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ABSTRACT

PATIENT-SPECIFIC MODELING OF THE BIOMECHANICS OF VULNERABLE
CORONARY ARTERY PLAQUES

MOSTAFA MAHMOUDI

Coronary artery atherosclerosis is a local, multifactorial, complex disease, and the lead-

ing cause of death in the US. Complex interactions between biochemical transport and

biomechanical forces influence disease growth. Wall shear stress (WSS) affects coronary

artery atherosclerosis by inducing endothelial cell mechanotransduction and by controlling

the near- wall transport processes involved in atherosclerosis. The current management

guidelines for detection of atherosclerotic plaques focus on morphological characterizations

and the blockage percentage of the stenosis based on coronary computed tomography angiog-

raphy (CCTA). Despite the progress achieved in therapeutics, the relation between hemody-

namic environment and the composition of atherosclerotic plaques remains unexplored. This

dissertation is divided into two main sections: the association between hemodynamics/bio-

transport and longitudinal changes in the plaque vulnerability characteristics and developing

a 1D automatic vascular network generation package with the ability to be coupled with a

3D patient-specific model.

Biochemical-specific mass transport models were developed to study low-density lipopro-

tein, nitric oxide, adenosine triphosphate, oxygen, monocyte chemoattractant protein-1, and

monocyte transport. The transport results were compared with WSS vectors and WSS La-

grangian coherent structures (WSS LCS). High WSS magnitude protected against atheroscle-

rosis by increasing the production or flux of atheroprotective biochemicals and decreas-

ing the near-wall localization of atherogenic biochemicals. Low WSS magnitude promoted

atherosclerosis by increasing atherogenic biochemical localization.

To find the association between hemodynamics/biotransport and longitudinal changes

in the atherosclerotic plaque characteristics, a plaque quantification software was developed
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with the aim of performing a segment-specific assessment to accurately calculate the volumes

of low attenuation plaque (LAP), fibrous plaque (FP), calcium plaque (CP), and vessel wall

and identify the quantitative plaque characteristics including spotty calcification, presence of

napkin-ring sign, and positive remodeling. The changes in the different plaque characteristics

were compared against the hemodynamic/biotransport parameters. The results showed that

WSS magnitude is moderately correlated with the longitudinal changes in LAP, FP, and

vessel wall volumes. Also, WSS magnitude and local concentration of nitric oxide (NO)

showed a meaningful correlation with the presence of positive remodeling in the follow-up.

A hybrid 1D-3D solver was developed in Simvascular software and validated against the

existing data in the literature. The results of our coupled 1D-3D solver showed a good

agreement with the 3D, deformable wall models. This solver can be used to solve the blood

flow in a large network of 1D vessels coupled with a patient-specific 3D model. Finally,

an automatic vascular network generation framework was developed using the Constraint

Constructive Optimization (CCO) algorithm to study the generation of arterial trees based

on theoretical perfusion maps. The algorithm simulated angiogenesis by optimizing the total

vessel volume governed by physiological and geometrical constraints.

Keywords: Coronary artery disease, Biochemical transport, Lagrangian coherent struc-

tures, Mechanotransduction, Endothelial cells, Hemodynamics, Longitudinal study, Vulner-

able plaque quantification, coupled 1D-3D solver, Automatic arterial tree generation, Con-

straint constructive optimization.
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Chapter 1

Introduction

1.1 Longitudinal association between vulnerable plaque

characteristics and the hemodynamic features

Cardiovascular diseases (CVDs) are responsible for one out of every three deaths in the

United States [1]. The major form of CVDs is atherosclerosis, a progressive condition in

which deposits of fatty and inflammatory material build up inside the arterial wall, create

plaque, and obstruct the normal blood flow. Pathological studies have suggested that specific

atherosclerotic plaques show shared features related to acute coronary syndrome (ASC) [2, 3].

Usually, these types of plaques, called vulnerable plaques, are unstable and typically do not

show significant blockage of the coronary arteries. Recently, an effort has been organized to

use coronary computed tomography angiography (CCTA) in high risk patients to investigate

the presence of such vulnerable plaques [4, 5, 6].

Although the exact underlying mechanisms of atherosclerotic plaque growth are not fully

understood, many scientists believe it begins with a damage to the inner wall of the artery,

1



called endothelial cell (EC) layer. It has been shown that ECs are sensitive to the bio-

chemical and biomechanical environment surrounding them [7, 8]. When ECs are subjected

to forces related to cardiac function, such as wall shear stress (WSS), they can alter their

functions, activities, and even their phenotype [9, 10]. This leads to various physiological

and pathophysiological changes in the arteries. On the other hand, a damage to ECs can

change their permeability toward various biochemicals and cells, facilitating the transport of

them into the vessel wall. The major biochemical and cells in blood flow that protect/prevent

atherosclerosis are known to be low-density lipoprotein, nitric oxide, adenosine triphosphate,

oxygen, monocytes, and monocyte chemoattractant protein-1. The localization or lack of

them on the arterial wall is a key factor in progression of the disease.

Among the aforementioned biochemicals and cells, LDL is one of the most important players

in the atherosclerosis. As an atherogenic biochemical, presence of LDL macromolecules inside

the arterial wall tissue releases bio-signals to the immune system and causes inflammation

inside the vessel wall [11]. On the other hand, nitric oxide is an atheroprotective biochemical

which regulates the vascular tone and permeability of ECs. It’s been shown that NO plays

an important role in preventing excessive transport of monocytes and T-cells into the arterial

wall and decreasing the rate of LDL oxidation. It’s been shown that production of NO inside

the arterial wall depends on the exerted WSS.

Arguably, WSS is the most important factor in the biomechanics of atherosclerosis. WSS

provides valuable information about the near-wall biotransport and also can directly affect

the ECs mediated regulation of vascular health by means of mechanotransduction [12, 13].

Mechanotransduction is the process of converting mechanical forces into a series of bio-

signals. It has been shown that various mechanosensors exist inside and on the surface of ECs.

These mechanosensors consist of ion channels, G-proteins, receptors for vascular endothelial

growth factor type-2, adhesion molecules, and the endothelial glycocalyx [7, 8, 14, 15].

Extracting the hemodynamic and biotransport in vivo data for coronary arteries is close
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to impossible. Computational fluid dynamics (CFD) provides this opportunity to study

the hemodynamics and biotransport in small arteries using the physiologic-derived princi-

pals. With recent advances in medical imaging techniques, researchers are able to recon-

struct the coronary arteries from CCTA images with acceptable accuracies. However, most

of the patient-specific studies are focused on the blood flow patterns and hemodynamics.

Unfortunately, the high resolution, patient-specific study of near-wall transport of various

biochemicals has not gained attention.

Although the patient-specific studies provide a detailed representation of hemodynamics and

biotransport in coronary arteries and improve our understanding of the flow conditions in

diseased and healthy arteries, the results of them should be correlated to the longitudinal

progression of the atherosclerosis. In recent years, an effort to associate the hemodynamics

features in the baseline to the longitudinal changes in the volume of the plaques has gained

momentum [16, 17]. However, the association of hemodynamic and biotransport to vulner-

able plaque characteristics is a new perspective in bioengineering field. This type of study

needs high resolution CCTA images, a control group of patients, access to plaque quantifi-

cation software, and registration of CCTA images with 3D CFD results. Currently, there

is no platform that offers the scientists all the required technologies to study the effect of

biotransport and hemodynamics on the vulnerable plaque characteristics.

1.2 Automatic generation of vascular networks

The cardiovascular system consists of various sections which each has its own physiological

and functional behavior. The patient-specific 3D models are well suited for studying the

effect of geometry on the blood flow [18, 19]. However, the use of 3D models to simulate the

blood flow inside a large network of vessels is impractical. In the case of coronary arterial

tree, the CCTA images only can visualize the arteries to a certain extent and they miss the
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structure of the arterial network with small diameters. Also, the high resolution 3D modeling

of the arterial tree, considering the deformable arterial wall, is computationally expensive.

The deformability of the arterial wall plays a role in the propagation of pressure waves from

the heart to the distal arteries [20, 21]. These waves play an important role in regulating the

blood pressure in the coronary arteries. Thus, the simulation of the entire arterial network

supplying blood to the heart tissue faces two limitations: computational cost and lack of

medical imaging technology to capture the structure of a large network of vessels.

To resolve the aforementioned limitations, 1D models have been developed as an alternative

to describe the arterial network. The 1D models provide the opportunity to obtain the large

scale characteristics of hemodynamics at different sections of the arterial network [22]. It has

been shown that the current non-linear 1D models of hemodynamic can generate accurate

pressure and flow waveforms inside an arterial network. One of the major limitations of the

1D models is their incapability in simulating the small scale flow features. These small-scale

feature include the flow structure in the plaque region, flow structure around bifurcations,

and local measurement of WSS. The multiscale approach of coupled 1D-3D can address

the limitations regarding the small-scale flow structures in region of interest (3D) and the

computational cost of simulating a network of arteries with deformable walls (1D) [23].

Unfortunately, no open-source software provides the option of a hybrid 1D-3D simulation.

To address the limitation regarding the resolution of medical images, various arterial tree

generation algorithms have been developed. These algorithms are governed by mathemat-

ical and physiological principals derived from anatomical data. These detailed models of

vascular tree made it possible to quantitatively analyze the blood flow distribution inside

a large network of vessels. The most well-known algorithm to generate arterial networks is

Constrained Constructive Optimization (CCO) [24, 25]. This algorithm uses Poiseuille’s law

for simulating the blood flow and uses physiological-derived laws such as Murray’s law for

creating the bifurcations. CCO is an iterative approach and starts from a starting node called
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the root. Root is the most proximal segment that supplies blood to the arterial network.

It has been shown that CCO results in a qualitatively sound arterial network structures.

There are limitations on the use of CCO algorithm that mostly are related to the various

assumptions made to develop the model. The most important assumptions in CCO are as

follows: (1) The arterial network segments are solid straight cylinders, (2) the vessel wall

is rigid, (3) Blood behaves as a Newtonian, incompressible fluid, (4) The pressures at the

terminal segments are equal, (5) Symmetric branching pattern, and (6) terminal nodes are

added randomly.

1.3 Thesis outline and objectives

The thesis is divided into two main sections: the association of hemodynamic and biotrans-

port at baseline to the changes in vulnerability characteristics of atherosclerotic plaques,

and developing a framework to automatically generate a vascular tree based on perfusion

maps using a hybrid 1D-3D approach. In Chapter 2 the high resolution patient-specific

simulations of coronary arteries showing atherosclerosis are presented and the underlying

CFD methods are described. In Chapter 3, the steps in developing a plaque quantification

software and the algorithms used to increase the accuracy of the quantification process are

described in details. Then, the developed software was used to quantify the longitudinal

changes in the plaque characteristics from baseline to follow up. Finally, the correlations

between the hemodynamic/biotransport results from Chapter 1 and the changes in various

vulnerable plaque features are presented. Chapter 4 discusses the development of a hybrid

1D-3D solver in the open-source software package Simvascular. The validation results for

the developed coupled 1D-3D solver are discussed. In Chapter 5, the algorithm behind the

CCO algorithm for arterial tree generation is discussed in details and the results of applying

this approach to theoretical perfusion maps are presented. Chapter 6 summarizes the most
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important findings of the present dissertation and outlines the future work.
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Chapter 2

The story of wall shear stress in

coronary artery atherosclerosis:

biochemical transport and

mechanotransduction

2.1 Introduction

2.1.1 Overview

Atherosclerosis is the major form of cardiovascular disease and the leading cause of mortality

and morbidity in the US. This progressive condition is a process in which deposits of fatty

and inflammatory material build up inside arterial walls, create plaques, and obstruct normal

blood flow. Atherosclerotic plaques are commonly developed in the coronary arteries and the

resulting thrombus formed after their rupture can ultimately occlude an artery downstream
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to the plaque causing myocardial infarction. This inflammatory disease is characterized by

endothelial dysfunction [2], immune cell migration and differentiation [10], and extracellular

matrix remodeling [2, 3]. Although the exact causes of atherosclerosis are still not fully

understood [26], many scientists believe it begins with damage to the inner wall of an artery,

called the endothelium [27]. The endothelial cells (ECs) sit at the interface between blood

flow and the arterial wall and tend to be sensitive to their biomechanical and biochemical

environment [28].

Elevated levels of low-density lipoprotein (LDL) in blood increase the risk of developing

coronary artery atherosclerotic plaques. The circulating LDL macromolecules do not directly

contribute to atherosclerosis, however, when they penetrate the arterial wall in atherogenic

regions, because of the presence of free radicals in the intima, they become oxidized (ox-

LDL) [11]. This is believed to be the first stage of atherosclerotic plaque formation. The

ox-LDL in intima launches an immune response by ECs and smooth muscle cells (SMC) in

which monocyte chemoattractant protein-1 (MCP-1) is secreted by the ECs [10]. MCP-1

signals the recruitment of monocytes and T-cells by the ECs. Then, monocytes and T-

cells squeeze into the gaps between ECs, differentiate into macrophages, devour apoptotic

cells, and endocytose the ox-LDL turning them into foam cells [9]. By secreting interleukin

IL-12, the foam cells activate T-cells in the intima leading to secretion of interferon INF-γ,

promoting more monocytes recruitment to the site [29]. Meanwhile, as a response to chemical

signals, smooth muscle cells (SMCs) migrate towards the foam cells forming a fibromuscular

cap on the lesion. The disease can slowly progress and the resulting plaque may ultimately

reduce blood flow supply to the downstream tissue.

Biomechanical and biochemical cues strongly regulate the process of atherosclerosis. When

ECs are subjected to forces such as wall shear stress (WSS) and mechanical stretch, their

functions, activities, integrity, as well as their phenotype might be altered, resulting in

physiological and pathophysiological changes in blood vessels [9, 10]. The dysfunctional ECs
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at regions susceptible to atherosclerosis show a change in the permeability of endothelium,

facilitating the transport of various biochemicals and cells into the subendothelial layer [30,

31, 32]. The major biochemicals and cells in blood that promote or protect atherosclerosis

growth are known to be low-density lipoprotein (LDL) [33, 34, 35, 36], nitric oxide (NO) [37,

38, 39], adenosine triphosphate (ATP) [40, 41, 42], oxygen [43, 44, 45], monocytes [46, 47, 48]

and monocytes chemoattractant protein-1 (MCP-1) [49, 50]. The surface concentration, flux,

and transport of each of these biochemicals/cells play a unique role in the development of

disease at regions with dysfunctional endothelium [46].

2.1.2 Important biochemicals

LDL is likely one of the most important biochemical players in atherosclerosis and has been

the main focus in biochemical studies related to atherosclerosis. While in earlier studies, it

was assumed that the endothelium shows a constant permeability and diffusivity [51], more

recent publications are taking advantage of in vitro experiments on cultured ECs and as-

sume more complex shear-dependent permeability for the transport of LDL into the arterial

wall. The most promising model, which considers various transport pathways in the endothe-

lium is called the three-pore model [52, 53]. This model accounts for the WSS-dependent

pathways that LDL molecules can penetrate through the endothelium, i.e. vesicular path-

way, leaky junctions, and normal junctions [54, 55]. Monocytes are the other important

atherogenic player that together with LDL perform a crucial role in creating atherosclerotic

plaques. Monocyte transport has been studied using discrete Lagrangian models [56] as well

as aggregated continuum models [46].

NO is an atheroprotective biochemical mediating vasodilation. It is well established that

NO lowers vascular tone through endothelium-derived hyperpolarizing factor (EDHF) [12],

reducing the EC permeability by inhibiting the translocation of cell adhesion molecules [9,
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13], preventing excessive transport of monocytes into the arterial wall, and slowing down the

rate of LDL oxidation [57]. The transport and production of NO strongly depends on the

exerted WSS from the blood flow on the ECs. Various in vitro studies have shown that NO

production is elevated with higher WSS magnitude [58, 59, 60]. Based on this observation,

computational models are introduced to simulate the transport of NO in arteries [38, 37, 61].

Adenine nucleotide ATP is another atheroprotective biochemical. ECs are known to trigger

mobilization of intracellular calcium in response to shear stress signals [62, 9]. It has been

shown that intracellular calcium changes through mechanotransduction signaling by ECs and

surface concentration of ATP is believed to affect the calcium mobilization. Also, another key

role ATP plays is mediating the vasodilation and vascular tone [63]. Finally, oxygen is known

to protect against atherosclerosis [45]. Hypoxia (lack of oxygen) is one of the initial steps in

the formation of atherosclerotic lesions [45]. In vitro studies showed that disturbed flow, as

well as hypoxia due to reduced oxygen transport, promote EC dysfunction by activation of

hypoxia-inducible factor-1α (HIF1-α) [45].

2.1.3 Role of biomechanics and study design

The importance of WSS in the pathology of atherosclerosis has been well accepted by the

research community and is arguably the most important parameter in the biomechanics of

atherosclerosis [64]. Our group has shown that WSS provides valuable information about

near-wall biotransport [65, 61]. It is also known that WSS directly affects EC mediated reg-

ulation of vascular health through mechanotransduction [28, 66]. WSS affects biotransport

processes via an interplay between WSS-mediated EC permeability/flux and near-wall lo-

calization of biochemicals controlled by WSS topology (stable and unstable manifolds in the

WSS vector field) [61]. Additionally, WSS regulation of atherosclerosis via mechanotrans-

duction is well studied and understood [3]. These biochemical and biomechanical pathways
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are both important in atherosclerosis, and they are both strongly influenced by WSS, albeit

with different mechanisms. The goal of this study is to first review our knowledge of WSS-

mediated mechanotransduction in atherosclerosis, perform a comprehensive investigation of

atherogenic and atheroprotective biotransport processes in patient-specific coronary artery

geometries, and finally summarize our knowledge of how WSS influences atherosclerosis.

The manuscript is structured as follows. First, in Sec. 2.1.4, we review our prior knowledge

of shear stress and mechanotransduction in atherosclerosis. Subsequently, we explain our

patient-specific computational fluid dynamics (CFD) procedure for obtaining hemodynamics

data in left anterior descending and left circumflex arteries in four human coronary arteries

with atherosclerotic lesions (8 models total) as well as two healthy left anterior descending

artery swine models. We explain the biochemical transport models (NO, ATP, oxygen,

LDL, MCP-1, and monocyte) and WSS processing. Finally, the results are presented and

discussed. We summarize our findings and present them with the goal to move towards a

comprehensive hypothesis for WSS in atherosclerosis.

2.1.4 Wall shear stress (WSS) and mechanotransduction

The role of ECs cannot be underestimated as only an interface and barrier between blood flow

and the underlying tissues. The ECs actively regulate various pathways in atherosclerosis

ranging from the recruitment of immune cells and regulation of vascular tone to changing the

permeability to various biochemicals and cells. ECs can also sense mechanical forces such

as WSS, which is the frictional force exerted from the blood flow onto the ECs. The ECs

sense these mechanical forces and respond to them in the form of biochemical formation, cell

shape change, cell proliferation, protein secretion, and alteration of gene expression. The

process of converting mechanical forces into a series of biochemical signaling events is called

mechanotransduction [67]. In this section, we will provide a mini-review on how WSS affects
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the EC mechanotransduction in atherosclerosis.

The endothelium consists of a monolayer of polygonal ECs covering the blood vessel wall and

providing a barrier to keep the plasma and blood cells in the lumen. ECs are connected in an

edge-to-edge pattern [7]. The structure of ECs consists of an actin-myosin cytoskeleton, in-

tercellular clefts, gap junctions, glycocalyx, caveolae, and vesicles. Different mechanosensors

are present on the EC surface and can sense WSS signals. Some known EC mechanosen-

sors include ion channels [7], G-proteins [8], receptors for vascular endothelial growth factor

type 2 (VEGFR2) [14], adhesion molecules (e.g., platelet endothelial cell adhesion molecules

PECAM-1) [68], primary cilium [69], and the endothelial glycocalyx [15].

In vivo studies show that pro-inflammatory genes can be activated in ECs in regions with

disturbed blood flow [70, 71, 8]. Disturbed flow is loosely defined in the literature, however,

the common consensus is that low (< 0.4 Pa) and oscillatory (lack of a dominant time-average

direction) shear stress define disturbed flow [72]. It is well established that disturbed flow

activates a series of responses in ECs. For example, low/disturbed WSS triggers induction of

KLF4 in ECs [73, 74], activation of sterol regulatory element-binding protein 2 (SREBP2) [75,

76], expression of adhesion molecules and cytokines via nuclear factor NF-κB [3, 77], and

activation of HIF1-α [78], while physiological WSS mediates NO production as a result of

endothelial nitric oxide synthase (eNOS) enzyme expression [79, 80], activates integrins [81],

and regulates Ca2+ concentration [82].

The glycocalyx is the first contact point between blood flow and the ECs in sensing the

WSS and has received notable attention in recent years [32]. The glycocalyx protein com-

plex includes sialoglycoprotein, syndecan-1, glypican, and hyaluronan, which are linked to

the cortical actin cytoskeleton and potentially transduce the WSS signals into the EC cy-

toskeleton [83, 84]. Another prominent mechanism for sensing WSS is lateral diffusion and

molecular translocation [9]. The translocation of P-selectin into the surface of ECs in the

presence of an inflammatory agonist or shear stress is one example of this process.
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Stress fibers are another crucial component of ECs and are bundled inside the cortical actin.

The stress fibers are connected to the core proteins in glycocalyx on the surface of ECs,

linked to transmembrane proteins such as integrin, and are connected to the neighboring

ECs by vascular endothelial cadherin (VE-cadherin) [85]. One of the key functions of stress

fibers is regulation of cell adhesion. The stress in these filaments is transmitted to the focal

adhesion sites activating integrin and reinforcing the cytoskeleton by changing the shape of

stress fibers [86]. It is believed that stress fibers structure affect the EC shape, polarity, and

orientation based on the WSS patterns [87]. The stress fibers inside ECs are disassembled

and generated periodically [88] and when the stress is released from the stress fibers, they

become degraded and under shear stress the actin filaments are formed in a direction parallel

to the applied shear stress, transmitting the stress to the focal adhesion sites.

Focal adhesions, comprised of protein complexes, provide sites where integrins bind to the

extracellular matrix (ECM). They are mechanosensors, which contain a high density of actin-

binding proteins such as α-actinin, talin, vinculin, zymin, and Src tyrosine kinase (called

focal adhesion kinase FAK) [81]. Focal adhesions are capable of sensing signals coming from

WSS. It has been shown that some of these proteins change their activity depending on the

applied force [89]. Also, shear stress affects the cellular polarization and alignment of ECs

via activating the small G-proteins at focal adhesions and forming the stress fibers in sites

close to the applied stress. Regions with an aligned stress fiber network in the direction of

applied physiological WSS are shown to suppress atherogenesis, while stress fiber networks

under low and oscillatory forces promote atherosclerosis. Under pathological shear stress or

activation of mechanoreceptors such as PECAM-1, integrins increase their affinity towards

ligands. As a result, the cell adhesion molecules (CAMs) undergo a conformational change

and control the adhesion of monocytes to ECs [75].

Physiological and high WSS values stimulate endothelial nitric oxide synthase (eNOS) phos-

phorylation via FAK and shear stress dependent Ca2+ channels [82]. This leads to subsequent
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NO production and flow-induced vasodilation, which protect against atherosclerosis. It is

reported that inflamed tissues with dysfunctional ECs show a drop in the concentration of

NO and Ca2+ [80]. Also, shear-dependent expression of CAMs via NF-κB, such as ICAM-1,

VCAM-1, and E-selectin under low/disturbed WSS contributes to the early formation of

atherosclerosis lesion [90, 32]. The shear-dependent NF-κB-mediated gene expression regu-

lated by PECAM-1 reduces NO production and promotes atherosclerosis.

The permeability of ECs toward various biochemicals/cells affects atherosclerosis progression.

The permeability of endothelial intercellular clefts is not constant and it changes in response

to WSS and biochemical signaling. It is known that NO production as well as endothelial

cyclic guanosine monophosphate (cGMP) mediate the permeability of ECs [91]. Through

mechanosensitive processes, integrins, by activation of NF-κB, regulate the EC permeability,

while caveolin-1 can mediate the gap junctions and regulate the transport of macromolecules

like LDL into the arterial wall. While monocytes can penetrate through the gap junction

by squeezing themselves, LDL molecules cannot easily pass the endothelium. It has been

shown that the permeability of ECs towards LDL macromolecules depends on the number

of mitotic cells and leaky junctions [34]. In vitro studies showed that the number of leaky

junctions in cultured ECs increased in low WSS regions [34].

2.2 Methods

2.2.1 Image processing

Coronary computed tomography angiography (CCTA) images from four human patients (left

anterior descending LAD and left circumflex LCx arteries, in total 8 models) and two healthy

swine models (LAD) were collected, de-identified, and securely stored with IRB approval.

The human patients were part of the “Effect of Aged Garlic Extract (AGE) on Improv-
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ing Coronary Atherosclerosis in People With Type 2 Diabetes Mellitus” clinical trial [92].

Individuals with a bodyweight > 300 lbs, a history of bleeding disorders or those taking

anticoagulants, those with hypertensive encephalopathy or a cerebrovascular event, a known

history of coronary artery disease, myocardial infarction, stroke or life-threatening arrhyth-

mia within the prior 6 months were excluded from the study. The following imaging and

reconstruction variables were applied: slice thickness of 0.625 mm, tube voltage 100–120 kV,

tube current 350–780 mA and a matrix size of 512 × 512 with x- and y-axis resolution of

0.3516mm. The human patients showed multiple atherosclerotic plaques in their coronary

artery tree. The patient information and plaque characteristics are presented in Table 2.1,

and the 10 reconstructed luminal surfaces of coronary arteries are shown in Fig. 2.1. For

human patients, the arterial centerlines were created by following the lumen cross-sections

between CCTA slices and 3D patient-specific models were created using the open-source soft-

ware package SimVascular [93]. Because of the anatomical complexity in coronary arteries,

cross-sectional segments were created manually to capture the fibrous and calcified plaques.

Using Hounsfield units (HU) allows differentiation of plaques into noncalcified, mixed, and

calcified plaque classes. In this study, regions with HU value of 79 ± 34 were considered as

lipid-rich plaque, 90±27 as fibrous plaque, and 772±251 as calcified plaque [94]. Figure 2.2

shows an example of calcified plaque, the 3D rendition of CCTA images for Patient 1, and

an overview of the hemodynamic analysis performed. For swine models, the fusion of in-

travascular ultrasound (IVUS) and CCTA is used to reconstruct the 3D arterial models, as

explained in [95, 96].

2.2.2 Computational fluid dynamics (CFD)

After locally smoothing the arterial bifurcations using a volume preservation method, a mesh

with 4 boundary layers next to the wall (global edge size of 0.015cm and first boundary layer

size of 0.006cm) is generated in SimVascular. For transport models, another mesh is created

15



Table 2.1: Plaque characteristics of different patients from coronary computed tomography angiography (CCTA).

Patient
ID

Age Sex Comments

P1 35 M Both soft and calcified plaques in LAD artery; the soft plaque
starts before the 1st diagonal/ LAD bifurcation connecting to the
calcified plaque. The maximum blockage is 46%.
In LCx, both soft and calcified plaques are located between 1st

and 2nd marginal branches. The maximum blockage is 21%.
P2 64 F An elongated soft plaque in LAD artery; the soft plaque starts

right after 1st diagonal and ends before LAD/2nd diagonal bifur-
cation. The maximum blockage is 57%.
Small calcified plaque in LCx artery; the plaque is located at prox-
imal LCx. The maximum blockage is 23%.

P3 51 M Three calcified plaques in LAD; one right before LAD/1st diag-
onal bifurcation; one before LAD/2nd diagonal bifurcation; and
the other one at the proximal part of 2nd diagonal branch. The
maximum blockage is 6%.
Multiple small calcified plaques in LCx; plaques are located at
proximal LCx and around the LCx/1st marginal branch. The
maximum blockage is 18%.

P4 59 M Multiple soft and calcified plaques in LAD; plaques are located
between 1st and 2nd diagonal branches. The maximum blockage
is 21%.
Multiple soft and calcified plaques in LCx; plaques are scattered
between proximal LCx artery and 2nd marginal branch. The max-
imum blockage is 17%.

P5
P6

- - LAD artery from 2 adult familial hypercholesterolemia Breton-
celles Meishan mini-pigs with a low-density lipoprotein receptor
mutation fed a high fat diet were considered. Baseline data with-
out plaque were selected.

with 10 boundary layers with global edge size of 0.009cm where the first layer is considered to

be 5.0µm in size to capture thin concentration boundary layers that arise in cardiovascular

mass transport problems [97, 98]. Table 2.2 lists the total number of elements in the meshes

for different models used in this study. For CFD and mass transport simulations, quadratic

elements (P2-P1 elements) and linear elements are used, respectively. A sample of the cross-

sectional 3D mesh in the plaque region of P1-LCx is shown in Fig. 2.2.

Table 2.2: Number of elements used for CFD and mass transport simulations.

Number of elements
P1 P2 P3 P4 P5 P6

LAD LCx LAD LCx LAD LCx LAD LCx LAD LAD
CFD 3 M

(24 M)∗
3 M
(24 M)

7 M
(56 M)

4.7 M
(37.6
M)

3.2 M
(25.6
M)

3.6 M
(28.8
M)

2.4 M
(19.2
M)

3.7 M
(29.6
M)

5 M
(40 M)

3.8 M
(30.4
M)

Transport 6.6 M 11 M 7 M 7.2 M 6.1 M 5.2 M 4.4 M 4.1 M 5 M 5.5 M
∗ The number in parenthesis is the number of equivalent linear elements.
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Figure 2.1: Geometry of the 10 coronary artery models used in blood flow simulations. Patient 1-4 models include human
left anterior descending (LAD) and left circumflex (LCx) artery models with plaques; 5–6 are healthy swine LAD models. The
red color indicates the region of interest for solving the transport of various biochemicals and cells.

CFD simulations are carried out using the open-source software package Oasis [99]. Oasis of-

fers minimally dissipative (without any stabilization) fractional step solvers for Navier-Stokes

and leverages the flexible Python interface offered by FEniCS to implement the governing

equations in a finite element framework. A physiological pulsatile waveform using a parabolic

velocity profile is applied as the inflow condition at the beginning of LAD and LCx arteries

based on the waveforms reported in [100]. Resistance boundary conditions are prescribed at

the outlets and tuned iteratively such that the flow rates obey the physiological scaling law

for coronary arteries [101]. The resistance tuning is performed using a custom code devel-
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Figure 2.2: An overview of the analysis performed in this study is shown. 3D render of the CCTA images is shown for
P1. In the right panel, an example of luminal segmentation, computational mesh, blood flow streamlines in LAD, luminal
surface concentration of LDL, as well as WSS Lagrangian coherent structures (WSS LCS) for P1-LCx in the presence of a
calcified plaque are shown. Different types of fixed-point and WSS topological features alongside with the color code used for
visualization of them in the present paper are shown in the bottom-left panel.

oped in FEniCS/Oasis to reach the desired outflow distribution. A total number of 20,000

time-steps per cardiac cycle are used for all simulations. The large number of time-steps is

necessary due to the high spatial resolution (quadratic elements). Blood is assumed to be

Newtonian [102] with µ=0.04P and ρ=1.06 g/cm3. The arterial wall is assumed to be rigid,

which is a reasonable assumption in coronary arteries [103]. The 3D coronary artery models

as well as the regions of interest for solving the transport equations are shown in Fig. 2.1.

The region of interest in each model is chosen in a way that includes all of the plaques and

extends to a point in the arterial branches where there is no flow recirculation.
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2.2.3 Wall shear stress (WSS) analysis

WSS Lagrangian coherent structures (WSS LCS) have provided a new theory for the role of

WSS in regulating near-wall biotransport processes in cardiovascular flows [104, 65]. These

structures appear as lines that are embedded within the wall surface. WSS LCS are computed

from stable/unstable manifolds of time-averaged WSS (TAWSS) vector field. The direct

calculation of WSS manifolds from the steady TAWSS vector field is computationally efficient

and takes less than a few seconds on a desktop. More details around calculation of WSS LCS

are provided in our prior publications [65, 105]. Recently, a simple Eulerian method based

on WSS divergence has also been proposed to identify WSS manifolds [106]. The attracting

WSS LCS (unstable manifolds) attract biochemicals in their vicinity and lead to near-wall

accumulation of biochemicals. The repelling WSS LCS (stable manifolds) tend to push away

biochemicals by forming near-wall transport barriers. Additionally, stable and unstable type

fixed points in the WSS vector field influence surface concentration patterns [105]. The stable

and unstable WSS fixed points are points where the WSS vector is zero and the surrounding

vectors point towards and away from the fixed point, respectively [105]. A dramatic change

in WSS directionality occurs around these fixed points that could lead to locally elevated or

decreased surface concentration.

2.2.4 Biotransport analysis

In the following, the models utilized to simulate the near-wall transport of low-density

lipoprotein (LDL), nitric oxide (NO), adenosine triphosphate (ATP), oxygen, monocytes,

and monocytes chemoattractant protein-1 (MCP-1) are provided. The values of the param-

eters used in these models are reported in Table 2.3.

The surface concentration and flux of various biochemicals are obtained by solving the proper

advection-diffusion-(reaction) equations. The wall boundary conditions are extracted from
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previous in vitro studies. The instantaneous velocity field obtained from hemodynamic sim-

ulation was used in transport equations and was interpolated to the more resolved transport

mesh using Python codes developed with the visualization toolkit (VTK) libraries. The

initial condition for solving each biochemical/cell transport was set to zero. Since the pre-

scribed parabolic velocity boundary condition is of 3D nature and the instantaneous velocities

were used in the transport governing equations, the sensitivity to the initial condition is re-

duced [107]. Given the nonlinearities present in cardiovascular flows, it is important to use

a method capable of resolving high temporal frequencies. In this paper, the generalized-α

method [108] was incorporated in a stabilized finite element formulation with a time-step

of 2 × 10−4 s. The quasi-steady luminal surface concentration/flux was obtained after 10

cardiac cycles for NO, ATP, and oxygen, 15 cardiac cycles for monocytes and MCP-1, and

80 cardiac cycles for LDL concentration. Due to the small diffusivity and the highly hetero-

geneous permeability and flux boundary condition in LDL simulations, a large number of

cardiac cycles were required to reach a quasi-steady solution. All simulations were performed

using codes developed in the open-source finite element solver FEniCS and all of the results

were visualized in ParaView.

Low-density lipoprotein (LDL) transport

Transport of LDL, a cholesterol carrying biochemical, into the arterial wall is one of the early

stages of atherosclerosis. To model the transport of LDL, a three-pore model is utilized to

account for the three pathways responsible for the transport of LDL into the arterial wall.

i.e., the vesicular pathway, the normal junctions, and the leaky junctions [34]. The transport

equation for LDL is written as
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∂cLDL
∂t

+ u · ∇cLDL = DLDL∇2cLDL , (2.1a)

−DLDL
∂cLDL
∂n

= −PappcLDL ;Wall boundary condition, (2.1b)

where Papp = Pv + Papp,nj + Papp,lj is the apparent permeability of ECs, in which the effects

of vesicular pathways (Pv), normal junctions (Papp,nj), and leaky junctions (Papp,lj) are taken

into account. Normal junctions block the transport of solutes with a radius larger than 2

nm. Thus, LDL molecules, having a radius of 11 nm, cannot pass through normal junctions

(Papp,nj = 0) [109]. It is shown that leaky junctions are responsible for 90% of LDL trans-

port [34]. The apparent permeability of leaky junctions depends on the fractional reduction

factor in LDL concentration gradient at the pore entrance (Zlj), diffusive permeability (Plj),

volume flux (Jv,lj), and solvent-drag reflection coefficient (σf,lj) of leaky junctions as follows:

Papp,lj = PljZlj + Jv,lj(1− σf,lj) , (2.2)

where Zlj = Pelj/exp(Pelj − 1), and the modified Péclet number is defined as Pelj =

Jv,lj(1 − σlj)/Plj. The volume flux is Jv,lj = Lp,lj∆P where the hydraulic conductivity is

Lp,lj = Ap

S
Lp,slj. The hydraulic conductivity of a single leaky junction is Lp,slj = w2

3µpllj
and

the fraction of surface area occupied by the leaky junctions is Ap

S
= 4w

Rcell
φ. The fraction of

leaky junctions is φ =
#LC×πR2

cell

unit area
, in which number of leaky cells is #LC = a1 + a2(#MC),

number of mitotic cells is #MC = b1exp(b2SI), and the EC shape index is defined based on

time-average WSS (TAWSS) as SI = c1exp(c2TAWSS) + c3exp(c4TAWSS). The diffusive

permeability of leaky junctions is as follows

Plj =
AP
S

ΦljPslj , (2.3)
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where Φlj = 1 − αlj is the partition coefficient and αlj = a/w is the ratio of the pore area

available for LDL transport to the total pore area. The diffusive permeability of a single

leaky junction is Pslj = Dlj/llj where Dlj = DLDLΦF (αlj)
Ap

S
and F (αlj) is the hinderance

factor in a pore given in [110]. A constant LDL concentration cLDL,0 is applied at the inlet.

The values of the parameters used in three-pore model are reported in Table 2.3.

Nitric oxide (NO) transport

NO is an atheroprotective biochemical produced by the ECs. NO plays various positive

roles in the prevention of atherosclerosis such as preventing smooth muscle cell migration

and monocyte adhesion, reducing EC permeability, and suppressing platelet adhesion [111].

The equations governing the transport of NO can be written as [37, 38]

∂cNO
∂t

+ u · ∇cNO = DNO∇2cNO −KdcNO , (2.4a)

−DNO
∂cNO
∂n

= −d× (Rbasal +Rmax
WSS

WSS +WSS0

) ;Wall boundary condition, (2.4b)

where Kd is NO degradation, d is the EC thickness, WSS is the wall shear stress magnitude,

WSS0 is a reference WSS value, and Rbasal and Rmax are the basal and maximum NO pro-

duction rates, respectively. Since NO has a short half-life in blood [112], zero concentration

is applied at the inlet.

Adenosine triphosphate (ATP) transport

ATP is an important biochemical that induces the production of vasoactive substances by

the ECs, and therefore plays a positive role in preventing atherosclerosis [113]. The near-wall

transport of ATP is governed by [114, 115]
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∂cATP
∂t

+ u · ∇cATP = DATP∇2cATP , (2.5a)

−DATP
∂cATP
∂n

= − VmaxcATP
Km + cATP

+ Smax[1 + exp(
−WSS

WSS0

)] ;Wall boundary condition, (2.5b)

where Vmax is the maximum enzyme reaction velocity for ATP hydrolysis, Km is the Michaelis

constant for the enzyme, Smax is maximum ATP release rate, WSS is the wall shear stress

magnitude, and WSS0 is the reference shear stress that regulates the rate at which the

maximum ATP release is attained. The first term on the right-hand side of Eq. 2.5b

describes the kinetics of ATP hydrolysis and the second term accounts for ATP release due

to shear stress. A constant ATP concentration cATP,0 is used at the inlet.

Oxygen transport

It is believed that reduced availability of oxygen at the wall is a key factor in the development

of atherosclerotic plaques [45]. The equation governing the transport of oxygen from blood

to the arterial wall could be written as [116]

∂cO2

∂t
+ u · ∇cO2 = DO2∇2cO2 . (2.6)

Constant oxygen concentrations of cO2,0 and cO2,w are applied at the inlet and the blood-

arterial wall interface, respectively [116].

Monocyte and monocyte chemoattractant protein-1 (MCP-1) transport

The excessive transport of monocytes into the arterial wall is one of the hallmarks of

atherosclerosis. The transport of monocytes is modeled as a combination of advection-
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diffusion and chemotaxis

∂cM
∂t

+ u · ∇cM = DM∇2cM −∇ · (cMχ∇cMCP1) , (2.7a)

−DM
∂cM
∂n

=
mr

1 + WSS
WSS0

cLDL,oxcM ;Wall boundary condition, (2.7b)

where χ is the chemotactic sensitivity parameter, cMCP1 is the concentration of MCP-

1, cLDL,ox is the concentration of oxidized-LDL molecules inside the arterial wall. Cilla

et al. [117] showed that in long term, the concentration of oxidized-LDL molecules tends to

be constant. mr is a rate at which monocytes enter the arterial wall. A constant monocyte

concentration cM,0 is applied at the inlet. MCP-1 transport is modeled as

∂cMCP1

∂t
+ u · ∇cMCP1 = DMCP1∇2cMCP1 , (2.8a)

−DMCP1
∂cMCP1

∂n
= −J0,MCP1exp(KMCP1TAWSS) ;Wall boundary condition. (2.8b)

The constant coefficients in the WSS-dependent MCP-1 flux are calculated based on the

in-vitro study performed by Yu et al. [118]. For the inlet boundary condition, a constant

concentration, cMCP1,0, is applied.

2.3 Results

2.3.1 WSS patterns

WSS streamlines can be used to visualize the near-wall velocity patterns. TAWSS vector

direction and magnitude for different models are shown in Fig. 2.3. WSS LCS, TAWSS

streamlines, and TAWSS fixed points are shown in Fig. 2.4. The location of soft and calcified

24



Table 2.3: List of biological parameters used in simulations.

Patameter Value Description Reference
ATP transport

DATP 2.36× 10−6[ cm
2

s
] ATP diffusion coefficient [115, 114, 119]

Km 475[µM ] Michaelis constant [115, 114, 119]

Vmax 0.8× 10−10[ mol
cm2·s ] maximum enzyme reaction velocity for ATP hydrolysis [115, 114, 119]

Smax 1× 10−13[ mol
cm2·s ] maximum ATP release rate [115, 114, 119]

WSS0 0.1[Pa] Reference WSS [115]

cATP,0 1× 10−10[mol
cm3 ] Inlet concentration of ATP [115]

NO transport

DNO 3.3× 10−5[ cm
2

s
] NO diffusion coefficient [38]

Kd 693× 10−2[1
s
] NO degradation rate [61]

Rbasal 2.13× 10−12[mol
cm3 ] Basal NO production rate [38]

Rmax 457.5× 10−12[mol
cm3 ] Maximum NO production rate [38]

d 2× 10−4[cm] EC thickness [38]
WSS0 3.5[Pa] Reference WSS [38]
O2 transport

DO2 1.2× 10−5[ cm
2

s
] Oxygen diffusion coefficient [116]

cO2,w 1.044× 10−7[mol
cm3 ] Oxygen concentration at arterial wall [116]

cO2,0 1.305× 10−7[mol
cm3 ] Oxygen concentration at the inlet [116]

LDL transport

DLDL 2.8× 10−7[ cm
2

s
] LDL diffusion coefficient [120]

llj 2× 10−4[cm] Length of a leaky junction [46]
Pv 1.92× 10−9[ cm

s
] Permeability of vesicular pathway [109]

∆pend 2400[Pa] Pressure difference through the endothelium [46]
µp 1× 10−3[Pa · s] Plasma viscosity [46]
a 11× 10−7[cm] Radius of LDL molecules [109]
w 20× 10−7[cm] Half-width of leaky-junctions [109]
Rcell 15× 10−4[cm] EC radius [46]
unit area 6.4× 10−1[cm2] - [46]
a1 0.307[cells] Constant in number of leaky cells formula [33]
a2 0.805 Constant in number of leaky cells formula [33]
b1 0.003797[cells] Constant in number of mitotic cells formula [33]
b2 14.75 Constant in number of mitotic cells formula [33]
c1 0.380 Constant in EC shape index formula [33]
c2 −0.79 Constant in EC shape index formula [33]
c3 0.225 Constant in EC shape index formula [33]
c4 −0.043 Constant in EC shape index formula [33]

cLDL,0 3.12× 10−6[mol
cm3 ] Inlet concentration of LDL [109]

Monocytes transport

DM 1× 10−7[ cm
2

s
]∗ Monocyte diffusion coefficient -

χ 0.2[ cm
5

g·s ] Chemotactic sensitivity parameter [46]

mr 6.37× 10−3[ cm
3

mol·s ] Rate at which monocytes enter the arterial wall [46]

cLDL,ox 1× 10−7[mol
cm3 ] Concentration of oxidized LDL [46]

WSS0 1[Pa] Reference WSS [46]

cM,0 5.5× 105[ cells
cm3 ] Inlet concentration of monocytes [46]

MCP-1 transport

DMCP1 2× 10−4[ cm
2

s
] MCP-1 diffusion coefficient [50]

cMCP1,0 1× 10−9[ g
cm3 ] MCP-1 inlet concentration [50]

J0,MCP1 1.842× 10−18[ cm
s

] A constant in MCP-1 flux equation [118]

KMCP1 −1.391[ cm
2

dyne
] Exponential constant in MCP-1 flux equation [118]

∗ The physiological value for DM is 1× 10−11[ cm
2

s
] [46]. For the sake of numerical stability,

a higher value is used in the simulations.
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plaques are marked in Fig. 2.4. Comparing the diseased arteries (P1-P4) with healthy swine

LAD arteries (P5 and P6) shows that the presence of plaque results in more complex WSS

topological features. For instance, these topological features around the plaques in P1-

LCx/LAD, P2-LAD, and P4-LCx models show multiple fixed-points and a complex WSS

LCS pattern. In the healthy models, WSS fixed-points are located around the bifurcations,

while the complex blood flow in diseased arteries leads to the emergence of additional fixed

points and consequently complicated WSS LCS patterns.

Figure 2.3: The distribution of WSS magnitude and direction for the 10 coronary artery models. The presence of atherosclerotic
plaque results in complicated WSS patterns. WSS vectors are normalized for appropriate visualization of direction. The values
of WSSmax for patients 1-4 (LAD/LCx) are 20/30, 90/70, 30/40, 20/25 dyne/cm2, and models 5-6 (LAD) are 30 and 25
dyne/cm2, respectively.
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Figure 2.4: The distribution of WSS streamlines and WSS Lagrangian coherent structures (LCS). The attracting WSS LCS
(blue lines) and repelling WSS LCS (red lines) are shown. The saddle-type fixed point (blue), stable fixed point (yellow), and
unstable fixed point (cyan) are shown on top of the WSS streamlines. Green and red arrows point to the soft and calcified
plaques, respectively.

2.3.2 Biochemical transport

The following figures show surface concentration or flux of the biochemicals and cells studied.

The results are based on the region of interest for each model as shown in Fig. 2.1. The

luminal surface concentration of LDL is shown in Fig. 2.5. Comparing the results with

the prior WSS figures, it is observed that LDL concentration is high around the attracting

WSS LCS, and in some cases inside the basin of attraction formed by the repelling WSS

LCS. LDL concentration is higher at the vessel wall compared to the lumen, which is due
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to the concentration polarization phenomenon, in which the LDL uptake by the wall is slow

considering the size of LDL macromolecules, and therefore the LDL molecules accumulate

on the arterial wall [121]. The LDL concentration patterns show spotty elevation in regions

with low WSS magnitude. These spotty accumulations are related to regions where the ECs

are more permeable due to leaky junctions. Elevated EC apparent permeability occurs in

the distal region of the plaque where ECs have high leaky junction hydraulic conductivity

(Lp,lj) values due to low WSS.

Figure 2.5: Distribution of LDL concentration for the 10 coronary artery models. The values of C∗max on the color bar for
patients 1-4 (LAD/LCx) are 0.400/0.367, 0.267/0.300, 0.400/0.433, 0.500/0.833, and models 5-6 (LAD) are 0.400 and 0.467,
respectively. The normalized LDL concentration is defined as C∗ = (CLDL − CLDL,0)/(Cmax − CLDL,0) where Cmax =
3.1203× 10−6 mol/cm3.
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The surface concentration of NO is shown in Fig. 2.6. It can be seen that the surface

concentration of NO around the attracting WSS LCS is locally high. The repelling WSS

LCS forms a basin of attraction and pushes the surface concentration towards the attracting

one. According to Fig. 2.6, the surface concentration of NO is high right after and around the

atherosclerotic plaques where an attracting WSS LCS is present. Another atheroprotective

biochemical studied here is ATP. Figure 2.7 shows the ATP surface concentration for all

models. The elevated values of ATP concentration can be seen around the attracting WSS

LCS. Although higher NO and ATP are produced in regions of high WSS magnitude, the

present transport results show that the concentration of NO and ATP in these regions will

be washed away by the near-wall velocity after a few cardiac cycles and ultimately the WSS

LCS dictate the surface concentration pattern where elevated concentrations happen around

the attracting WSS LCS. That is, high WSS magnitudes increase the overall ATP and NO

concentration levels, however locally elevated NO and ATP concentrations do not match

high WSS regions.

The story for oxygen transport is different from the other biochemicals. The wall boundary

condition for oxygen transport is constant concentration. Specification of a constant concen-

tration conforms with the assumption that the excessive oxygen is consumed and the wall

acts as a sink [43]. The oxygen flux on the arterial wall is shown in Fig. 2.8. The flux is

higher in regions having higher WSS magnitude. An interesting take out from these results

is that the flux of oxygen around the attracting WSS LCS has the lowest value.

The transport of MCP-1 highly depends on the directionality of WSS vectors as well as the

WSS LCS. As can be seen in Fig. 2.9, the flow separation region downstream of the stenosis

and bifurcations (healthy models) can be visualized from the backward WSS vectors where

elevated MCP-1 concentration occurs. Finally, the luminal surface flux patterns for monocyte

transport (Fig. 2.10) show a higher uptake of monocyte cells in regions with elevated values

of MCP-1 concentration. Overall, elevated monocyte flux occurs in regions with high MCP-1
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Figure 2.6: Distribution of NO concentration for the 10 coronary artery models. The values of Cmax on the color bar for
patients 1-4 (LAD/LCx) are 21 × 10−12/33 × 10−12, 10 × 10−12/10 × 10−12, 10 × 10−12/9 × 10−12, 8 × 10−12/9 × 10−12

mol/cm3, and models 5-6 are 12× 10−12 and 12× 10−12 mol/cm3, respectively. Cmin = 0 mol/cm3.

concentration, which attracts monocytes and regions with low WSS magnitude where higher

cell adhesion occurs.

To quantify the effect of the plaques on the overall surface concentration/flux results, Fig. 2.11

shows the ratio of surface-averaged concentration/flux in the healthy part of the artery (prox-

imal to the stenosis) to the stenosis region in the human coronary artery models. Our results

show that the average concentration of NO, ATP, LDL, and MCP-1 in the stenosis part of

the arteries is mostly higher than the average concentration in the healthy, proximal part of
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Figure 2.7: Distribution of ATP concentration for the 10 coronary artery models. The value of Cmax on the color bar is
2× 10−9mol/cm3 and Cmin is the inlet concentration cATP,0.

the arteries. In contrast, oxygen flux is lower in the stenosis region and the monocyte results

show high variability among patients.

2.4 Discussion

In this paper, the near-wall transport of some of the prominent biochemicals/cell in atheroscle-

rosis were studied in 10 coronary artery models (LAD and LCx). Eight models showed
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Figure 2.8: Distribution of oxygen flux for the 10 coronary artery models. The value of Jmax on the color bar is 2.1 ×
10−12mol/cm3 · s and Jmin = 0 mol/cm3 · s.

multiple atherosclerotic plaques with complex morphologies, leading to complex near-wall

flow patterns. Our results showed that the luminal surface concentration and flux pat-

terns of these biochemicals could be explained using WSS vectors. Different studies have

looked into each of these biochemical and cell transport processes in different arterial com-

plications. However, a unified investigation of these transport processes in patient-specific

atherosclerotic coronary arteries has not been carried out. Particularly, using high-resolution

computational models, this work tries to fill the knowledge gap in the field of coronary artery

atherosclerosis related to transport and provide a mechanistic explanation for these transport
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Figure 2.9: Distribution of MCP-1 concentration for the 10 coronary artery models. The value of Cmax on the color bar is
5.498× 105cells/cm3 and Cmin is the inlet concentration cMCP1,0.

processes.

Our results show that the presence of atherosclerotic plaques result in a complicated near-

wall blood flow pattern and accordingly complex WSS LCS patterns with multiple WSS fixed

points. The main difference between diseased (P1-P4) and healthy (P5 and P6) models was

the distribution of WSS LCS. In healthy models, the saddle type fixed points were observed

to be located at the bifurcations and the resulting attracting and repelling WSS LCS were

aligned with the bulk flow. The presence of atherosclerotic plaques resulted in multidirec-
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Figure 2.10: Distribution of monocyte flux for the 10 coronary artery models. The value of Jmax on the color bar is
4× 10−4cells/cm3 · s and Jmin is 1× 10−4cells/cm3 · s.

tional WSS patterns with manifolds in the transverse direction. In the distal vicinity of most

plaques, repelling WSS LCS was formed, which pushed biochemical concentrations towards

the attracting WSS LCS.

It has been shown in the literature that low and oscillatory WSS [122] and more recently

transverse WSS [95] correlate with atherosclerosis growth. Shear stress mediated endothelial

cell behavior is the major motivation behind these studies. Herein, we have shown that WSS

patterns also control all of the atherogenic and atheroprotective biotransport processes in
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Figure 2.11: Box plots showing ratios of surface-averaged concentration/flux at the proximal, healthy artery segment to the
stenosis part of the artery. The data is based on the 8 human models. The median, first, and third quartiles are shown. The
whiskers correspond to the minimum and 99th percentile of the data.

atherosclerosis. Therefore, our study further substantiates the utility of WSS as a compre-

hensive parameter in studying atherosclerotic disease. In particular, we have shown that the

combination of WSS topology (WSS directionality and manifolds) as well as WSS magni-

tude can completely explain the biochemical and cell localization patterns in coronary artery

atherosclerosis.

Our results and prior work in the literature on WSS mediated endothelial cell mechan-

otransduction motivate a comprehensive theory for WSS in atherosclerosis. Despite some

conflicting results in the literature [123], we propose that once WSS is mechanistically inter-

preted in the context of mechanotransduction together with blood flow mediated near-wall

transport, we can provide a complete picture for its role in atherosclerosis. Towards this goal,

Fig. 2.12 summarizes our findings in a single graph. As shown in the graph, low WSS pro-

motes and high WSS prevents atherosclerosis via mechanotransduction pathways. Similar

conclusions are made for WSS magnitude mediated biotransport processes in atherosclerosis.

On the other hand, the attracting and converging WSS vector patterns show inconsistent

results. These patterns promote near-wall accumulation of NO and ATP, which protect
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against atherosclerosis, however, this type of directional WSS pattern also increases near-

wall LDL and MCP-1 concentration, promotes monocyte flux into the wall, and reduces

oxygen flux, all of which promote atherosclerosis. We can conclude that low WSS promotes

atherosclerosis, high WSS prevents atherosclerosis, and attracting/converging WSS leads to

conflicting results and likely competition between different pathways.

Figure 2.12: A summary of the role of WSS in atherosclerosis. The schematic diagram shows endothelial mechanotransduction
and signaling induced by shear stress as well as WSS-dependent near-wall surface concentration of various biochemicals. ATP
adenosine triphosphate; LDL low-density lipoprotein; NO nitric oxide; MCP-1 monocyte chemoattractant protein-1; KLF2
Krüppel-like factor 2; FAK focal adhesion kinase; PI3K phosphatidylinositol-3-kinase; AKT protein kinase B; eNOS endothelial
nitric oxide synthase; NF-κB Nuclear factor kappa B; VCAM-1 vascular cell adhesion molecule; PECAM-1 platelet endothelial
cell adhesion molecule-1; SREBP2 sterol regulatory element-binding proteins2; HIF1-α Hypoxia-inducible factor-1α.

The transport results could be explained in the context of WSS magnitude and vectorial
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features. Low WSS increases permeability to LDL and therefore leads to higher LDL con-

centration values. At the same time, LDL concentration hotspots localize near the attracting

WSS LCS and match with the attracting WSS LCS pattern. NO and ATP both possess

similar transport mechanisms where they are produced via WSS-dependent flux by the en-

dothelial cells. The qualitative NO and ATP patterns were similar where both were attracted

by the attracting WSS LCS and localized around these manifolds. Interestingly, while high

WSS magnitude increases the amount of NO and ATP production and therefore ultimately

contributes to higher concentration values, locally, it does not correlate with high NO and

ATP surface concentration. That is, the locally elevated NO and ATP concentration values

typically do not coincide with elevated WSS values. Oxygen flux is increased in regions of

high WSS and is reduced around the attracting WSS LCS. As the effective oxygen transport

is from the lumen into the wall, it tends to localize with regions where the near-wall normal

velocity is towards the wall (e.g., impingement), which typically have higher WSS values

surrounding them. On the other hand, near the attracting WSS LCS, the near-wall normal

flow is away from the wall, which resists oxygen transport into the wall. It should be noted

that even though one might think of LDL as having a similar transport mechanism, mathe-

matically, LDL has an inward (towards the lumen) flux boundary condition at the wall due

to the concentration polarization effect [121] and therefore its transport pattern is different

from oxygen. MCP-1 has higher inward flux in low WSS regions, and it localizes around

regions of low WSS and attracting WSS LCS. Finally, monocyte patterns were similar to

MCP-1 and higher monocyte recruitment tends to happen in regions of low WSS magnitude.

In this study, we observed another WSS singular point beyond what was previously intro-

duced [105]. This type of fixed point is seen in Fig. 2.13 where saddle and node fixed points

coincide and the dynamical system undergoes a saddle-node bifurcation. An example in P2-

LCx is shown in Fig. 2.13. As can be seen in the figure, the WSS vectors uniformly approach

the atherosclerotic plaque where a saddle-node fixed point is present and then the vectors are

converged to an attractor downstream of the fixed point. This non-hyperbolic behavior can
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be observed in P2-LCx, P4-LAD, and P4-LCx models, and similar to the attracting WSS

LCS they attract biochemicals and cells except oxygen. These attracting vectors explain the

locally elevated concentration patterns that do not match with the attracting WSS LCS.

Figure 2.13: Saddle-node bifurcation structure. The WSS vectors show an almost uniform structure upstream of the saddle-
node bifurcation and then because of the presence of saddle-node fixed points the WSS vectors converge towards the manifold
downstream. This results in attracting WSS vectors (shown in green) that attract biochemicals and lead to high concentration
similar to attracting WSS LCS.

Our results show that in general plaques create backward and attracting WSS patterns

downstream of the plaque, which tend to attract atherogenic biochemicals like LDL. While

this is in line with previous clinical data where preferential plaque growth usually occurred

downstream of a plaque [124, 125], it is important to note that atheroprotective biochemicals

such as NO and ATP also localize in similar regions. It is not clear how the combination of

these competing effects play out in the process of atherosclerosis. We should note that here we

discuss NO localization on the lumen side where it can reduce endothelial cell permeability

and prevent platelet adhesion [111]. NO concentration in the vessel wall also plays an

important atheroprotective role by regulating smooth muscle cell behavior. In regions with

low WSS, a lower amount of NO is produced, and therefore lower NO concentration exists

inside the vessel wall.
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The summary of our findings and prior research on mechanotransduction in Fig. 2.12 high-

lights the importance of low WSS in promoting atherosclerosis via multiple pathways. The

increase in expression of CAMs regulated by PECAM-1 due to low WSS results in a reduc-

tion in the production of NO, increases the EC permeability, and recruits more monocytes

to the site. At the same time, inflammation triggered by low WSS results in MCP-1 pro-

duction, which enhances monocyte recruitment. Low WSS leads to activation of HIF1-α,

which results in hypoxia. Interestingly, from a transport point of view, regions of low WSS

also accompany lower oxygen flux, which again promotes hypoxia. Low shear stress prevents

NO production and downregulates the proatherogenic gene SREBP2, which both result in

an increase in EC permeability in regions with low WSS, and therefore a higher uptake of

atherogenic macromolecules like LDL. On the other hand, high (physiologic) WSS protects

against atherosclerosis progression. Physiological WSS can be transmitted to stress fibers,

leading to integrin activation and phosphorylation of FAK, which results in the activation of

PI3K/ATK, regulating the expression of eNOS and finally production of NO. Production of

NO downregulates the translocation of CAMs and prevents monocyte recruitment into the

site. Platelet recruitment is another proatherogenic pathway, which is inhibited by NO [111].

Finally, high WSS promotes KLF2 expression, which inhibits the transcription factor NF-κB

and ultimately prevents monocyte recruitment. From a transport point of view, high WSS

increases the production of NO and ATP, leads to a localized elevation in oxygen flux, and

reduces near-wall localization of atherogenic factors like LDL and monocytes. It should be

pointed out that while high WSS prevents atherosclerosis growth, at the same time it can

promote plaque vulnerability and rupture for established plaques [126].

There are some potential limitations that could affect the results of this study. One of these

limitations is the application of initial and boundary conditions for the numerical simulations.

The choice of inflow boundary conditions was based on the general coronary artery waveforms

with parabolic profiles. In reality, the blood flow waveform is patient-specific and might

vary between patients. Also, the initial condition for biochemical/cell transport in coronary
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arteries could affect the accuracy of the computational simulations. De Nisco et al. [107]

showed how initial conditions can affect the accuracy of computational mass transport models

in the aorta. They concluded that using a 3D phase-planar flow map as inflow velocity

condition will mostly eliminate the sensitivity of LDL blood-to-wall transfer to the LDL

initial condition. Due to the lack of this data for our patients, general coronary artery

waveforms with parabolic spatial distribution was the closest choice to the patient-specific

3D phase-planar flow map. Although a large number of cardiac cycles were used to obtain

a quasi-steady state biochemical transport pattern and reduce the sensitivity to the applied

zero initial condition, this might not fully eliminate this limitation. The other limitation is

related to the choice of rigid wall for coronary arteries. It is well known that the presence of

calcified plaques significantly increases the arterial wall stiffness. Additionally, it has been

recently shown that the effect of coronary wall elasticity on TAWSS results is negligible [103].

Another limitation is related to the blood-to-wall transport of oxygen in coronary arteries.

The utilized governing equation in the present study does not take into account hemoglobin’s

oxygen-binding capacity. Previous studies showed that hemoglobin acts to merely augment

oxygen transport patterns by a spatially constant factor of approximately two [116]. Thus,

it does not affect the qualitative distribution of oxygen flux on the arterial wall.

In conclusion, we have studied the near-wall transport of major biochemicals and cells con-

tributing to the initiation and progression of atherosclerosis. The results of this manuscript

showed that near-wall localization patterns are dictated by WSS magnitude and vectorial

features (WSS LCS). Our results were summarized with prior mechanotransduction studies

and we presented a comprehensive theory for the role of WSS in atherosclerosis (Fig. 2.12).
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Chapter 3

The longitudinal study of relation

between hemodynamics and

vulnerable coronary atherosclerotic

plaques

3.1 Introduction

Coronary artery disease remains a major cause of death in the US and worldwide. According

to the recent AHA update, cardiovascular disease is responsible for one of every three deaths

in the US [1]. The pathological studies have suggested that specific atherosclerotic plaques,

which do not create a considerable stenosis, show shared features related to acute coronary

syndrome (ASC). This type of plaques are called vulnerable plaques. Recently, an effort

has been organized to use coronary computed tomography angiography (CCTA) in high risk

patients to investigate the presence of vulnerable plaques. The advantage of CCTA is the
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possibility of visualizing the volumetric features of coronary artery plaques rather than just

focusing on the narrowing of the lumen [127, 128, 129].

Atherosclerosis is a condition in which deposits of fatty material, called plaque, build up in-

side arterial walls reducing or completely blocking blood flow. Complex interactions between

certain cells, biomechanical forces, and biochemical transport influence the progression of

atherosclerosis [130]. To date, angiographic categorical definitions based on luminal stenosis

have been applied for diagnosing coronary artery disease (CAD) and determining a suitable

management strategy [131, 132, 133]. Recent studies show simple luminal assessment of

CAD does not provide a complete picture [134]. There are asymptomatic patients with non-

obstructive, eccentric coronary plaque that may face an ACS with devastating effects if the

clinicians fail the early identification of high risk coronary artery lesions [4, 5, 135, 6]. Thus,

the traditional idea of using the degree of luminal stenosis as the sole imaging marker for se-

lection of the best therapeutic approach is challenged by the evidence showing that coronary

plaque composition plays a role. This paradigm shift represents an important element for

research in primary prevention of ischemia and ischemic stroke and in secondary myocardial

infarction (MI) and stroke prevention, because of the potential implications for management.

Histologically, plaques associated with ACS demonstrate a necrotic core similar to a ruptured

plaque covered by a thin fibrous cap [136]. CCTA-based features and plaque composition

associated with high risk for ACS include a large plaque burden (PB), plaque volume (PV),

volume of necrotic core (VNC), volume of calcium plaque (VCP), volume of low attenuation

plaque (VLAP), perivascular fat index (PFI), stenosis percentage (SP), presence of napkin-

ring sign (NRS) and spotty calcification [137]. While there have been studies correlating the

hemodynamics to plaque growth [138, 139, 140, 141], the relation to plaque vulnerability

features has been mostly overlooked.

Qualitative assessment of atherosclerotic plaques has been used to find the stenosis and

estimate the composition of the plaque. The qualitative features in CCTA images that have
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been used to identify a vulnerable plaque include presence of low attenuation plaque (LAP),

positive remodeling (PR), spotty calcification, severe stenosis, and napkin-ring sign (NRS).

According to the literature, the LAP is defined as a region of vessel with Hounsfield unit

values < 50 [142] and PR is defined as the ratio of diameter of artery to the diameter of

proximal normal section which is ≥ 1.1 [143]. The NPR is defined as a circular CCTA

attenuation pattern demonstrating a central area of low attenuation in contact with the

lumen and is surrounded by a ring of higher attenuation pixels [144]. A spotty calcification

is a small, dense calcified plaque surrounded by non-calcified plaque [136].

The majority of plaque quantification methods in the literature use fixed thresholds on HU

images to quantify the composition of atherosclerotic plaques. It has been shown that the

pixel intensity of lumen, calcified plaque, and organ over-projection can significantly affect

the accuracy of this method [145, 146, 147, 148]. To resolve the problem, a novel method

has been introduced which uses adaptive HU thresholds based on the local contrast of the

lumen, presence of large, dense calcified plaque, and presence of severe stenosis [148, 149].

However, the effect of organ over-projection has not been investigated.

In this chapter, the association of hemodynamics and biotransport with longitudinal changes

in qualitative and quantitative characteristics of vulnerable atherosclerotic plaques is stud-

ied. An in-house software is developed for the coronary artery segmentation in both CCTA

images as well as the reconstructed 3D coronary artery models, and semi-automatic assess-

ment of qualitative and quantitative features of arterial segments. The developed software

uses vesselness enhancement filter to reduce the organ over-projection effect, active contour

segmentation and vessel wall membership function to reduce the unwanted areas around

the vessel wall, and adaptive threshold method to accurately quantify the vulnerable plaque

characteristics. The present chapter is organized as follows: First, the software development

process and algorithms used for segmentation and quantification of arterial cross-sections are

presented. Then, the results of quantification for both baseline and follow-up are compared
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against the hemodynamics and biotransport results to study the correlation between the

hemodynamic parameters and the longitudinal changes in the plaque characteristics. At the

end, a detailed assessment of the results is provided and limitations of current study are

discussed.

3.2 Methods

In this section, the process of developing a semi-automatic plaque quantification software is

discussed in detail. Two sets of coronary computed tomography angiography (CCTA) images

from human subjects were collected. Contrast scans for the evaluation of coronary artery

plaque volume at baseline and 12 months were acquired. The CCTA images belongs to a

single-center, randomized, placebo-controlled, double-blind trial conducted at the Lundquist

Institute for Biomedical Innovation at Harbor UCLA Medical Center (Clinicaltrials.gov:

NCT03931434).

3.2.1 Semi-automatic plaque quantification software

The developed semi-automatic plaque quantification software was developed in Matlab App

Designer (R2019a Update 9). The developed software contains three main sections: arte-

rial centerline and image slicing, semi-automatic segmentation of arterial wall, and plaque

quantification. Each of these sections are designed in different windows so that the user can

share the necessary data between them. In the next subsections, the algorithms used in each

section are presented in details.
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3.2.2 Centerline and slicing

This section of the software deals with importing, categorizing, sorting, and visualization of

a metadata with Digital Imaging and Communications in Medicine (DICOM) format. The

centerline and slicing window contains six different panels: Import DICOM metadata, Image

navigator, Extract luminal cross-section images, WL/WW brightness and contrast settings,

visualization panel, and Centerline/ slicing settings. Figure 3.1 shows the centerline and

slicing screen.

Figure 3.1: Centerline and slicing screen. The screen shows the metadata information about one of the patients as well as
axial, coronal, and sagittal views of the CCTA.

Import DICOM metadata. The user can interactively select the directory in which the DI-

COM metadata is stored. The software will categorize the metadata based on the label

of each dataset in the metadata, sort each dataset based on the image ID, and shows an

overview of the most important information for each dataset in a table. This information

includes: study date/time, series date/time, patient sex, modality, frames, study description,

and study instance UID. Based on the information provided, user can choose to visualize

the desired dataset by choosing the dataset from the table and pushing the Load Selected
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Series.

Image navigator. This panel allows the user to scroll through the axial, sagittal, and coronal

slices of the image series. Also, the user is given the ability to use a crosshair on each slice

to scroll through the images by focusing on a single slice. For example, when the user moves

the crosshair on the axial slice, the coronal and sagittal views will be automatically changed

to conform to the selected point in the 3D DICOM images.

Extract luminal cross-section images. This panel provides actions regarding the interactive

centerline generation. User can select centerline points on the visualization panel and then by

pressing the Add Points button, the selected point will be stored in the memory. by selecting

multiple points along the center of the lumen and adding the points to the centerline, the user

can press Create button in this panel to generate the centerline along the selected points

using a cubic interpolation method. The View button can be used to see the generated

cross-sectional view of the each point on the centerline and the Save button will store the

centerline into the disk in in a format that Simvascular software can read.

WL/WW brightness and contrast settings. Since different DICOM datasets have different

levels of contrast and brightness, this panel allows the user to set the window level (WL)

and window width (WW) for the visualization of the DICOM metadata. WW is the range

of HU displayed and WL is the HU in the center of the window width.

Centerline/ slicing settings. This panel contains the settings related to handling the arterial

centerline and generating the luminal cross-section segments along the centerline. The soft-

ware provides two different options to the user to create the arterial centerline: interactively

create the centerline by selecting points on the visualization views or import a centerline

previously generated in the Simvascular software.

To create a centerline interactively, the user need to use the Extract luminal cross-section

images panel to add points to the centerline. The axial, sagittal, and coronal index of
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selected points will be shown in a table inside this panel. One can store these points using

save points button. When the centerline is created, the user can generate the cross-sectional

slices along the centerline and transfer them to the plaque quantification section by pressing

Quantify button. Also, the user can visualize the centerline by pressing the Show CL button

and store the cross-sectional slices into the disk in DICOM format by pressing Export Slices.

To create the cross-sectional segment of the artery, the software allows the user to choose

from four options. The first approach creates the cross-sectional slices at each centerline

point with no slice size limit. In other words, the generated segment is a slice of the 3D

image with a center equal to the centerline point and a normal vector equal to the tangential

vector to the centerline at the specified point. The second approach is a close-up view of the

arterial cross-section which is extracted using a levelset method. First, a Sigmoid function

is applied to the slice

SI =
1

1 + e−a(I−c) , (3.1)

where I is the image intensity in HU, a = 0.1 is the steepness of the S-shape curve, and

c = 50 is the cut-off value. The sigmoid function de-noises the original image and generates

an image with intensities ranging from 0 to 1. Fig. 3.2 shows the original image and the

image after applying the Sigmoid function. The Sigmoid image then is fed into a levelset

algorithm to find the edges of the arterial cross-section. The levelset algorithm uses region-

based active contour segmentation proposed by Chan [150]. Unlike the classical active

contour models, the algorithm detects objects whose boundaries are not necessarily defined

by gradient but it minimizes an energy function. This is of importance when dealing with

segmentation of diseased arterial cross-sections with different intensity values on the edges

of the vessel wall. Fig. 3.3 shows input image, the initial seed for segmentation, the levelset

boundary, and the final segmented image.
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Figure 3.2: The result of applying the Sigmoid function on an arbitrary arterial cross-section.

Figure 3.3: The result of applying the region-based active contour segmentation on an arbitrary cross-sectional view of an
artery. This figure shows the original image, the initial seed for segmentation, the levelset boundary, and the final segmented
image.

The third method available for arterial cross-section segmentation uses a multiscale vessel

enhancement filter alongside with the region-based active contour levelset method. This

method uses Frangi’s artery vesselness enhancement algorithm to enhance vessel structures

with the eventual goal of vessel segmentation [151]. The enhancement algorithm improves the

accuracy of quantitative measurements of vascular morphology by reducing the organ over

projection. This approach uses all the eigenvalues of the Hessian (second order information)

to determine the likelihood of presence of a vessel, i.e. the algorithm finds tubular geometrical

structures having a radius within a specified range.
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To examine the local behavior of an image, we can use Taylor expansion in the neighboring

areas of a specific point:

L(x0 + δx0, s) ≈ L(x0, s) + δxT0 ∆0,s + δxT0H0,sδx0 (3.2)

where L is the image, x0 specified point, s the measurement scale. ∆0,s and H0,s are the

gradient vector and Hessian matrix computed at location x0 and scale of s. Using linear

space scale theory, the differentiation can be calculated using a convolution with derivatives

of Guassians

∂

∂x
L(x, s) = sγL(x)

∂

∂x
G(x, s)

G(x, s) =
1

√
2πs2

D
e
−‖x‖2

2s2

(3.3)

where D is the dimension of the DICOM image and γ was introduced by Lindeberg [152] to

define a family of normalized derivatives. in the case no scale preference, γ is equal to one.

The last term on Eq. 3.2 provides the second order directional derivative

δxT0H0,sδx0 =
∂

∂δx0

∂

∂δx0

L(x0, s) (3.4)

The eigenvalues of the Hessian can be used to find the principal directions where the local

second order structure of 3D DICOM image can be decomposed. The eigenvalues of the

Hessian can be calculated as follows

λs,k = ûTs,kH0,sûs,k (3.5)

where λs,k is the eigenvalue of the k-th eigenvector ûs,k at the scale of s. The eigenvectors
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represent three orthonormal directions and when they are mapped by the Hessian, they are

invariant up to a scaling factor. For example, the H0 maps a sphere with the center of x0

and radius of 1 onto an ellipsoid with axes along the directions of ûk with corresponding

semi-axis lengths equal to the λk. This ellipsoid represents the local second order structure

of the image. In 3D HU image series, a pixel belonging to a vessel will have a small λ1 while

λ2 and λ3 are large. The sign of eigenvalues represents the brightness or darkness of the

pixel. Since the intensity value along the vessel does not change drasticly from one pixel to

another, û1 (which is assumed to be corresponding to the smallest eigenvalue λ1) shows the

direction along the vessel and û2 and û3 form a base for the orthogonal plane.

At this point, we can define a dissimilarity measure based on the calculated second order

ellipsoid at each pixel. First, a blob-like structure needs to be identified. To do so, we can

define a ratio that accounts for the deviation from such a structure

RB =
Volume/4π/3

(Largest Cross-Section Area/π)
3
2

=
|λ1|√
|λ2λ3|

(3.6)

For blob-like structure, theRB is close to zero. Using this ratio, we are not able to distinguish

between a line and a plane. To do so, we need to find the aspect ratio of the two largest

second order derivatives, i.e. λ2 and λ3:

RA =
(Largest Cross-Section Area/π)

(Largest Axis semi-length)2
=
|λ2|
|λ3|

(3.7)

In the Hounsfield Unit images, the arteries have higher intensity than the background and

occupy a small volume of the 3D image series. This will lead to random noises in the

vesselness enhancement algorithm. On the other hand, the magnitude of the derivatives for

background pixels are mostly small. Thus, the norm of Hessian can be used to quantify

these noises since the eigenvalues of this matrix are small. We can use the Frobenius matrix
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norm to define a ”second-order structureness” measure as follows

S = ‖H‖F =

√∑
j≤D

λ2
j (3.8)

The value of S will be small for the background structure since the λks are small and it will

be larger for high contrast regions. Thus, considering the criteria presented in Eqs. (3.6-3.7),

we can define a vesselness function as follows:

V0(s) =


0 ifλ2 > 0 or λ3 > 0

(1− exp(−R
2
A

2a2
))exp(−R

2
B

2b2
))(1− exp(− S2

2c2
))

(3.9)

where a, b, and c are coefficients that control the sensitivity of the filter to the RA, RB, and

S, respectively. The proposed values for a, b, and c in the literature are 0.5, 0.5, and half of

the Hessian norm, respectively. The combination of all three criteria using their product is

to ensure the response of filter is maximum if all the criteria are met.

To filter all the structures within a specific size range, i.e. from a scale smin, to smax, we can

integrate the vesselness measure at different scales:

V0(γ) = max
smin≤s≤smax

V0(s, γ) (3.10)

Figure 3.4 shows the 3D view of the original CCTA and the 3D view of filtered CCTA.

The fourth and the last method available for arterial cross-section segmentation is a com-

bination of vesselness enhancement algorithm and an outer wall and plaque membership

functions. The Frangi’s vesselness enhancement algorithm is used to find the tubular struc-

tures in the 3D DICOM image series and reduce the background noise around the arteries.
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Figure 3.4: The 3D visualization of CCTA image series. Left panel shows the HU volumetric image and the right panel shows
the same volumetric image after applying the Frangi’s vessel enhancement filter.

Although this filter works well to extract the luminal region, it might neglect arterial wall

and the diseased areas due to drastic changes in the contrast of the image. To resolve this

issue, we can define outer-wall and plaque membership functions to include the vessel wall

in the segmentation process as well.

To do so, first the Frangi’s vesselness enhancement filter is applied on the DICOM image

series. Then, the average lumen intensity Īlumen is calculated based on the intensity of the

centerline points. Based on Kigka et al. work [153], a membership function for the outer

wall can be defined as follows:

fouter/plaque = (1− ε).gsigm(x; aouter/plaque, bouter/plaque) + ε

gsigm(x; a, b) =
1

1 + exp(−a(x− b))

(3.11)

where aouter = 0.02, aplaque = 0.05, bouter = min (200,max (Īlumen − lthres − ncpthres, 100)),

and bplaque = Īlumen + cpthres. The parameter ε = 0.05 is the weight of the membership

function. lthres = 80HU is the threshold value for the lumen, cpthres = 400HU is the calcified

plaque threshold, and ncpthres = 50HU is the non-calcified plaque threshold [154, 155].
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By combining the regions obtained by Eqs. 3.11 and 3.10, we can generate the cross-sectional

segments of the artery with minimal organ layover, reduced background noise, and accurate

vessel wall intensities.

3.2.3 Segmentation of arterial wall and plaque quantification

This section of the software was developed with the purpose of quantitative and qualitative

assessment of arterial cross-sections. Fig. 3.5 shows the plaque quantification section. User

can import a single DICOM image or a series of DICOM images for quantification process

using the import .dcm panel on the top left of the screen. The Plaque Quantification Param-

eters panel gives the user the three options: Manual quantification of plaques by specifying

the HU ranges for the lumen, and low attenuation, fibrous, and calcified plaques; adaptive

threshold method (semi-automatic segmentation); and automatic segmentation. Also, the

user can set the window width and window level to better visualize the arterial cross-section.

The ROI Manager panel contains different algorithms for plaque assessment. If only one

image is selected for quantification, the draw ROI button will be available to user. This

button gives the user the ability to manually select the region of interest using a free-hand

tool. If a DICOM image series is selected, the propagate ROI will become available to

user. Depending on the selection of automatic or semi-automatic segmentation, this button

redirects the user to different screens.

Manual quantification of plaques. This option requires four input from the user: HU thresh-

old for lumen, and low attenuation, fibrous, and calcified plaques. The software is designed

in a way that read the DICOM image and store it in the form of a matrix whose dimensions

are equal to the number of pixel in each row and column of the image. The element values

in this matrix is the HU values of the image. Thus, it is possible to segment the image by

finding the elements of the matrix having an HU value in the prescribed threshold. To obtain
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Figure 3.5: The quantification screen. This figure also shows the overlayering of different plaque characteristics on top of the
segmented image.

the area of each calculated segment, one can use the DICOM header metadata and find the

physical resolution of each pixel and multiply them to get the pixel area and then multiply

it with the number pixel in the prescribed HU interval. The software will automatically

create patches on each DICOM image for different plaque composition as well as the arterial

lumen. If only one image is selected, the user can enter the HU threshold for different plaque

composition in panel Plaque Quantification Parameters and then select Draw ROI from the

ROI Manager panel and select the region of interest using the free-hand tool provided in

the software. Then, the user can quantify different areas by pressing Quantify button which

shows the results in a table at the bottom of the screen.

If a series of DICOM images is selected, two options are given to the user for quantifying

the plaque composition. The first option is automatic generation of ROIs throughout the

series and then using the prescribed HU threshold in panel Plaque Quantification Param-

eters to quantify the lumen and different type of plaques. To start this process, the Auto

Segmentation checkbox should be selected and the slice number related to the desired first
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and last image should be entered. Then user can press propagate ROI which redirects the

user into the cross-section segmentation screen, see Fig. 3.6. In the propagate ROI screen,

there are three sections: the first image is shown on the top left of the screen, the last image

is located on the top right, and the image with ROI as an overlayer is shown at the bottom

of the screen. This screen gives the user to draw the first and last ROIs on the images using

a free-hand tool and by pressing the Propagate ROI bottom, the ROIs in all the selected

images will be calculated based on the ROIs drawn by the user. The user has the ability

to scroll through ROIs and modify them. By pressing the Accept all ROIs, the ROIs are

transferred to the previous screen for plaque quantification procedure. The use can press

Quantify button to get the lumen area as well as areas of different types of plaque.

One of the problems with fixed threshold quantification is the presence of an artificial lumen

around a calcified plaque. Since the intensity of calcified plaques is higher than the lumen,

using the fixed threshold method will result in a ring around the calcified plaque and consider

it as the lumen. To resolve this problem, a watershed algorithm is implemented in the

software to split the lumen area based on catchment basins and watershed ridge lines. Figure

3.7 shows the divided lumen using the watershed algorithm. This algorithm treats the

lumen as a surface where light pixels represent high elevations and dark pixels represent low

elevations and transforms a continuous segment into distinct areas.

The second option for quantifying the plaque composition is the semi-automatic quantifi-

cation of the arterial cross-section. This option uses an adaptive method to calculate the

HU threshold for each type of plaque. The fixed thresholds has been widely used in the

literature for quantifying the plaque composition in CCTA. However, it has been shown that

the intensity of the lumen can affect the plaque tissue characterization [148]. Also, the

intensity of the lumen in CTA images decreases along the artery, specially in regions with

severe stenosis. To overcome this issue, one can utilize an adaptive HU threshold depending

on the regional attenuation of the pixel intensity in the lumen.
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Figure 3.6: The cross-section segmentation screen. User can scroll through images and create regions of interest for the first
and last image. The ROIs for other images will be automatically generated.

The first step in adaptive threshold assessment of plaque characteristics is to find the mean

lumen intensities from the proximal to the distal part of the artery (Ī). Then a trendline

can be fitted through mean lumen intensities (Īfit). The upper threshold for non-calcified

plaques can be written as

NCmax = min (Īfit − 200, 75) (3.12)

If there is a severe stenosis in a segment, we can modify the NCmax to account for the
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Figure 3.7: The quantification screen. This figure also shows the overlayering of different plaque characteristics on top of the
segmented image.

decrease in the intensity of the lumen:

NCmax = NCmax − 1.25(Īfit − L̄) (3.13)

the lower threshold of dense calcified plaque can be calculate as

DCmin = max (Īfit + 100, 450) (3.14)

If the area of calcified plaque is large, we can modify the DCmin as follows:

DCmin = DCmin + 0.25(Īfit − L̄) (3.15)

The lower threshold for fibrous tissue can be calculated as

FTmin = 0.2(DCmin −NCmax) (3.16)

Thus, this method needs the mean lumen intensities along the vessel to calculate the thresh-

olds corresponding to different plaque composition. In the developed software, the user can
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select Use adaptive threshold and press the propagate ROIs button. The user will be redi-

rected to another screen. see Fig. 3.8. This section of the software has two main panels:

ROI propagation and HU trends. In the Propagation ROIs panel, four images can be seen,

the original image and ROI curve, the gradient magnitude image with ROI overlayer shown

with pink color, the gradient magnitude image and the ROI curve, and the final segmented

image. The gradient magnitude image shows the boundaries of the structures inside an

image in a way that the intensity of pixels on the structure boundary is higher than the

surroundings. Based on the gradient magnitude image, the software creates labels for the

structures with closed boundaries and finds the biggest structure. Then it fits a polygonal to

the boundary of this structure which is the final ROI. It is possible for user to interactively

modify the calculated ROI by changing the location of points on the fitted curve on any of

the images.

Figure 3.8: The screen for semi-automatic segmentation of the arterial cross-section.

Pressing the Accept ROI button will show the the values of HU and gradient magnitude

along the smallest and longest axis of the ROI in the HU trend panel. The axes are shown
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on both gradient magnitude and segmented images. The software provides sliders on these

axes to control the lumen threshold. User can drag any of these sliders into a desired position.

Also, in case of presence of a calcified plaque, since the maximum intensity on the ROI will

belong to the calcium image, a circle is provided on both images that user can drag and

find the maximum lumen intensity. The gradient magnitude curves show a the trend of

this parameter on the axes. Since the boundaries of the structure has the highest gradient

magnitude, there will be two peaks on each curve corresponding to the beginning and end

of lumen area. On each plot, two vertical lines are provided to user in order to accurately

modify the the lumen threshold. User also can see the histogram of the intensities inside the

ROI in this panel. When the lumen threshold changes by user, the color of histogram bars

corresponding to the lumen changes to orange. The final segmented lumen cam be seen in

the right side of the panel. User can press the Accept lumen button to store the segment and

the lumen threshold values and move on to the next image. After finishing the segmentation

for all the images, user can press Accept all Segments to return to the plaque quantification

screen.

The next step for user is to use Quant. options panel to select the qualitative characteristics

of the plaques. These characteristic include dense calcium plaque (DCP), low attenuation

plaque (LAP), napkin-ring sign (NRS), spotty calcification (SC), and severe stenosis (SS).

Now, by pressing the Quantify button, the software will automatically calculates the luminal

area as well as the areas of different types of plaque using the adaptive threshold method.

The calculated data will be shown in the table at the bottom of the screen. User can press

Export button to store the quantification results on disk in Microsoft Excel Spreadsheet

format.
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3.2.4 3D model segmentation

This section explains the procedure in which the 3D model of the arterial wall containing the

values of wall shear stress and biotransport data can be segmented in a way that conforms

with the CCTA segmentation. The developed code for 3D segmentation is written in python

and uses The Visualization Toolkit (VTK) and the Vascular Modeling Toolkit (VMTK)

packages. The goal of this software is to match the centerline of a 3D model to the centerline

used to do the segmentation in the plaque quantification software and use the same slicing

criteria for 3D segmentation. One of the problems with 3D modeling and scaling the 3D

model of the arteries is the rotation and translation of the geometry during the numerical

simulation due to changes in the reference coordinates. The developed 3D segmentation

software will match the transformed geometry with the original one.

The input to the 3D segmentation code is the 3D model of the artery, 3D model of the

artery containing the hemodynamics and transport data, the centerline generated in the

plaque quantification software, and the coordinates of a bifurcation point.

First, the software reads the 3D model of the artery and asks the user to tag the inlet and

outlet surfaces. Then, the software extracts the centerline for this arterial model and splits

its branches. see Fig. 3.9. VMTK can recover the topology of the arterial tree from the

centerlines and their corresponding inscribed sphere radius. Thus, one can reconstruct the

geometry using a tube around the centerline and a local radii equal to the corresponding

maximum inscribed sphere. The bifurcation points can be found by finding the intersection

of each two tubes. For each bifurcation, six reference points can be identified, i.e. on each

centerline the first point is located at the intersection of a centerline with another tube and

the second one is located one maximum inscribed sphere upstream.

The developed software finds and visualizes these reference points for each bifurcation on

the arterial tree (see Fig. 3.9) and asks the user to select candidates points on the centerline.
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Figure 3.9: The left panel shows the imported 3D model into the 3D model segmentation software. The middle panel shows
the model with extracted branches based on the calculated reference points. The right panel shows the extracted centerline in
which the end points of each red thick lines at bifurcations are the reference points (marked with asterisk).

User can interactively rotate the centerline, zoom in/out, and select the points by clicking

on it. Doing so, the selected point will be shown in red color. To confirm the point, user

should press P key on the keyboard and the color of confirmed point changes to green. After

selecting all the reference points, user can press return and the software will show the 3D

model of the artery containing the hemodynamics. The process of creating the centerline

is repeated for this model and the user is asked to select the corresponding points on this

model as the previous one.

After selecting the matching reference points, the software uses a Kabsch transformation

algorithm [156, 157] to transform the 3D model of the artery containing the hemodynamics

into a spatial position that its centerline matches the 3D geometry created from the CCTA

images.

The software uses the coordinate of the input bifurcation and a segment length to generate

a 3D segment matching with the CCTA segmentation results and store each of them in .vtk

format. Also, the area-weighted average of WSS and biotransport data will be stored in a

file for all of the segments.
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3.2.5 Statistical analysis

Statistical analysis was performed in Matlab (R2019a Update 9). The quantified plaque

characteristic including areas of lumen, low attenuation plaque, fibrous plaque, calcified

plaque, vessel volume, presence of positive remodeling, and napkin-ring sign as well as the

area-weighted average wall shear stress (WSS), WSS divergence, absolute WSS divergence

field, low density lipoprotein concentration, and nitric oxide concentration for each segment in

baseline and follow-up were imported into the Matlab software. The difference from baseline

to follow up for quantitative parameters including lumen, low attenuation plaque, fibrous

plaque, calcified plaque, and vessel volume were calculated. The qualitative parameters

including presence of positive remodeling, napkin-ring sign, and growth of the vessel wall

were only calculated for the follow-up dataset. The dataset was divided into two groups:

single patient dataset and a complete dataset. The former dataset contains the data related

to each patient and the later contains the data of all the patients together. The Spearman

correlations were calculated to find the correlation between quantitative parameters and the

area-weighted average wall shear stress (WSS), WSS divergence, absolute WSS divergence

field, low density lipoprotein concentration, and nitric oxide concentration. The Point biserial

correlation method was used to find the correlation between the qualitative parameters and

the hemodynamic/biotransport parameters. For this analysis, the 95 % confidence intervals

(95 % CI) were calculated and a p-value ≤ 0.05 was considered statistically significant [158].

3.3 Results

Baseline patient characteristics were shortly discussed in Chapter 2. For this analysis 8 coro-

nary models showing vulnerable atherosclerotic plaques were used. Both the CTA and 3D

models were segmented using the in-house developed software. The CTA-derived segments

were 1 mm apart while the 3D model segments were generated in a way that their length
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along the centerline was 1 mm. Each CTA segment is located in the middle of the corre-

sponding 3D model segment as shown in Fig. 3.10. The total number of segments (CTA

and 3D model) used to find correlations was 538.

Figure 3.10: A sample of CTA segment on top of the 3D geometry. The 3D segmentation carried out in a way that the CTA
segment was located in the middle of the 3D segment.

3.3.1 Single patient study

The results of correlations between changes in the volume of the lumen from baseline to

follow-up are shown in Table 3.1. The changes in the lumen area do not show any meaningful
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correlation with the hemodynamic and biotransport parameters while analyzing the data

patient-by-patient. Tables 3.2 and 3.3 show the results of correlations between changes in

the low attenuation plaque (LAP) volume from baseline to follow-up and the percentage

of change with respect to baseline case, respectively. The correlation results show that the

longitudinal changes in the LAP volume have a moderate correlation with the local WSS

at the baseline in patients P1-P3, P6, and P8. Since the volume of plaques and the vessel

wall varies between different patients and different segments, the percentage of longitudinal

change was considered as a separate parameter to ensure that changes in the quantitative

parameters are normalized based on the baseline values.

Table 3.1: The correlations between changes in the lumen volume and various hemodynamic parameters. Values in bold font
indicate statistically significant differences (P < 0.05).

Hemodynamic Parameter P1 P2 P3 P4 P5 P6 P7 P8

WSS R 0.230 −0.203 0.126 −0.163 0.024 0.117 0.454 0.209
P 0.197 0.329 0.410 0.398 0.870 0.559 0.014 0.257

WSS Div. R 0.037 0.031 0.042 0.160 −0.063 0.145 0.568 −0.102
P 0.839 0.884 0.783 0.407 0.665 0.468 0.002 0.584

|WSS Div.| R 0.122 −0.172 −0.048 0.132 0.125 −0.037 0.521 −0.006
P 0.497 0.411 0.752 0.495 0.386 0.854 0.004 0.977

Div. of Norm. WSS R 0.094 0.212 0.247 0.204 −0.184 0.028 0.358 −0.024
P 0.602 0.307 0.102 0.287 0.200 0.890 0.058 0.899

|Div. of Norm. WSS| R 0.038 −0.192 0.150 −0.161 0.280 −0.136 0.313 −0.170
P 0.833 0.355 0.326 0.402 0.049 0.499 0.099 0.359

NO R 0.439 −0.057 −0.089 −0.287 0.072 0.118 0.274 0.736
P 0.026 0.806 0.610 0.155 0.681 0.581 0.149 5.106 × 10−6

LDL R −0.062 0.229 0.006 0.098 −0.071 −0.117 0.197 0.159
P 0.764 0.317 0.975 0.632 0.685 0.583 0.304 0.392

Table 3.2: The correlations between percentage of change in the LAP volume and various hemodynamic parameters. Values
in bold font indicate statistically significant differences (P < 0.05).

Hemodynamic Parameter P1 P2 P3 P4 P5 P6 P7 P8

WSS R −0.315 −0.321 −0.409 0.147 −0.161 −0.382 −0.184 −0.327
P 0.004 3.506 × 10−4 0.007 0.122 0.088 354 729 × 10−4 0.216 0.001

WSS Div. R 0.070 0.121 0.007 −0.016 0.143 −0.206 −0.484 0.192
P 0.698 0.564 0.965 0.936 0.320 0.302 0.008 0.301

|WSS Div.| R 0.113 0.031 −0.207 0.016 −0.099 −0.089 −0.460 −0.036
P 0.529 0.884 0.173 0.934 0.494 0.657 0.013 0.846

Div. of Norm. WSS R 0.152 −0.028 −0.082 0.251 0.105 −0.072 −0.285 0.292
P 0.396 0.896 0.593 0.189 0.467 0.720 0.134 0.112

|Div. of Norm. WSS| R −0.075 0.242 −0.087 0.174 −0.261 −0.318 −0.146 0.173
P 0.678 0.244 0.571 0.365 0.068 0.106 0.447 0.351

NO R −0.499 0.078 −0.007 0.084 0.018 −0.174 −0.215 −0.600
P 0.010 0.737 0.970 0.683 0.916 0.415 0.261 4.707 × 10−4

LDL R −0.137 −0.012 0.300 −0.337 −0.351 0.007 −0.074 0.069
P 0.503 0.962 0.081 0.093 0.039 0.976 0.700 0.712

Tables 3.4 and 3.5 show the correlation results for the changes in fibrous plaque (FP) based on
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Table 3.3: The correlations between changes in the LAP volume and various hemodynamic parameters. Values in bold font
indicate statistically significant differences (P < 0.05).

Hemodynamic Parameter P1 P2 P3 P4 P5 P6 P7 P8

WSS R −0.347 −0.297 −0.411 0.127 −0.172 −0.386 −0.166 −0.279
P 0.021 4.765 × 10−4 0.085 0.196 0.129 0.001 0.196 0.006

WSS Div. R 0.079 0.082 0.014 0.040 0.127 −0.306 −0.480 0.124
P 0.660 0.695 0.927 0.835 0.379 0.120 0.009 0.504

|WSS Div.| R 0.108 0.062 −0.184 −0.004 −0.144 −0.053 −0.453 −0.084
P 0.547 0.770 0.225 0.983 0.316 0.795 0.014 0.653

Div. of Norm. WSS R 0.156 0.005 −0.029 0.267 0.116 −0.148 −0.282 0.265
P 0.384 0.984 0.850 0.160 0.422 0.459 0.138 0.150

|Div. of Norm. WSS| R −0.103 0.235 −0.081 0.176 −0.279 −0.330 −0.152 0.150
P 0.567 0.256 0.597 0.359 0.050 0.093 0.430 0.420

NO R −0.510 0.036 −0.026 0.047 −0.034 −0.165 −0.275 −0.615
P 0.009 0.877 0.883 0.820 0.847 0.439 0.148 3.066 × 10−4

LDL R −0.139 −0.035 0.368 −0.316 −0.319 −0.048 −0.130 0.048
P 0.496 0.881 0.030 0.116 0.062 0.825 0.501 0.797

the hemodynamic and biotransport parameters. As it can be seen, the correlations between

changes in fibrous plaque volume and WSS divergence, absolute WSS divergence, divergence

of normalized WSS, and LDL are not significant. However, these tables show that the local

concentration of NO reveals moderate correlation with the longitudinal changes in fibrous

plaque volume.

Table 3.4: The correlations between percentage of change in the FP volume and various hemodynamic parameters. Values in
bold font indicate statistically significant differences (P < 0.05).

Hemodynamic Parameter P1 P2 P3 P4 P5 P6 P7 P8

WSS R −0.293 0.185 −0.195 0.137 −0.318 0.076 −0.144 −0.499
P 0.098 0.154 0.002 0.500 0.074 0.072 0.015 0.005

WSS Div. R 0.094 0.225 −0.123 −0.122 0.149 −0.008 −0.277 0.214
P 0.602 0.279 0.420 0.526 0.300 0.970 0.145 0.247

|WSS Div.| R −0.040 −0.302 0.086 0.104 −0.013 0.054 −0.238 −0.211
P 0.826 0.142 0.575 0.590 0.927 0.790 0.212 0.253

Div. of Norm. WSS R 0.010 −0.033 −0.266 −0.043 0.039 0.292 −0.070 0.209
P 0.956 0.876 0.077 0.825 0.789 0.139 0.718 0.258

|Div. of Norm. WSS| R −0.072 0.205 −0.346 0.168 −0.118 −0.100 −0.027 0.114
P 0.692 0.325 0.021 0.381 0.414 0.620 0.891 0.540

NO R −0.311 0.205 0.204 0.533 −0.208 −0.351 −0.100 −0.682
P 0.122 0.371 0.238 0.006 0.229 0.093 0.603 3.821 × 10−5

LDL R 0.016 −0.155 −0.004 0.012 −0.295 0.132 −0.105 0.203
P 0.939 0.502 0.984 0.955 0.086 0.537 0.585 0.272

The changes in calcium plaque (CP) volume and the total vessel wall (VW) volume in the

understudy population were not significant. Tables 3.6 and 3.7 shows the correlation between

longitudinal changes in the CP and vessel wall (VW) volumes for various hemodynamic

parameters. The VW is calculate as the sum of LAP, FP, and CP volumes.

65



Table 3.5: The correlations between changes in the FP volume and various hemodynamic parameters. Values in bold font
indicate statistically significant differences (P < 0.05).

Hemodynamic Parameter P1 P2 P3 P4 P5 P6 P7 P8

WSS R −0.300 0.190 −0.170 0.095 −0.310 0.093 −0.140 −0.490
P 0.060 0.110 0.001 0.480 0.100 0.051 0.033 0.001

WSS Div. R 0.072 0.180 −0.124 −0.055 0.238 −0.002 −0.275 0.242
P 0.690 0.388 0.417 0.778 0.095 0.991 0.149 0.190

|WSS Div.| R −0.100 −0.273 0.063 0.110 −0.057 0.051 −0.236 −0.213
P 0.577 0.186 0.679 0.567 0.694 0.802 0.217 0.248

Div. of Norm. WSS R 0.025 −0.071 −0.281 −0.010 0.093 0.349 −0.080 0.171
P 0.890 0.736 0.062 0.960 0.519 0.075 0.678 0.355

|Div. of Norm. WSS| R −0.096 0.259 −0.346 0.121 −0.157 −0.119 −0.040 0.012
P 0.594 0.210 0.020 0.531 0.277 0.553 0.835 0.951

NO R −0.352 0.217 0.165 0.438 −0.305 −0.223 −0.065 −0.723
P 0.078 0.343 0.343 0.026 0.075 0.292 0.737 8.283 × 10−6

LDL R 0.017 −0.113 0.026 0.037 −0.189 0.295 −0.079 0.179
P 0.936 0.625 0.881 0.857 0.275 0.162 0.682 0.333

Table 3.6: The correlations between changes in the CP volume and various hemodynamic parameters. Values in bold font
indicate statistically significant differences (P < 0.05).

Hemodynamic Parameter P1 P2 P3 P6 P7 P8

WSS R 0.067 −0.254 −0.088 0.306 0.498 0.080
P 0.711 0.221 0.566 0.120 0.006 0.671

WSS Div. R 0.102 −0.039 0.073 0.163 0.470 −0.155
P 0.572 0.853 0.632 0.418 0.010 0.405

|WSS Div.| R 0.025 −0.002 0.188 0.293 0.470 −0.045
P 0.888 0.991 0.217 0.138 0.010 0.809

Div. of Norm. WSS R 0.129 0.083 0.055 −0.051 0.447 0.037
P 0.473 0.694 0.718 0.800 0.015 0.844

|Div. of Norm. WSS| R −0.151 −0.206 0.074 0.347 0.447 0.022
P 0.402 0.322 0.628 0.076 0.015 0.906

NO R 0.114 0.307 0.258 0.427 0.513
P 0.579 0.176 0.223 0.021 0.003

LDL R −0.031 0.315 −0.187 0.276 −0.126
P 0.879 0.165 0.382 0.147 0.500

The qualitative vulnerable plaque characteristics considered in this study are positive remod-

eling (PR) and napkin-ring sign (NRS). The presence of these qualitative parameters in the

follow-up images is compared with the hemodynamics and biotransport results in baseline

models. The patient-by-patient correlations between for these plaque characteristics and

the hemodynamic parameters are provided in Tables 3.8 and 3.9. It should be noted that

patients P2, P4, P7, and P8 did not show any positive remodeling at the follow-up. Also,
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Table 3.7: The correlations between changes in the vessel wall volume and various hemodynamic parameters. Values in bold
font indicate statistically significant differences (P < 0.05).

Hemodynamic Parameter P1 P2 P3 P4 P5 P6 P7 P8

WSS R −0.283 −0.121 −0.025 0.382 0.096 −0.059 −0.191 −0.413
P 0.110 0.564 0.871 0.042 0.508 0.771 0.320 0.022

WSS Div. R 0.178 0.138 0.061 0.052 0.157 −0.198 −0.408 0.147
P 0.321 0.508 0.690 0.789 0.274 0.320 0.029 0.428

|WSS Div.| R −0.020 −0.079 −0.175 0.080 −0.081 0.001 −0.369 −0.201
P 0.912 0.706 0.248 0.680 0.573 0.999 0.050 0.277

Div. of Norm. WSS R 0.179 −0.160 −0.127 0.192 0.035 0.057 −0.137 0.246
P 0.318 0.443 0.403 0.318 0.807 0.778 0.477 0.181

|Div. of Norm. WSS| R −0.078 0.351 −0.181 0.241 −0.279 −0.259 −0.039 0.070
P 0.664 0.086 0.233 0.206 0.050 0.192 0.839 0.707

NO R −0.362 0.339 0.057 0.208 −0.075 −0.267 −0.200 −0.620
P 0.070 0.133 0.745 0.306 0.667 0.207 0.298 2.676 × 10−4

LDL R −0.083 0.117 0.298 −0.262 −0.380 0.084 −0.103 0.047
P 0.686 0.613 0.083 0.195 0.025 0.694 0.592 0.801

NRS was not present in any of patients P2, P4, and P8.

Table 3.8: The correlations between presence of positive remodeling (PR) in the follow-up images and various hemodynamic
parameters. Values in bold font indicate statistically significant differences (P < 0.05).

Hemodynamic Parameter P1 P3 P5 P6

WSS R 0.703 0.277 −0.222 0.043
P 3.067 × 10−6 0.062 0.117 0.829

WSS Div. R −0.148 0.511 0.021 0.018
P 0.403 2.814 × 10−4 0.884 0.929

|WSS Div.| R 0.330 0.472 −0.043 −0.059
P 0.057 0.001 0.762 0.767

Div. of Norm. WSS R −0.212 0.302 0.001 −0.086
P 0.229 0.041 0.996 0.664

|Div. of Norm. WSS| R −0.275 0.198 0.192 −0.296
P 0.115 0.187 0.178 0.126

NO R −0.040 0.710 −0.510 0.357
P 0.844 1.080 × 10−6 0.001 0.079

LDL R 0.081 −0.137 0.416 0.210
P 0.687 0.425 0.012 0.315

3.3.2 All patients study

In this section, the statistical analysis for all the patients as one unified dataset is presented.

The calculated correlation in the previous section cannot be extended to a population. Thus,
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Table 3.9: The correlations between presence of napkin-ring sign (NRS) in the follow-up images and various hemodynamic
parameters. Values in bold font indicate statistically significant differences (P < 0.05).

Hemodynamic Parameter P1 P3 P5 P6 P7

WSS R 0.621 −0.089 −0.200 0.008 0.526
P 8.226 × 10−5 0.559 0.159 0.969 0.003

WSS Div. R −0.344 0.582 0.119 0.118 0.406
P 0.198 0.823 0.423 0.053 0.432

|WSS Div.| R 0.240 0.602 −0.108 −0.087 0.413
P 0.434 0.612 0.681 0.616 0.543

Div. of Norm. WSS R −0.209 0.368 0.140 −0.096 0.337
P 0.492 0.092 0.785 0.546 0.607

|Div. of Norm. WSS| R −0.114 0.378 0.135 −0.144 0.318
P 0.705 0.137 0.329 0.264 0.482

NO R −0.145 0.490 −0.403 0.205 0.212
P 0.613 0.780 0.587 0.386 0.847

LDL R 0.197 −0.053 0.554 0.393 −2.414× 10−4

P 0.904 0.136 0.141 0.749 0.539

the qualitative and quantitative data for all the patients are compared against the corre-

sponding hemodynamic and biotransport data points.

Table 3.10 shows the correlations between qualitative parameters and the hemodynamic/bio-

transport data. The statistical analysis shows a moderate correlation between positive re-

modeling and local WSS (P = 3.5×10−9 and correlation coefficient of 0.349) and a moderate

correlation between positive remodeling and local concentration of NO (P = 6.6×10−11 and

correlation coefficient of 0.415).

Since the HU values in DICOM series varies between baseline and follow-up images, the

calculated volumes for different plaque characteristics varies between these two dataset.

To account for this error, a threshold is assumed for all the quantitative parameters. We

assumed if the change in a quantity is in the interval of [−2%, 2%], the data point can

be dismissed. With this assumption, the statistical analysis was performed for the whole

dataset for positive and negative changes in the quantitative parameters, Tables 3.12 and

3.11 respectively. It should be noted that for the case of negative changes in Table 3.11, the

absolute value of change was considered to analyze the data. According to Table 3.12, the
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local WSS in the baseline shows negative correlation with percentages of change (≥ 2%) in

LAP, FP, and VW while a positive correlation can be seen for the absolute value of change

(≤ −2%) in the LAP, FP, and vessel wall volumes.

Table 3.10: The correlations between the changes in qualitative/quantitative plaque characteristics among all the patients
(P1-P8) and various hemodynamic parameters. Values in bold font indicate statistically significant differences (P < 0.05). †

shows the p-value is < 10−16.

Hemodynamic Parameter Lumen LAP FP CP Vessel wall PR NRS Vessel wall growth

WSS R 0.089 −0.073 −0.044 0.052 −0.068 0.350 0.115 −0.158
P 0.147 0.234 0.468 0.398 0.267 3.504 × 10−9 0.059 0.009

WSS Div. R 0.054 0.041 −0.015 0.007 0.056 0.053 −0.014 0.093
P 0.373 0.505 0.804 0.904 0.363 0.390 0.129 0†

|WSS Div.| R 0.070 −0.151 −0.030 0.074 −0.142 0.119 0.037 −0.097
P 0.253 0.014 0.624 0.227 0.020 0.051 0.113 0†

Div. of Norm. WSS R 0.117 0.021 −0.025 0.071 −0.030 0.022 0.087 −0.024
P 0.055 0.727 0.687 0.246 0.626 0.723 0.697 0†

|Div. of Norm. WSS| R 0.055 0.727 0.687 0.246 0.626 0.723 0.697 0.000
P 0.657 0.543 0.402 0.780 0.392 0.776 0.547 0†

NO R 0.066 −0.104 −0.009 0.212 −0.031 0.415 0.188 −0.061
P 0.322 0.119 0.888 0.001 0.647 6.658 × 10−11 0.360 0†

LDL R 0.093 −0.048 −0.013 −0.050 −0.003 −0.070 0.001 0.079
P 0.162 0.475 0.843 0.453 0.968 0.294 0.237 0†

Table 3.11: The correlations between the percentage of change (≤ −2%) in quantitative plaque characteristics among all
the patients (P1-P8) and various hemodynamic parameters. Values in bold font indicate statistically significant differences
(P < 0.05).

Hemodynamic Parameter Lumen LAP FP Vessel wall

WSS R 0.191 0.478 0.578 0.371
P 0.013 7.860 × 10−7 9.653 × 10−10 1.204 × 10−4

WSS Div. R −0.058 −0.198 −0.199 −0.211
P 0.448 0.050 0.044 0.032

|WSS Div.| R 0.081 0.364 0.456 0.326
P 0.293 2.372 × 10−4 1.703 × 10−6 7.902 × 10−4

Div. of Norm. WSS R −0.010 0.044 0.038 0.069
P 0.898 0.664 0.700 0.488

|Div. of Norm. WSS| R 0.032 0.088 0.103 0.005
P 0.681 0.386 0.300 0.957

NO R −0.032 −0.172 0.016 −0.231
P 0.698 0.132 0.888 0.036

LDL R −0.107 −0.029 0.190 0.079
P 0.195 0.802 0.085 0.478
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Table 3.12: The correlations between the percentage of change (≥ 2%) in quantitative plaque characteristics among all
the patients (P1-P8) and various hemodynamic parameters. Values in bold font indicate statistically significant differences
(P < 0.05).

Hemodynamic Parameter Lumen LAP FP Vessel wall

WSS R −0.469 −0.183 −0.294 −0.290
P 1.673 × 10−6 0.018 1.677 × 10−4 1.681 × 10−4

WSS Div. R −0.226 −0.182 −0.198 −0.060
P 0.026 0.019 0.012 0.447

|WSS Div.| R 0.307 0.102 0.231 0.196
P 0.002 0.191 0.003 0.012

Div. of Norm. WSS R 0.081 0.042 −0.034 0.022
P 0.429 0.589 0.670 0.780

|Div. of Norm. WSS| R 0.132 0.020 0.063 0.123
P 0.197 0.796 0.428 0.117

NO R −0.141 −0.068 −0.072 −0.014
P 0.221 0.416 0.402 0.871

LDL R 0.001 −0.170 0.014 −0.086
P 0.990 0.041 0.873 0.303

3.4 Discussion

We investigated the relation between longitudinal changes in multiple quantitative and qual-

itative vulnerable plaque characteristics and the hemodynamics and biotransport features at

the baseline. An in-house software was developed to accurately quantify the plaque character-

istics and register them with the 3D hemodynamic and biotransport results. The developed

software uses various algorithms to ensure high accuracy of plaque quantification such as ac-

tive contour segmentation, vessel enhancement filter, and adaptive threshold quantification.

The use of vessel enhancement filter ensures reduction in the organ over-projection and thus

improves the accuracy of the quantitative measurement of arterial morphology. The main

innovations of present study are consideration of computational biotransport data and the

simultaneous utilization of vessel enhancement filter, active contour levelset algorithm, and

adaptive threshold quantification.

The association between low WSS magnitude and increased inflammation has been previ-

ously reported in the literature [159, 160, 161, 162, 163, 164, 165, 166, 167]. These studies
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support the hypothesis that hemodynamic parameters might play an important role in the

atherosclerotic plaque growth. Among all the hemodynamic parameters considered in this

study, the WSS, absolute WSS divergence, and local concentration of NO showed the best

correlations with different vulnerable plaque characteristics. Despite the small number of

patients considered in this study, the segment-specific assessment design provided associa-

tion between local hemodynamics and biotransport data and the CTA-derived vulnerable

plaque features.

The patient-by-patient study of the relation between hemodynamics and longitudinal changes

in the plaque content shows interesting results. For example in the case of longitudinal

changes in LAP volume, 5 out of 8 patients showed a significantly meaningful association

between magnitude of WSS in the baseline and the changes in the LAP volume. According

to Table 3.3, a maximum Spearman’s rank correlation coefficient of −0.408 was obtained.

However, if the longitudinal changes in LAP was compared against the baseline WSS mag-

nitude for all the patients collectively, our results do not show any significant association

between longitudinal changes in LAP and the hemodynamic parameters. Figure 3.11 shows

the corresponding scatter plot for both longitudinal changes and percentage of change in

LAP versus the considered hemodynamic parameters. As it can be seen in this figure, the

percentage of changes in LAP volume versus hemodynamic and biotransport data are con-

centrated around 0.0%. The image registration for baseline and follow-up and the difference

between the HU values in baseline and follow-up images might cause these small changes in

the plaque content volumes. If we only consider the longitudinal changes greater than 2%

in our dataset to filter out the inaccuracies mentioned above, the association between LAP

volume changes and WSS becomes more significant (p-value < 0.05). On the other hand if

we consider only the negative changes in the LAP volume, i.e. the LAP volume shrinks more

than 2% from baseline to follow-up, a positive correlation coefficient of 0.478 is obtained.

This shows the LAP volume decreases with the increase in the baseline WSS magnitude. The

high WSS magnitude has been hypothesized to induce an atheroprotective response in the
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endothelial cells (ECs). Physiological and high WSS values stimulate endothelial nitric ox-

ide synthase (eNOS) phosphorylation and shear stress dependent Ca2+ channels [82]. This

leads to subsequent NO production and flow-induced vasodilation, which protect against

atherosclerosis.

The WSS divergence can be used as an indicator of local endothelium contraction and ex-

pansion. Positive values of WSS divergence show expansion while negative values show

contraction of ECs. Except in one patient (P7), no significant association between quantita-

tive atherosclerotic plaque markers and the derivatives of WSS divergence including absolute

value of WSS divergence, divergence of normalized WSS, and absolute value of divergence

of normalized WSS was found. The segment-specific assessment of P7 reveals moderate-to-

strong correlation between WSS divergence/absolute WSS divergence and the longitudinal

changes in LAP volume and CP volume. The |WSS Div.| showed a moderate positive corre-

lation with the reduction of LAP volume from baseline to follow-up when analyzing all the

patients, collectively. The scatter plots for longitudinal changes and percentage of change in

FP volume versus various hemodynamic parameters are shown in Fig. 3.12.

Previous studies have demonstrated an increased risk of acute coronary syndrome (ACS)

in patients with a larger volume of non-calcified and low-attenuation plaque. The fibrous

plaques (FP) fall into the category of non-calcified plaques. The patient-by-patient study

showed a moderate correlation between the growth of FP and WSS magnitude in patients

P1, P3, P7, and P8. However, considering a longitudinal decrease in FP volume greater

than 2% shows a moderate-to-strong correlation with the WSS magnitude. That is, the

increase in WSS magnitude in baseline resulted in a decrease in the volume of FP plaque

in the follow-up. Also, our statistical assessment showed a meaningful association between

the absolute value of WSS divergence and the decrease in the FP volume (Table 3.11). On

the other hand, Table 3.12 shows a moderate negative correlation between the longitudinal

changes in FP volume and the WSS magnitude.
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Figure 3.11: The scatter plots for longitudinal changes in the LAP volume vs. various hemodynamic parameters. The square
marker shows the percentage of change while the asterisks show the longitudinal changes in the volume of LAP.
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Figure 3.12: The scatter plots for longitudinal changes in the fibrous plaque volume vs. various hemodynamic parameters.
The square marker shows the percentage of change while the asterisks show the longitudinal changes in the volume of FP.
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If we consider the longitudinal changes in the vessel wall, a weak negative association between

WSS magnitude and the changes in vessel wall can be seen. However, according to Table

3.12, the longitudinal changes in the vessel wall is moderately correlated with the WSS

magnitude. This association has a negative correlation coefficient which indicates that low

WSS magnitude in baseline results in an increase in the vessel wall volume at the follow-

up. On the other hand, our statistical analysis showed that the decrease in the vessel

wall volume has a positive correlation with the WSS magnitude, which emphasizes the

atheroprotective role of high wall shear stress in atherosclerosis. Figure 3.13 shows the

scatter plot of longitudinal changes and percentage of change in vessel wall volume versus

various hemodynamic parameters.

As mentioned in section 3.1, positive remodeling and presence of napkin-ring sign are mark-

ers of vulnerable plaques. In this study the positive remodeling and NRS were assessed

using a binary approach. Only four out of 8 patients showed positive remodeling in their

left anterior descending and left circumflex arteries. The segment-specific study showed a

moderate positive correlation between presence of positive remodeling in follow-up and the

WSS magnitude and the local concentration of NO. The presence of NRS in the follow-up

did not show any meaningful correlation with the considered hemodynamic and biotransport

parameters at baseline.

Our results show the role of hemodynamics in progression and prevention of atherosclerotic

plaques. Specifically, the segment-specific assessment of the data shows that WSS magnitude

can be considered as a local indicator for the growth/shrink of different atherosclerosis plaque

components as well as the vessel wall in general. In Chapter 2, we showed that the both

atherogenic and atheroprotective biochemicals localize in regions downstream to a plaque

where WSS magnitude is low and we stated that it is not clear how the combination of

these competing effects play out in the process of atherosclerosis. The statistical analysis

shows that in all patients, collectively, there is no meaningful association between the local
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Figure 3.13: The scatter plots for longitudinal changes in the vessel wall volume vs. various hemodynamic parameters. The
square marker shows the percentage of change while the asterisks show the longitudinal changes in the volume of the arterial
wall.
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concentration of NO and LDL and the longitudinal changes in the atherosclerotic plaque

features. However, the WSS magnitude and weakly the WSS divergence show meaningful

correlation with the changes in the LAP, FP and vessel wall volumes.

There are some potential limitations that can affect the accuracy of our results. First, the

small sample size and short-term follow-up study did not have enough power to demonstrate

the significant differences in the calcified plaque, positive remodeling, and presence of napkin-

ring sign. Second, the derived hemodynamic and biotransport parameters were obtained

under the assumption that the inflow boundary conditions was based on the general coronary

artery waveforms with parabolic profiles. Third, the generated segments for baseline and

follow-up images might not match perfectly and also the HU ranges for different plaque

composition in these two dataset are different. This can lead to minor inaccuracies when

analyzing the data. Fourth, obtaining a p-value < 0.05 does not indicate a significant

association in reality. p-value is considered as a rough guide of the strength of evidence

against the null hypothesis. In other words, the meaning of p-value < 0.05 is merely that

one should repeat the experiment. If subsequent studies also yield significant p-values, one

could conclude that the observed effects were unlikely to be solely the result of chance. Thus,

independent tests are needed to ensure that the observed associations in this study are not

based on the chance alone [158].
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Chapter 4

Implementing a coupled 3D-1D blood

flow solver in Simvascular

4.1 Introduction

Computational fluid dynamics (CFD) has been shown to be a powerful and effective tool to

model the blood flow and study the hemodynamic in arterial network. The cardiovascular

system can be considered as a multiscale system which each scale has different physiological

and functional behavior. The interaction between blood and the vessel wall propagates

pressure waves from the heart to the distal arteries. These waves play an important role in

regulating the blood pressure in the cardiovascular system. CFD can be used to simulate

the blood dynamics by solving the Navier-Stokes equations inside this multiscale system.

However, the 3D simulation of this system is computationally expensive. To resolve this issue,

1D models can be used to model the dense arterial network with much lower computational

cost. Recently, the approach of 1D-3D coupled models of cardiovascular system has gained

popularity since they can simulate an accurate pressure wave in smaller arteries while show
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the blood flow structures in the larger vessels.

The 1D models, originally introduced by Euler [168], are a valid alternative to describe the

arterial network [169, 170]. Assuming a cylindrical geometry for arteries, one can reduce

the space-dependence to the axial direction of the cylinder and create a 1D model. The 1D

models allow to obtain the large scale characteristics including the pressure drop, pressure

waves, and flow rates at different part of the arterial tree. The elasticity of the vessel wall and

peripheral resistance and capacitance are also can be included in 1D models [20, 22, 23, 21].

Several studies confirmed the successful simulation of large-scale features such as pressure and

flow waves in various arteries using nonlinear 1D models [171, 172, 173, 174]. However, there

are major challenges with specifying the input parameters of the 1D model from clinical

data [175]. Recently, the number of 1D arterial segments used in modeling the arterial

network has increased to over 4 million [176, 177, 21, 178].

On the other hand, the patient-specific 3D high-resolution models are well suited for studying

the effects of geometry on the blood flow [18, 19, 179, 180] as well as the local impact of

blood flow structures on the transport of various biochemicals and cells [181]. However,

the use of high resolution 3D models for simulation of blood flow inside an arterial network

with large number of arteries is impractical. The high computational cost restricts their

application to only arterial trees with limited number of bifurcations [182, 183, 184, 185].

The geometrical multiscale approach of coupled 1D-3D models can address the aforemen-

tioned limitations when simulating a large network of arteries [23, 20]. This approach sig-

nificantly decreases the computational cost while using a high resolution 3D model for a

specific arterial district [186]. In other words, the main advantage of 1D-3D approach is to

provide detailed hemodynamic features locally while accounting for the global circulation.

Previous studies have explored the 1D-3D approach to simulate the carotid arteries [187],

cerebral aneurysms [188], and abdominal aorta [189]. Considering the potentials of hybrid

1D-3D models, no open-source software provides such a tool for the researchers. One of the
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most used open-source software to simulate the patient-specific blood flow in cardiovascular

system is Simvascular [190]. This software also offers a stand-alone 1D solver. However,

the coupling between 1D and 3D solvers is not provided by the software. Here, we propose

a framework to couple these two stand-alone solvers and provide a computationally feasi-

ble alternative for modeling a large network of arteries. In this chapter we focus on the

mathematical formulation of a 3D-1D solver and present the validation results.

4.2 Methods

In this section, the governing equations for the flow of a Newtonian, incompressible fluid

inside a deformable one-dimensional vessel are presented. Then, the algorithm to couple the

1D and 3D solvers in simvascular is discussed.

4.2.1 Governing equations

In 1D formulation, each segment is treated as a deformable cylindrical vessel with a specific

length, initial and final cross-sectional diameters. It is assumed that the properties of the

vessel can be described by a single axis, i.e. the centerline. Such a geometry can be obtained

from a patient-specific 3D model by extracting the centerline and storing the coordinates of

each end of a segment, corresponding segment length, and the initial and final diameters of

the corresponding segment.

The governing equations for the 1D flow inside a deformable vessel include continuity, mo-

mentum, and constitutive equations. It should be noted that these equations are along a

single axis z. The continuity and momentum equations can be written as
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∂S

∂t
+
∂Q

∂z
= 0 , (4.1a)

∂Q

∂t
+

∂

∂z

[
(1 + δ)

Q2

S

]
+
S

ρ

∂p

∂z
= N

Q

S
+ ν

∂2Q

∂z2
, (4.1b)

where S(t, z) is the cross-sectional area, Q(t, z) flow rate, p(t, z) pressure, ρ density, and ν is

the kinematic viscosity. Assuming a parabolic velocity profile, the N and δ can be defined

as

δ =
1

3
, N = −8πν , (4.2a)

Since an elastic model is utilized, the constitutive equation has the following form

p̃(S, z) = p0(z) +
4

3

E h

r0(z)

(
1−

√
S0(z)

S(z, t)

)
, (4.3)

where E is the Young’s modulus and h is the wall thickness. r0(z) is the initial radius of the

segment along the axis, p0(z) is the initial pressure, and S0(z) is the prescribed initial area.

We can define the E h
r0(z)

to consider a linear or nonlinear material as

E h

r0(z)
= k1 exp k2 r

0(z) + k3 , (4.4)

where k1, k2, and k3 are empirical parameters. One can rewrite Eqs. 4.6 and 4.3 in a

quasi-conservative form:

∂U

∂t
+
∂F

∂z
−K

∂2U

∂z2
= G, or

∂U

∂t
+
∂F

∂z
−K

∂2U

∂z2
= CF U , (4.5)
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where

U =

U1

U2

 =

S
Q

 , (4.6a)

F =

 U2

(1 + δ)
U2
2

U1
+ 1

ρ

∫ p(z,t)
p0

S̃(p, z, t) dp

 , K =

0 0

0 ν

 , (4.6b)

G =

 0

N U2

U1
+
∫ p
p0

1
ρ
∂S̃(p,z,t)

∂z
dp

 , , (4.6c)

CF =

 0 0

1
U1

∫ p
p0

1
ρ
∂S̃(p,z,t)

∂z
dp N

U1

 , (4.6d)

Now, the weak form can be written as follows

∫ t
0

∫
Ω

(
−WT

,t U−WT
,z F + WT

,z K U,z −WT G
)
dΩ dt+

∫ T
0

[
WT (F−KU,z)

]L
0
dt+∫

Ω
WT (z, T )U(z, T ) dΩ−∫

Ω
WT (z, 0) U0(z) dΩ = 0 (4.7a)

where Ω = [0, L] is the test function space and W = [W1W2]T is the trial function space.

U0(z) = [S0(z), Q0(z)]
T

is the initial condition. To specify the boundary conditions, one can

use a disjoint decomposition and Dirichlet-to-Neumann methods to incorporate the boundary

conditions into the weak form. For the detailed formulation on applying various types of

boundary conditions see [191, 192].

82



4.2.2 1D-3D coupling algorithm

The 1D and 3D solvers in Simvascular are stand-alone packages. Thus, one cannot use the

software to simulate the blood flow in a hybrid 1D-3D model. However, if we consider the

1D solver as a boundary condition in which there exists a continuity of mass and normal

total pressure at the coupling interface, we can implement the coupled 1D-3D solver in

Simvascular. The continuity of mass and normal total pressure can be written as:

σtot(u3D, p3D) · n = p1D n , (4.8a)

Q3D = Q1D , (4.8b)

For a rigid 3D model, we can simplify Eqs. 4.8 as

p1D =
1

|Γ|

∫
Γ

p3Ddγ , (4.9a)

Q1D = −ρ
∫

Γ

u3D · ndγ , (4.9b)

where |Γ| is the area of the interface Γ. The negative sign in the continuity of mass equation

of 4.8 indicates that Q1D and u3D · n are pointing inwards and outwards from the 1D and

3D domains, respectively.

To ensure the interface boundary holds the continuity conditions in Eq. 4.8 between times tn

and tn+1, the numerical solution should be split into an iterative sequence of dimensionally

homogeneous problems, that is 1D and 3D solution. The interface boundary in the 3D model

can be treated as Neumann boundary condition while the interface node on the 1D model

can be specified as a Dirichlet boundary condition. At each time-step, an inner iterative

algorithm can be used to obtain the continuity conditions at the coupling interface. The

steps in the iterative algorithm are as follows:
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Initialization:

• Apply the initial conditions to both 3D and 1D models;

• Set k = 0;

• un+1
3D ,0 = un3D ,0, pn+1

3D ,0 = pn3D ,0, pn+1
1D ,0 = pn1D ,0, Qn+1

1D ,0 = Qn
1D ,0

Loop over k:

• Solve 3D model with the following boundary condition on the coupling interface:

pn+1
3D ,k+1 = αpn+1

1D ,k + (1− α)pn+1
3D ,k; where α is a relaxation factor

• Solve 1D model with the following boundary condition at the coupling node:

Qn+1
1D ,k+1 = Qn+1

3D ,k+1;

• k = k + 1;

• Set a convergence criteria for the continuity on the interface: |pn+1
3D ,k+1 − p

n+1
1D ,k+1| < ε

where ε is the convergence tolerance.

4.2.3 Simvascular 1D-3D coupling implementation

As mentioned before, the 1D and 3D solvers in Simvascular are stand-alone packages. How-

ever, treating the 1D solver as a boundary condition for 3D solver is a way to couple these

packages. To do so, we used the General Boundary Condition (GenBC) in Simvascular.

GenBC provides a framework to define custom inflow or outlet boundary conditions. The

main application of GenBC is to create an arbitrary lumped parameter network (LPN) lay-

out. The GenBC framework is implemented as a Fortran program called by the SimVascular

flow solver ’svSolver’. Users can define an arbitrary set of differential equations for their ap-

plication and implement them in Fortran inside the GenBC program. The Fortan program

is then compiled to produce a GenBC executable program. This executable is called by
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svSolver during execution to provide values for custom boundary conditions. To setup the

GenBC in Simvascular, one can refer to [193].

The 1D solver in Simvascular software is written in C++ language. This package reads

an input file containing the coordinates of nodes, information about the joints, segment

information, material parameters, and solver parameters. The 1D solver package can return

the element-based results of the whole geometry in the text format or .VTK format. Also,

this package only considers an all-zero initial condition for the flow rate and pressure inside

the 1D domain. The all-zero initialization of the domain makes it impossible to couple the

1D solver with the 3D solver. On the other hand, because the GenBC program and 1D

solver are written in different programing languages, a link should be created between these

two packages. Another limitation of using GenBC is that the user cannot use discrete data

as the inflow boundary condition to the 3D geometry. In the rest of this section, we present

how one can implement a hybrid 1D-3D solver in the Simvascular software with embedded

arbitrary inflow boundary condition.

Implementing GenBC program. As it was mentioned previously, GenBC provides a

programing framework to define custom boundary conditions in Simvascular in Fortran

language. Using GenBC, users do not have access to change the global parameters in the 3D

solver. The coupling algorithm needs each 3D time-step to be repeated until the convergence

criteria for coupled interface is met (Eq. 4.9). However, according to the Simvascular ’s source

code, the GenBC can read the stage in which the 3D solver is performing the computations.

There are 4 different stages in each 3D time-step: initialization with flag ’I’, calculating the

derivatives ’D’, Navier-Stokes solver stage ’T’, final stage of computation ’L’. Among all

these stages, the user can control the number of iterations in stage ’T’ by changing the Step

Construction in the software. We used this flag in the GenBC program to implement the

hybrid 1D-3D solver and iteratively correct the interface boundary condition.

To be able to transfer data between the GenBC and the 1D solver, we created six different
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Table 4.1: The name and description of generated files for transferring information between GenBC and the 1D solver.

File name Description
OutletID.dat In case the 3D geometry is consisted of multiple outlet surfaces,

this file stores the ID of an outlet and pass it on to the 1D
solver. 1D solver reads this file and executes the corresponding
1D simulation.

OneDinit.dat This file stores a boolean variable indicating the need to store
the data in the 1D model in a format that it can be read as
initial condition for the next 1D simulation. When the iterative
algorithm on the interface converges, the 1D data will be store.

OneDinletQ xxxxx.dat This file stores the flow rate value at each outlet in the 3D ge-
ometry. ’x’ shows the outlet ID. 1D solver reads this file and
applies the inflow accordingly.

OneDinletP xxxxx.dat This file stores the inlet pressure of the 1D model. GenBC reads
this value in the iterative algorithm to ensure the continuity at
the interface.

interfaceConv This file stores the data related to the convergence of the iterative
method at each 1D-3D interface. If all the interfaces met the
continuity criteria, the stored value in this file will be ’0’.

PreviousSolution.dat This file contains the 1D solution data in a format that can be
used as initial condition for the 1D solver.

files to store various information. The information related to these files are presented in Table

4.1. Since the 1D solver is in a different programing language than the GenBC program,

The 1D solver is modified in a way that can be called directly from the Fortran code. The

Fortran code snippet related to calling the 1D solver is shown in Code 4.1. In this code

snippet, nNeumannSrfs is the total number of 3D outlets and line 13 calls the executable 1D

solver.

Code 4.1: Code snippet for calling the executable 1D solver from GenBC.

1 c Ca l cu la te boundary cond i t i on s

2 fmt = ’ ( I5 . 5 ) ’

3 DO i =1, nNeumannSrfs

4 WRITE( f i l eCounte r , fmt ) i

5 INQUIRE (FILE=’OneDinletP ’//TRIM( f i l eCoun t e r ) / / ’ . dat ’ ,

6 2 EXIST=i e r r )

7

86



8 OPEN(1 , FILE=’OutletID . dat ’ , STATUS=’UNKNOWN’ )

9 WRITE(1 , ’ ( I5 ) ’ ) i

10 CLOSE(1)

11

12 IF ( t .GE. tF ina l .AND. f l a g .EQ. ’T’ ) THEN

13 CALL system ( ’ . / OneDSolver . / ’ / / ’ OneDinpotFile ’

14 2 //TRIM( f i l eCoun t e r ) / / ’ . in ’ / / ’ > OneDOutput . dat ’ )

15

16 OPEN (1 , FILE = ’ OneDinletP ’//TRIM( f i l eCoun t e r ) / / ’ . dat ’ ,

17 2 STATUS=’OLD’ )

18 READ (1 , ∗) R( i )

19 CLOSE(1)

20 ELSEIF ( t .LT. tF ina l ) THEN

21 R( i ) = 0D0

22 ELSEIF ( i e r r ) THEN

23 OPEN (1 , FILE = ’ OneDinletP ’//TRIM( f i l eCoun t e r ) / / ’ . dat ’ ,

24 2 STATUS=’OLD’ )

25 READ (1 , ∗) R( i )

26 CLOSE(1)

27 ELSE

28 PRINT ∗ , ”SMT WRONG WITH ONEDinletP . dat”

29 STOP

30 END IF

31 END DO

Modifying the 1D solver. The Simvascular ’s 1D solver is written in C++ language.

The software reads an input file containing the necessary geometrical information, boundary

conditions, material properties, and solver parameters. The original solver can read one or

multiple input files and solve the Newtonian, incompressible blood flow in deformable 1D

vessels. As mentioned earlier, the GenBC in the 3D solver was used as a gateway to transfer

information between the 3D and 1D solvers. The modified 1D solver has the ability to read

87



the generated files in GenBC (Table 4.1), modify the input data, and return the desired

pressure values. Since the 1D solver is executed multiple times in each 3D time-step, we

added the arbitrary initial condition to the solver. The original package considers an all-zero

initial condition for all variable inside the domain.

4.3 Results and validation

In this section, the results of developed 1D-3D solver are presented and validated against

data extracted from the literature. The first step in developing the 1D-3D solver was to

modify the Simvascular ’s 1D solver and add arbitrary initial condition to the solver. This

was done by extracting the 1D variables and storing them in a way that can be read by the

1D solver. The test case used for validation of this step was the 1D abdominal aorta model

with iliac bifurcation [194]. Figure 4.1 shows the flow rate waveform and changes in the area

of the mid-aorta. To verify the developed initialization algorithm, the inflow waveform was

divided into 10 parts, each 0.1 s. The first simulation was carried out for 0.1 s with zero

initial values for the flow rate and reference pressure of 10 kPa. The final time-step of this

simulation was used to simulate the next part. In total, ten simulations were performed

and the final results were compared against the simulation of the whole inflow waveform at

once. As it can be seen in Fig. 4.1, the 1D solver initialization algorithm generated accurate

results.

The next step in verification of the developed hybrid 1D-3D solver is to look at the interface

between 1D and 3D geometries and ensure the continuity of the flow and pressure at this

boundary. Figure 4.2 shows the patient-specific 3D geometry, 1D model, and the hybrid

1D-3D geometry. A flow waveform in the shape of sine function was prescribed at the inlet

of the geometry. Figure 4.3 shows the flow and pressure waveforms at the hybrid interface of

1D-3D geometry. As it can be seen, the continuity of flow and pressure at the interface can
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Figure 4.1: Flow wave form and the changes in the area in the 1D model of abdominal aorta. The dotted curve show the
simulation results carried out for the total inflow waveform time. The sold line shows the same results while the inflow waveform
was divided into 10 sections.

be verified. Since the flow at the 3D interface is outwards and the flow at the 1D interface

is inward, the absolute values of flow rate is reported in Fig. 4.3.

Figure 4.2: The geometries used in verification of continuity condition at the interface of 1D and 3D models.

The next step in verification of the developed 1D-3D solver is to compare the results of

current solver with the presented data in the literature. Figure 4.4 shows the resulted

pressure waveforms from a 3D simulation with deformable wall [194], the corresponding 1D

model, and the pressure waveform obtained from the developed 1D-3D solver. The results

are presented for the abdominal aorta inlet and a mid-point in the iliac artery. As it can be
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Figure 4.3: The pressure and flow waveforms at the interface of 1D and 3D model. This figures verifies that continuity of the
results at the interface for a transient simulation.

seen there is a good agreement between the 1D-3D model and the 3D model with deformable

wall.

Figure 4.4: Comparison of the resulted pressure waveforms obtained from 3D model with deformable wall, 1D solver, and the
developed 1D-3D solver. The figure on the left panel shows the pressure waveforms at the inlet of geometry. The fight panel
shows the pressure waveforms in the mid-section of the iliac artery.

The geometries considered for validation of developed hybrid 1D-3D solver were limited

to ones with only one hybrid interface. The developed 1D-3D solver also is able to solve

multiple hybrid interfaces in one geometry. However, the computational cost increases with

having multiple hybrid interfaces since for each interface, the continuity of flow and pressure

should be obtained and the changes in the 3D boundary condition may lead do back flow

rate in one of the outlets. One of the solutions to resolve the back flow at the interface

boundaries is to extend the outlets to ensure the flow can reach a unidirectional state. For

this reason, the majority of the 1D-3D simulations in the literature only consider one hybrid

outlet [194, 188, 189, 186].
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Chapter 5

Automatic generation of vascular

network based on perfusion maps: A

theoretical study

5.1 introduction

Vascular networks carry on the important task of efficiently distributing the blood to various

segments of a tissue. Computational models have been developed to study the blood flow

inside an arterial network and understand the connection between vascular structure and

the blood supply in biological tissues [195, 196, 197]. Detailed anatomical models of vascular

trees can serve as models enabling quantitative analysis of blood flow distribution [198, 199].

Vascular models should match physiological and anatomical structure of organs. In the

past decade, advances in the medical imaging techniques provided a great opportunity to

reconstruct the larger arteries [200, 181]. However, The resolution of such images does not

allow for a detailed reconstruction of the entire vascular network. Thus, developing an
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algorithm to automatically generate the arterial network based on physiological principles is

needed to better understand the effect of vascular network structure on the supply of blood

to various tissues.

Most of the vascular tree network generation algorithms are derived from anatomical data.

Kassab et al. developed an algorithm based on ordering and connectivity matrix to generate

the vascular network in porcine hearts [201]. Based on their work, others enhanced the

algorithm by adding functional principles to the model [202, 203]. One common assumption

in the early work was the consideration of an evenly distributed blood flow in terminal

arteries. More advanced models were introduced by considering a random generation of

network based on the perfusion maps [204, 205, 206, 207]. In these methods, the arterial

network volume is optimized iteratively until all the terminal segments are added. Also,

there are approaches based on the Monte Carlo recursive algorithm that put constraints on

the bifurcation angles and the length of the arteries [203].

Recently, the Constraint Constructive Optimization (CCO) method gained popularity for

generation of an arterial network [24, 25, 208]. This algorithm is based on the physiological

and hemodynamics principles. One advantage of this method is its conforming capabilities

to various surfaces. This algorithm includes genesis of a single arterial network which has

an optimal volume [209, 210].

In this chapter, we describe details of the physics-based vascular network generation model.

We describe the vasculature generation algorithm based on CCO which is initialized with

a user-defined perfusion map. We then describe the iterative construction algorithm of

a network for random terminal nodes, optimizing the location of bifurcations, calculating

branch radii and flow, and the underlying physiological constraints.
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5.2 Methods

In this section, we discuss the physics-based mathematical framework to automatically gen-

erate a vascular network. In details, the steps to generate an optimal arterial network using

the constraints such as the perfusion flow, radius of each vessel, position of each bifurcation,

pressure drop and resistances inside the arterial network are presented.

Here, we assume the perfusion point (the starting node of the root segment) is known and

fixed in space. Then, the arterial network generation begins with adding the first random

terminal node and creating the root segment. Next, the iterative generation of new terminal

nodes can be started. After adding each terminal node, an optimized bifurcation will be

calculated based on the physiological and geometrical constraints. It is assumed that each

new segment initially connects the newly added node to the middle of a candidate segment.

5.2.1 Fundamentals of arterial network generation

The first and most important physical law in an arterial network is the conservation of mass

at each bifurcation. In other words, assuming an incompressible blood flow, the volumetric

flow rate in the parent artery should be equal to the sum volumetric flow rates in the daughter

branches, Qd1 and Qd2:

Qparent = Qd1 +Qd2 , (5.1)

Assuming all the terminal vessels have the same volumetric flow, we can extend Eq. 5.1 to

the whole arterial network and show that the sum of all the terminal flows needs to be equal

to the perfusion flow, Qperf
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Qterm =
Qperf

N
, (5.2)

where Qterm is the flow in each terminal artery and N is the number of terminal arteries.

Using physiological scaling laws, one can write the following relation between each daughter

radius (rd1 and rd2) and the radius of the parent artery:

rγparent = rγd1 + rγd2 , (5.3)

where γ is a parameter between 2.55 and 3 depending on the network [210]. Assuming a

Newtonian, laminar flow, the hydrodynamic resistance Ri for the arterial segment i can be

expressed using Poiseuille’s law

Ri =
8µLi
πr4

i

, (5.4)

where µ denotes the viscosity of the blood which is assumed constant with µ = 3.6cP . Hence,

the pressure drop along a segment can be obtained as

∆Pi = RiQi , (5.5)

Adding a new terminal artery to the network will change the flow distribution and the

resistances in the whole arterial network. We can define a reduced resistance by factoring

the radius out of Eq. 5.4 for a terminal artery

R∗term =
8µLt
π

, (5.6)
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However, adding a branch to a specific segment of the network will create a subtree. The

reduced resistance of the modified non-terminal artery can be calculated as [210]

R∗i,mod =
8µLi
π

+

[
(rd1/ri)

4

R∗d1

+
(rd2/ri)

4

R∗d2

]−1

, (5.7)

According to Eq. 5.7, the reduced resistance of a modified branch is associated with the radii

of the daughter arteries. Thus, its R∗i,mod needs to be calculated by recursively traversing

the subtrees of the modified segment in postorder mode via traversing the left subtree, then

the right subtree (see [210]). Assuming a constant pressure at all the terminal arteries, the

flow ratio at each new bifurcation can be calculated as

Qi,mod

Qi,new

=
Ri,new

Ri,mod

=
R∗i,new/r

4
i,new

R∗i,mod/r
4
i,mod

, (5.8)

where Ri,mod is the hydrodynamic resistance of the modified segment which includes the total

resistance in the following subtree of this segment and Ri,new is the resistance of the newly

added terminal segment. Using Eq. 5.12 we can calculate the radius ratio of two daughter

arteries as follows

ri,mod
ri,new

=

[
Qi,modR

∗
i,mod

Qi,newR∗i,new

]1/4

, (5.9)

Using Eq. 5.3, we can calculate the bifurcation ratios for the parent artery of i,mod and

i, new segments

βparent−i,new =

[
1 +

(
ri,mod
ri,new

)−γ]−1/γ

, (5.10a)

βparent−i,mod =

[
1 +

(
ri,mod
ri,new

)γ]−1/γ

, (5.10b)
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The bifurcation ratios βparent−i,mod and βparent−i,new are based on geometrical constraints and

flow distribution inside the arterial network. Adding a new terminal segment also changes

the flow in the upstream network. We can use the same concept and equations to correct

the flows and resistances up to the root segment. The corrected radius of the root artery

can be calculated as follows

rroot =

(
Rroot,mod

R∗root,mod

)1/4

, (5.11)

where Rroot,mod is the total resistance of the network.

5.2.2 Vascular network generation

With the use of physics-based mathematical framework presented in the previous section,

we can iteratively add arterial segments to the network while meeting the aforementioned

constraints. However, it has been shown that growth of vascular networks is not random but

they are structured in a way that the blood is supplied to tissues with an optimal cost [210].

This makes the generation of arterial networks a constrained optimization problem. Here,

we define the objective function as follows

∑
j

Lηj r
λ
j , (5.12)

where η and λ are dimensionality constants. Here we choose η = 1 and λ = 2 which

correspond to the volume of each vessel. We assume that every added terminal node to the

network may be connected to one of the first 10 closest arterial segments. Thus, there are two

aspects into the optimization, i.e. geometrical and structural. When a new terminal node

is connected to the first candidate segment (closest segment), the location of bifurcation

needs to be optimized in a way that the objective function is minimized. This process
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involves the correction of flows and resistances in the entire network of arteries at every

optimization step. Then, the new network can be stored, the old network will be used again

to find the second closest candidate segment and the optimization process will be performed

again for this new network. All the 10 closest candidate segments will be examined and the

network with the smallest cost function will be selected. Here, we define the cost function

as the volume of the entire network. Also, more constraints including a minimum length for

each segment, no intersection between segments, the bifurcation angle constraints, and the

distance of new terminal nodes from other established nodes are applied. Figure 5.1 shows

the steps implemented in the automatic arterial network generation.

In this study, we used an open-source nonlinear optimization package called Nlopt [211] to

perform optimization of the location of each bifurcation based on geometrical and physiologi-

cal constraints. Specifically, a local derivative-free optimization algorithm called Constrained

Optimization BY Linear Approximations (COBYLA) was utilized [212]. This algorithm al-

lows the application of nonlinear constraints in the optimization process.

The developed software has the ability to generate an input file executable in Simvascular ’s

1D solver. The generated input file contains the information about the coordinates of the

nodes, connectivity between segments, segment data including the finite element mesh size,

boundary conditions, material properties, and the perfusion map information.

One of the assumption in the CCO algorithm is to consider a rigid wall for the arteries. In

reality, the vascular networks show deformable walls. If we consider a deformable arterial

wall and use Simvascular ’s 1D solver, the flows at each terminal segment will not follow

the perfusion map. To resolve this issue, an iterative diameter tuning algorithm was added

to the Simvascular ’s 1D solver. The purpose of this algorithm is to find new diameters for

each segment in the entire network that result in a terminal flow distribution matching the

perfusion map. The algorithm solves the entire network for a constant inflow rate for a

period of 1 s. Then, it stores the values of flow rate and diameter for each segment of the
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Figure 5.1: Summary of the steps taken in developing the automatic generation of arterial network.

network and compare the terminal flow distribution to the perfusion map data. Based on the

terminal flow distribution, the diameter of each segment will be updated and the blood flow

will be solved in the entire network. This iterative process continues until the mean squared

error (MSE) between the perfusion map and the calculated terminal flow distribution become

less than 10−7.
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5.3 Results

The 1D CCO algorithm was used to simulate the generation of arterial network using various

theoretical perfusion maps. In this section, the generated arterial networks confined in a cube

considering one compartment perfusion map, 6 compartments, and 9 layered compartments,

and a network inside a spherical domain with 6 perfusion compartments are presented.

Figure 5.2 shows the different stages in generation of an arterial network. These stages

include 2, 3, 4, 5, 10, and 28 terminal nodes. The changes in the location of bifurcations are

visible in this figure. The arterial network in this figure corresponds to one compartment

perfusion map. The input data to generate these networks were as follows: Qperf = 0.05ml/s,

pterm = 83mmHg, and pperf = 133mmHg.

Figure 5.2: The evolution of an arterial network through various stages of the CCO algorithm.
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Figure 5.3 shows the test cases with bifurcation angle constraints without any maximum

length constraint. As it can be seen in this figure, there is no bifurcation with too large or

small angle. In this study, we assumed a bifurcation angle between 30 and 150 degrees. This

constraint helps generation of a structured network and in fact decreases the computation

time for generation of large networks. The angle constraint ensures systematic generation

of bifurcation. The input data to generate these networks were as follows: Qperf = 0.1ml/s,

pterm = 83mmHg, and pperf = 133mmHg.

Figure 5.3: The effect of bifurcation angle constraint on the arterial network.

Figure 5.4 shows the generated arterial networks assuming a uniform perfusion block. This

means that all the terminal nodes are placed randomly in the domain of interest and all the

terminal segments supply a same amount of blood flow. The input data to generate these

networks were as follows: Qperf = 0.1ml/s, pterm = 83mmHg, and pperf = 133mmHg.

Figure 5.5 demonstrate the generated arterial networks assuming 6 different perfusion com-

partments. For this case, a weighted random coordinates generator was used to add terminal

nodes inside the domain. The weights were selected based on the percentage of blood supply

at each compartment. As it can be seen, the CCO algorithm generated a network of vascu-

lature with larger number of segments in regions with higher probability of blood perfusion.
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Figure 5.4: Generation of a network with various numbers of terminal nodes without any perfusion map. This figure shows
the random evolution of vascular network.

The terminal flow for all the segments in a specific compartment was assumed to be constant,

but different for different compartments. The input data to generate these networks were as

follows: Qperf = 0.05ml/s, pterm = 83mmHg, and pperf = 133mmHg.

Figure 5.5: Arterial network generated in a block with multiple perfusion areas. the middle block has zero percentage of
blood perfusion and the results do not show any terminal segment in this area.

Figure 5.6 shows the generation of arterial network in a theoretical layered perfusion map.

In this case, it is assumed that the bottom layer has the largest perfusion flow. As it can be

seen, the generated networks are structured in a way that the number of terminal segments

at the bottom of the block is larger than other layers. The input data to generate these

networks were as follows: Qperf = 0.02ml/s, pterm = 83mmHg, and pperf = 133mmHg.

Figure 5.7 shows the generated vascular network using 65 terminal nodes (124 segments)

inside a spherical domain. The perfusion map was assumed to be consisted of 5 compartments
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Figure 5.6: Arterial network generated based on a layered perfusion map. The results show higher density of terminal segments
in the bottom of the block.

with highest percentage of perfusion flow at the outer layer of the sphere. The input data

to generate this network were as follows: Qperf = 0.03ml/s, pterm = 83mmHg, and pperf =

133mmHg.

Figure 5.8 shows the a tree with 35 terminal segments. The left panel shows the generated

network from the developed automatic arterial network generation software colored by the

cross-sectional area of each segment. The right panel shows the same network after tuning

the areas so that the flows at terminal segments match the perfusion map when considering

deformable walls for the network. The input data to generate these network were as follows:

Qperf = 0.05ml/s, pterm = 83mmHg, and pperf = 133mmHg.

5.4 Discussion

The main motivation behind developing the presented automatic arterial generation package

was to study the structure of an arterial network based on the perfusion maps. Specially,

in case of microvascular disease that imaging techniques cannot capture the network, such

algorithms can be used to computationally generate the corresponding microvascular net-

102



Figure 5.7: Arterial network generated based on a spherical perfusion map (125 segments). A quarter of the sphere is sliced
out to better visualize the generated network.

work based on the mathematical and physiological laws and the perfusion maps obtained

from positron emission tomography (PET) data, oxygen supply in the tissue, or fractional

myocardial blood volume (fMBV) maps obtained from ferumoxytol-enhanced magnetic reso-

nance imaging. Another use case of such algorithm is to discover the hierarchy in a network,

lengths of segments, and density of arterial sub-trees in different regions.

The theoretical results showed an interesting transition in the structure of the tree in different

stages. The distribution of flows in the terminal segments can change the location of the

upstream bifurcations in the early stage of development (Fig. 5.4). This change in the
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Figure 5.8: Global tuning of the segment diameter. The left panel shows the generate network with 35 terminal segments
using the developed arterial network generation software. The right panel shows the same network after tuning each segment’s
diameter so that the collective flow at the terminal matches the perfusion data when considering deformable wall for the network.

geometry of the network is related to the fact that different flow distribution results in

different segment diameters and a change in the location of optimized bifurcation. This

slight change can significantly alter the path of the segment when more terminal nodes are

added.

It should be noted that straight arterial segments were used in this study to decrease the

computational cost. In reality, the arterial segments are not straight but they follow the

curvature of a tissue. Even in the case of microvascular network, the segments are not

perfectly straight. However, adding a constraint to the algorithm to follow a surface is

possible even if the segments are assumed straight [209]. To do so, one can generate the

terminal nodes in a specific radius of a segment and let the network grow based on the local

growth of the subtree. On the other hand, using curved segments adds many additional

degrees of freedom to the optimization process which leads to higher computational cost.

The presented results in this chapter show the capability of the developed package to simulate

the generation of arterial/microvascular networks based on physiological principles. One can
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use CT images to create the 3D model of visible arteries around an organ and generate

the arterial network based on the 3D model. Using the developed 1D-3D solver in previous

chapter, enables us to simulate the blood flow distribution in a large network of vessels. It

should be noted that due to the randomness of the generated tree, it will be unlikely to use

this model as a replica of real vascular networks. However, incorporating more physiological

constraints can lead to a more realistic model.

In summary, we developed an automatic vascular network generation package based on the

known physiological and mathematical laws. The results showed the potential of this algo-

rithm in generation of such networks for different theoretical perfusion maps (Figs. 5.5 and

5.6). This work is in progress to create more realistic vascular networks. The next steps are

adding an arbitrary surface constraint so that the network can be developed around curved

surfaces, improving boundary conditions, and the ability to simulate the microvascular net-

work inside an organ.
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Chapter 6

Conclusion

This dissertation consisted of two main sections: (i) the association between hemodynam-

ic/biotransport parameters and longitudinal changes in the plaque vulnerability characteris-

tics, and (ii) developing a 1D automatic vascular network generation package with the ability

to be coupled with a 3D patient-specific model in Simvascular.

In the first part, we have studied the near-wall transport of major biochemicals and cells

contributing to the initiation and progression of atherosclerosis. The near-wall transport

of low-density lipoprotein, nitric oxide, adenosine triphosphate, oxygen, monocytes, and

monocyte chemoattractant protein-1 was simulated in 8 diseased human coronary arteries

and 2 healthy swine coronary arteries. The results of this study showed that near-wall

localization patterns are dictated by WSS magnitude and vectorial features (WSS LCS).

Our results were compared with prior mechanotransduction studies and we presented a

comprehensive theory for the role of WSS in atherosclerosis. High WSS magnitude protected

against atherosclerosis by increasing the production or flux of atheroprotective biochemicals

and decreasing the near-wall localization of atherogenic biochemicals. Low WSS magnitude

promoted atherosclerosis by increasing atherogenic biochemical localization. Finally, the
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attracting WSS LCS’s role was more complex where it promoted or prevented atherosclerosis

based on different biochemicals.

To find the association between hemodynamic/biotransport parameters calculated in Chap-

ter 2 and the longitudinal changes in the vulnerability characteristics of the plaques, we

developed an atherosclerotic plaque quantification software to accurately quantify the vul-

nerability characteristics of coronary artery plaques using a segment-specific method. The

developed software has the ability to visualize DICOM image series, create arterial center-

lines, generate the cross-sectional view of the vessel, quantify the volumes of low attenuation

plaque, fibrous plaque, calcium plaque, and the lumen. For qualitative parameters such as

napkin-ring sign, positive remodeling, severe stenosis, and spotty calcification, the user is

provided an option to select the presence of these characteristics in each segment of the

coronary artery. This software uses the vesselness enhancement algorithm to prevent organ

over-projection effect, vessel wall and plaque membership functions to ensure the inclusion

of the whole vessel in the segmented image, and an adaptive threshold method to accurately

quantify different plaque components. We used this software to quantify 16 diseased coronary

arteries (8 baseline and 8 follow-up) and found the association of hemodynamic/biotrans-

port parameters at baseline with the longitudinal changes in the plaque characteristics. Our

statistical analysis showed that WSS magnitude and the divergence of WSS vectors are mod-

erately correlated with the longitudinal changes in the fibrous plaque volume and presence

of napkin-ring sign in the follow-up. Our results did not show any meaningful association

between atherogenic/atheroprotective biochemical localization and the longitudinal changes

in the vulnerability characteristics.

In the second part (Chapters 4 and 5), a framework was proposed to couple the 1D and 3D

solvers in Simvascular and a package was developed to automatically generate a 1D network

of arteries that can be used in the developed hybrid 1D-3D solver. The performance of our

coupled 1D-3D solver was compared against the existing data in the literature and showed
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good agreement with them. The automatic vascular network generation package uses the

well-known constrained constructive optimization (CCO) algorithm to locally optimize the

location of each bifurcation and uses an iterative algorithm to tune the areas of all the seg-

ments in the arterial tree when a deformable arterial wall is assumed. The developed package

was tested for multiple 3D perfusion maps and different aspects of generated networks were

discussed. The developed packages can be linked together to study the microvascular disease

as well as vulnerable plaques in coronary arteries.

6.1 Future directions

There are several areas that this study can be extended to in the future:

1. The developed plaque quantification and 3D model segmentation can be used for a

larger population to increase the power of statistical analysis. Increasing the sample

size will also increases the diversity of various characteristics of vulnerable plaques.

This can lead to more meaningful correlation between the hemodynamic/biotransport

parameters and the longitudinal changes in the atherosclerotic plaque.

2. The developed plaque quantification and 3D model segmentation can be used for a

population under prescription of novel drugs to analyze how the hemodynamics can

affect the efficacy of the drug in various segments of the coronary arteries. The devel-

oped software provides a powerful tool for researchers to study the role of various wall

shear stress parameters in progression of atherosclerosis.

3. The developed 1D-3D solver and the vascular tree generation package can be coupled

to study the effect of stenosis on the blood supply in the microvascular network. We

are planning to use the developed package to study the blood flow distribution in the

heart tissue using blood perfusion maps and patient-specific models.
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4. The developed framework for automatic vascular tree generation algorithm can be en-

hanced by including more physiological laws, adding a surface conforming algorithm,

and combining it with other existing algorithms such as Monte Carlo recursive algo-

rithm, to be able to create circulatory networks which connect the arterial side to the

venous circulation through a physiologically consistent capillary bed.
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[107] G. De Nisco, P. Zhang, K. Calò, X. Liu, R. Ponzini, C. Bignardi, G. Rizzo, X. Deng,
D. Gallo, and U. Morbiducci, “What is needed to make low-density lipoprotein trans-
port in human aorta computational models suitable to explore links to atherosclerosis?
impact of initial and inflow boundary conditions,” Journal of Biomechanics, vol. 68,
pp. 33–42, 2018.

[108] K. E. Jansen, C. H. Whiting, and G. M. Hulbert, “A generalized-alpha method for in-
tegrating the filtered Navier-Stokes equations with a stabilized finite element method,”
Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 3-4, pp. 305–
319, 2000.

[109] U. Olgac, V. Kurtcuoglu, and D. Poulikakos, “Computational modeling of coupled
blood-wall mass transport of ldl: effects of local wall shear stress,” American Journal
of Physiology-Heart and Circulatory Physiology, vol. 294, no. 2, pp. H909–H919, 2008.

[110] C. C. Michel and F. E. Curry, “Microvascular permeability,” Physiological Reviews,
vol. 79, no. 3, pp. 703–761, 1999.

[111] U. Förstermann, N. Xia, and H. Li, “Roles of vascular oxidative stress and nitric oxide
in the pathogenesis of atherosclerosis,” Circulation Research, vol. 120, no. 4, pp. 713–
735, 2017.

[112] J. Loscalzo and J. A. Vita, Nitric oxide and the cardiovascular system. Springer Science
& Business Media, 2000.

[113] M. U. Nollert and L. V. McIntire, “Convective mass transfer effects on the intracellular
calcium response of endothelial cells,” Journal of Biomechanical Engineering, vol. 114,
no. 3, 1992.

[114] H. W. Choi, K. W. Ferrara, and A. I. Barakat, “Modulation of atp/adp concentra-
tion at the endothelial surface by shear stress: effect of flow recirculation,” Annals of
Biomedical Engineering, vol. 35, no. 4, pp. 505–516, 2007.

119



[115] K. John and A. I. Barakat, “Modulation of atp/adp concentration at the endothe-
lial surface by shear stress: effect of flow-induced atp release,” Annals of Biomedical
Engineering, vol. 29, no. 9, pp. 740–751, 2001.

[116] L. Grechy, F. Iori, R. W. Corbett, W. Gedroyc, N. Duncan, C. G. Caro, and P. E.
Vincent, “The effect of arterial curvature on blood flow in arterio-venous fistulae:
Realistic geometries and pulsatile flow,” Cardiovascular Engineering and Technology,
vol. 8, no. 3, pp. 313–329, 2017.

[117] M. Cilla, M. A. Mart́ınez, and E. Peña, “Effect of transmural transport properties
on atheroma plaque formation and development,” Annals of Biomedical Engineering,
vol. 43, no. 7, pp. 1516–1530, 2015.

[118] H. Yu, Y. Zeng, J. Hu, and C. Li, “Fluid shear stress induces the secretion of monocyte
chemoattractant protein-1 in cultured human umbilical vein endothelial cells,” Clinical
Hemorheology and Microcirculation, vol. 26, no. 3, pp. 199–207, 2002.

[119] T. David, “Wall shear stress modulation of atp/adp concentration at the endothelium,”
Annals of Biomedical Engineering, vol. 31, no. 10, pp. 1231–1237, 2003.

[120] O. Parodi, T. P. Exarchos, P. Marraccini, F. Vozzi, Z. Milosevic, D. Nikolic, A. Sakel-
larios, P. K. Siogkas, D. I. Fotiadis, and N. Filipovic, “Patient-specific prediction of
coronary plaque growth from cta angiography: a multiscale model for plaque forma-
tion and progression,” Ieee Transactions on Information Technology in Biomedicine,
vol. 16, no. 5, pp. 952–965, 2012.

[121] P. E. Vincent and P. D. Weinberg, “Flow-dependent concentration polarization and
the endothelial glycocalyx layer: multi-scale aspects of arterial mass transport and
their implications for atherosclerosis,” Biomechanics and Modeling in Mechanobiology,
vol. 13, no. 2, pp. 313–326, 2014.

[122] L. H. Timmins, D. S. Molony, P. Eshtehardi, M. C. McDaniel, J. N. Oshinski, D. P.
Giddens, and H. Samady, “Oscillatory wall shear stress is a dominant flow charac-
teristic affecting lesion progression patterns and plaque vulnerability in patients with
coronary artery disease,” Journal of The Royal Society Interface, vol. 14, no. 127,
p. 20160972, 2017.

[123] V. Peiffer, S. J. Sherwin, and P. D. Weinberg, “Does low and oscillatory wall shear
stress correlate spatially with early atherosclerosis? a systematic review,” Cardiovas-
cular Research, p. cvt044, 2013.

[124] O. Smedby, “Do plaques grow upstream or downstream? an angiographic study in
the femoral artery,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 5,
pp. 912–918, 1997.

[125] P. H. Stone, S. Saito, S. Takahashi, Y. Makita, S. Nakamura, T. Kawasaki, A. Taka-
hashi, et al., “Prediction of progression of coronary artery disease and clinical outcomes
using vascular profiling of endothelial shear stress and arterial plaque characteristics:
the PREDICTION study,” Circulation, vol. 126, no. 2, pp. 172–181, 2012.

120



[126] C. Stefanadis, C. K. Antoniou, D. Tsiachris, and P. Pietri, “Coronary atherosclerotic
vulnerable plaque: current perspectives,” Journal of the American Heart Association,
vol. 6, no. 3, p. e005543, 2017.

[127] S. Motoyama, M. Sarai, H. Harigaya, H. Anno, K. Inoue, T. Hara, H. Naruse, J. Ishii,
H. Hishida, N. D. Wong, et al., “Computed tomographic angiography characteristics of
atherosclerotic plaques subsequently resulting in acute coronary syndrome,” Journal
of the American College of Cardiology, vol. 54, no. 1, pp. 49–57, 2009.

[128] H.-J. Chang, F. Y. Lin, S.-E. Lee, D. Andreini, J. Bax, F. Cademartiri, K. Chinnaiyan,
B. J. Chow, E. Conte, R. C. Cury, et al., “Coronary atherosclerotic precursors of acute
coronary syndromes,” Journal of the American College of Cardiology, vol. 71, no. 22,
pp. 2511–2522, 2018.

[129] M. Ferencik, T. Mayrhofer, D. O. Bittner, H. Emami, S. B. Puchner, M. T. Lu, N. M.
Meyersohn, A. V. Ivanov, E. C. Adami, M. R. Patel, et al., “Use of high-risk coronary
atherosclerotic plaque detection for risk stratification of patients with stable chest pain:
a secondary analysis of the promise randomized clinical trial,” JAMA cardiology, vol. 3,
no. 2, pp. 144–152, 2018.

[130] M. Cilla, E. Pena, and M. A. Martinez, “Mathematical modelling of atheroma plaque
formation and development in coronary arteries,” Journal of The Royal Society Inter-
face, vol. 11, no. 90, p. 20130866, 2014.

[131] S.-E. Lee, J. M. Sung, A. Rizvi, F. Y. Lin, A. Kumar, M. Hadamitzky, Y.-J. Kim,
E. Conte, D. Andreini, G. Pontone, et al., “Quantification of coronary atherosclerosis
in the assessment of coronary artery disease,” Circulation: Cardiovascular Imaging,
vol. 11, no. 7, p. e007562, 2018.

[132] S. Dahal and M. J. Budoff, “Implications of serial coronary computed tomography
angiography in the evaluation of coronary plaque progression,” Current opinion in
lipidology, vol. 30, no. 6, pp. 446–451, 2019.
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[143] E. S. Kröner, J. E. van Velzen, M. J. Boogers, H.-M. J. Siebelink, M. J. Schalij, L. J.
Kroft, A. de Roos, E. E. van der Wall, J. W. Jukema, J. H. Reiber, et al., “Positive
remodeling on coronary computed tomography as a marker for plaque vulnerability
on virtual histology intravascular ultrasound,” The American Journal of Cardiology,
vol. 107, no. 12, pp. 1725–1729, 2011.

[144] T. Pflederer, M. Marwan, T. Schepis, D. Ropers, M. Seltmann, G. Muschiol, W. G.
Daniel, and S. Achenbach, “Characterization of culprit lesions in acute coronary syn-
dromes using coronary dual-source ct angiography,” Atherosclerosis, vol. 211, no. 2,
pp. 437–444, 2010.

[145] M. G. Dalager, M. Bøttcher, G. Andersen, J. Thygesen, E. M. Pedersen, L. Dejbjerg,
O. Gøtzsche, and H. E. Bøtker, “Impact of luminal density on plaque classification by
ct coronary angiography,” The international journal of cardiovascular imaging, vol. 27,
no. 4, pp. 593–600, 2011.

122



[146] S. Schroeder, T. Flohr, A. F. Kopp, C. Meisner, A. Kuettner, C. Herdeg, A. Baum-
bach, and B. Ohnesorge, “Accuracy of density measurements within plaques located in
artificial coronary arteries by x-ray multislice ct: results of a phantom study,” Journal
of computer assisted tomography, vol. 25, no. 6, pp. 900–906, 2001.

[147] K. T. Bae, “Intravenous contrast medium administration and scan timing at ct: con-
siderations and approaches,” Radiology, vol. 256, no. 1, pp. 32–61, 2010.

[148] A. Broersen, M. A. de Graaf, J. Eggermont, R. Wolterbeek, P. H. Kitslaar, J. Dijkstra,
J. J. Bax, J. H. Reiber, and A. J. Scholte, “Enhanced characterization of calcified areas
in intravascular ultrasound virtual histology images by quantification of the acoustic
shadow: validation against computed tomography coronary angiography,” The inter-
national journal of cardiovascular imaging, vol. 32, no. 4, pp. 543–552, 2016.

[149] M. C. de Knegt, M. Haugen, A. K. Jensen, J. J. Linde, J. T. Kühl, J. D. Hove, and
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