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Abstract

Background: Burkholderia pseudomallei is intrinsically resistant to aminoglycosides and macrolides, mostly due to AmrAB-
OprA efflux pump expression. We investigated the molecular mechanisms of aminoglycoside susceptibility exhibited by
Thai strains 708a, 2188a, and 3799a.

Methodology/Principal Findings: qRT-PCR revealed absence of amrB transcripts in 708a and greatly reduced levels in 2188a
and 3799a. Serial passage on increasing gentamicin concentrations yielded 2188a and 3799a mutants that became
simultaneously resistant to other aminoglycosides and macrolides, whereas such mutants could not be obtained with 708a.
Transcript analysis showed that the resistance of the 2188a and 3799a mutants was due to upregulation of amrAB-oprA
expression by unknown mechanism(s). Use of a PCR walking strategy revealed that the amrAB-oprA operon was missing in
708a and that this loss was associated with deletion of more than 70 kb of genetic material. Rescue of the amrAB-oprB region
from a 708a fosmid library and sequencing showed the presence of a large chromosome 1 deletion (131 kb and 141 kb
compared to strains K96243 and 1710b, respectively). This deletion not only removed the amrAB-oprA operon, but also the
entire gene clusters for malleobactin and cobalamin synthesis. Other genes deleted included the anaerobic arginine deiminase
pathway, putative type 1 fimbriae and secreted chitinase. Whole genome sequencing and PCR analysis confirmed absence of
these genes from 708a. Despite missing several putative virulence genes, 708a was fully virulent in a murine melioidosis model.

Conclusions/Significance: Strain 708a may be a natural candidate for genetic manipulation experiments that use Select
Agent compliant antibiotics for selection and validates the use of laboratory-constructed D(amrAB-oprA) mutants in such
experiments.
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Introduction

Melioidosis is a disease caused by Burkholderia pseudomallei [1,2].

Melioidosis is endemic to tropical and subtropical regions of the

world [3] and is considered an emerging disease (e.g. NE Thailand

[4]) as well as a disease of biodefense importance [4]. Melioidosis

has received worldwide popular attention in the wake of the 2004

SE Asia Tsunami disaster [5,6,7,8]. Treatment of melioidosis is

complicated by the intrinsic resistance of B. pseudomallei to many

antibiotics, including aminoglycosides, macrolides, several penicil-

lins, and first and second generation cephalosporins [1,2,9]. Factors

complicating drug therapy are the ability of B. pseudomallei to form

biofilms [10] and to enter into prolonged, presumably intracellular,

latency periods of up to six decades in a human host [11].

Genome sequence analysis has provided an indication of

possible mechanisms of resistance to antimicrobial compounds,

but less than a handful of resistance genes have been experimen-

tally confirmed to date [12]. The K96243 and other B. pseudomallei

genomes encode an arsenal of efflux pumps, including 10 pumps

belonging to the resistance nodulation cell division (RND) family,

which play major roles in clinically significant antibiotic resistance

in Gram-negative bacteria. Two of these, AmrAB-OprA [13] and

BpeAB-OprB [14] were reported to play major roles in high-level

resistance to aminoglycosides and macrolides, but our unpublished

results with strain 1026b indicate that BpeAB-OprB does not

efflux aminoglycosides. Using a surrogate Pseudomonas aeruginosa

strain we recently showed that BpeEF-OprC extrudes chloram-

phenicol and trimethoprim [15]. While the majority of clinical B.
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pseudomallei isolates exhibit high levels of aminoglycoside and

macrolide resistance, rare (,1:1000) isolates are susceptible to

these antibiotics. It has been noted that the resistance profile of

these isolates matches that of amrAB-oprA mutants suggesting

possible involvement of AmrAB-OprA in intrinsic aminoglycoside

and macrolide resistance or lack thereof [16], but this has not yet

been experimentally demonstrated. In this report we provide

evidence that the susceptibility of three isolates from NE Thailand

is indeed due to lack of, or greatly reduced, AmrAB-OprA

expression, either due to deletion or as to as yet unknown

mechanisms. Furthermore, deletion of an ,131 kb region of

chromosome 1 in one strain not only removed amrAB-OprA, but

also genes encoding several putative virulence factors and other

functions implicated in bacterial pathogenesis and physiology.

Materials and Methods

Bacterial strains, media and growth conditions
B. pseudomallei strains used in this study are listed in Table 1.

Escherichia coli strains used for cloning experiments were DH5a
[17] or DH5a(lpir) (laboratory strain). All bacteria were routinely

grown with aeration at 37uC. Low salt (5 g/L NaCl) Lennox LB

broth (LSLB) and agar (MO BIO Laboratories, Carlsbad, CA)

were used as rich media. M9 medium [18] with 10 mM glucose

was used as the minimal medium. Unless otherwise noted,

antibiotics were added at the following concentrations: 100 mg/

ml ampicillin (Ap), 12.5 mg/ml chloramphenicol (Cm), 15 mg/ml

gentamicin (Gm), 35 mg/ml kanamycin (Km) and 25 mg/ml

zeocin (Zeo) for E. coli; 1,000 mg/ml Km and 2,000 mg/ml Zeo

for wild-type B. pseudomallei and 50 mg/ml for Gm susceptible B.

pseudomallei strains. Antibiotics were either purchased from

Sigma, St. Louis, MO (ampicillin, chloramphenicol, erythromy-

cin, kanamycin, polymyxin B and streptomycin), EMD Biosci-

ences, San Diego, CA (gentamicin), Invitrogen, Carlsbad, CA

(zeocin) or Biomol via VWR International, West Chester, PA

(spectinomycin).

DNA and genetic methods
Published procedures were employed for manipulation of DNA,

and transformation of E. coli and B. pseudomallei [19,20,21]. Plasmid

DNAs were isolated from E. coli and B. pseudomallei using the

QIAprep Mini-spin kit (Qiagen, Valencia, CA). Colony PCR with

B. pseudomallei was performed as previously described [20]. B.

pseudomallei chromosomal DNA was isolated using the Gentra

Puregene DNA purification kit (Qiagen). Custom oligonucleotides

were synthesized by Integrated DNA Technologies (Coralville,

IA). Isolation of chromosomally-integrated mini-Tn7 elements

followed by Flp-mediated selection marker excision was performed

using recently published procedures [20]. Quantitative real-time

PCR was performed using the methods and primer sets described

by Kumar et al. [22]. Other primer sequences are shown in

Table 1. Total RNA was extracted from cells grown to late log

phase (optical density at 600 nm ,0.7) in LSLB medium without

antibiotics using the RNeasy Mini Kit (Qiagen).

Mutant construction
For isolation of D(amrR-amrAB-oprA) mutants, three partially

overlapping DNA fragments representing flanking DNA segments

and the Kmr marker were PCR-amplified from 50 ng pPS1927 and

pFKM2 [20] DNA templates and then spliced together by an

overlap extension PCR. To do this, the following fragments were

amplified in a first-round PCR using Platinum Taq HiFi DNA

polymerase (Invitrogen, Carlsbad, CA) and the following primers: a

892-bp amrR upstream fragment using primers 1581 (59- agggtgtc-

cacatccttgaa) and 1582 (59- TCAGAGCGCTTTTGAAGCTAA-

TTCGggacacttcaacggcaagat), a 828-bp oprA downstream fragment

using primers 1583 (59- AGGAACTTCAAGATCCCCAATTCG-

gtcgccgaatacgagaagac) and 1584 (59- gaaatacgccttgacgcact), and a

1382-bp FRT-nptII-FRT fragment using primers 596 (59-CGAAT-

TAGCTTCAAAAGCGCTCTGA) and 597 (59-CGAATTGGG-

GATCTTGAAGTTCCT)(Lowercase letters denote chromosome-

specific sequences and uppercase letters FRT cassette-specific

sequences.) These fragments were combined in a second PCR

and, after gel purification, the resulting recombinant ,3.1-kb DNA

fragment was cloned into pGEM-T Easy (Novagen), which yielded

pPS2282. The D(amrR-amrAB-oprA::FRT-nptII-FRT) cassette was

excised from pPS2282 with EcoRI, blunted ended with T4 DNA

polymerase (NEB) and ligated into the SmaI site of pEX-S12pheS (C.

Lopez and H. Schweizer, unpublished) yielding pPS2354. Gene

replacement using PheS-mediated counter-selection on M9-glucose

supplemented with 0.15% p-chlorophenylalanine was performed as

previously described [23] except that E. coli strains SM10(lpir) or

RHO1 (a Km susceptible derivative of SM10[lpir] [24]; D. Rholl

and H. Schweizer, unpublished) were used for conjugation

experiments. The recipient strain was either Bp24 or Bp35 and

merodiploids were selected on LSLB medium supplemented with

1000 mg/ml Km (to select for the D[amrR-amrAB-oprA::FRT-nptII-

FRT] cassette cloned in pEX-S12pheS) and 100 mg/ml polymyxin B

(to counterselect against RHO1). p-chlorophenylalanine resistant

colonies were then obtained and screened for the presence of the

correct deletion alleles by colony PCR [20] and primers 597 and

1546 for D(amrR-amrAB-oprA)::FRT-nptII-FRT. An unmarked

D(amrR-amrAB-oprA) mutation was obtained after Flp recombinase-

mediated excision of the nptII marker using pFlpe2 [20]. The

presence of the deletion allele was verified by phenotypic (Gm

susceptibility) and genotypic (PCR with primers 1581 and 1584)

analyses.

Fosmid library construction and screening
Genomic DNA was extracted from strain 708a using the

QiAmpDNA Mini Kit (Qiagen, Valencia, CA). Fosmids contain-

Author Summary

Burkholderia pseudomallei is the etiologic agent of
melioidosis, an emerging tropical disease. Because of low
infectious dose, broad-host-range infectivity, intrinsic
antibiotic resistance and historic precedent as a biowea-
pon, B. pseudomallei was listed in the United States as a
Select Agent and Priority Pathogen of biodefense concern
by the US Centers for Disease Control and Prevention and
the National Institute of Allergy and Infectious Diseases.
The mechanisms governing antibiotic resistance and/or
susceptibility and virulence in this bacterium are not well
understood. Most clinical and environmental B. pseudo-
mallei isolates are highly resistant to aminoglycosides, but
susceptible variants do exist. The results of our studies
with three such variants from Thailand reveal that lack of
expression or deletion of an efflux pump is responsible for
this susceptibility. The large deletion present in one strain
not only removes an efflux pump but also several putative
virulence genes, including an entire siderophore gene
cluster. Despite this deletion, the strain is fully virulent in
an acute mouse melioidosis model. In summary, our
findings shed light on mechanisms of antibiotic resistance
and pathogenesis. They also validate the previously
advocated use of laboratory-constructed, aminoglycoside
susceptible efflux pump mutants in genetic manipulation
experiments.

B. pseudomallei Aminoglycoside Susceptibility

www.plosntds.org 2 September 2009 | Volume 3 | Issue 9 | e0000519



Table 1. Strains, plasmids and primers used in this study.

Strain or Plasmid Relevant Propertiesa Reference or Source

B. pseudomallei

1026b AG and ML resistant wild-type strain; clinical isolate [45]

DD503 AG and ML susceptible D(amrR-amrAB-oprA)1026b derivative [13]

708a AG and ML susceptible clinical isolate [16]

2188a AG and ML susceptible clinical isolate [16]

3799a AG and ML susceptible clinical isolate [16]

Bp24 Spontaneous AG and ML resistant derivative of 3799a This study

Bp35 Spontaneous AG and ML resistant derivative of 2188a This study

Bp50 1026b with D(amrR-amrAB-oprA) [20]

Bp66 Low level Gmr derivative of 708a This study

Bp187 Bp24 with D(amrR-amrRAB-oprA) This study

Bp202 Bp187::mini-Tn7T-LAC This study

Bp194 Bp187::mini-Tn7T-LAC-amrA+B+-oprA+ This study

Bp192 Bp35 with D(amrR-amrAB-oprA) This study

Bp201 Bp192::mini-Tn7T-LAC This study

Bp200 Bp192::mini-Tn7T-LAC-amrA+B+-oprA+ This study

Plasmids

pEX-S12pheS Gmr; gene replacement vector Lopez and Schweizer, unpublished

pUC18T-mini-Tn7T-LAC Apr, Gmr; mini-Tn7 cloning and delivery vector [46]

pPS2142 Apr, Gmr; pUC18T-miniTn7T-LAC with amrA+B+-oprA+; amrAB-oprA expression under Ptac
b control [20]

pTNS3 Apr; source of Tn7 transposase components TnsABCD [20]

pFKM2 Apr Kmr; source of FRT-nptII-FRT cassette [20]

pFLPe2b Zeor; source of Flpe recombinase [20]

pPS1927 Apr; pWSK29 [47] with ,15 kb strain 1026b chromosomal EcoRI fragment containing amrA+B+-oprA+ This study

pPS2282 Apr; pGEM-T Easy (Novagen) with ,3.1 kb PCR fragment containing D(amrAB-OprA)::FRT-nptII-FRT t This Study

pPS2354 Gmr Kmr; pEX-S12pheS with ,3.1 kb blunt-ended EcoRI fragment of pPS2282 cloned into the SmaI site This Study

Primersc

597 59-CGAATTGGGGATCTTGAAGTTCCT This study

1546 59-TACATGGCGATAGCTAGACTGG This study

1599 59-CGCGCGCAATTGTTCCTC This study

1600 59-TCGTAAGAAAGCGACACGCA This study

1601 59-CGATTCTTCGCGCGTCTTG This study

1602 59-CGCGTGCGTGCCCATTCG This study

1742 59-AAGACCGCGCTCTATTACGA This study

1743 59-TCGTCACCGTATCAGTGCAT This study

1756 59-ATCTTGCCGTTGAAGTGTCC This study

1757 59-ATCGCTGAACACGAAGAACC This study

1774 59-ACTAGTAGTGAGCGCAACGCAATTA This study

1779 59-GCCTCTTCGCTATTACGC This study

1797 59-GTTCGTCGCCGAGGAGT This study

1801 59-GAAGCCGGTGAAATCGACG This study

1954 59-CTCAAGTCGGTGTCCATTCC This study

1955 59-ACGTTATCCGGCGTGATCT This study

2031 59-CCTGGTTCACCTGCTCGATG This study

2032 59-CTTCGTCGCTGCAAGAAACG This study

2033 59-CGATCGACCTGCCTGAAACC This study

2034 59-AGCTCGTCGTGAACACGGC This study

2035 59-GACGTAATGGAACGACGCGC This study

2036 59-CGTCGGCGCATTGAACGACA This study

2037 59-CGATTCGTACATCGCGGCGA This study

B. pseudomallei Aminoglycoside Susceptibility
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ing ,40 kb inserts were isolated using the CopyControl Fosmid

Library Production Kit following manufacturer’s instructions

(Epicentre, Madison, WI). Approximately 1,200 Cmr resistant

colonies were pooled in groups of 30 (designated pools A–Z and

1–11), grown overnight in Cm containing medium, induced to

high copy number and fosmid DNA was extracted using the

QIAprep Mini-spin kit (Qiagen). Fosmid DNA from the 30 pools

were screened by PCR using primers 1742 and 1743, and PCR

products were obtained from 5 pools. DNA from these pools was

transformed into E. coli DH5a and single colonies were screened

for the presence of the correct clones by PCR using primers 1742

and 1743. DNA was extracted from these clones and sequenced

with primers 1774 and 1779 which anneal in the fosmid backbone,

as well as 1742 which anneals in the insert. Sequences obtained

with primers 1774 and 1779 were BLAST searched against

genome sequences of B. pseudomallei strains K96243, 1710b, 1106a

and 668.

Next Gen Sequencing and data analysis
The genome of strain 708a was sequenced using a short ‘‘read’’

technology to detect missing genes relative to reference genomes.

Five mg of DNA from B. pseudomallei strain 708a was sheared into

approximately 175 bp fragments using air nebulization. A

genomic library was then constructed following standard protocols

from Illumina, Inc. (San Diego, CA). The library was sequenced

on an Illumina Genome Analyzer (GA) using a single read

sequencing method. Image analysis for base calling and alignments

followed protocols of Craig et al. [25]. Genomic sequencing data

(42 bp reads) for strain 708a were aligned against the K96243 and

MSHR668 (data not presented) reference genomes using the

Illumina GA software. The aligned reads were then visualized

using the software program SolScape (Beckstrom-Sternberg et al.,

manuscript in preparation). Genomic regions with no reads were

interpreted as missing from the sequenced genome.

Isolation of gentamicin resistant mutants
Gentamicin resistant derivatives of strains 2188a and 3799a

were isolated in several steps. First, the strains were grown

overnight at 37uC in LSLB medium containing 8 mg/ml Gm. The

bacteria were then diluted into fresh LSLB medium containing

16 mg/ml Gm, followed by outgrowth at 37uC. The selection steps

were repeated using LSLB medium containing 32, 64 and

128 mg/ml Gm. Similar selection steps were performed with

708a except that lower Gm concentrations of 2, 4, 8 and 16 mg/ml

were employed.

Antimicrobial susceptibility testing
Minimal inhibitory concentrations (MICs) were determined in

Mueller-Hinton broth from Becton Dickinson (Franklin Lakes, NJ)

by the two-fold broth microdilution technique following Clinical

and Laboratory Standards Institute guidelines [26]. The MICs

were recorded after incubation at 37uC for 15 to 16 h.

Animal infection experiments
Ethics Statement: All animal procedures were performed using

standard protocols and according to guidelines approved by the

Colorado State University BioSafety Committee and the Colorado

State University Animal Care and Use Committee. For animal

infection experiments, B. pseudomallei strains were grown in LB

medium to saturation by overnight incubation at 37uC with

aeration. Glycerol was added to a final concentration of 15% and

cell suspensions were stored at 280uC until ready for use. Inocula

for in vivo infections were prepared by thawing and diluting the

frozen bacterial stocks in sterile phosphate buffered saline (Sigma-

Aldrich). Female BALB/c mice between 6–8 weeks of age were

used for infection studies (Jackson Laboratories, Bar Harbor, ME).

Mice were housed under pathogen-free conditions, and provided

sterile water and food ad libitum. All animal infections were done

using intranasal (i.n.) inoculation. Mice were anesthetized by

intraperitoneal injection of 100 mg/g body weight of ketamine (Fort

Dodge Animal Health, Overland Park, KS) and 10 mg/g body

weight of xylazine (Ben Venue Laboratories, Bedord, OH). For all

infections, the desired inoculum of B. pseudomallei was suspended in

phosphate buffered saline. The 20 ml inoculum volume was

delivered i.n, with the dose split evenly between both nostrils. At

the completion of challenge studies, animals were humanely

euthanized, according to study endpoints approved by the Animal

Care and Use Committee at Colorado State University.

Results and Discussion

Aminoglycoside and macrolide susceptible isolates show
reduced or absent AmrAB-OprA expression

In agreement with previously published results, the aminogly-

coside and macrolide susceptibility patterns of strains 708a, 2188a

and 3799a isolated from human patients with various disease

manifestations and clinical outcome (Table 2) were similar to

those observed with the AmrAB-OprA deficient strain DD503

(Table 3). Quantitative real-time PCR was therefore used to

assess amrAB-oprA expression relative to strain 1026b, which is

known to constitutively express this efflux pump. No amrB

transcripts were detected in strains 708a and D(amrAB-oprA) strain

DD503, and amrB transcript levels were significantly lower in

2188a and 3799a than those measured in 1026b (Fig. 1). As in our

hands 2 to 3 fold differences in mRNA levels determined by qRT-

PCR make the difference between low- and high-level RND

pump-mediated resistance, these data support the notion that the

aminoglycoside and macrolide susceptibilities of strains 708a,

2188a and 3799a are due to reduced or lack of AmrAB-OprA

efflux pump expression.

Gentamicin resistant derivatives of 2188a and 3799a, but
not 708a, express AmrAB-OprA

As we were able to PCR amplify the 59 and 39 regions of the

amrAB-oprA operon from strains 2188a and 3799a, but not 708a

Strain or Plasmid Relevant Propertiesa Reference or Source

2038 59-CTCAACTTCACGGGCGAGAT This study

aAbbreviations: AG, aminoglycosides; Ap, ampicillin; Gm, gentamicin; Km, kanamycin; ML, macrolides; r, resistance; Zeo, zeocin.
bPtac, E. coli lac/trp operon hybrid promoter.
cOnly selected primers are shown; other primer sequences are available from the authors upon request. Oligonucleotides were purchased from IDT, Coralville, IA.
doi:10.1371/journal.pntd.0000519.t001

Table 1. Cont.

B. pseudomallei Aminoglycoside Susceptibility
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(data not shown), we suspected that this operon was absent from

708a and present but expressed at low levels 2188a and 3799a. To

test this notion, we attempted to isolate Gm resistant derivatives of

these strains. Highly (MIC.1024 mg/ml) Gmr derivatives, e.g.

Bp35 and Bp24, were readily obtained with strains 2188a and

3799a, but not with 708a (e.g. Bp66) (Table 3). Moreover, the

Gmr 2188a and 3799a derivatives Bp35 and Bp24 became

simultaneously resistant to other aminoglycosides and macrolides

and their antibiotic susceptibility profiles resembled that of

AmrAB-OprA expressing strain 1026b (Table 3). In contrast,

the moderately (MIC 32 mg/ml) Gmr derivative of 708a (Bp66)

did not simultaneously become resistant to other aminoglycosides

and erythromycin. None of the strains tested exhibited altered

clindamycin resistance. Clindamycin is a good substrate of BpeAB-

OprB but not AmrAB-OprA (T. Mima and H. Schweizer,

unpublished data). Consistent with these observations, significantly

increased amrB transcript levels were detected in Bp24 and Bp35

(Fig. 1, panels A and B), but not Bp66 (not shown). Deletion of

amrAB-oprA from Bp24 and Bp35 resulted in loss of aminoglycoside

and macrolide resistance which could be complemented back to

wild-type levels by a chromosomally integrated mini-Tn7

expressing amrA+B+-oprA+ (Table 3). Together, these results

indicate that the amrAB-oprA operon is absent from 708a and

present, but not expressed in sufficient levels in strains 2188a and

3799a to confer aminoglycoside and macrolide resistance.

Lack of AmrAB-OprA expression in 2188a and 3799a is
not due to mutations in the amrAB-oprA regulatory
region

To assess whether lack of amrAB-oprA expression in strains 2188a

and 3799a is due to mutations in the operon’s regulatory region, the

amrR-amrA intergenic region was amplified with primers 1601 and

1602 and sequenced. These analyses revealed that the sequence of

the amrR-amrA intergenic regions of strains 2188a and 3799a and

their Gmr derivatives Bp35 and Bp24 were identical (data not

shown). Furthermore, amplification of the amrR coding sequences

from 2188a and 3799a and their Gmr derivatives Bp35 and Bp24

with primers 1599 and 1600 did not reveal any mutations in amrR.

In summary, these data revealed that i) lack of AmrAB-OprA

expression in 2188a and 3799a was not caused by mutations in the

Table 3. Antibiotic susceptibilities of B. pseudomallei strains.

Strain Known Genotype

MIC (mg/ml) for:

Gma Str Spc Ery Cla Cli

1026b Wild-type 256 1024 512 128 64 .1024

DD503 1026b with D(amrR-amrAB-oprA) 2 NDb 64 8 4 .1024

708a 1 8 32 16 16 .1024

2188a 1 8 32 16 32 .1024

3799a 2 8 64 16 16 .1024

Bp24 Gmr derivative of 3799a .1024 1024 256 64 16 .1024

Bp35 Gmr derivative of 2188a .1024 .1024 .1024 256 512 .1024

Bp66 Low level Gmr derivative of 708a 32 8 16 4 16 .1024

Bp187 Bp24 with D(amrR-amrAB-oprA) 2 16 128 16 16 .1024

Bp202 Bp187::mini-Tn7T-LACc 4 32 128 8 16 .1024

Bp194 Bp187::mini-Tn7T-LAC-amrA+B+-oprA+c .1024 .1024 .1024 256 512 .1024

Bp192 Bp35 with D(amrR-amrAB-oprA) 2 16 128 16 16 .1024

Bp201 Bp192::mini-Tn7T-LACc 4 32 128 8 16 .1024

Bp200 Bp192::mini-Tn7T-LAC-amrA+B+-oprA+c .1024 .1024 .1024 256 256 .1024

aCla, clarithromycin; Cli, clindamycin; Ery, erythromycin; Gm, gentamicin; Spc, spectinomycin; Str, streptomycin.
bND, not done; DD503 is streptomycin resistant because of a chromosomal rpsL mutation.
cThe mini-Tn7 elements are integrated at the glmS2-associated Tn7 attachment site [20]. MIC values were determined in cells grown in the presence of 1 mM isopropyl-
b-D-thiogalactopyranoside.

doi:10.1371/journal.pntd.0000519.t003

Table 2. B. pseudomallei strains: origins, properties and clinical details.

Strain Isolation Date Clinical Details Gentamicin MICa

708a 30.8.90 32 year old male; 21 days fever and 14 days abdominal pain. No risk factors for melioidosis. Splenic abscess as
single infectious site. Splenectomy required to control infection. Treated with intravenous ceftazidime followed
by oral doxycycline. Survived.

0.5 mg/ml

2188a 18.12.98 22 year old male rice farmer; 14 days fever, cough, sputum, swollen left knee. Known diabetic. Bacteremic with
lung and joint involvement. Treated with joint washout and intravenous amoxicillin/clavulanic acid. Developed
respiratory failure and died the day after admission.

0.5 mg/ml

3799a 12.12.05 66 year old female rice farmer; 15 days cough, breathlessness, sputum. History of chronic renal failure. Bacteremic
with lung and renal involvement. Treated with ceftazidime. Died from septic shock 4 days after admission.

1 mg/ml

aMIC determinations were performed in Thailand using the E-test.
doi:10.1371/journal.pntd.0000519.t002

B. pseudomallei Aminoglycoside Susceptibility
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amrAB-oprA regulatory region and ii) increased amrAB-oprA expres-

sion in Gmr derivatives Bp24 and Bp35 was not due to promoter-up

mutations or other amrR mutations. Rather, the data suggest that

AmrAB-OprA expression is governed by a yet unidentified

transcription factor or other positive regulatory mechanism(s). It is

well known that efflux pump operon expression in other bacteria is

governed by local as well as global mechanisms (reviewed in [27]).

For instance, mexAB-oprM operon expression in P. aeruginosa is under

control of the local MexR repressor [28], as well as other

mechanisms including the ArmR anti-repressor encoded by a gene

elsewhere on the chromosome [29].

Strain 708a contains a large deletion on chromosome 1
Results of PCR and qRT-PCR analysis were consistent with the

notion that the amrAB-oprA operon was missing from strain 708a.

Using the 1710b chromosome 1 sequence as a guide, primer sets

were designed to amplify ,500 bp fragments in the amrAB-oprA

containing region of chromosome 1. Results of this primer walking

strategy identified a correct PCR product obtained with primer set

1742 and 1743 designed to amplify sequences located ,5 kb

upstream of amrR. However, no PCR products were obtained with

primers designed to sequences located up to 65 kb downstream of

oprA. These data were consistent with the presence of a large

(.70 kb) deletion on chromosome 1 encompassing amrAB-oprA. To

determine the deletion boundaries, a fosmid library was constructed

using 708a chromosomal DNA. By PCR amplification, several

fosmids containing DNA previously located ,5 kb upstream of amrR

were identified. Sequence analyses of both fosmid-chromosomal

DNA boundaries and BLAST analyses using four B. pseudomallei

genomes revealed the same open reading frames (ORFs) at the

respective junctions, BURPPS1710b_2037 (or its respective homo-

log in other genomes) and BURPPS1710b_2160 (or its respective

homolog in other genomes). A series of primers was designed to

determine the sequence adjacent to the primer 1742 binding site.

The sequence was aligned to that of 1710b and revealed a fusion of

ORFs BURPPS1710b_2155 and BURPPS1710b_2054. We inter-

preted this to mean that compared to 1710b, the 708a sequence was

missing nucleotides 2,219,259–2,359,936 (or ,141 kb) from

chromosome 1, including amrAB-oprA.

When compared to other strains, the extent of the deletion varied

by approximately 610 kb based on sequence from strains used as

comparators. For example, when compared to K96243 the deletion

is ,131 kb (Fig. 2). The deletion was further confirmed by: i) PCR

amplification using primers 1797 and 1801 and DNA sequence

analysis of a 1.1 kb chromosomal DNA fragment from 708a

genomic DNA containing the predicted deletion junction; and ii)

short read whole genome sequencing of the 708a genome (Fig. 3).

Genes contained within the large deletion present in
708a chromosome 1

Because of the more thorough and detailed annotation of the

published K96243 genome we decided to use it to assess key genes

missing from B. pseudomallei strain 708a. According to K96243

coordinates, 708a is missing nucleotides 2,024,622 to 2,155,357

fusing the BURPPS1710b_2155 and BURPPS1710b_2054 equiva-

lents BPSL1717 and BPSL1807 (Fig. 2). In K96243, as well as 1710b

and other B. pseudomallei strains, this .90 gene region not only

contains amrAB-oprA but several other genes that may be pertinent to

this bacterium’s physiology and pathogenesis (Table 4). First, this

deleted region contains the 13 gene malleobactin biosynthetic gene

Figure 2. Extent of chromosome 1 deletion in strain 708a compared to K96243. 708a contains a deletion fusing the bold sequences of
BPSL1717 and BPSL1807, respectively. Some notable genes and gene clusters present in K96243 but missing from 708a are: 1 amrR-amrAB-oprA; 2 a
three gene operon (BPSL1801-BPSL1800-BPSL1799) encoding a putative type-1 fimbrial protein along with its outer membrane usher protein and
chaperone; 3 the 13 gene malleobactin biosynthetic gene cluster and its extracytoplasmic sigma factor MbaS defined by mbaF-fmtA-mbaA-mbaI-
mbaJ-mbaE-BPSL1781-BPSL1782-BPSL1783-BPSL1784-BPSL1785-BPSL1786-mbaS; 4 a cluster of 18 genes (BPSL1755-BPSL1773) encoding a putative
aerobic (or late cobalt insertion) vitamin B12 biosynthetic pathway with an embedded gene (BPSL1763) encoding a putative exported chitinase; 5
arcD (BPSL1742) and arcABC (BPSL1743-BPSL1744-BPSL1745) coding for the arginine deiminase pathway; and 6 a two gene cluster (BPSL1732-
BPSL1731) coding for a putative methyl-accepting chemotaxis citrate transducer and chemotaxis protein CheW2, respectively. Strain 1710b contains
an additional 10 kb of DNA in this region.
doi:10.1371/journal.pntd.0000519.g002

Figure 1. amrB transcript levels in gentamicin susceptible and
resistant strains. mRNA levels in LSLB without antibiotics-grown late-
log cultures of the indicated strains were determined with an amrB-
specific primer set. Data were normalized using the 23S rRNA gene as
the housekeeping control. amrB transcript levels were determined A in
strain 2188a and its gentamicin resistant derivative Bp35 and B in strain
3799a and its gentamicin resistant derivative Bp24. Relative quantifi-
cations were performed using 2188a and 3799a, respectively.
doi:10.1371/journal.pntd.0000519.g001
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cluster and its extracytoplasmic sigma factor MbaS defined by

mbaF-fmtA-mbaA-mbaI-mbaJ-mbaE-BPSL1781-BPSL1782-BPSL1783-

BPSL1784-BPSL1785-BPSL1786-mbaS [30]. Malleobactin is a

hydroxamate siderophore that is analogous to the same genes in

Pseudomonas aeruginosa pyoverdine [31] and B. cepacia ornibactin [32].

Pyoverdine is essential for infection and full virulence of P. aeruginosa,

as assessed in several different experimental models [33], along with

biofilm formation [34]. Similarly, B. cepacia mutants defective in

ornibactin synthesis showed significantly reduced virulence [32].

However, in the case of 708a, despite missing the entire malleobactin

biosynthetic gene cluster and exhibiting overall greatly reduced

siderophore synthesis (as assessed by growth on Chrome azurol S

plates) [30,35] (data not shown), the 708a stain was still able to cause

severe illness in the infected human from which it was isolated

(Table 2). Moreover, strain 708a was also fully virulent in our acute

inhalational challenge model in mice (Fig. 4). Thus, it is possible that

malleobactin may not play the same crucial role in infection and

virulence that the P. aeruginosa pyoverdine siderophore does.

Alternatively, B. pseudomallei is known to synthesize other iron

transport systems, including a pyochelin siderophore and heme-

hemin receptor and transporter [30,36], and thus 708a may utilize

these alternative pathways for iron transport. Second, immediately

adjacent to the malleobactin biosynthetic genes is a cluster of 18

genes (BPSL1755-BPSL1773) encoding a putative aerobic (or late

cobalt insertion) vitamin B12 biosynthetic pathway [37]. Vitamin B12

is a known cofactor for numerous enzymes mediating methylation,

reduction and intramolecular rearrangements. Why this pathway is

dispensable for growth in 708a is not known. However, some

bacteria are known to possess an alternative anaerobic (or early

cobalt insertion) pathway [37]. Third, the deletion in 708a

encompasses the genes arcD (BPSL1742) and arcABC (BPSL1743-

BPSL1745) coding for the arginine deiminase pathway. In P.

aeruginosa, this pathway provides for ATP synthesis under anaerobic

conditions in the absence of exogenous electron acceptors provided

that arginine is present in the growth medium [38]. In this context it

is worthy of note that 708a was isolated from a splenic abscess and

abscesses are generally considered to provide a mixed aerobic-

anaerobic environment [39,40]. If 708a was truly able to grow under

anaerobic conditions, then 708a must be capable of utilizing

alternative pathways for energy generation under anaerobic

conditions. This alternate pathway presumably would require

nitrate as B. pseudomallei was shown to be capable of growing

anaerobically only in the presence of arginine and nitrate [41].

Fourth, other noteworthy genes covered by the deletion include

i) a three gene operon (BPSL1801-BPSL1799) encoding a putative

type-1 fimbrial protein along with its outer membrane usher

protein and chaperone; ii) a two gene cluster (BPSL1732-

BPSL1731) coding for a putative methyl-accepting chemotaxis

citrate transducer and chemotaxis protein CheW2, respectively;

and iii) a putative exported chitinase (BPSL1763).

Genes missing from the 131 kb deletion are not present
elsewhere on the chromosome

To assess whether the aforementioned genes were indeed absent

from the chromosome we performed i) whole genome sequencing

and ii) PCR analysis of selected genes.

Genomic alignments were performed to compare 708a data

with two B. pseudomallei reference genomes: strains K96243 and

MSHR668. The 42 bp reads had an average density of 246 and

covered 93.3% (chromosome 1) and 96.9% (chromosome 2) of the

reference genomes. The notable exception to this coverage was a

,130.7 Kb region corresponding to positions 2,024,621 and

2,155,359 in chromosome 1 of the K96243 genome (Fig. 3).

Nearly zero reads aligned to this region indicating that the 708a

strain does not contain any of these genes. While these data do not

discern gene order or chromosomal linearity between 708a and

the reference genomes, this does represent a comprehensive query

and argues that the genes in this region are not present anywhere

in the 708a genome. If homologous genes existed elsewhere in the

708a genome, they would have generated short reads that would

have aligned with this region. The short read data are available

online at http://www.mggen.nau.edu/MGGen_research.html.

Because whole genome sequence coverage was not 100% for

both chromosomes, we performed PCR analysis for selected genes

using gene-specific primers designed for amplification of the

corresponding K96243 sequences (Fig. 5). PCR analysis showed

the expected DNA fragments with genomic DNA templates from

K96243 but not with 708a templates. The identities of the

amplified DNA fragments were verified by DNA sequence

analyses which also confirmed minor bands visible in some PCR

reactions from 708a templates as non-specific amplification

products. As a positive control, we amplified a fragment from

the BPSL1809-BPSL1810 region using primers 1742 and 1743.

This region is present in both 708a and K96243. The 445 bp

amplicon derived from K96243 DNA consists of 243 bp from

BPSL1810 and 202 bp from the BPSL1809-BPSL1810 intergenic

region. The corresponding fragment obtained with 708a DNA is

slightly larger (479 bp) because of several insertions in the

BPSL1809-BPSL1810 intergenic region.

Figure 3. Large deletion verification in chromosome 1 of strain 708a by whole genome sequencing. Genomic sequencing data from
strain 708a were aligned against the K96243 reference genome. Panel A shows the read density near positions 2,024,621 and 2,155,359 on
chromosome 1. Panel B shows the 708a read density across the ,4.5 Kb flanking the deletion in chromosome 1 of strain K96243. The yellow
highlighted region in panel B marks a ,130.7 Kb region with a near-zero read coverage, which correspond to the panel A coordinates. This lack of
reads is strong evidence for deletion of the entire region in strain 708a.
doi:10.1371/journal.pntd.0000519.g003

B. pseudomallei Aminoglycoside Susceptibility

www.plosntds.org 7 September 2009 | Volume 3 | Issue 9 | e0000519



Table 4. K96243 gene equivalents contained within the 708a
chromosome 1 deletion.

Locus Tag or Gene Putative or Known Function

BPSL1717 Hypothetical protein

BPSL1718 Hypothetical protein

BPSL1719 Putative kinase

BPSL1720 Putative argininosuccinate lyase

BPSL1721 Putative argininosuccinate synthase

BPSL1722 Putative formyl transferase

BPSL1723 Hypothetical protein

BPSL1724 Putative histidinol-phosphate aminotransferase

BPSL1725 Hypothetical protein

BPSL1726 Hypothetical protein

BPSL1727 Putative non-ribosomal peptide synthase (thioesterase
domain)

BPSL1727 Putative non-ribosomal peptide synthase (thioesterase
domain)

BPSL1728 Putative exported porin

BPSL1729 Putative AraC-family transcriptional regulator

BPSL1730 Putative transmembrane protein

BPSL1731 Chemotaxis protein CheW2

BPSL1732 Putative methyl-accepting chemotaxis citrate
transducer

BPSL1733 Hypothetical protein

BPSL1734 Acyl-CoA synthase

BPSL1735 Putative transport system membrane protein

BPSL1736 Putative methyltransferase

BPSL1737 Putative ABC transport system, exported protein

BPSL1738 Putative ABC transport system, membrane protein

BPSL1739 Putative ABC transport system, ATP-binding protein

BPSL1740 Putative ABC transport system, membrane protein

BPSL1741 Hypothetical protein

arcD Arginine/ornithine antiporter

arcA Arginine deiminase

arcB Ornithine carbamoyltransferase

arcC Carbamate kinase

BPSL1746 Short chain dehydrogenase

BPSL1747 Hypothetical protein

BPSL1748 Putative LysR-family transcriptional regulator

BPSL1749 Putative glutathione S-transferase

BPSL1750 Putative MarR-family transcriptional regulator

BPSL1751 Putative amino-acid transport-related exported protein

BPSL1752 Putative MarR-family regulatory protein

BPSL1753 Putative transport-related membrane protein

BPSL1754 Putative lipoprotein

BPSL1755 Precorrin-4 C11-methyltransferase

BPSL1756 Precorrin-66 reductase

BPSL1757 Cobalt-precorrin-6A synthase

BPSL1758 Precorrin-6Y C5,15-methyltransferase

BPSL1759 Putative oxidoreductase

BPSL1760 Precorrin-86methylmutase

BPSL1761 Precorrin-2 methyltransferase

BPSL1762 Precorrin-3b C17-methyltransferase

Locus Tag or Gene Putative or Known Function

BPSL1763 Putative exported chitinase

BPSL1764 Hypothetical protein

BPSL1765 Putative carboxylesterase

BPSL1766 Hypothetical protein

BPSL1767 Putative magnesium chelatase protein

BPSL1768 Cobaltochelatase

BPSL1769 Putative cobalamin biosynthesis-related protein

BPSL1770 High-affinity nickel transport protein

BPSL1771 Cobalamin biosynthesis protein CbiG

BPSL1772 Cob(I)yrinic acid a,c-diamide adenosyltransferase

BPSL1773 Cobyrinic acid A,C-diamide synthase

mbaF Putative N5-hydroxyornithine transformylase1

fmtA Malleobactin receptor

mbaA Putative L-ornithine-N5-oxygenase

mbaI Putative non-ribosomal peptide synthase

mbaJ Putative non-ribosomal peptide synthase

mbaE Similar to P. aeruginosa pvdE (ABC transporter)

BPSL1780 Hypothetical protein

BPSL1781 Putative periplasmic iron-binding protein

BPSL1782 Putative ferric iron reductase

BPSL1783 Putative iron transport-related membrane protein

BPSL1784 Putative iron transport-related ATP-binding protein

BPSL1785 Hypothetical protein (similar to syrP from Streptomyces
verticillus)

BPSL1786 Hypothetical protein (similar to mbtH from
Mycobacterium tuberculosis)

mbaS MbaS, extracytoplasmic sigma factor

BPSL1788 Pseudogene

BPSL1789 Short chain dehydrogenase

BPSL1790 Putative zinc-binding dehydrogenase

BPSL1791 Hypothetical protein

BPSL1792 Hypothetical protein

BPSL1793 Putative sugar-binding exported protein

BPSL1794 Putative AraC-family transcriptional regulator

BPSL1795 Hypothetical protein

BPSL1796 Hypothetical protein

BPSL1797 Putative ABC transport system, membrane protein

BPSL1798 Hypothetical protein

BPSL1799 Putative fimbrial chaperone

BPSL1800 Putative outer membrane usher protein precursor

BPSL1801 Putative type-1 fimbrial protein

BPSL1802 OprA multidrug efflux outer membrane channel protein

BPSL1803 AmrB multidrug efflux system transporter protein

BPSL1804 AmrA multidrug efflux system membrane fusion
protein

BPSL1805 AmrR TetR family regulatory protein

BPSL1806 Subfamily M23B unassigned peptidase

BPSL1807 Putative amino acid transport system, membrane
protein

1Annotation of BPSL1774 (mbaF) through BPSL1787 (mbaS) according to Alice
et al. [30].

doi:10.1371/journal.pntd.0000519.t004
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In summary, these findings provide some insight into the

physiology and pathogenesis of B. pseudomallei. However, because

708a grows normally in rich and minimal laboratory media under

aerobic conditions, is fully virulent in an acute murine melioidosis

model and caused human melioidosis, the genes affected by the

deletion must be dispensable at least under the in vitro and in vivo

conditions encountered during laboratory studies and splenic

abscess disease during human infection caused by lone presence of

708a. This scenario is likely as simultaneous infection with more

than one strain is uncommon in human melioidosis [42].

Concluding remarks
The clinical diagnosis of Burkholderia pseudomallei still relies on

culture which is most commonly performed using selective Ash-

down’s agar whose main selective ingredient is gentamicin. The

majority of B. pseudomallei strains grow on this medium because of

their intrinsic resistance to aminoglycosides mediated by the

AmrAB-OprA efflux pump. At least 1 in 1,000 clinical isolates in

NE Thailand are susceptible to aminoglycosides and such isolates are

obviously missed by using Ashdown’s diagnostic agar. The actual

number of aminoglycoside susceptible strains may thus be higher.

Our results confirm that the aminoglycoside and macrolide

susceptibility of rare clinical isolates is indeed due to reduced or

lack of expression of the amrAB-oprA efflux pump operon, as

previously suggested but not proven [16]. Even though BpeAB-

OprB was previously implicated to contribute to aminoglycoside and

macrolide resistance in strain KHW [14], we now know that this

pump does not confer aminoglycoside resistance in 1026b (T. Mima

and H. Schweizer, unpublished observations), a strain isolated in the

same hospital as 708a. BpeAB-OprB is only expressed at very low

levels in wild-type strains which may explain the low levels of

erythromycin resistance observed in 708a, 2188a and 3799a in the

absence of AmrAB-OprB. This notion is supported by the

observation that all strains analyzed in this study exhibit clindamycin

resistance. Clindamycin is a good substrate of BpeAB-OprB but not

AmrAB-OprA (T. Mima and H. Schweizer, unpublished data). As

expected, qRT-PCR analyses showed only low-level BpeAB-OprB

expression in these strains (data not shown). Though strain 708a

contains a large deletion encompassing several gene clusters

encoding potential virulence factors and genes required for growth

under anaerobic conditions, these genes may either be dispensable

for in vitro and in vivo growth or this strain compensates for them by

expressing similar functions from another set of genes. The latter

notion may be supported by the observation that the genetically

engineered 1026b AmrAB-OprA mutant derivative Bp50 shows

reduced virulence in the murine melioidosis model whereas 708a

missing these genes is as virulent as 1026b (Fig. 4). We do not know

the factors, if any, that led to selection of strains missing or lacking

expression of AmrAB-OprA. Further experiments aimed at

addressing some of these issues at the molecular level are facilitated

by availability of the nearly complete 708a sequence and tools that

allow genetic manipulation of this strain. Lastly, because 708a is fully

virulent in the murine melioidosis model, yet very susceptible to

aminoglycosides, this strain may be a natural candidate for genetic

manipulation experiments that use Select Agent compliant antibi-

otics for selection, such as gentamicin [20], kanamycin [20],

spectinomycin/streptomycin [43] and nourseothricin [44] selection

markers, and validates the use of laboratory-constructed D(amrAB-

oprA) mutants in such experiments [13,20].
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