Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2013, Article ID 468021, 9 pages
http://dx.doi.org/10.1155/2013/468021

Review Article

Hindawi

Thematic Review and Analysis of Grounded Theory
Application in Software Engineering

Omar Badreddin

University of Ottawa, Ottawa, ON, Canada KIN 6N5

Correspondence should be addressed to Omar Badreddin; obadr024@uottawa.ca

Received 5 June 2013; Accepted 4 September 2013

Academic Editor: Phillip A. Laplante

Copyright © 2013 Omar Badreddin. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present metacodes, a new concept to guide grounded theory (GT) research in software engineering. Metacodes are high level
codes that can help software engineering researchers guide the data coding process. Metacodes are constructed in the course of
analyzing software engineering papers that use grounded theory as a research methodology. We performed a high level analysis
to discover common themes in such papers and discovered that GT had been applied primarily in three software engineering
disciplines: agile development processes, geographically distributed software development, and requirements engineering. For each
category, we collected and analyzed all grounded theory codes and created, following a GT analysis process, what we call metacodes
that can be used to drive further theory building. This paper surveys the use of grounded theory in software engineering and

presents an overview of successes and challenges of applying this research methodology.

1. Introduction

Grounded theory (GT) is a systematic qualitative research
methodology, originating in the social sciences and empha-
sizing the generation of theory from qualitative data in the
process of conducting research. Grounded theory, in its orig-
inal form, was proposed by Glaser and Strauss [1]. However,
it was not until 1993 that we could find the first significant
grounded theory work applied in software engineering (SE)
[2]. Since that date, more researchers have adopted the pro-
cess and GT has shown promising results. There is a limited,
but increasing, body of literature reporting the application
of grounded theory in SE. Nevertheless, GT applications
in software engineering are still very limited, most likely
due to the complexities of applying GT methodology in
SE. The GT methodology, we argue, requires adaptation for
successful employment in the software engineering domain.
The contribution of this paper is to provide what we will call
metacodes that can be used to drive the initial coding phase
of GT. The paper also provides an analysis of existing GT
applications in software engineering and the characteristics
of such application as exhibited in the existing literature.
This paper is organized as follows. Section 2 presents a
brief history of grounded theory and its application in the

software engineering arena. Section 3 presents the methodol-
ogy we adopted to survey, categorize, and analyze GT coding.
The subsequent three sections present a literature review
and the metacodes thematically organized by the application
area. We look at three areas: agile development, distributed
development, and requirements engineering. The remainder
of the paper presents some GT characteristics that are specific
to applications in software engineering and an overview of
where GT has been successful and where challenges exist in
the application of GT in software engineering.

2. Background and History

Grounded theory is a systematic qualitative research method-
ology that emphasizes the generation of theory from data.
Grounded theory operates almost in a reverse fashion to
the traditional scientific method. Rather than proposing a
hypothesis and gathering data to support it, data collection
is pursued first without any preconceptions. Key points in
the data are marked with a series of “codes,” which are then
grouped into similar concepts or categories. These categories
become the basis of a theory. The coding process is typically
performed in two steps, initial then focused coding. The
categorization process is normally referred to as axial coding.

Grounded theory emerged as a research methodology in
the 1960s, during a time when sociological research practices
were particularly reliant on quantitative methodologies. In
1967, Glaser and Strauss coined the term grounded theory
in their book The Discovery of Grounded Theory [1]. The
term refers to the idea of a theory that is generated by—or
grounded in—an iterative process of analysis and sampling
of qualitative data gathered from concrete settings, such as
interviews, participant observation, and archival research.

The roots of this methodology can be traced back to the
work of Dilthey and Rickman [3] who argued against the
pursuit of causal explanations at the expense of establishing
understanding. Grounded theory methodology can also be
traced back to the symbolic interactionist perspective of
Blumer [4]. The term “symbolic interaction” refers to the
peculiar and distinctive character of interaction as it takes
place between human beings. The peculiarity consists in the
fact that human beings interpret or “define” each other’s
actions instead of merely reacting to each other’s actions.

Since GTs inception in the social sciences, grounded the-
ory has become increasingly popular in information systems
as a research methodology. This is evident by the growing
literature on the methodology and its applications. The first
publication our team was able to identify as an application
of grounded theory in the area of software engineering was
the work by Calloway and Ariav [5] and Toraskar [6] in 1991.
In these publications, the researchers described how they
adopted grounded theory in understanding how managerial
users evaluate their decision support systems.

The first international journal publication of a grounded
theory application in software engineering is that of
Orlikowski in 1993 [2]. In this work, the researcher presents
findings of a study into the adoption of CASE tools. The
researcher justified the use of grounded theory as a research
methodology on the basis that it provided “a focus on con-
textual and processual elements as well as the action of key
players associated with organizational change elements that
are often omitted in IS studies”

More recently, Baskerville and Pries-Heje [7] employed
grounded theory combined with action research to enhance
the rigor and traceability in the theory-development part of
their work. Action research is a reflective process of pro-
gressive problem solving led by individuals working with
professionals to improve the way they address issues and solve
problems. Other work has employed grounded theory to
initiate more focused data collection activities [8].

Grounded theory applications have extended to other
areas within software engineering. While the literature is
limited, the most prominent discipline of grounded theory
work is in software development methodologies, as evident in
the quantity of published work in this discipline. Out of the
60 research papers we identified as applications of grounded
theory in software engineering 25 addressed software devel-
opment methodology. Other subdisciplines with significant
bodies of GT research include requirements engineering and
distributed software development practices.

We believe that GT is a research methodology particu-
larly useful for software engineering research for two main
reasons. First, software development is a human-intensive

Advances in Software Engineering

process. Second, software is used by humans with complex
interaction and usage patterns, where quantitative evidence
is nonexistent or difficult to formulate. Secondly, GT provides
an effective approach for qualitative analysis of the rich data
sets available in typical software engineering environments.
For example, emails and chat histories provide recorded com-
munication information possibly over an extended period
of time. Such information is an important data source for
GT studies that are available in typical software engineering
environments.

The low and slow adoption of GT methodology in sof-
tware engineering is due to a number of factors. First, GT
originated in the social sciences, and since its adoption in
software engineering, there has been little guidance on how
to employ the methodology. Second, it is not clear what char-
acteristics of GT need adaptation to better fit the nature of
software engineering research. Many researchers in software
engineering are not familiar with GT and in our experience
can be skeptical of its effectiveness. In addition, as our survey
highlights, the number of researchers that have reported
using GT is small, which contributes a barrier to accelerating
GT adoption.

3. Discussion of Sources

Surveying the application of grounded theory in software
engineering turned out to be more challenging than antici-
pated. Grounded theory work is published in a large variety of
journals and conference proceedings. A significant portion of
grounded theory research can be located in journals dealing
with empirical studies. Nevertheless, a growing number of
grounded theory projects deal with development processes,
requirements engineering, software tools, and development
practices. Such work is typically published in journals not
related to empirical studies. What follows is a review of the
methodology used to identify candidate GT sources to ensure
that we covered the full gamete of papers on the subject.

We located more than 60 published papers that explicitly
reported the use of grounded theory in the analysis of their
data in an area related to software engineering. While the
determination of the use of grounded theory as a research
methodology was relatively clear, the scope that defines what
software engineering is remains more challenging. Hence,
we found a thematic presentation was the most appropriate.
The surveyed resources are organized under three main
themes: agile development, distributed development, and
requirements engineering. These three disciplines contain a
major portion of the grounded theory work within software
engineering.

Some grounded theory approaches recommend starting
with high level codes to drive theory building [9]. This is
particularly challenging due to the small amount of the lit-
erature available on the application of GT in software engi-
neering. In order to help software engineering researchers, we
collected all codes and categories that were reported in each
GT application theme. We then analyzed those codes using
a GT approach to create what we call metacodes or codes of
codes. We first collected all codes and subcodes from the
grounded theory papers in each theme separately. Those

Advances in Software Engineering

codes were then analyzed, rearranged, and merged to create a
final shallow hierarchy of metacodes. Each metacode is asso-
ciated with tags that summarize a larger number of codes and
subcodes as exhibited in the literature within a specific theme.
It is our conjecture that the metacodes can be of value to
future applications of GT in the software engineering themes
presented in this paper. They can function as high level codes
that drive theory building in these areas.

4. Grounded Theory in Agile
Development Methodologies

We were able to identify 32 published papers that applied
grounded theory to study software development methodolo-
gies. Of these, 9 reported studying agile methodologies.

Agile software development refers to a group of method-
ologies that share and promote principles such as devel-
opment with short iterations, teamwork, collaboration, and
process adaptability throughout the life cycle of the project
[10]. The roots of agile development can be traced back to
1974 when an adaptive software development process was
introduced by Edmonds [11]. However, the definition of mod-
ern agile development processes evolved in the 1990s. For
example, Extreme Programming was formally introduced in
1996 [12].

Out of all surveyed papers, 9 reported research into
agile methodologies using grounded theory. This number
reflects the fact that agile development processes are a
relatively new and evolving concept. In addition, applications
of grounded theory work in software development methodol-
ogy in general are limited [8]. The earliest work that reported
a grounded theory methodology in an agile development
process setting is that of Kahkonen et al. [13].

One of the most prominent work is that of Coleman et al.
[14-16], who report on how software process and software
process improvement (SPI) are applied in the practice of
software development. Their study focused on a number
of indigenous Irish software companies at various stages of
development. In the first phase of the study, they performed
four interviews in three different companies. Each interview
contained 53 questions. In the second phase, they investigated
11 more companies, performing interviews of about an hour
each. They initially performed focused and axial coding,
which resulted in three themes and 17 core categories. The
theory they present represents a form of “experience” road
map illustrating some of the potential pitfalls a software
product company could face and how others have avoided
or resolved them. Their findings also included supporting
evidence and justifications regarding the low level of adoption
of CMM/CMMI and ISO 9000 by Irish software companies.
They cited the cost of its implementation and maintenance,
the added burden on the development efforts, and increased
documentation and bureaucracy as the main factors behind
the low adoption of such SPI initiatives. For example, they
report that smaller companies believed SPI would negatively
impact their creativity and flexibility.

Another example of the use of the grounded theory
approach in an agile environment involved exploring the

TABLE 1: Metacodes for agile development methodologies.

Agile development

Number
metacodes

Tags/description

Communications, processes,
negotiations, skills, team,
commitment, management,
implementation, knowledge
sharing trust, software builds,
team rooms, workspaces, and
meetings

Characteristics/practices
of agile development

Requirements,
communications,
people-oriented process,
formality, and team cohesion

Challenges of agile
development

Domain, number of projects,

3 Company characteristics
pany and market sector

Duration, complexity,
development sites, customer
locations, and team size

4 Project characteristics

Tools, expertise, culture, trust,
training, commitment, and
resource management

5 Lessons

socio-psychological characteristics of agile teams and learn-
ing about the types of experience acquired in such software
development teams [17, 18]. The findings contribute a better
understanding of the link between agile practices and positive
team outcomes such as motivation and cohesion.

4.1. Metacodes for Agile Development Methodologies. We col-
lected codes and subcodes from the 9 studies that adopted GT
to investigate agile development methodology. We construc-
ted the metacodes by analyzing 50 codes and 206 subcodes.
Metacodes and tags are summarized in Table 1.

Table 1 presents a summary of the metacodes we con-
structed in the agile methodology theme. Each metacode
represents a large number of codes and subcodes, samples
of which are presented in the rightmost column. Here we
provide a description for each of the metacodes.

4.1.1. Characteristics/Practices of Agile Development. This
metacode is used to group codes and subcodes that refer to
a characteristic specific to an agile software development
project. This includes the nature of communication within
teams, knowledge sharing, and the characteristics of trust
within a development team, management, and the client. It
also includes team rooms and the nature of the workspaces
and meetings.

4.1.2. Challenges of Agile Development. This code groups
challenges in agile development related to such topics
as requirements gathering activities, requirement stability,
nature and frequency of changes in requirements, commu-
nications, focus on the people-oriented rather than process-
oriented control, lack of formality, and lack of team cohesion.

4.1.3. Company Characteristics. Company-related codes were
reported in two studies. This metacode groups tags related

to the company domain, the number of agile projects in
execution and in total, and the targeted market sector.

4.1.4. Project Characteristics. This metacode represents all
codes related to the agile project characteristics. This includes
duration of the projects on average and individually complex-
ity of the project as perceived and objectively the number of
development sites and development team size.

4.1.5. Lessons. This metacode collects all lessons learned that
are related to agile development. Lessons learned were related
to the tools being utilized, the importance of expertise within
the team, the role of culture in the success of projects, and the
role of trust. In addition, it includes the importance of formal
training and the commitment of every team member to the
success of the agile activities and the importance of proactive
resource management.

5. Grounded Theory and Geographically
Distributed Development (GDD)

Out of our surveyed literature, we identified seven studies on
Geographically Distributed Development (GDD) that used
GT. GDD, also known as Distributed Software Development
(DSD), has grown to be a common practice in today’s
industry [19]. Despite the limited number of publications,
GDD seems to be a fertile discipline for grounded theory
application for the following reasons.

(i) GDD has grown, and is still growing, exponentially in
the last decade [20].

(ii) GDD brings about additional complexity to any
development process.

(iii) There is a wealth of data sources that can be ana-
lyzed using grounded theory analysis. For exam-
ple, communications in GDD are typically written
communications (email, chat sessions) that can be
easily recorded over an extended period of time with
little effort and little disruption to existing business
activities. Such data are typically absent in normal
settings or require significant effort to facilitate data
collection.

It is typical for grounded theory research activities to take
place in real life situations, by interviewing or collecting
data from real projects. However, one study [21] reported
grounded theory methodology using student subjects com-
prising 21 virtual teams collaborating in the completion
of a given task. In this study, the researcher aimed at
uncovering how distributed projects are managed and exe-
cuted. The study concludes with characteristics of managing
a distributed project as well as proposing a model for
distributed project management. A similar work [22] also
utilized students in a study of distributed development using
student participants. The study relied on the analysis of
electronic communications collected during the performance
of a distributed development task by the students.

There are situations when a surveyed GT work addressed
both GDD and agile methodology at the same time. In

Advances in Software Engineering

such situations, we classified the paper under both themes,
including their codes and sub-codes in the analysis and
construction of metacodes in both themes. GDD becomes
complex and challenging when an agile method is adopted
[23]. Ramesh et al. [20] have reported a grounded theory
approach that analyzes data from three different organiza-
tions, attempting to answer the question whether distributed
software development can be agile. Ramesh et al. have
identified a number of challenges specific to distributed agile
development processes; nevertheless, they concluded that
distributed and agile approaches can be combined.

Layman et al. [19] pursued a different approach. Layman
et al. studied a successful distributed agile development
project in the USA and the Czech Republic in an attempt to
uncover the characteristics of these successful projects. They
collected the data from archives of emails as well as semistruc-
tured interviews. Quantitative data (the number of source
file lines for example) was supplementary to their qualitative
data. Their work’s main contribution is the recommendation
of four success factors for a distributed XP methodology:
the facilitation of communication by the management, short
asynchronous communication loops, identifiable customer
authority to resolve requirement related issues, and a high
process visibility.

Managing requirements in a distributed development
setting present unique challenges. Requirements engineering
is a communication-intensive and dynamic task. When stake-
holders are geographically distributed, requirement engi-
neering tasks become even more complex. Damian and
Zowghi [24] present their field study work that investigates
requirements engineering challenges introduced by stake-
holders’ geographical distribution in a multisite organization.
Their goal is to examine requirements engineering practice
in global software development and formulate recommenda-
tions for improvements. In a subsequent section, we discuss
grounded theory-based requirements engineering research
in nondistributed projects.

5.1. Metacodes for Geographically Distributed Development.
Out of the seven identified GT studies on GDD, we analyzed
the codes extracted from six studies. One study did not
provide adequate reporting on its codes and subcodes. We
collected 31 codes and 95 subcodes resulting in 11 metacodes
presented in Table 2.

Table 3 presents a summary of the metacodes we
constructed in the geographically distributed development
theme. Each metacode represents a large number of codes
and sub-codes, samples of which are presented in Table 2.
Here we provide an analysis and description for each of the
metacodes.

GDD projects are, after all, software development
projects, so it was expected to see a number of codes that
can be found in a typical software engineering project.
Communications in a GDD project play a more prominent
role, and it was found in almost every set of codes analyzed.
Coordination and adaptation metacodes are closely associ-
ated with the GDD nature of the project. That metacode
represented codes related to time zone issues, collaboration,
level of involvement, and social and cultural issues. All these

Advances in Software Engineering

TABLE 2: Metacodes for geographically distributed development.

Number GDD metacodes Tags/description
.. Communication patterns (generating ideas, confirmation, consensus,
1 Communication . . s .
conflict, humor, and attitude), positive and negative
Coordination Time zone (delay in responses) collaboration, and involvement
Adaptation Social, work, technological, conflict resolution, and lateral thinking
Company size, maturity levels, existing development approaches, and
4 Company background bany Y & p PP
company’s culture
Project under study’s stakeholders related information, years of
5 Stakeholders Jec Y ¥
experience, and so forth
6 Collaboration technologies Simple emails, advanced collaboration technologies
7 Requirements challenges Inadequate communication, knowledge management, cultural
due to distance diversity, and time difference
. . Elicitation, prioritization, negotiation, validation, examining current
8 Requirements activities
system, and managing uncertainty specification
Achieving appropriate participation of system
9 Involvement of users VIng approp P P Y
users and field personnel
10 Trust Checking project status, concern about a member doing his task, and
trust built progressively
1 Delay Sources and nature of delay, perceived causes, and delay mitigation

actions

TABLE 3: Metacodes for requirements engineering.

Requirement

Number engineering Tags/description

metacodes
Distance, communications,
knowl management,

1 Challenges owledge management
customer culture, and awareness
of processes for RE

2 Elicitation

3 Prioritization

o These metacodes refer to the

4 Negotiation standard RE activities

5 Validation

6 Specification

Examining current . .
7 & Existing system attributes
system
Business objectives of the current
8 Business objectives software project to which RE is
being performed
. . Nature of users, expected project
Primary business . .
9 . contribution to business goals, and
attributes
so forth
. . Type of requirements, RE process,
10 Primary project ar)llg com ﬁexit of re uirerrl)lents
attributes plexity q ’
etc.
Iterative development,
RE process .

1 . development team and business

attributes

analysis team, etc.

aspects are related to the geographical nature of the project.
Collaboration technologies, requirements challenges due to
distance, involvement of users, delay, and trust are metacodes
that were found specific to GDD projects.

6. Grounded Theory and
Requirements Engineering

Requirements engineering is particularly attractive for
grounded theory methodology for a number of reasons.
Applications and systems are growing increasingly more
complex and involve everincreasing numbers of users and
stakeholders. Grounded theory can help discover patterns
from a stakeholders™ perspective of the system under devel-
opment that may increase our knowledge of the users’ needs
and how those stakeholders may perceive aspects related
to the new system, like the organization impact of the new
system and changes in business tasks and activities.

Requirements management tools now incorporate dis-
cussions, communications, and issues related to require-
ments. This large amount of data can serve as the basis for
extensive grounded theory work. Data collection techniques
that are typically applicable in social sciences and psychology,
from which grounded theory has emerged, are not always
as applicable in software engineering. Such requirements
management tools provide unbiased data that is otherwise
hard, or sometimes impossible, to collect without some level
of disturbance of existing business activities.

A prominent work in applying grounded theory to the
requirements engineering discipline is the work of Damian
and Zowghi [24] where they report on the investigation of
requirements engineering challenges introduced by stake-
holder’s geographical distribution in a multi-site organiza-
tion. In addition to conducting semistructured interviews,
they also analyzed existing documents and observed require-
ments meetings. In this work, and due to the geographi-
cally distributed organization, stakeholders heavily relied on
emails and automated requirements engineering tools that
provided recorded, as well as detailed, history of discussions
and communications.

Qureshi et al. [21] applied grounded theory methodology
on a case study of distributed software project management
activities. Their study spanned all project phases and used
observations and transcripts of electronic communications as
their data sources.

A study of the Hewlett-Packard requirements engineer-
ing process considered two projects [25]. The first project
was small and agile, and was characterized by quick releases,
while the second project was large and complex, and was
outsourced some of the development. Hewlett-Packard has
a large and varying collection of requirements engineering
processes. The selection of such processes is influenced by
business drivers and constraints as well as characteristics of
the project itself. Padula [25] has reported on how Hewlett-
Packard selects the requirement engineering process based
on project attribute.

Requirements engineering is inherently dynamic due
to the nature of continuous change put forward by the
various stakeholders. It is argued that information system
contexts are soft and ambiguous and are therefore mainly
characterized by qualitative data. Such characteristics make
grounded theory a suitable methodology for research in
the requirements engineering discipline. Galal and Paul [26]
presented an analytical technique, based on grounded theory,
for developing qualitative scenarios against which statements
of requirements can be evaluated.

6.1. Metacodes for Requirements Engineering. For require-
ments engineering, we collected 26 codes and 54 sub-codes
for analysis that resulted in 11 metacodes. We summarize
metacodes in Table 3.

Our metacodes include five of the standard requirements
engineering activities. It is possible that the referenced studies
have used the standard requirement engineering activities as
code seeds to initiate their coding process.

7. Other Applications of Grounded Theory

Grounded theory has been applied to a number of other
subjects within software engineering that do not fall under
our three main themes. Grounded theory has been employed
to investigate tool and technology adoption [27], the impact
of background knowledge of the performance of software
developers [28], the motivation of open source software
developers [29], questions developers ask during software
maintenance tasks [30], knowledge repositories in software
companies [31], barriers to adoption of software reuse [32],
cognitive patterns used when explaining or understanding
software [33], and new product development management
issues and decision-making approaches of development man-
agers [34].

We opted not to include the analysis of codes and
sub-codes of this type of GT application for a number of
reasons. First, we could not find the sufficient literature of
the application of GT to create meaningful new themes. And
due to the lack of papers, construction of metacodes using
our approach will inevitably result in biased metacodes that
reflect more the surveyed studies, rather than the emergence

Advances in Software Engineering

of a pattern observed from a broader coding or subcoding
processes.

8. Opportunities and Challenges of GT
Application in Software Engineering

Our analysis of the surveyed papers, as well as our experience
in applying GT in software engineering, highlights a number
of opportunities unique to the software engineering field that
makes GT an even more promising research methodology.
With opportunities come challenges that software engineer-
ing researchers should be aware of while preparing for their
research. The analysis we present in this section is extracted
from the surveyed literature and does not reflect our own
experience with GT.

8.1. Opportunities

(i) The lack of integrated theories in the literature related
to a number of areas in software engineering practices
suggests the use of an inductive approach that allows
theories to emerge based on pragmatic accounts of
professionals themselves. For example, the role of
communication and trust in distributed development
is not formalized in a theory. However, a number of
studies reported in this paper have addressed the role
of communication and trust in distributed develop-
ment as reflected by the experience of professionals
in GDD projects.

(ii) Grounded theory has well-established guidelines for
conducting inductive, theory-generating research.

(iii) Software development is a human-intensive activ-
ity and development processes are characterized by
heavy reliance on human compliance, emphasizing
the human aspects of software engineering [35].
Grounded theory is renowned for its application to
the analysis of human behavior.

(iv) Grounded theory is a burgeoning methodology in
the information systems arena and has been an
established and credible methodology in sociological
and health disciplines.

(v) Grounded theory (for the novice researcher or expe-
rienced researchers new to interpretive studies) pro-
vides a useful template and as such serves as a
comfort factor in the stressful and uncertain nature
of conducting qualitative research [36].

(vi) Software engineering relies significantly on software
tools for managing artifacts, as well as documenta-
tion and communications. These tools make avail-
able recorded communications, potentially over an
extended period of time, which become valuable
assets for grounded theory analysis. In comparison to
typical social settings, such information is either non-
existent or significantly harder to collect.

Advances in Software Engineering

8.2. Challenges

(i) Data collection within an organization for research
purposes is typically challenging. Business priorities
will tend to take precedence over participation in
research activities. Ethics committee and manage-
rial approval are required prior to performing such
research. The requirement for management approval
raises the question of whether the data sampling is
actually unbiased and is an honest representation of
the organization or activities under study.

(ii) The use of semistructured interviews centers data
collection on users opinions. This can lead to an
overemphasis on the participants’ perception of what
is taking place, which could be at odds with reality.
Despite the occasions when there is no supporting
evidence, the researcher is obliged to accept what the
respondents say during the interviews [37]. However,
in certain situations such as decision-making pro-
cesses, managers base their decisions on their own
perceptions, and therefore it is the perception that
matters [16]. In addition, semistructured interviews
need not be the only data collection activity. As
discussed earlier, there are a number of papers report-
ing the utilization of electronic communications,
documentation, and archives as data sources.

9. Adaptation of Grounded Theory

Because grounded theory as a methodology has emerged
from the social sciences, one could justifiably adapt the
methodology when adopting it in software engineering
research. The existence of some variations of grounded theory
in social sciences is reported in the literature [38]. In addition,
rigid application of grounded theory has been critically
questioned [24]. We have noted three major characteristics
specific to grounded theory work when applied to software
engineering. Those characteristics are related to (a) the liter-
ature review prior to the study, (b) selection of participants,
and (c) data sources. In this section, we briefly highlight those
characteristics.

A prominent characteristic of grounded theory is cap-
tured by the advice offered by Glaser and Strauss [1]: “There
is a need not to review any of the literature in the substantive
area under study. This dictum is brought about by the desire
not to contaminate. .. it is vital to be reading and studying
from the outset of the research but in unrelated fields”

Contrary to this advice, a number of grounded theory
researchers have explicitly advocated the benefits of the lit-
erature and background knowledge of the researcher prior to
conducting data gathering activities [8, 36]. It is reported that
prior knowledge helps in guiding research and the use of seed
categories (such as our metacodes) helps inform analysis. This
deviance from the original methodology is justifiable as some
background knowledge is needed to help the researcher in the
process of interviewing and data collection. The researchers’
personal constructs and skills help structure data, and it is
the researcher’s hermeneutic perspective that maintains the

interpretive style rather than the grounded theory method
[36].

Selection of participants was particularly challenging for
a number of reported research activities in the software
engineering arena. While there is normally a criterion for the
selection of subjects (based on their role in the study case for
example), subject selection was largely affected by manage-
ment and the participants’ availability [37]. In such situations,
management could deliberately select participants that would
present a favorable picture. Informing management of the
objective and purpose of the research and guaranteeing an
adequate level of privacy and confidentiality of the data can
help mitigate such risks.

Data sources in grounded theory work seem to be over-
whelmingly reliant on semistructured interviews. However,
in a number of studies, particularly those addressing dis-
tributed development, researchers made significant use of
documented email communications and chat session histo-
ries. Such data sources are typically nonexistent in normal
social sciences settings. Researchers also made use of existing
manuals and archives.

9.1. Analysis of Metacodes. We present the following remarks
about our metacodes presented in Tables 1, 2, and 3.

(1) Communications and trust tend to be central to all
GT applications in the three themes under study.

All themes included communications and trust at the
first or second level. This may reflect the importance
of communication and trust in software development
activities. It may also indicate that the existing GT
studies focused on studying communications and
trust. This may be due to the nature of how GT is
developed from interviews, meetings, and so forth.
Such data sources may inevitably reflect communi-
cations and trust aspects of software development
projects.

(2) Metacodes derive their significance from the specific
GT application.

In the process of developing our metacodes, we were
careful to only select codes from studies that suf-
ficiently addressed the corresponding theme using
the GT approach. However, each study had its own
unique settings, procedures, objective, and findings.
For example, Padula [25] was studying the require-
ments engineering process with Hewlett-Packard and
focused on the study of two particular HP products,
while other studies had a different focus. In our
analysis, we were careful to select codes and subcodes
that were, as much as possible, not related to a specific
product or study. At the same time, we also want
our metacodes to represent adequate coverage of the
existing literature.

(3) Overlapping of themes and codes.

The three themes presented in this paper are not
mutually exclusive. For example, the study [24]

addressed GT application for requirements engineer-
ing in a GDD environment. This paper was justifi-
ably classified under the two themes GDD and RE.
During the process of code analysis, additional care
was required to properly select codes that addressed
aspects of the project that corresponded to the theme
under which the metacodes were listed. For example,
in the study by Damian and Zowghi [24], codes that
related to GDD were listed under GDD theme and
similarly for RE codes.

10. Conclusion

While having its antecedents in sociology in the mid 1960s,
grounded theory methodology has been growing in the field
of software engineering. Software engineering is a human-
intensive activity, and is proving to be an attractive discipline
for the application of grounded theory. However, there is little
background and guidance on how to apply GT in software
engineering domain.

Our work is an initial step towards understanding how to
best apply GT methodology in SE. We introduced metacodes
that can function as seeds for the construction of codes in GT
research in three subdisciplines of software engineering: agile
development methodology, requirement engineering, and
geographically distributed development. We also presented a
critical review of the challenges and opportunities specific to
GT research in software engineering as a whole. Our survey
revealed characteristics of GT research in software engi-
neering, such as adapting the classic grounded theory rules
about prior literature review, data sources, and participant
selection.

References

(1] B. G. Glaser and A. L. Strauss, The Discovery of Grounded
Theory: Strategies for Qualitative Research, Aldine de Gruyter,
New York, NY, USA, 1977.

[2] W.]. Orlikowski, “CASE tools as organizational change: inves-
tigating incremental and radical changes in systems develop-
ment,” MIS Quarterly, vol. 17, no. 3, pp. 309-340, 1993.

[3] W. Dilthey and H. Rickman, Dilthey Selected Writings, Cam-
bridge University Press, Cambridge, UK, 1979.

[4] H. Blumer, Symbolic Interactionism: Perspective and Method,
University of California Press, California, Calif, USA, 1986.

[5] L. Calloway and G. Ariav, “Developing and using a qualitative
methodology to study relationships among designers and tools,”
in Information Systems Research: Contemporary Approaches and
Emergent Traditions, pp. 175-193, 1991.

[6] K. Toraskar, “How managerial users evaluate their decision
support: a grounded theory approach,” in Proceedings of the
IFIP WG 8. 2 Working Conference, pp. 195-225, Copenhagen,
Denmark, December 1991.

[7] R. Baskerville and J. Pries-Heje, “Grounded action research: a
method for understanding IT in practice;” Accounting, Manage-
ment and Information Technologies, vol. 9, no. 1, pp. 1-23, 1999.

[8

B. Fitzgerald, “The use of systems development methodologies
in practice: a field study;,” Information Systems Journal, vol. 7, no.
3, pp. 201-212, 1997.

Advances in Software Engineering

[9] G. A. Bowen, “Grounded theory and sensitizing concepts,’
International Journal of Qualitative Methods, vol. 5, no. 3, pp.
1-9, 2006.

[10] O. Markku and K. S. Seija, “Product focused software process
improvement,” in Proceedings of the 4th International Confer-
ence (profes 02), Rovaniemi, Finland, December 2002.

[11] E. Edmonds, “A process for the development of software for
non-technical users as an adaptive system,” General Systems, vol.
19, pp. 215-217,1974.

[12] K.Beck, M. Beedle, A. van Bennekum et al., “Manifesto for agile
software development,” Retrieved November, vol 11, pg 2004,
2001.

[13] T. Kahkonen, P. Abrahamsson, N. R. Center, and F. Espoo,
“Digging into the fundamentals of extreme programming
building the theoretical base for agile methods,” in Proceedings
of the 29th Euromicro Conference, pp. 273-280, IEEE Computer
Society, Patras, Greece, 2003.

[14] G. Coleman, “eXtreme Programming (XP) as a “minimum”
software process: a grounded theory,” in Proceedings of the
28th Annual International Conference on Computer Software
and Applications (COMPSAC ’04), pp. 30-31, IEEE Computer
Society, Honk Kong, September 2004.

[15] G. Coleman and O. Connor R, Software Process in Practice: A
Grounded Theory of the Irish Software Industry, vol. 4257 of
Lecture Notes in Computer Science, 2006.

[16] G. Coleman and R. O’Connor, “Investigating software process
in practice: a grounded theory perspective,” Journal of Systems
and Software, vol. 81, no. 5, pp. 772-784, 2008.

(17] E. Whitworth and R. Biddle, Motivation and Cohesion in Agile
teams, vol. 4536 of Lecture Notes in Computer Science, 2007.

[18] E. Whitworth and R. Biddle, “The social nature of agile teams,”
in Proceedings of the Agile Conference (AGILE °07), vol. 3, pp.
26-36, August 2007.

[19] L. Layman, L. Williams, D. Damian, and H. Bures, “Essential
communication practices for Extreme Programming in a global
software development team,” Information and Software Technol-
ogy, vol. 48, no. 9, pp. 781-794, 2006.

[20] B. Ramesh, L. Cao, K. Mohan, and P. Xu, “Can distributed
software development be agile?” Communications of the ACM,
vol. 49, no. 10, pp. 41-46, 2006.

[21] S.Qureshi, M. Liu, and D. Vogel, “A grounded theory analysis of
e-collaboration effects for distributed project management,” in
Proceedings of 38th Annual Hawaiian International Conference
on Systems Sciences, p. 264, Big Island, Hawaii, USA, January
2005.

[22] M. Last, “Understanding the group development process in
global software teams,” in Proceedings of the 33rd Annual
Conference on Frontiers in Education (FIE °03), vol. 3, November
2003.

[23] A. Martin, R. Biddle, and J. Noble, When XP Met Outsourcing,
vol. 3092 of Lecture Notes in Computer Science, 2004.

[24] D. Damian and D. Zowghi, “Requirements Engineering chal-
lenges in multi-site software development organizations,”
Requirements Engineering, vol. 8, no. 3, pp. 149-160, 2003.

[25] A. Padula, “Requirements engineering process selection at
Hewlett-Packard,” in Proceedings of the 12th IEEE International
Requirements Engineering Conference (RE '04), pp. 296-300,
IEEE, Palo Alto, Calif, USA, September 2004.

[26] G. Galal and R. Paul, “A qualitative scenario approach to
managing evolving requirements,” Requirements Engineering,
vol. 4, no. 2, pp. 92-102, 1999.

Advances in Software Engineering

[27] D. Oliver, G. Whymark, and C. Romm, “Researching ERP
adoption: an internet-based grounded theory approach,” Online
Information Review, vol. 29, no. 6, pp. 585-603, 2005.

[28] J. Carver, “The impact of background and experience on
software inspections,” Empirical Software Engineering, vol. 9, no.
3, pp. 259-262, 2004.

[29] Y. Ye and K. Kishida, “Toward an understanding of the motiva-
tion of open source software developers,” in Proceedings of the
25th International Conference on Software Engineering, pp. 419-
429, May 2003.

J. Sillito, G. C. Murphy, and K. De Volder, “Questions program-
mers ask during software evolution tasks,” in Proceedings of the
I4th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pp. 23-34, ACM, New York, NY, USA,
November 2006.

[31] T.Dingseyr and E. Reyrvik, “An empirical study of an informal
knowledge repository in a medium-sized software consulting
company, in Proceedings of the 25th International Conference
on Software Engineering, pp. 84-92, May 2003.

[30

[32] K. Sherif and A. Vinze, “Barriers to adoption of software reuse:
a qualitative study;,” Information and Management, vol. 41, no. 2,
pp. 159-175, 2003.

[33] A. R. Murray, Discourse structure of software explanation:
snapshot theory, cognitive patterns and grounded theory methods
[Ph.D. thesis], University of Ottawa, Ottawa, Canada, 2006.

[34] S. Y. Yahaya and N. Abu-Bakar, “New product development
management issues and decision-making approaches,” Manage-
ment Decision, vol. 45, no. 7, pp. 11231142, 2007.

[35] J. E. Tomayko and J. E. T. O. Hazaan, Human Aspects of Software
Engineering, Charles River Media, Massachusetts, Mass, USA,
2004.

[36] J. Hughes and S. Jones, “Reflections on the use of grounded
theory in interpretive information systems research,” Electronic
Journal of Information Systems Evaluation, vol. 6, no. 1, 2003.

[37] B.H.Hansen and K. Kautz, “Grounded theory applied-studying
information systems development methodologies in practice,”
in Proceedings of the 38th Annual Hawaii International Confer-
ence on System Sciences, p. 264, IEEE Computer Society, Big
Island, Hawaii, USA, January 2005.

[38] C. Goulding, “Grounded theory: the missing methodology on

the interpretivist agenda,” Qualitative Market Research, vol. 1,
no. 1, pp. 50-57, 1998.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

