserved the remaining data to evaluate model performance. For each model,

we determined the optimal number of trees, interaction depth, shrinkage, and minimum
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observations per node from a range of values using the caret package (Kuhn, 2021). Model
performance was evaluated using a linear regression of the predicted vs. measured values; slope
of lines were determined by geometric mean regression, which splits the variance equally
between both axes. Variable importance (V1) was used to evaluate the importance of each model
predictor, and was calculated as the reduction in the sum of squared error attributable to each
variable and normalized to sum to 100. Partial dependence plots were used to evaluate the effect
of the top predictors on CO> fluxes, and shapley additive explanations were used to investigate
differences in model behavior in the driest and wettest deeply thawed plots.

To evaluate the trajectory of CO> fluxes over the 13-year experiment according to the
degree of abrupt thaw, we visualized the change in GS CO; fluxes in each thermokarst class.
Because we did not have data on thermokarst class prior to 2017 (although we knew that all of
the plots started out as non-thermokarst), we binned the plots by 2021 thermokarst class for this
analysis. Additionally, we gap-filled monthly NEE, Reco, and GPP in 36 plots which were not
measured in 2019 using the monthly GBMs and observed environmental conditions. Generalized

Additive Models were used to observe trends through time.

3. Results
3.1. Flux Response to 13 Years of Warming

GS CO:; fluxes responded non-linearly to warming through time, with higher carbon
uptake in early years beginning to reverse later in the experiment (Figure 1). Soil warming plots
had the largest increase in NEE, GPP, and Reco and air warming had the smallest increase, with
an intermediate response in air + soil warming plots. This treatment effect peaked in or before
2013 for all treatments and fluxes and declined thereafter. Between 2014 and the end of the

experiment, very few consistent patterns remained. However, GPP remained somewhat elevated
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over control plots in the air + soil warming treatment, Reco Was typically reduced in the air
warming treatment, and NEE in soil warming plots was consistently lower than in control plots
during the second half of the experiment (lower GS carbon uptake).

3.2. Environmental Changes Associated with Experimental Warming

Throughout the experiment, there was a general trajectory of deepening thaw, which
caused subsidence and increasingly wet conditions, particularly in soil warming plots (Figure 2;
Figure S2; Table S2). However, there was considerable variability among plots in the rate of
thaw and the plot-level trajectory of WTD. At the beginning of the experiment, all plots had an
ALT of close to 50 cm. By 2021, however, ALT ranged between 75 cm and over 250 cm, with
control plots falling in the range 75-180 cm and soil warming plots falling in the range 120-260
cm. In 2009, WTD was between 13 and 36 cm below the surface, and as the experiment
progressed, WTD became shallower in most plots. However, a few plots remained very dry, with
WTD around 30 cm below the surface. Additionally, a few plots became inundated. This
indicates that abrupt thaw created wetter conditions on average at this site, but that this average
response was composed of divergent responses across the landscape, with some locations
becoming drier and others wetter. Additionally, dry locations tended to experience more
variability in soil moisture conditions, while wet locations were consistently wet (Figure S2;
Figure S3).

Deepening thaw and increasingly wet conditions corresponded to the formation of
thermokarst depressions within the experiment, particularly in the soil and soil + air warming
plots (Figure 3). When the experiment was established in 2008, none of the plots showed signs of
subsidence. By 2017, about half of the plots (all of the soil and soil + air warming, plus one

control plot) were located along a thermokarst margin or within a thermokarst center. By 2021,
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over 75% of the plots were located along a thermokarst margin or within a thermokarst center,
including over half of control and air warming plots.

Differences in environmental conditions between thermokarst classes indicated that our
classification reflected real shifts in environmental conditions that occurred throughout the
experiment (Figure 4). Initial conditions (2010 to reflect the first year of flux data that we
analyzed) showed the shallowest ALT (60.5 + 3.0 cm; mean £ SD). By the period 2017-2021,
ALT had deepened by 17 cm in Non-TK (78.0 £ 13.5 cm), nearly doubled in TK margins (110.0
+ 31.0 cm), and more than doubled in TK centers (132.0 + 33.0 cm). However, the spread in ALT
between plots also increased as abrupt thaw progressed from the Non-TK (approx. 50-125 cm) to
TK center classes (approx. 75-260 cm). Similarly, there was the least subsidence (relative to
2009) in Non-TK (10 = 9 cm), moderate subsidence in TK margins (33 + 20 cm), and the most
subsidence in TK centers (58 £ 18.5 cm), with an increasing spread between plots through the
classes. Metrics of soil moisture (GWC, VWC, ALT) showed increasing wetness as abrupt thaw
progressed, but only a few plots showed higher GWC in the TK center class, while VWC and
WTD showed a more steady and consistent increase. GWC (top 5 cm) was low (3.6-5.4%) in all
but the TK centers, where it doubled and had a large spread among plots (9.8 + 11.6%). VWC
(top 15 cm) increased consistently from initial conditions (42 + 3%) to TK centers (54 + 12%).
WTD remained below the soil surface in all plots that were classified as Non-TK or TK margins
(20 £ 4 cm below the surface), but exceeded the soil surface (ponding) in many plots within TK
centers (3 £ 9 cm below the surface). SD GWC, SD VWC, and SD WTD (reflecting
intraseasonal variability within a single plot, rather than the standard deviation across annual plot
values) responded in unique ways. SD GWC decreased as abrupt thaw progressed from initial

conditions (0.9 + 0.1%; intraseasonal within-plot SD * across-plot SD) to TK margins (0.7 £
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0.1%) before increasing again in TK centers (0.8 + 0.1%). SD VWC increased from initial
conditions (0.6 = 0.1%) to Non-TK (0.7 £ 0.1%), dropped in TK margins (0.6 £ 0.1%), and then
increased again in TK centers (0.7 £ 0.1%). SD WTD increased from initial conditions (4 + 1
cm) to Non-TK and TK margins (both 6 + 3 cm) before decreasing again in TK centers (5 + 2
cm). We also observed shifts in AGB as abrupt thaw progressed. AGB increased from initial
conditions (450 + 87 g m) to Non-TK (514 + 130 g m™), and then remained relatively steady
through TK margins (531 + 134 g m) and TK centers (531 + 197 g m™). However, the spread
in AGB between plots increased dramatically in TK centers, with some plots losing all biomass,
and others showing some of the highest AGB of the experiment. This loss of biomass was related
to increasing soil moisture and inundation (Figure S4).
3.3. Environmental Drivers of CO2 Fluxes
3.3.1. GBM

The GBM models showed good fit across all CO> fluxes, particularly at the monthly
timescale, and highlighted the importance of soil moisture in controlling cumulative GS fluxes
(Figure 5). At the monthly timescale, the validation regression r? values were 0.83, 0.74, and 0.78
for GPP, NEE, and Reco, respectively, while at the cumulative GS timescale, the values were
0.53, 0.44, and 0.57, respectively. All of the models had a tendency to slightly overestimate low
fluxes and underestimate high fluxes, particularly at the cumulative GS scale. At the monthly
timescale, the top predictors of CO fluxes were temperature (GPP: air temperature VI = 40;
NEE: air temperature VI = 36; Reco: soil temperature VI = 35) and AGB (GPP: VI =12; NEE: VI
= 10; Reco: VI =9). Higher temperatures and AGB drove higher fluxes in all cases (Figure S5).
Metrics of soil moisture were mostly missing from the top predictors of cumulative monthly CO»

fluxes; the only exceptions were that NEE dropped rapidly as VWC increased above about 60%
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(VI =4), and GPP increased with increasing SD VWC (VI = 6). At the cumulative GS timescale,
the top predictor of all CO> fluxes was biomass (GPP: VI = 28; NEE: VI = 25; Reco: VI = 16),
and the remaining top predictors related to metrics of soil moisture (GPP: SD GWC VI =9, SD
VWC VI =6; NEE: VWC VI =11, SD WTD VI =7, GWC VI = 7; Reco: SD GWC VI = 8§,
subsidence VI =7) and ALT (GPP: VI = 8; Reco: VI = 12). Most CO- fluxes were suppressed by
higher values of the metrics of soil moisture with the exception of the response of GPP to SD
VWC, which showed higher GPP when VWC was more variable, and the response of NEE to SD
WTD, which showed higher NEE when WTD was more variable (Figure S6). Both GPP and Reco
increased with ALT up to about 125 cm at which point the relationship plateaued.
3.3.2. CO2 Flux Response to Abrupt Thaw

Investigating GS cumulative CO: fluxes based on a progression of thermokarst classes
revealed a non-linear flux response in areas undergoing abrupt thaw. Across all thermokarst
classes, cumulative GS CO> fluxes increased in the first four years of the experiment, and
increases were the weakest in Non-TK (by 2021) plots, somewhat stronger in TK margins, and
the strongest in TK centers (Figure 6). After 2014, the trajectories of fluxes across thermokarst
classes diverged. In Non-TK, both GPP and Reco continued to increase through 2021, although
the rate of increase declined slightly near the end of the experiment, particularly for GPP. GS
NEE in Non-TK increased more or less linearly, but very slowly, throughout the entire
experiment, reaching GS CO; uptake of almost 100 gC m™2 by 2021. In TK margins, a rapid
increase in GPP peaked around 2016 before declining through 2021, likely due to increasing
wetness. Reco increased less rapidly than GPP at the beginning of the experiment, but did not
decline as much through 2021. Overall, GS NEE in TK margins increased more strongly than

Non-TK through about 2015, reaching a peak of about 100 gC m2, but then declined to about 75
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gC m by 2021, similar to the beginning of the experiment. In TK centers, GPP increased very
rapidly until 2014 and then declined more slowly through 2021. Reco increased more slowly than
GPP, but for a longer period, reaching a peak in 2016, before declining slightly through 2021.
Overall, GS NEE in TK centers increased rapidly between 2010 and 2013, peaking at about 125
gC m, decreased nearly as rapidly through 2016, and then continued to decrease more slowly,
falling to about 50 gC m by 2021. The more rapid rate of thaw in plots which became
thermokarst centers likely contributed to the initial, rapid NEE response, through the
mobilization of carbon and nutrients in the active layer, as well as to the earlier and faster decline
in NEE, through the rapid subsidence and increasingly wet conditions which reduced plant
growth in many plots.

On average, NGS carbon emissions exceeded GS carbon uptake throughout the entire
experiment (Figure S7; Table S3). Plot-level annual flux estimates showed carbon loss from
nearly all plots across most years of the experiment, indicating that winter respiration more than
offsets GS uptake, although there were some exceptions. Additionally, when accounting for
winter respiration, Reco had not yet peaked in plots classified as Non-TK by 2021 and showed
slower post-peak declines in plots classified as TK margins or TK centers by 2021, indicating
that the effect of warming on winter respiration could be longer lasting than impacts on GS

fluxes.

4. Discussion

Abrupt thaw resulted in the creation of a patchwork of non-thermokarst areas with only
slow subsidence, thermokarst margins resulting from a moderate rate of subsidence, and
thermokarst centers resulting from rapid subsidence across the landscape (Figure 7). The

environmental conditions of these three classes existed along a continuum from relatively
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shallow thaw and generally dry, but highly variable, soil moisture conditions to deep thaw and
consistently wet conditions. Our hypotheses about the effect of abrupt thaw and soil moisture
conditions on CO> fluxes were generally supported. GS GPP and Reco Were highest in dry
locations and lowest in the ponds that formed in thermokarst centers. In the dry conditions that
were common early in the experiment and remained in a few plots throughout the entire
experiment, GPP was promoted more than Reco, leading to high GS carbon uptake. However,
higher winter respiration in dry plots led to higher CO- release annually. As thermokarst
depressions formed later in the experiment, wet conditions suppressed GPP more than Reco,
causing the wettest plots to release carbon throughout the GS. Although wet conditions
suppressed the rate of Reco, Winter respiration was higher in thermokarst centers, indicating that
the effects of warmer soil temperatures and a longer thawed period outweighed the effects of
anaerobic conditions at the annual timescale. Taken together, these results support our hypothesis
that there are multiple paths to CO> release from thermokarst affected landscapes (Schuur et al.,
2021).
4.1. Non-Linear Carbon Flux Responses To Divergent Hydrologic Conditions

Early in the experiment, warming promoted fluxes, but as individual plots subsided at
different rates, divergent soil moisture conditions complicated the response of CO> fluxes
(Mauritz et al., 2017; Natali et al., 2011). Overall, GPP and Reco tended to be suppressed in
consistently wet sites, but GPP was suppressed more, leading to lower carbon uptake (lower
NEE), or even net carbon release, during the GS. On the other hand, both GPP and Reco Were
both higher along moderately subsided thermokarst margins where thaw was deep but soils were
still dry enough to support plants, leading to higher carbon uptake during the GS (higher NEE).

This provides more context to previous work at the site which found that thermokarst leads to
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both higher GPP and Reco at the landscape scale (Rodenhizer et al., in review). Water tracks are
the most common thermokarst feature at this site, and these water tracks are often decades old
and exhibit higher AGB, as succession has allowed thick moss growth within the depressions and
larger shrub growth along the deeply thawed, but relatively dry margins. This is in contrast to
drier sites, where drying along thermokarst margins can result in drought (Emmerton et al., 2016;
Euskirchen et al., 2017). High AGB in older water tracks was responsible for driving a strong GS
increase in both GPP and Reco at the landscape scale (Rodenhizer et al., in review). Within
CIiPEHR, however, thermokarst depressions are less than a decade old and are undergoing rapid
deformation, resulting in no succession to date. Rather, plants have begun to die-off in the most
deeply subsided thermokarst centers which are inundated nearly year-round (Figure 4; Figure
S4), with just a few tussocks of Eriophorum vaginatum still living in the deepest pond by 2021.
This lack of plant AGB, combined with anoxic conditions, can explain the lower GPP and Reco
observed in thermokarst centers in this study (Mauritz et al., 2017; Schédel et al., 2016).
Additionally, higher cumulative winter Reco in thermokarst margins and centers in this study is
corroborated by landscape level estimates from Rodenhizer et al. (in review). Taken together, this
indicates that increased AGB and drier conditions along thermokarst margins may dominate the
GS flux response to abrupt thaw at the landscape scale, but this is not sufficient to offset
increases in ecosystem respiration during the winter (Supplemental Table 3).

Our results, combined with the results of other studies, point towards the potential for
expansion of abrupt thaw to shift permafrost ecosystems towards becoming carbon sources at the
annual scale (Cassidy et al., 2016; Hicks Pries et al., 2013; Rodenhizer et al., in review; Schuur
etal., 2021; Turetsky et al., 2020). NGS respiration more than completely offset GS CO. uptake

in most plots. Although we did not account for shoulder season photosynthesis in our modeling
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approach, this is unlikely to change the sign of the annual carbon balance, as April and October
GPP combined tended to be less than 15 g C m at the site (Schuur et al., 2021; Webb et al.,
2016), an order of magnitude less than annual CO2 emissions. Our results are in line with several
other studies from this site that used a variety of methods to assess NGS respiration and found
that winter respiration is responsible for shifting the ecosystem from a GS CO sink to an annual
CO2 source (Celis et al., 2017; Natali et al., 2011; Schuur et al., 2021; Webb et al., 2016). This
highlights the importance of winter respiration in determining the sign of annual fluxes across
the circumpolar region (Natali et al., 2019).
4.2. Environmental Drivers of fluxes
4.2.1. Role of soil moisture in driving CO; fluxes

Metrics of soil moisture across different depths in the soil profile were important
predictors of CO> fluxes at the seasonal timescale, and exhibited strongly non-linear influences
on fluxes. VWC was the most important soil moisture variable in determining annual NEE and it
exerted a strongly non-linear effect. A slight increase in cumulative GS NEE as VWC rose from
30% to 60% could indicate a slight alleviation of drought allowing higher carbon uptake
(Euskirchen et al., 2017), while the drop in NEE after ~60% VWC is likely due to waterlogging
and plant mortality in subsided and wet plots. These results are similar to those by Heiskanen et
al. (2021), who found higher Reco and GPP with drier conditions in a subarctic fen, confirming
the potential for lower soil moisture to drive higher fluxes at wet sites. Variability in metrics of
soil moisture showed differing influences on CO: fluxes, likely due to the different depths that
each metric corresponds to. Increasing SD GWC resulted in lower GPP and NEE at the
cumulative GS timescale, and it appears that this reflected low AGB in the wettest plots, where

there was high variability in GWC (Figure S2). This was the opposite pattern observed slightly
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deeper in the soil profile with SD VWC and SD WTD, where lower variability in VWC and
WTD resulted in decreased fluxes, as there was low variability in VWC and WTD in the wettest
plots (Figure S2). We think this could be due to thermokarst centers having consistently
inundated conditions within the top 15 cm where VWC is measured (Figure S3), leading to low
variability in VWC and WTD, while the top 5 cm may occasionally dry out, leading to high
variability in GWC.
4.2.2. The Trade-Off Between ALT and Inundation

There was a trade-off between ALT and metrics of soil moisture in determining CO-
fluxes, particularly Reco. ALT was associated with higher GPP and Reco, likely reflecting the
increased nutrient and carbon availability as permafrost thaws, in addition to higher soil
temperatures and a longer thawed period (Mauritz et al., 2017). Subsidence (which results in
wetter soils) and SD GWC, on the other hand, were associated with lower GPP and Reco, likely
reflecting increasingly anoxic conditions in inundated depressions (Mauritz et al., 2017; Taylor et
al., 2021). The opposite, and relatively strong, effects on Reco indicated that there was a trade-off
between deep thaw providing access to nutrients and a long thawed period on the one hand and
inundated, anoxic conditions on the other. In the few inundated plots, shapley values indicated
that Reco decreased more as a result of subsidence and inundation than it increased as a result of
deeper ALT, leading to suppressed respiration (Figure S8). However, GPP was reduced nearly to
zero in these plots, resulting in higher CO: release overall, despite lower rates of respiration. In a
few plots with very deep ALT and WTD well below the surface, the impact of ALT was stronger
than the impact of subsidence, leading to high rates of respiration (Figure S8). However, GPP
was also very high in these plots, leading to high GS CO. uptake. Overall, the two extreme cases

we observed were 1) complete inundation which led to suppressed GPP despite deep ALT, and 2)
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deep thaw with dry conditions which led to higher GPP. Reco and NEE were similarly suppressed
in these extreme cases but to a lesser degree, indicating that GPP may be more strongly impacted
by changes in moisture availability than Reco.

4.3. Implications of Abrupt Thaw for the Future of Carbon Fluxes

GPP, Reco, and NEE all showed strongly non-linear responses to experimental warming,
likely driven by strong shifts in hydrology which did not become apparent until thermokarst
depressions began to form. This did not occur until at least four years into the experiment, and, in
some plots, was not apparent until the last few years of this 13 year experiment (Figure 1). This
indicates that short-term studies may miss important feedbacks that take time to develop. In fact,
we suspect that continuing to monitor this site into the future could result in another inflection
point in fluxes, as continued thaw will likely cause thermokarst features to expand and merge,
resulting in higher hydraulic connectivity and drier soil conditions more suitable to plant growth
and heterotrophic respiration (Figure 7;Connon et al., 2018; Nitze et al., 2020).

The eventual development of drier conditions would reflect what most Earth system
models (ESMs) predict in permafrost ecosystems, however these models oversimplify the
processes involved in permafrost thaw and often miss the potential for divergent hydrologic
conditions to develop during early stages of abrupt thaw. Many models predict that drying will
occur progressively (Andresen et al., 2020; Lawrence et al., 2015; Schéadel et al., 2018), while
field studies, including ours, indicate that the trajectory of hydrology, and therefore fluxes, is not
direct (Hinkel & Hurd, 2006; T. M. Jorgenson et al., 2013). This is because differential
subsidence can lead to a patchwork of wet and dry conditions in the short-term. Most ESMs,
however, do not represent subsidence, missing the potential for short-term wetting, and instead

predicting that WTD will gradually drop as ALT deepens (Andresen et al., 2020). The amount of
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time it takes to transition from a pre-thaw landscape to an advanced-thaw landscape is therefore
likely to have a large impact on cumulative fluxes, making it important to understand how long
this transition period could take (Lawrence et al., 2015). While modeling has predicted that the
transition from wet to dry conditions during permafrost thaw could take only a few months
(Teufel & Sushama, 2019), this study indicates the opposite. Over a 13-year period within this
upland landscape, we observed a wide variety of hydrologic responses but overall wetter
conditions, and it is uncertain how much longer it may take before thermokarst features merge
and drain. Regardless of the hydrologic path, however, our results indicate that the long-term
impact of abrupt permafrost thaw will be to shift tundra ecosystems towards higher annual
carbon emissions, mobilizing centuries of accumulated permafrost soil carbon and accelerating

increases in global temperature.
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Figure 4.1. Experimental warming effects on GS NEE, Reco, and GPP throughout the course of
the experiment. Bar height indicates the difference in cumulative GS flux between each
treatment and the control. Strong treatment effects of warming in the first several years declined
or reversed later in the experiment.
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Figure 4.2. Initial (2009; open circles) and final (2021; filled circles) ALT and mean annual WTD
in the warming experiment. Each point represents one plot, with gray representing control and

black representing soil warming. The dashed lines represent a WTD of 0, or WTD at the soil
surface, and the mean ALT in 2009.
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Figure 4.3. A) Thermokarst classification at CiPEHR in 2017 and 2021. Non-thermokarst is
shown in light gray, thermokarst margins are shown in medium gray, and thermokarst centers are
shown in dark gray. B) Count of CiPEHR plots in each thermokarst class between 2017 and
2021. C) Count of CiPEHR plots, broken up by warming treatment, in each thermokarst class
between 2017 and 2021.
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Figure 4.4. Differences in environmental conditions between initial conditions, non-thermokarst,
thermokarst margins, and thermokarst centers: A) ALT, B) GWC, C) SD GWC, D) subsidence,
E) VWC, F) SD VWC, G) AGB, H) WTD, and I) SD WTD. 2010 was used for initial conditions,
as this was the first year in which CO> fluxes were analyzed, due to disturbance from
experimental set-up in 2009. Thermokarst classifications were available in 2017-2021.
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Figure 4.5. The relative influence (reduction in sum of squared error attributable to each
variable) of environmental variables included in the monthly and cumulative GS GBM models of
GPP, NEE, and Reco, With linear regressions using validation data in the insets to evaluate model
fit. Validation regression slopes were calculated using geometric mean regression. In addition to
air/soil temperature and AGB, both metrics of soil moisture and metrics of thaw were strong

predictors of fluxes.
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Figure 4.6. The trajectory of GS CO> fluxes throughout the course of the warming experiment in
each of the thermokarst classes with generalized additive model (GAM) lines to highlight trends
through time. Each plot was assigned to the same thermokarst class in all years based on the
thermokarst class in 2021. Each point represents the GS cumulative CO; flux for an individual
plot. Color indicates plot-level AGB and shape indicates experimental treatment. Solid points
indicate GS sums of gap-filled measurements, and transparent points in 2019 indicate GS sums
which were modeled using the monthly GBMs of each CO> flux and plot-level environmental
conditions.
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Figure 4.7. A diagram of hydrologic conditions and CO; fluxes as abrupt permafrost thaw
progresses. NTK refers to Non-Thermokarst, TM refers to Thermokarst Margin, and TK refers to
Thermokarst Center. Initially, the permafrost table is a relatively consistent depth below the soil
surface and so is water table depth (WTD). The ecosystem is a slight carbon sink on an annual
basis. During early-thaw, depressions form in the permafrost table and soil surface, causing water
in the soil profile to drain from non-thermokarst areas and into the thermokarst centers. This
leads to a patchwork of subsided, wet microsites, and relatively unsubsided, dry microsites. All
areas of the landscape are annual carbon sources, with the lowest source occurring in non-
thermokarst areas where Reco increased more than GPP, and the highest source occurring in
thermokarst centers, where GPP was suppressed more than Reco. During advanced-thaw, discrete
thermokarst depressions expand and merge with nearby thermokarst features, leading to deeper
permafrost table depths across the landscape and drier conditions, as the WTD tracks the
permafrost table. Permafrost ecosystems in advanced stages of thaw are likely to be carbon
sources, although the magnitude is uncertain.
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CHAPTER 5: DISCUSSION OF RESULTS AND CONCLUSIONS
Air temperatures in the Arctic are rising more than two times faster than the global average
(IPCC, 2021), and this is causing permafrost to thaw both gradually, with incremental increases
in ALT, and abruptly, with rapid collapse of ice-rich permafrost ground forming discrete
thermokarst features (Turetsky et al., 2020). Although only ~20% of the permafrost region is
expected to be susceptible to abrupt thaw, this region contains ~50% of permafrost carbon
(Olefeldt et al., 2016). When permafrost carbon that has been frozen for years to thousands of
years thaws, it becomes susceptible to microbial respiration and release to the atmosphere as
greenhouse gases (Schuur et al., 2018). The reintroduction of this old carbon to the modern day
carbon cycle has the potential to cause further climate change in a vicious cycle that leads to
more permafrost thaw (Schuur et al., 2009). Therefore, it is imperative that scientists work to
understand the magnitude, rate, and form of permafrost carbon release. This depends, in part, on
how much of the permafrost region will undergo abrupt thaw and how susceptible abruptly
thawed permafrost carbon is to respiration, as hydrology can shift rapidly with abrupt thaw and
lead to conditions more or less suited to plant growth, ecosystem respiration, and
methanogenesis (Kokelj & Jorgenson, 2013). This dissertation investigated the rate of ground
subsidence and the impact it has on thawed permafrost carbon stocks, the extent and morphology
of abrupt thaw in a warming tundra ecosystem and the role it plays in CO2 and CHa4 release to the
atmosphere at the landscape scale, and the fine scale responses of hydrology to abrupt thaw and
how this determines the spatial heterogeneity of CO- fluxes.
At CiPEHR, a permafrost warming experiment to simulate future conditions, subsidence of up to
~1 m per decade was observed (Rodenhizer et al., 2020). This subsidence was responsible for

masking the full rate of permafrost thaw, as ALT measurements, which are the common method
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for tracking gradual permafrost thaw, fail to account for the change in the soil surface elevation.
Accounting for subsidence revealed that the depth to the permafrost table increased up to 50%
more relative to 2009 than ALT measurements indicated. This also meant that permafrost carbon
thawed twice as quickly over the course of the experiment than would have been calculated with
ALT. This resulted in a larger pool of carbon available to microbial respiration than would have
been assumed if only gradual thaw were considered. This highlights a large discrepancy between
how permafrost ecosystems are modeled in Earth System Models and how they thaw in the real
world, resulting in the potential for models to vastly underestimate permafrost thaw and carbon
emissions (Turetsky et al., 2020).

Abrupt thaw was not just present in a permafrost warming experiment designed to simulate
future conditions, though; thermokarst features covered 7% of the landscape surrounding the
permafrost warming experiment, as well. These thermokarst features took the form of numerous
small thermokarst pits and ponds and larger networks of water tracks. Although there were more
small pits by number, the water tracks affected a far larger area, making them the form of
thermokarst likely to be responsible for the largest impact on permafrost carbon thaw and,
therefore, carbon fluxes. Both annual CO2 and CHa4 release increased in response to abrupt thaw.
However, the high biomass observed in water tracks actually caused higher CO. uptake during
the growing season. Despite this, the increase in non-growing season CO, emissions outpaced
growing season increases in uptake, highlighting the importance of non-growing season fluxes,
despite their smaller magnitude, particularly in areas of abrupt thaw (Natali et al., 2019). This is
likely due to the increased length of the zero curtain and the higher likelihood of talik formation
in thermokarst features than in areas experiencing only gradual thaw, which allows microbial

activity to continue longer into, or throughout, the non-growing season (Parazoo et al., 2018).
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There was considerable fine-scale spatial variability in abrupt thaw and the resulting hydrologic
and carbon cycle responses that could not be addressed at the landscape scale. Abrupt thaw
within CiPEHR resulted in two main hydrologic regimes: 1) subsided and wet and 2) high and
dry. Thermokarst depressions were found to be consistently wet, almost regardless of
precipitation conditions, as moisture from surrounding high and dry locations would drain into
these depressions allowing them to remain saturated long into dry periods. On the other hand, the
high and dry locations experienced more variable soil moisture conditions, with wet conditions
following rain and dry conditions during dry spells. These divergent hydrologic conditions led to
divergent growing season CO> responses. Growing season GPP and Reco Were suppressed in
subsided and wet locations, as water-logging killed plants and slowed microbial activity. This
resulted in an overall increase in growing season CO, emissions from subsided and wet
locations. Growing season GPP and Reco Were stimulated in high and dry locations, where
increased availability of carbon and nutrients in the deepening active layer was not offset by
water-logging and anoxia. At this moist tundra site, the high and dry locations were not dry
enough to cause drought, so the drier conditions resulted in the alleviation of flooding, as seen in
wet ecosystems like fens (Heiskanen et al., 2021). Overall, there was an increase in growing
season CO; uptake in high and dry locations. However, it is important to note that winter
emissions likely offset growing season uptake, even in these highly productive locations, based
on the available eddy covariance data (Rodenhizer et al., in review; Schuur et al., 2021), and may
have resulted in larger CO2 emissions at the annual scale than tundra undisturbed by abrupt thaw,
although this is uncertain without annual fine-scale CO> flux measurements.

In conclusion, this dissertation highlights the important role that abrupt thaw and non-growing

season microbial activity will play in exacerbating the effect of climate change on permafrost
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carbon release into the future. Abrupt permafrost thaw could result in about the same magnitude
of emissions as gradual permafrost emissions over the next century (Turetsky et al., 2020).
Combined, these permafrost emissions are likely to be comparable to some of the world’s largest
carbon polluters (at current emission levels)(Schuur et al., in review), but these emissions were
not included in the Paris Agreement commitments (Natali et al., 2021). It is therefore necessary
that model projections be improved to better account for abrupt permafrost thaw and that these

projections are included in global climate change policy.
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SUPPLEMENTAL INFORMATION FOR CHAPTER 2
Text S2.1.
To partition the total ice volume into excess and pore ice components, we started with an

equation for the total core volume using its component parts:

TotalCoreVolume(m3)
= TotallceVolume(m?3) + SoilVolume(m?) Eq. S2.1

— PorelceVolume(m?)

where the known total core volume is calculated from the soil core dimensions and the known
total ice volume is calculated by multiplying the total ice mass by the density of ice. The
variables soil volume and pore ice volume are unknowns and soil volume refers to the volume of
dry soil, including pore space. To be able to solve for soil volume, we replaced the unknown
variable, pore ice volume, by assuming that pore space composes 50% of the soil volume (Brady

& Weil, 2008; Figure S3):

TotalCoreVolume(m?) — TotallceVolume(m?)
Eq. 52.2
= SoilVolume(m?®) — 0.5 * SoilVolume(m?3)

We then rearranged equation S2 to calculate the soil volume, including pore space:

SoilVolume(m?®) = 2 x (TotalCoreVolume(m®) — TotallceVolume(m?)) Eq. S2.3
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Finally, excess ice was calculated from the known soil core volume and calculated soil volume,

including pore space, from Eq. S2:

Excesslce(m?®) = TotalCoreVolume(m?) — SoilVolume(m?) Eq. S2.4

2009 2011 2015 2016 2017 2018

Standard Error (m)

Snow Fence

(o —

30 0
Distance (m)

Figure S2.1. Standard error of the kriged elevation surfaces.
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2009 Soil Core

Soil Surface

Initial Thaw Penetration

Final Thaw Penetration

Figure S2.2. A diagram of a soil core showing the thawed permafrost, which we defined as the
layer of soil between the initial (2009) thaw penetration and the final (any year through 2018)
thaw penetration. The calculation of both the minimum and maximum potential subsidence uses
ice volume from within the thawed permafrost layer only.

N

> | Total Ice Volume
> Total Core Volume

Pore Ice Volume
= 0.5*Soil Volume
Soil Volume

Figure S2.3. A diagram of the relative volumes of total ice, excess ice, pore ice, and soil within
soil cores. Soil volume and pore ice volume were both unknowns, while total ice volume and

total core volume were measured in the laboratory. Soil volume refers to the combined volume of
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soil and pore space. Given the total ice volume, total core volume, and the estimated relationship

between soil volume and pore ice volume, we were able to solve for soil volume.
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Figure S2.4. The relationship between excess ice height and subsidence. A mixed effects model

showed that there was no correlation.

Table S2.1. Mixed effects model results for the effect of warming on subsidence through time.
No intercept was included for any treatment, as subsidence in the first year of measurements was
necessarily 0. Filename: 2019JG005528R-Table S1.xIsx

Table S2.2. Soil core data and calculated ice height (volume of ice/soil core area) for each soil

layer in each soil core from 2009. The layer height is the depth from the initial thaw penetration
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to the final thaw penetration. Gravimetric water content and bulk density are depth normalized
averages from the originally measured soil layers (5-10 cm sections). Ice height is calculated
using the equation in section 3.4, and the cumulative ice height is the sum of ice heights for each
core (unique combination of block, fence, and treatment; shown with blocks of shading). NA
indicates missing data, because the soil core was not deep enough to reach the final thaw
penetration. Filename: 2019JG005528R-Table S2.xIsx

Table S2.3. Results of a mixed effects model of subsidence with the fixed effects of total ice
height and soil warming, where ice height is calculated as the total volume of ice within the
thawed permafrost soil layer divided by the area of the soil core. Filename: 2019JG005528R-

Table S3.xlsx

Movie S2.1. 3D gif of elevation at Block A through time. File available at

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005528. Filename:

2019JG005528R-Movie S1.gif
Movie S2.2. 3D gif of elevation at Block B through time. File available at

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005528. Filename:

2019JG005528R-Movie S2.gif
Movie S2.3. 3D gif of elevation at Block C through time. File available at

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005528. Filename:

2019JG005528R-Movie S3.gif
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SUPPLEMENTAL INFORMATION FOR CHAPTER 3

Table S1. A description of the thermokarst models we tested. Neighborhood size indicates the
radius of the circular neighborhood used to calculate median elevation and cut-off indicates the

cut-off used to classify microtopography as thermokarst.

Neighborhood Size Threshold  Overall Accuracy

Model Name (radiusin m) (cm) (%)

Small 15 0 69

Consenvative Small 15 -5 61.5
Medium 25 0 68

Large 35 0 67.5

Small Combination 15& 25 0 71.5
Large Combination 25 & 35 0 68

Complete Combination 15& 25 & 35 0 71.5

Conservative Small and Large -5 (15m) and O

Combination 15& 25 & 35 (25m & 35m) 69
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Figure S1. Subsidence between 2017 and 2019 by thermokarst class. In black, LIDAR (Study
Extent) shows subsidence calculated from the LIDAR DTM from a stratified random sample of
cells (~500 cells from each class) across the study extent. To evaluate the performance of the
LiDAR-derived subsidence, we also included a comparison of LIDAR and GPS derived
subsidence across all locations with GPS data. GPS shows subsidence calculated from the GPS-
derived DTM within CiPEHR (n = Non-Thermokarst: 1094, Thermokarst Edge: 163,
Thermokarst Center: 64) and LIiDAR (GPS Locations) shows subsidence calculated from the
LiDAR DTM within the footprint of the GPS-derived DTM at CiPEHR (same sample size as
GPS). Error bars show the standard error. Letters indicate (the lack of) differences in rate of

subsidence between thermokarst classes using LIDAR across the entire study extent.
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Figure S2. The mean shape of thermokarst features (2017-2019) across the study extent (9 x 9
km black box). The Polsby-Popper test was used to determine the shape of thermokarst features,
with smaller values being rounder or more compact and larger values being longer or less
compact. Thermokarst features with smaller Polsby-Popper values tend to be water tracks, while
features with larger values tend to be small thermokarst pits. The EML watershed is outlined in
black with the EC tower and approximate tower footprint shown as a point within a circle. The

three gray points show the location of the three experimental blocks at CiPEHR.
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Figure S3. A) Mean microtopography for the period 2017-2019 at the EC tower (black point),
with the approximate EC tower footprint delineated (black circle). One deeply incised water
track with two forks to the NW of the EC tower and one fork immediately to the right of the EC
tower is found at the site. B) Change in microtopography between 2008 and the mean of 2017-

20109.
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Figure S4. A scatterplot of NEE (all times) by thermokarst percent cover with the linear fit.
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Figure S5. Relationship of CH4 pulse release (CH4 fluxes more than 3 standard deviations from
the 2-week mean which were not included in linear modeling) to wind speed and soil moisture in

the GS and NGS, with points colored by thermokarst percent cover.
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SUPPLEMENTAL INFORMATION FOR CHAPTER 4
Analysis of the Impact of Subsidence on Hydrology:

To determine the effect of subsidence on soil hydrologic conditions throughout the course
of the experiment, we modeled the plot-level response of GS mean and standard deviation of
WTD (water table), VWC (0-15cm soil moisture), and GWC (0-5¢cm surface moisture) to
subsidence using mixed effects models in the Ime4 package (Bates et al., 2015). We included plot
nested within treatment nested within snow fence nested within block as a random effect to
account for the experimental design. To find the best fitting model, we considered models with 1)
no fixed effects (null model), 2) subsidence, and 3) a quadratic subsidence effect. A quadratic
term was tested to account for expected diminishing responses of hydrologic variables as
subsidence proceeded and the inability of VWC and GWC to exceed 100%. Variable selection
was performed using forward step-wise selection using AIC. Confidence intervals for fixed
effects were bootstrapped with 1000 iterations using the MASS package and r? values were
estimated using the MuMIn package (Barton, 2020). All variables were inspected for normality
and an appropriate transformation was performed where necessary.

To investigate the intra-annual and spatial variability of the impact of subsidence on soil
hydrologic conditions across plots for the entire experiment, we determined elevation, TD, and
WTD along a transect spanning control and soil warming plots at each fence. Because each of
these environmental variables were measured in slightly different locations across the
experimental blocks, we used the kriged elevation (2.2.), and interpolated TD and WTD using
universal kriging (incorporating the relationship between TD or WTD and subsidence) to get
continuous surfaces from point measurements using the automap package (Hiemstra et al.,

2009). Values from each layer were extracted along the transects using the raster package
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https://www.zotero.org/google-docs/?FT9YSD
https://www.zotero.org/google-docs/?zqwBWc
https://www.zotero.org/google-docs/?zqwBWc

(Hijmans, 2021). TD and WTD values were extracted both during a dry period and also
following a large precipitation event; we selected dates that were about two weeks apart in 2018,
because 2018 was the most recent year with both elevation data and a significant dry period. We
used TD measured on July 27, 2018 (dry) and Aug. 10, 2018 (wet) and WTD measured on July
30, 2018 (dry) and Aug. 8, 2018 (wet). Because TD and WTD were not measured on exactly the
same days, we chose dates that were as close in time as possible for comparison between TD and
WTD (<= 3 days between measurements) while still falling within the window of dry and wet
conditions. Elevation values were extracted only once, as the changes in elevation were

negligible within the two week period.
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Figure S1. The spread of annual temperature and precipitation conditions throughout the course
of the warming experiment. Mean annual temperature was calculated from Oct. 1 (of the
previous year) - Sept. 30 (of the year as labeled), while precipitation was calculated for the GS,
defined as May 1 - Sept. 30 (of the year as labeled). Mean and 1 SD lines were calculated across
all years.
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Table S1. GS, NGS, and annual meteorological conditions at CIPEHR. Snow depth and snow free date are provided by treatment, as
this varies among plots, while all other variables are provided at the site level only.

Measurement Season 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Annual 342 -107 248 -329 408 -091 -0.71 063 -193 -057 105 287 -2.52

Mean Air Temperature (°C) GS 9.71 984 942 914 927 914 952 1029 10.42 9.66 10.82 9.83 9.05
NGS 1292 84 -11.07 -12.21 -13.72 -816 -809 -6.31 -10.85 -7.96 -6.01 -11.99 -10.88
Annual 266.15 204.91 224.98 22515 247.7 21433 21566 212.71 242.91 232.71 21621 219.22 229.06
Mean PAR (umol m2 s GS 376.50 362.42 378.7 365.19 415.4 344.81 358.25 345.84 384.26 377.79 359.2 360.37 373.62
NGS 140.91 71.59 114.04 124.55 126.67 120.16 112.75 117.09 140.9 128.01 113.01 117.83 124.74

Annual 1782 2498 1644 2234 141 3296 3544 3924 206 2754 527.4 310 259

Rainfall (mm) Gs 1782 2498 1644 2234 1116 3122 3544 3924 187.2 2754 5184 2932 257.6

NGS 0 0 0 0 204 174 0 0 188 0 9 168 14

Treatment

Air + Soil Warming  1.35 049  1.08 129 124 079 092 113 122 155 103 132 156

Spring Snow Depth (m) Air Warming 04 018 023 055 065 022 0 03 048 08 008 059 086
Control 04 017 023 055 065 023 0 03 049 083 009 059 086

SoilWarming 136 07 11 129 124 094 109 122 123 158 116 132 159

Air + Soil Warming  NA 118 119 125 148 109 112 111 119 133 117 121 129

Air Warming NA 117 117 126 148 110 112 108 121 131 111 123 128

Snow Free Date (DOY) Control NA 117 117 125 148 110 112 108 121 131 111 125 128
SoilWarming NA 117 119 125 148 109 112 111 121 133 112 121 129
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Figure S2. Mixed effects models of the role of subsidence in driving changes in A) GWC, B) SD
GWC, C) VWC, D) SD VWC, E) WTD, and F) SD WTD. SD WTD was log-transformed and
quadratic terms were statistically significant in the relationships with VWC, SD VWC, WTD,
and SD WTD. Points reflect annual average values for a single plot, with color indicating year
and shape indicating treatment. GWC measures soil moisture in the surface layer of moss and
VWC measures soil moisture over the top 15 cm. In general subsidence resulted in wetter soils,
with the relationship between subsidence and WTD being stronger than that with VWC or GWC.
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Relationships between subsidence and the standard deviation of soil moisture metrics were much
weaker, but showed that subsidence resulted in less variable soil hydrologic conditions in the two
statistically significant relationships.
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Table S2. Model summaries of the linear models of WTD, SD WTD, VWC, and SD VCW by
subsidence. Marginal and conditional r? values are indicated by R%v and R%c, respectively.

Response Final Variables Coefficient Min Max R°M R’C
Intercept -21.6 -25.8 -17.1 0.37 0.789
WTD Subsidence 0.451 0.362 0.541
Subsidence® -0.00275 -0.0038  -0.00171
Intercept 1.77 1.7 1.83 0.107 0.144
SDWTD Subsidence -0.00701 -0.00919  -0.00486
Intercept 42.3 40 44.5 0.0694 0.898
VWC Subsidence 0.289 0.13 0.448
Subsidence? -0.00277  -0.00362 -0.00194
Intercept 0.639 0.59 0.687 0.054 0.761
SD VWC Subsidence 0.00303 0.00188  0.00416

Subsidence?  -0.0000419 -5.41E-05 -2.96E-05
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Figure S3. A) July and August precipitation in 2018, with WTD and TD measurement dates
marked for a period with dry conditions and a period with wet conditions. B) Elevation, thaw
depth, and water table depth (WTD) along control-soil warming transects at each of the 6
replicate snow fences during dry conditions and wet conditions. Gray fill indicates frozen soil
(some of which is permafrost and some of which is frozen active layer), blue fill indicates fully
saturated soils in the active layer, and brown indicates unsaturated soils in the active layer. The
location of the snow fence is indicated with the dotted line with the control side to the left and
the soil warming side to the right. C) The difference in WTD before and after the precipitation
event. WTD is near, at, or slightly above the soil surface in the thermokarst depressions in the
soil warming treatment during both dry and wet conditions, while relatively high relief areas in
the control have deeper WTD before the precipitation event and much shallower WTD after the
precipitation event.
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Figure S4. Scatterplots of AGB by A) GWC, B) SD GWC, C) VWC, D) SD VWC, E) WTD, and
F) SD WTD. Points reflect annual average values for a single plot, with color indicating year and
shape indicating treatment.
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Figure S5. Partial dependence plots overlaid on measured data for the top four predictors of
monthly GPP, NEE, and Reco from the GBM. Labels 1 through 4 indicate the order of predictor
importance. Each point represents an individual plot over one month of measurements. Color
indicates month and shape indicates treatment.
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Figure S6. Partial dependence plots overlaid on measured data for the top four predictors of
seasonal GPP, NEE, and Reco from the GBM. Each point represents an individual plot over one
month of measurements. Color indicates month and shape indicates treatment.
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Figure S7. The trajectory of annual CO> fluxes throughout the course of the warming experiment
in each of the thermokarst classes with generalized additive model (GAM) lines to highlight
trends through time. Each plot was assigned to the same thermokarst class in all years based on
the thermokarst class in 2021. Each point represents the annual cumulative CO> flux for an
individual plot. Color indicates plot-level AGB and shape indicates experimental treatment. Solid
points indicate GS sums of gap-filled measurements, and transparent points in 2019 indicate GS
sums which were modeled using the monthly GBMs of each CO- flux and plot-level
environmental conditions.
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Table S3. GS, NGS, and annual cumulative NEE, Reco, and GPP throughout the course of the
permafrost warming experiment. GS values were calculated from gap-filled measurements.
Winter NEE was estimated half-hourly using 5 cm soil temperature and the relationship between
5 cm soil temperature and winter NEE measured at an eddy covariance tower located
approximately 1 km from the warming experiment. Each point represents the annual cumulative
CO: flux for an individual plot. Color indicates plot-level AGB. In 2019, only a subset of plots
were measured for CO> fluxes, so annual sums were gap filled using monthly GBM models of
each CO> flux and plot-level environmental conditions.
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NEE Reco GPP

Year Treatment GS NGS Annual GS NGS Annual GS NGS Annual
Control 7 -165 -158 197 165 363 204 0 204
2009 Air Warming 13 -167 -154 234 167 401 247 0 247
Soil Warming -2 -188 -190 212 188 400 209 0 209
Air + Soil Warming 2 -185 -183 239 185 424 241 0 241
Control 23 -148 -125 267 148 415 290 0 290
2010 Air Warming 45 -145 -100 303 145 448 348 0 348
Soil Warming 48 -167 -119 330 167 497 378 0 378
Air + Soil Warming 47 -162 -115 311 162 473 357 0 357
Control 49 -151 -102 235 151 386 283 0 283
2011 Air Warming 76 -149 -74 280 149 429 356 0 356
Soil Warming 102 -184 -82 342 184 526 444 0 444
Air + Soil Warming 93 -188 -95 302 188 490 395 0 395
Control 76 -166 -90 301 166 467 377 0 377
2012 Air Warming 98 -164 -66 326 164 490 424 0 424
Soil Warming 126 -197 -71 446 197 644 573 0 573
Air + Soil Warming 113 -196 -83 384 196 580 497 0 497
Control 98 -187 -89 299 187 486 397 0 397
2013 Air Warming 122 -187 -65 311 187 498 433 0 433
Soil Warming 147 -201 -54 458 201 659 605 0 605
Air + Soil Warming 129 -197 -68 364 197 561 493 0 493
Control 105 -196 -91 339 196 535 445 0 445
2014 Air Warming 119 -200 -82 313 200 513 432 0 432
Soil Warming 83 -219 -136 430 219 650 514 0 514
Air + Soil Warming 109 -217 -108 411 217 628 521 0 521
Control 104 -186 -82 408 186 594 512 0 512
2015 Air Warming 129 -190 -62 357 190 548 486 0 486
Soil Warming 81 -220 -139 405 220 625 486 0 486
Air + Soil Warming 163 -220 -57 424 220 644 588 0 588
Control 84 -196 -113 415 196 611 502 0 502
2016 Air Warming 94 -196 -102 322 196 518 419 0 419
Soil Warming -4 -228 -232 455 228 683 455 0 455
Air + Soil Warming 99 -227 -128 463 227 690 565 0 565
Control 96 -163 -66 426 163 588 524 0 524
2017 Air Warming 126 -169 -43 343 169 512 471 0 471
Soil Warming 48 -189 -141 465 189 654 516 0 516
Air + Soil Warming 154 -190 -36 439 190 629 596 0 596
Control 75 -212 -137 363 212 575 440 0 440
2018 Air Warming 125 -214 -89 308 214 522 435 0 435
Soil Warming 19 -229 -210 412 229 641 433 0 433
Air + Soil Warming 101 -229 -128 400 229 628 503 0 503
Control 86 -189 -103 356 189 545 414 0 414
2019 Air Warming 64 -188 -124 348 188 536 419 0 419
Soil Warming 63 -211 -148 413 211 624 454 0 454
Air + Soil Warming 96 -211 -115 390 211 601 489 0 489
Control 105 -202 -98 442 202 644 521 0 521
2020 Air Warming 147 -205 -58 323 205 527 446 0 446
Soil Warming 2 -227 -224 403 227 630 399 0 399
Air + Soil Warming 125 -227 -101 381 227 608 492 0 492
Control 59 -211 -152 389 211 601 452 0 452
2021 Air Warming 96 -213 -117 363 213 576 463 0 463
Soil Warming 0 -228 -227 394 228 622 400 0 400
Air + Soil Warming 71 -224 -154 398 224 623 475 0 475
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Figure S8. Shapley additive explanation values for cumulative GS fluxes in a deeply thawed and
dry (Dry) plot and a deeply thawed and wet (Wet) plot for the years 2016-2021. Shapley values
indicate the importance of each variable in a GBMs prediction for a single response value. Z-
scores indicate the value of the explanatory variable for that observation.
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