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Abstract: Temperate conifer forests in the Colorado Front Range are fire-adapted 

ecosystems where wildland fires leave a legacy in the form of char and charcoal.  

Long-term soil charcoal C (CC) pools result from the combined effects of wildland fires, 

aboveground biomass characteristics and soil transfer mechanisms. We measured CC pools 

in surface soils (0–10 cm) at mid-slope positions on east facing aspects in five continuous 

foothills shrubland and conifer forest types. We found a significant statistical effect of 

vegetation type on CC pools along this ecological gradient, but not a linear pattern 

increasing with elevation gain. There is a weak bimodal pattern of CC gain with elevation 

between foothills shrublands (1.2 mg CC ha−1) and the lower montane, ponderosa pine  

(1.5 mg CC ha−1) and Douglas-fir (1.5 mg CC ha−1) forest types prior to a mid-elevation 

decline in upper montane lodgepole pine forests (1.2 mg CC ha−1) before increasing again 

in the spruce/subalpine fir forests (1.5 mg CC ha−1). We propose that CC forms and 

accumulates via unique ecological conditions such as fire regime. The range of soil CC 

amounts and ratios of CC to total SOC are comparable to but lower than other  

regional estimates. 

Keywords: charcoal; black carbon; fire; forests; soil organic carbon; Rocky Mountains; 
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1. Introduction 

Temperate conifer forests and foothills shrublands in the Colorado Front Range of the Rocky 

Mountains are fire-adapted ecosystems where wildland fires leave a legacy of black C (BC) on the 

landscape. Black C is a generalized term applied to thermally-altered vegetation. Low burn 

temperatures produce visible char and charcoal (>0.4 mm dia.) [1] while high burn temperatures yield 

fine material referred to as pyrogenic C and soot [2]. Here, the term charcoal C (CC) is used to define 

the BC fraction that is resistant to a weak nitric acid (HNO3)/hydrogen peroxide  

(H2O2) digest. Charcoal accumulates in soils through various transfer mechanisms and is retained 

potentially from centuries to millennia [3]. Fire-derived charcoal is an integrated component in 

temperate conifer forest soils, linked to increased total soil organic C (SOC) pools [4] and inorganic 

nitrogen (N) availability [5,6].  

During wildland fires, BC products are generated from the incomplete combustion of  

non-woody and woody vegetation. The source material and initial conditions influence subsequent 

physical and chemical properties [7]. Total cellulose or lignin content determines whether char or 

charcoal is produced [8]. Cellulose-based char is derived primarily from grasses, forest floor duff and 

small coarse woody debris (CWD). Charcoal is formed from large CWD and scorched tree stems with 

high lignin content during post-frontal smoldering and glowing combustion processes, rather than the 

initial flaming front of a fire [8]. The total quantity and properties of fire-derived charcoal produced 

during a single fire are linked to both fire behavior and aboveground biomass type and availability [9]. 

For temperate conifer forests, Tinker and Knight [10] provide a published conversion constant of 

CWD to charcoal. They estimated that 8% of available pre-burn biomass for large CWD (≥7.6 cm 

diameter) was converted to CC assuming an 85% C content.  

Soil mixing causes surface charcoal deposits to move downward in a soil profile and reduces losses 

from physical transport mechanisms and exposure to repeated fires. Surface to soil charcoal mixing 

rates and mechanisms vary across ecosystems as a function of bio-activity and abiotic processes [11]. 

In cold boreal forests, charcoal is retained on the forest floor and in the immediate surface soil 

horizons [12], whereas in temperate conifer forests, most charcoal is stored primarily in the upper 

mineral horizons where there is less fire exposure [13]. Mixing rates in fire-adapted conifer forests are 

unknown and will need to be addressed in future research. 

Repeated burns over decades and centuries result in unique fire regimes that are based on fire 

frequency, fire severity, fuel characteristics and fuel consumption patterns [14,15]. Previous  

studies [16–18] provide overviews of how regional climatic patterns interact with spatial fuel 

characteristics to drive fire behavior in the Rocky Mountains. A fire regime classification system for 

the Colorado Front Range has been classified in three categories; (1) frequent, low-severity  

(0–35 years), (2) frequent and infrequent, mixed-severity (35–200 years) and (3) infrequent, high 

severity (>200 years) [19]. Here we use fire regime as one of the criteria used to explain soil charcoal 

C mass in four montane forests and one foothills shrubland along an elevation gradient from lower to 

upper treeline.  

Soil CC pools develop from the combined effects of repeated wildland fires, aboveground biomass 

productivity that occurs between fires and soil cycling processes. These effects are best summarized as 

the five phases of charcoal pool development: (1) aboveground biomass growth, (2) biomass loss and 
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charcoal formation during a fire, (3) charcoal to soil flux, (4) soil charcoal degradation and loss, and 

(5) long-term retention. There have been few studies that have quantified CC in Rocky Mountain  

soils [9,20]. This research is focused on the retention phase by quantifying surface soil (0–10 cm) CC 

mass. Our additional objectives are to evaluate the mechanisms that cause BC formation and retention 

in the dominant Colorado Front Range vegetation types. These data provide baseline information that 

may be integrated into ecosystem C cycle models and applied research to evaluate ecological or 

biological responses to charcoal additions. 

Ecological conditions based on differences in aboveground biomass, fire behavior and soil 

properties are expected to influence fuel consumption patterns, CC and SOC formation and subsequent 

soil accumulation/retention rates. Vegetation types with comparatively higher surface fuels and cooler 

conditions with less frequent fires are expected to contain more surface charcoal. This is based on the 

assumption that more fuel, less bio-activity and infrequent fires allows charcoal to accumulate. Under 

this premise, we expect charcoal pools to increase with elevation along this ecological gradient. 

Therefore, we hypothesize that fire-derived CC in the upper 10 cm of mineral soil will vary by 

vegetation type. We also test the hypothesis that SOC varies across these same vegetation types. This 

study yielded the largest collection of soil samples analyzed for CC in the United States.  

2. Materials and Methods 

2.1. Experimental Design and Field Sampling 

Forest distribution in the Colorado Front Range is influenced by combinations of topographic and 

moisture gradients [21]. The general pattern is foothill shrublands dominated by mountain mahogany 

(Cercocarpus montanus) at the lowest elevations which transitions to open montane forests dominated 

by ponderosa pine (Pinus ponderosa var. scopulorum) on warm, dry sites and Rocky Mountain 

Douglas-fir (Pseudotsuga menziesii subsp. glauca) on cool, moist sites. At mid-elevations, closed 

montane forests of Rocky Mountain lodgepole pine (Pinus contorta var. latifolia) is often dominant or 

co-dominant with other conifers and aspen (Populus tremuloides). Subalpine forests grow at high 

elevations with Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa)  

co-dominant throughout.  

Birkeland et al. [22] conducted soil profile analyses along elevation and slope transects throughout 

the Colorado Front Range. Low elevation soils are mostly Cryolls with deep, dark surface mineral 

horizons (A horizon) in comparison to uppermost elevations; this is due to high soil organic matter 

content and a less developed zone of Fe3+ and Al3+ leaching (E horizon). At mid-elevations, montane 

soils are classified as Cryolls on warmer slopes and Cryalfs in colder areas. Soils above approximately 

2700 m are Cryepts which are cold, young soils. In these soils, there is little or no clay formation and 

accumulation with chronic acidic conditions in the A horizons. Most of the area above 2700 m was 

also covered by the Pinedale glacial event. Soils, vegetation type and fire regime are used together to 

help explain the results of this study in the context of the Colorado Front range (see below). 

Soil samples were collected in the Bear Creek and Clear Creek watersheds, located west of Denver, 

CO (Figure 1). All of the major fire regimes and vegetation types from the region are present in the 

study area. The western portion of the study area is mostly in the Mount Evans Wilderness Area on the 

Arapaho and Pike National Forests with the east portion largely private property with isolated public 
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land units. Field observation, prior research on forest distribution [21] and current, GIS-based existing 

vegetation type maps [23] all aided in identifying the five vegetation types and associated 200 m 

elevation sampling bands (Figure 1).  

Figure 1. Location of the soil charcoal sampling area with current vegetation types west of 

Denver, CO in the Colorado Front Range. Geospatial data was acquired from United States 

Geological Service (USGS) GAP Analysis Project [23] and United States Farm Services 

Agency (FSA) National Agricultural Imagery Program [24]. 

 

In order to test the main effect of vegetation type on CC and soil organic C pools, we reduced 

landscape variation with a stratified random plot design. A digital elevation model (DEM) of the study 

area was used to identify 200 m elevation bands that were centered midway between the upper and 

lower limits of each vegetation type. Subsequently, sites on east-facing aspects (67°–112° azimuth) 

with slopes 5%–30% were combined with the vegetation layer to create sets of potential sample 

polygons within all five of the centered elevation bands (North American Datum 1983, UTM Zone  

13 North). ArcMap 9.3 and the embedded spatial analyst extension were used to identify potential 

sampling polygons and select random plot locations, all within 2 km of existing roads (to make access 

feasible). Within the stratified random set of polygons, 10 plot centers were assigned a 0.25 ha (25 m × 

25 m) square in each of the vegetation types. In the summers 2009 and 2010 mineral soils were 

sampled in each of the 0.25 ha plots with 10 random sample points spaced a minimum of 3 m apart to 
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avoid overlap. Three composite soil cores were collected at each sample point using a round metal 

probe (2.5 cm diameter) where the litter layer was moved and only the upper 10 cm of mineral soil 

collected. This depth was selected to allow consistent comparison across the vegetation types.  

Both SOC and CC data were converted from concentration (g kg−1) to mass (mg ha−1) using  

field-derived bulk density (BD) measurements. Bulk density was sampled at a sub-set of 3 sample 

points per vegetation type with a double-cylinder probe (3 cm diameter × 5 cm length) pounded 

vertically into the soil. Bulk density was higher for the low elevation vegetation types (1.16 and  

1.31 g cm−3) where there are primarily coarse-textured soils. In comparison, higher elevation lodgepole 

pine and spruce/subalpine fir had lower BD (1.01 and 1.09 g cm−3) due to finer-textured soils and 

residual glacial material.  

2.2. Laboratory Methods 

Soil samples were analyzed for CC with a modified version of the Kurth-Mackenzie-DeLuca 

(KMD) method [4,20]. The KMD method couples total CHN analysis via dry combustion with a  

thermo-chemical digestion that uses heating and a weak nitric acid/hydrogen peroxide solution to 

degrade labile soil organic matter and low-temperature char while retaining more resistant charcoal. 

Kurth et al. [20] summarized a method comparison test and demonstrated that the KMD method is 

effective in estimating soil charcoal content in spiked samples ranging from 0.5% to 5.0% (wet 

weight). We modified this method by substituting hotplates and 250 mL flasks with a Technicon BD-

46 aluminum block heater with 75 mL round-bottom glass tubes with reflux chambers and glass 

inserts. Block digests allowed for accurate temperature control and increased the efficiency of sample 

runs. 

Each soil sample was oven-dried at 60 °C for 48 h, sieved to 2.0 mm and pulverized in a ball 

grinder for 1 min. A subsample was put aside to determine SOC. For the digest, 1.0 g of oven-dry soil 

was added to the glass tubes along with 10 mL of 1 M HNO3 (nitric acid) and 20 mL of 35% H2O2 

(technical grade hydrogen peroxide). Tubes were swirled and then placed in the block and left 

unheated for 30 min. To contain the vigorous reaction, temperatures were ramped to 50 °C for  

30 min and 70 °C for 30 min before being heated to 100 °C for 16 h. Following the digest, samples 

were cooled, swirled and filtered through plastic funnels lined with Whatman #2 filter paper into 

scintillation vials. The liquid in the vials was discarded leaving only fine soil material which was oven 

dried for 24 h at 60 °C. In preparation for total C analysis, the dried soil was re-homogenized with a 

mortar and pestle. 

For both SOC and post-digest samples, a Carlo-Erba 1108-CHNS was used to measure total C. 

Approximately 15.0 mg of soil was placed into a tin capsule (5 × 9 mm) and consumed  

at 1000 °C. An internal lab standard was developed from a local soil collected from deep horizon 

material with very low total C and CC present. This allowed tracking of run to run variation and 

estimation of the method sensitivity under very low C concentrations (results not presented). 

2.3. Statistical Analysis 

A nested, general linear mixed model (GLMM), which allows both fixed and random effects in the 

model design, was used for testing the mean SOC, CC amounts and CC/SOC ratios between 
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vegetation types (α = 0.05). The advantage of a GLMM compared to a general linear model analysis of 

variance (GLM ANOVA) is that the total error in the model is divided between the fixed and random 

factors reducing Type II errors [25]. A nested approach was used based on the suggestions in 

Wampold and Serlin [26] that nesting appropriate model factors avoids an invalidation of the test 

hypothesis. Vegetation type is assumed to be a fixed, categorical variable due to the distinct sampling 

elevation bands. Soil organic C and CC were analyzed as either the dependent variable or as a random, 

continuous co-variate in two separate model runs. Additional random model effects were the two 

nested factors: 1) individual samples nested within plot and vegetation type and 2) plots nested within 

vegetation type. Least squares post hoc procedures (Tukey-Kramer adjustment) were applied to test for 

significant pairwise differences. All statistical analyses were performed with restricted maximum 

likelihood estimation and the Kenwald-Roger degrees of freedom method in PROC MIXED (SAS 9.2 

with Enterprise 4.2 Interface). 

3. Results 

The main effects of vegetation type on soil CC are significant (F5,52.8 = 12.4, p < 0.0001) and soil 

organic C (F5,49.9 = 24.6, p < 0.0001) (Table 1). Least squares, post-hoc procedures identified 

significant mean pairwise differences for SOC between ponderosa pine and lodgepole pine and 

Douglas-fir. However, these same procedures in the charcoal C post-hoc analysis did not identify 

significant differences (Figure 2). Therefore we accept the general hypothesis that SOC and CC vary 

by vegetation type, but we can make specific vegetation type comparisons for SOC only.  

Co-variance parameter tests demonstrated that when SOC (Pr > Z = 0.24) or CC (Pr > Z = 0.24) were 

entered into the model as a random, continuous co-variate, they did not have a significant effect on the 

dependent variable. In spite of this finding, these variables were retained in the final model to ensure 

proper model error distribution. The CC/SOC ratios were significantly different between vegetation 

types (F5,45.1 = 111.04, p < 0.0001). Post-hoc analysis identified significant pairwise differences 

between lodgepole pine and foothills shrublands. 

There is a weak bimodal distribution trend across this landscape with the lowest charcoal C in the 

foothills shrublands (1.2 mg CC ha−1) followed by higher CC in ponderosa pine (1.5 mg CC ha−1)  

and Douglas-fir (1.5 mg CC ha−1) but then decreasing in lodgepole pine (1.2 mg CC ha−1)  

before increasing again in spruce/subalpine fir (1.5 mg CC ha−1). Soil organic C follows a  

similar pattern with the exception being a decline between ponderosa pine (30.5 mg CC ha−1) and 

Douglas-fir (18.8 mg CC ha−1). Ponderosa pine had the most SOC followed by spruce/subalpine  

fir (23.7 mg C ha−1), foothills shrublands (22.1 mg C ha−1), Douglas-fir and then lodgepole pine  

(15.2 mg C ha−1) with approximately 50% less total C than ponderosa pine. The CC/SOC ratios by 

vegetation type are highest in lodgepole pine and Douglas-fir (0.08) and lowest in foothills shrublands 

(0.05) with intermediate ratios for spruce/subalpine fir (0.07) and ponderosa pine (0.06).  
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Table 1. Soil organic C (SOC), charcoal C (CC) and bulk density (BD) in upper 10 cm 

mineral soil for five vegetation types along an ecological gradient in the Colorado Front 

Range with +/−1 standard error in parentheses (n = 10) and the CC/SOC ratio. 

Vegetation Type 
(sampling elevation) 

SOC 
(g kg−1) 

CC 
(g kg−1) 

BDa 

(g cm−3) 
SOC 

(mg ha−1) 
CC 

(mg ha−1) 
CC/SOCb 

Foothills shrublands 
(1700–1900 m) 

19.1 (0.8) 1.1 (0.1) 1.16 22.1 (1.0) 1.2 (0.1) 0.05a 

Ponderosa pine 
(1900–2100 m) 

23.3 (1.4) 1.1 (0.1) 1.31 30.5 (1.9) 1.5 (0.1) 0.06ab 

Douglas-fir 
(2400–2600 m) 

14.6 (0.8) 1.1 (0.1) 1.29 18.8 (1.0) 1.5 (0.1) 0.08ab 

Lodgepole pine 
(2800–3000 m) 

15.0 (0.8) 1.2 (0.1) 1.01 15.2 (0.8) 1.2 (0.1) 0.08b 

Spruce/subalpine fir 
(3200–3400 m) 

21.8 (1.1) 1.4 (0.1) 1.09 23.7 (1.2) 1.5 (0.1) 0.07ab 

a: Bulk Density, n = 3; b: Mixed-model type 3 tests show that CC/SOC ratios are significantly different 

between vegetation types (F5,45.1 = 111.04, p < 0.0001). Different lower case letters denote significant 

pairwise comparisons following Tukey-Kramer post-hoc analysis (α = 0.05). 

Figure 2. (1) Soil organic C and (2) charcoal C in upper 10 cm mineral soil for  

five vegetation types along an elevation transect in the Colorado Front Range. Bars are one 

standard error about the mean (n = 10). Mixed-model type 3 tests found significant main 

effects of vegetation type on 1) soil organic C (F5,49.9 = 24.6, p < 0.0001) and 2) charcoal C 

(F5,52.8 = 12.4, p < 0.0001). Different lower case letters denote significant pairwise 

differences from Tukey-Kramer post-hoc analysis (α = 0.05). Degrees of freedom  

were calculated with Kenwald-Roger method in PROC MIXED (SAS 9.2 and Enterprise 

Guide 4.2). 
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4. Discussion 

Overall, soil charcoal pools reported here are comparable to results from other temperate forest and 

shrubland ecosystems [4,27]. We identified a significant main effect (GLMM analysis) of vegetation 

type on SOC and CC content from foothill shrublands to subalpine forests along the Colorado Front 

Range. Unique to this study, we found that SOC and CC in surface mineral soil pools do not increase 

with elevation gain but instead there is a weak bimodal pattern across this landscape. These results 

support the observation that total SOC pools and fire-derived charcoal form and accumulate via fire 

regime and soil properties which are related to vegetation type.  

Differences in ecological conditions in the study area are applied here to interpret the overall 

patterns of soil charcoal (Table 2). From an aboveground perspective, the most important influences on 

soil CC pools are fire regime and available biomass sources. For example, foothills shrublands  

(1700–1900 m) and lodgepole pine forests (2800–3000 m) occur at different elevations but have 

similar mean CC amounts, which are also the lowest among all vegetation types. For foothills 

shrublands, it is the combination of high surface fire frequency and low lignin-based fuel sources that 

result in less charcoal formed per fire. This is an outcome of the limited time for re-growth but more 

burns to contribute charcoal over time. In temperate grassland ecosystems with repeated surface fires, 

BC can complex with existing soil organic matter leading to long-term retention [28,29]. Foothills 

shrublands have ubiquitous grass cover and are likely to retain soil charcoal in a similar manner. 

Finally, this may be an under-estimation of shrubland CC given charcoal movement to deeper layers in 

the profile [30]. 

Conversely, lodgepole pine forests include moderate amounts of lignin-based surface fuels with an 

infrequent fire regime [31]. In this forest type, replacement-severity fires are more likely to burn 

through the forest canopy more than the forest floor, producing moderate amounts of charcoal on 

standing trees (i.e. vertical fuels) that fall to the forest floor in a delayed contribution phase [5].  

For these forests, low soil CC amounts may be attributed to reduced contributions from vertical fuels, 

relatively more forest floor surface storage and sparse understory vegetation. 

The difference between these two vegetation types is also reflected in the CC/SOC ratios.  

These ratios demonstrate how much charcoal retention there is relative to the total SOC pool. Foothills 

shrublands had the lowest CC/SOC ratio based on low CC and a moderate SOC pool.  

In these soils, warm soil conditions and the frequent fire return interval combine resulting in a large 

SOC pool with low CC. A closed tree canopy, less fire frequency and colder soil conditions in 

lodgepole pine forests lead to a relatively smaller SOC pool but similar amounts of CC and a 

significantly higher CC/SOC ratio. 

It is vegetation type that gives insight into comparably higher CC in spruce/subalpine fir, ponderosa 

pine and Douglas-fir forests. Spruce/subalpine fir forests have the coldest climate, the slowest 

ecosystem decomposition rates and longest fire return interval of all the vegetation types. Very 

infrequent fires allow lignin-based surface fuels and a deep duff layer (cellulose-based) to accumulate. 

The combination of two large BC sources as well as replacement-severity fires result in relatively 

higher CC per fire. There are comparable amounts of soil charcoal compared to the ponderosa pine and 

Douglas-fir forests in spite of reduced bio-activity and thus soil mixing. This finding suggests that 

surface charcoal is transferred into the soil via a separate soil-related process in colder forest types. 
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Table 2. Generalized charcoal sources, fire regimes and soil processes that influence soil charcoal carbon (CC) pools across five vegetation 

types along an ecological gradient in the Colorado Front Range. 

Vegetation Type CC Source a Fire Regime b Soil Process c 

Foothills shrublands 
 moderate to high cellulose-based 
 low lignin-based 

 high frequency (0–35 years) 
 replacement severity 
 surface fires 

 moderate decomposition rate 
 high bio-activity 

Ponderosa pine 
 moderate cellulose-based 
 low to moderate lignin-based 

 high frequency (0–35 years) 
 low severity 
 surface/passive crown fires 

 moderate decomposition rate 
 high bio-activity 

Douglas-fir  low cellulose-based 
 moderate lignin-based 

 low/high frequency (35–200 years) 
 mixed severity 
 surface/passive and active crown fires 

 moderate decomposition rate 
 moderate bio-activity 

Lodgepole pine 
 low cellulose-based 
 moderate lignin-based 

 low frequency (100–200+ years) 
 replacement severity 
 active and passive crown/infrequent surface fires 

 slow decomposition rate 
 low bio-activity 

Spruce/subalpine fir 
 high cellulose-based 
 high lignin-based 

 low frequency (>200 years) 
 replacement severity 
 active and passive crown/ground fires 

 slow decomposition rate 
 slow bio-activity 

a: Charcoal C sources adapted from Johnson and Miyanishi [8] which defines cellulose-based char coming from grasses, litter and small coarse woody 
debris (CWD) and lignin-based charcoal from sound and rotten CWD; b: Fire Regimes adapted from Veblen et al. [31] and Romme et al. [19];  
c: Soil processes are not empirically-derived and are meant to represent unmeasured variables relative to the other vegetation types in the table. Zhang [32] 
report ecosystem decomposition rates vary by litter quality (i.e. lignin content), soil temperature and moisture content. Bio-activity is related to the degree 
of soil charcoal mixing depth with rate of mixing assumed to be lower in colder, high elevation vegetation types and higher in warmer, low elevation 
vegetation types [12].  
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Ponderosa pine mineral soils are enriched significantly with SOC compared to Douglas-fir and 

lodgepole pine. Ecological conditions favorable to SOC accumulation include warmer temperatures 

and more C input from above ground productivity and belowground root turnover. Combined with the 

relatively higher amounts of CC, ponderosa pine forests have the most efficient ecosystem C retention 

mechanisms among these vegetation types. Ponderosa pine soils were sampled to 10 cm depth only in 

this study hence the results are an under-estimation of the total CC pool given the deep A horizon soils 

that often extend below 10 cm. In contrast, high elevation montane soils store most soil CC at the 

surface in a shallower A horizon so this study likely sampled the bulk of that total CC pool.  

Soil charcoal C pool analysis studies have been conducted in other temperate ecosystems.  

For example, Carcaillet and Talon [27] analyzed five transects that graded from subalpine conifer 

forests into alpine tundra in the French Alps. They observed an inverse relationship with less soil CC 

mass with increasing elevation (0.1 to 3.0 mg charcoal C ha−1). Mackenzie et al. [4] sampled charcoal 

in the upper 6 cm of mineral soil in live oak woodlands (Quercus spp.), mixed conifer forests, and red 

fir (Abies magnifica) forests along two elevation gradients in the northern Sierra Nevada Mountains. 

They report that soil CC mass increased with elevation with a range of 1.0 to 5.0 mg CC ha−1. DeLuca 

and Aplet [13] estimated 7.0 to 20.0 mg (non-cycling) C ha−1 for the upper 10 cm of mineral soil in 

low elevation temperate conifer forests.  

The overall range of CC pools (1.2 to 1.5 mg CC ha−1 and 1.1 to 1.4 g CC kg−1) and CC/SOC ratios 

(0.05–0.08) observed in these watersheds are lower than other temperate ecosystems in the western 

United States [4,20]. Kurth et al. [20] report large soil charcoal pools in surface soils (0–10 cm) for 

ponderosa pine forests in western Montana ranging from 2.91 to 9.17 g CC kg−1. Our study area, with 

relatively warmer annual temperatures and thus a more rapid ecosystem decomposition rate probably 

retains total CC for comparatively shorter time periods [32]. Also, reduced vegetation growth resulting 

from less mean annual precipitation could lead to less total biomass available for charcoal conversion 

during a fire and thus less to contribute to soil CC pools.  

The thermo-chemical digest method used here may sample a more recalcitrant portion of the BC 

spectrum which yields a lower estimation of this slow-cycling pool. The Kurth-Mackenzie-DeLuca 

(KMD) method assesses BC by degrading more labile BC formed at low temperature while retaining 

the more resistant charcoal and soot. One of the limitations of this method (and of most soil charcoal 

analysis methods) is the lack of approved laboratory standards with known quantities of charcoal that 

can be used for testing digest efficiency [33]. It is possible that the modified KMD method results in a 

more efficient digest that retains only the most recalcitrant C products. Because we used an aluminum 

block, the digestion flasks were surrounded by the heat source in contrast to the hotplate heat source in 

the original method. The low CC mass reported in this study may result in part from method 

differences as opposed to regional ecological conditions. Further evaluation of the modified KMD 

method along with development of known charcoal standards is needed to fully understand which 

portion of the BC spectrum was sampled.  

Additional efforts to further understand soil charcoal pools in temperate conifer forests should 

include whole-soil profile analysis, whole-BC spectrum analysis and radiocarbon dating.  

Whole-profile analysis including the forest floor layer will lead to more thorough charcoal C 

estimation. Not sampling to depth or in the forest floor was a pre-determined limitation of this study. 

Sampling in the upper horizons allowed for a larger sample size across the study as a whole which 
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increased model strength but overlooked a possibly larger soil CC pool. This is most pronounced for 

ponderosa pine soils. These results should be interpreted as surface soil CC pools with the total CC 

pool a function of vertical distribution of charcoal C which varies by ecological factors.  

Whole-BC spectrum analysis would require benzene polycarboxylic acid (BPCA) markers coupled 

with 13C Nuclear Magnetic Resonance (NMR) analysis methods that have been used in previous 

studies [30,34,35] and is one of the most effective methods for detecting the broadest portion of the BC 

spectrum [33]. If it becomes routine to analyze post-digest samples with whole-spectrum analysis, 

these results could be related to fire behavior or source material, which would create considerable 

insight for in situ charcoal formation. Charcoal C radiocarbon dates reveal the age of the charcoal 

which, combined with microscopic botanical imaging [36], would determine total residence time and 

the source species. Such an approach might be used to complete a paleo-ecological reconstruction of 

past species assemblages and fire behavior in these or other watersheds [37,38]. Knowledge of 

previous vegetation types and movement on a landscape as a function of shifting climatic conditions as 

revealed through the charcoal record may prove relevant if global climate change or local management 

activities continue to alter established fire regimes and vegetation distribution patterns [39]. 

How would global climate change (GCC) alter charcoal formation and soil charcoal pools in 

temperate conifer forests? Even under the current greenhouse gas emission scenario, temperatures are 

expected to rise in the northern hemisphere [40]. Boreal forests and temperate mountain regions are 

highly sensitive to such changes and later this century will become drier with a risk for more wildland 

fire events [39]. Westerling et al. [39] used results from fire—climate simulations to show that  

mid-elevation forests with replacement severity fire regimes in the Rocky Mountains are the most 

sensitive to a warming climate. Changes in fire frequency, extent, severity and seasonality are 

underway and are expected to continue, albeit at an increased rate. They also report potential shifts 

from lower montane vegetation types to shrublands but also indicate inherent uncertainty in predicting 

exactly what will unfold in the next century. 

Increased fire frequency in temperate conifer forests should reduce the amount of available fuels 

over time. Subsequently, contributions to SOM and soil BC pools would decrease leading to a net 

decrease in total ecosystem C over time. Adger et al. [40] reported that net C uptake in forests is 

expected to peak around 2050 and then forests will become a net C source. Increasing fire frequency, 

declining BC pools and increasing C loss from terrestrial ecosystems could all combine to further 

exacerbate GCC. Future research will be needed to further our understanding of GCC and impacts to 

established soil BC cycles. However, without developing a current baseline of regional BC pools and 

fluxes it will be difficult to evaluate these impacts [41]. 

5. Conclusions  

In summary, we show that soil CC pools in the upper 10 cm mineral soil differ across the dominant 

vegetation types in the Colorado Front Range based on sampling in the Bear Creek and Clear Creek 

watersheds. The weak bimodal pattern is an initial gain with elevation between foothills shrublands 

and the lower montane forest types prior to a mid-elevation decline in upper montane lodgepole pine 

forests before increasing again in the spruce/subalpine fir forests. This pattern is attributed to the 

convergence of several unique ecological and biological processes. Sampling at a watershed-scale 
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required a chemical analysis technique that was rapid and inexpensive to account for the hundreds of 

samples needed to detect statistically significant differences. The modified KMD method was 

effectively employed as this technique but still needs further refinement. Prior research in the Colorado 

Front Range on fire behavior and soil profile distribution was an aid in interpreting the empirical 

results from this experiment. More research is needed to determine the ecological and biological 

importance of these results. Future modeling and field-based efforts are called for after revealing a 

landscape-pattern of SOC and CC pools across these vegetation types. 
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