
Lidar-derived estimate and uncertainty of carbon sink
in successional phases of woody encroachment

Temuulen Sankey,1 Rupesh Shrestha,2 Joel B. Sankey,3,4 Stuart Hardegree,5

and Eva Strand6

Received 28 January 2013; revised 28 May 2013; accepted 22 June 2013; published 29 August 2013.

[1] Woody encroachment is a globally occurring phenomenon that contributes to the
global carbon sink. The magnitude of this contribution needs to be estimated at regional
and local scales to address uncertainties present in the global- and continental-scale
estimates, and guide regional policy and management in balancing restoration activities,
including removal of woody plants, with greenhouse gas mitigation goals. The objective
of this study was to estimate carbon stored in various successional phases of woody
encroachment. Using lidar measurements of individual trees, we present high-resolution
estimates of aboveground carbon storage in juniper woodlands. Segmentation analysis of
lidar point cloud data identified a total of 60,628 juniper tree crowns across four
watersheds. Tree heights, canopy cover, and density derived from lidar were strongly
correlated with field measurements of 2613 juniper stems measured in 85 plots (30 × 30m).
Aboveground total biomass of individual trees was estimated using a regression model with
lidar-derived height and crown area as predictors (Adj. R2=0.76, p< 0.001,
RMSE=0.58 kg). The predicted mean aboveground woody carbon storage for the study area
was 677 g/m2. Uncertainty in carbon storage estimates was examined with a Monte Carlo
approach that addressed major error sources. Ranges predicted with uncertainty analysis in
the mean, individual tree, aboveground woody C, and associated standard deviation were
0.35 – 143.6 kg and 0.5 – 1.25 kg, respectively. Later successional phases of woody
encroachment had, on average, twice the aboveground carbon relative to earlier phases.
Woody encroachment might be more successfully managed and balanced with carbon storage
goals by identifying priority areas in earlier phases of encroachment where intensive
treatments are most effective.
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1. Introduction

1.1. Woody Encroachment

[2] Woody encroachment into grass and shrublands is a
global phenomenon [Archer, 1999; Mather, 2000]. The
distribution and density of woody plant genera of Acacia,
Juniperus, Larrea, Prosopis, Quercus, and Tamarisk are

currently increasing in the world’s arid and semi-arid
regions, which comprise approximately 40% of the terrestrial
land surface and include many ecosystems at risk [Archer,
1999; Strand et al., 2008]. Woody encroachment can
decrease understory vegetation cover and forage, increase
soil erosion, alter soil fertility, and degrade wildlife habitat
[Miller et al., 2000]. To combat these effects, intensive land
treatments, including prescribed burning and cutting, are
commonly performed. The consequences of both woody
encroachment and intensive land treatments for terrestrial
carbon (C) stocks are unclear.
[3] Woody encroachment may contribute significantly to the

global C sink. In North America, woody encroachment has
been estimated to contribute 18–34% [0.06–0.13 PgCyr�1

(1 Pg = 1015 g)) of the continental C sink [Houghton et al.,
1999; Pacala and Hurtt, 2001; Houghton, 2003]. Large
uncertainties exist in these global- and continental-scale
estimates due to the coarse scale of the data and models
[Pan et al., 2011]. Intensive land treatment activities can
slow down or reverse the accumulation of C stocks that
occurs with woody encroachment [Cline et al., 2010].
Intensive land treatments are often applied to targeted locations
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to optimize treatment effects. Regional and local management
policies, however, do not take into account the spatial
variability in woody C accumulation as it varies with
successional phases of encroachment. Regional and
local-scale (i.e., subcontinental) estimates of woody C
accumulation should consider C storage and land treatment
effects, but current models have a high degree of uncertainty
in predicting the magnitude of carbon accumulation rates in
these systems.
[4] The primary objective of this study was to estimate

woody carbon storage in varying juniper encroachment
phases using high-resolution, three-dimensional lidar data.
To achieve this objective, we used a segmentation analysis
of lidar point cloud data and estimated aboveground
biomass and associated uncertainty of individual juniper
trees in the South Mountain area, southwestern Idaho,
USA. We also classified juniper encroachment phases based
on lidar-derived and field-measured juniper tree height,
density, and canopy cover and compared Miller et al.
[2000] and Miller et al. [2005] canopy cover and density
thresholds to determine which criteria best characterized
successional phases of encroachment and priority areas for
intensive management when using remote sensing data over
large areas.

1.2. Juniper Encroachment in Western North America

[5] The spatial extent of pinyon-juniper woodlands, the
third most common vegetation type in the USA [Huang
et al., 2009], is documented to have increased by an order
of magnitude since the mid-19th century [Romme et al.,
2009]. Literature reviews indicate that reported increases
in areal extent have ranged between 30 and 625% [Romme
et al., 2009], while encroachment rates have varied between
0.4 and 4.5% per year [Sankey and Germino, 2008]. At
regional scales, the mean pinyon-juniper woodland
contribution to terrestrial C is estimated to be 5.2 MgC/ha
(1Mg = 106 g), while mean C accumulation associated
with pinyon-juniper encroachment is estimated to be
3.3–10 gCm�2 yr�1 [Strand et al., 2008]. Estimates of C
accumulation, however, have varied greatly from �0.11 to
0.22 MgCha�1 yr�1 due to the methods and scale of analysis
[Strand et al., 2008; Huang et al., 2009; Davies and Bates,
2010]. Previous optical and multispectral remote-sensing
approaches provide only a two-dimensional measurement
of juniper cover change [e.g., Strand et al., 2008; Huang
et al., 2009; Davies and Bates, 2010]. We present a new
technique to estimate aboveground woody C storage using
high-resolution, three-dimensional lidar measurements of
individual juniper trees in western juniper [Juniperus
occidentalis] communities.

[6] Lidar data are now increasingly used for rangeland
applications [Weltz et al., 1994; Ritchie et al., 1995;
Rango et al., 2000; Streutker and Glenn, 2006; Mundt
et al., 2006; Bork and Su, 2007; Riano et al., 2007; Su and
Bork, 2007; Sankey et al., 2010; Sankey and Bond, 2011].
Tree height and crown diameter can be measured directly
from lidar data [e.g., Hyyppa et al., 2001; Popescu et al.,
2003]. Lidar analyses generally involve establishing
relationships between metrics describing lidar-derived
height measurements and ground-based data [e.g., Means
et al., 2000; Næsset and Gobakken, 2008]. The estimation
of aboveground biomass relies on a strong relationship
between the amount of foliage and the various tree
components since foliage normally is the main element
blocking laser pulses [Næsset and Gobakken, 2008]. In this
study, we present an object-based tree crown delineation
approach, with segmentation followed by local maxima to
detect individual tree crowns and compute the metrics from
the lidar points within each tree crown area. This approach
of computing metrics directly from the lidar point cloud,
rather than from an interpolated raster surface, might
improve lidar-based tree biomass estimation.
[7] Lidar-derived individual tree characterization has

important implications for both C stock estimates and
prioritization of juniper treatment activities. Juniper
encroachment occurs in distinct successional phases that
are correlated with juniper tree age, density, canopy cover,
and individual tree biomass [Miller and Rose, 1999].
Miller et al. [2005] identified three distinct successional
phases during the process of juniper encroachment: Phase
I where trees are present, but shrub and herbaceous species
dominate; Phase II where trees codominate with shrubs and
herbaceous species; and Phase III where trees are the
dominant vegetation (Table 1). Johnson and Miller [2006]
further modeled tree density within each of these phases or
cover classes to help identify critical transition points
(Table 1). Lidar data offer key advantages in estimating tree
canopy cover and tree density per unit area over large
spatial extent based on individual tree characterization.
However, it is uncertain which variable and threshold
derived from lidar remote sensing data better describe
juniper encroachment phases.
[8] Lidar-based measurements can provide high-resolution

estimates of tree cover, density, and height that could be used
to estimate tree biomass, C accumulation rate, and amount as a
function of encroachment phase [Asner et al., 2010; Koch,
2010; Popescu, 2007]. Such estimates might in turn be useful
to guide treatment activities in conjunction with greenhouse
gas mitigation goals. Juniper control treatments are most
effective during the early phases of stand development. As
juniper trees mature and canopy cover increases in encroached
area, understory vegetation cover decreases [Tausch et al.,
1981] leading to lack of fine fuels for surface fires and making
rangeland restoration difficult [Johnson and Miller, 2006].
Once a stand reaches mid to late development phases, control
treatments are no longer effective [Miller et al., 2000].

2. Methods

2.1. Study Area

[9] This study was conducted in four research watersheds in
the South Mountain area of southwestern Idaho. These

Table 1. Juniper Encroachment Phases and Their Characteristics in
Postsettlement Stands (Adopted From Miller et al., 2005)a

Encroachment Phases Tree Canopy Cover (%) Tree Density

Phase I (early stage) <10% up to 200 trees/ha (18/pixel)
Phase II (mid stage) 10–30% 200–780 trees/ha

(18–70/pixel)
Phase III
(late/closed stage)

>30% >780 trees/ha
(>70 trees/pixel)

aThe estimates in brackets show conversions from hectares to 30m pixels.
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watersheds are part of a cooperative hydrology experiment
by: USDA-ARS Northwest Watershed Research Center in
Boise, ID; USDA-ARS Eastern Oregon Agricultural
Experiment Station in Burns, OR; Idaho State University;
the Bureau of LandManagement; and private-land cooperators.
The watersheds have been monitored for meteorological
inputs, streamflow, and water quality parameters since
October 2006. These watersheds range in size from 20 to
70 hectares adjacent to each other. Since all four watersheds
share boundaries with similar encroachment phases, we
treat them collectively as a study area. The study area would
normally be occupied by mountain big sagebrush
(Artemesia tridentata Nutt. spp. vaseyana [Rydb.] Beetle)
with understory vegetation dominated by Idaho fescue
(Festuca idahoensis Elmer) [Bates et al., 2011], but is
encroached by western juniper (Juniperus occidentalis).
No other tree species are found in the juniper stands.

2.2. Field Measurements

[10] Field work was completed in July–August 2010. A
total of 100 random points were generated within the study
area [Hawth’s tools in ESRI® ArcMap 9.3 software: ESRI
Inc, 1999–2006]. A 30 × 30m Landsat image pixel at each
of these random points was selected and the coordinates of
the four corners of each pixel determined from the imagery.
We established field plots by navigating to the four corners

of the corresponding 30 × 30m area on the ground [Trimble
GeoXH GPS receiver: Trimble Navigation Ltd., Sunnyvale,
California]. Within each field plot, every juniper stem was
mapped, measured for height and canopy width, and classified
as either mature tree (>2m in height or>8 cm in diameter at
30 cm height) or seedling (<2m in height or <8 cm in
diameter at 30 cm height). Canopy width of individual trees
was measured using the average of two line measurements
perpendicular to each other and crossing at the tree trunk.
Total tree canopy cover within each plot was estimated by
adding canopy area measurements of all trees in the plot
and dividing the sum by the area of the plot (900m2).
Three mature trees closest to the center of each plot were
cored at 30 cm height above ground with an increment borer
to estimate juniper age. A total of 40 randomly selected
seedlings were destructively sampled at ground height and
30 cm height to determine seedling age and to estimate an
age-correction factor for older trees that were cored at
30 cm height.

2.3. Tree-Age Estimate

[11] Tree core samples were processed and dated using
standard dendrochronological methods [Stokes and Smiley,
1968]. Only the samples that contained pith or samples that
were geometrically estimated to have pith within five
missing rings were selected for age estimates. A total of
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Figure 1. Individual tree crown delineation approach used in this study.

SANKEY ET AL.: LIDAR AND WOODY CARBON SINK

1146



209 core samples (~90% of all samples) were dated
successfully, and all seedling samples were successfully
dated. The mean correction factor for tree age at 30 cm
height was 10 years. Tree-age measurements were compared
to field-measured tree height using a simple linear regression
to evaluate uncertainties associated with tree ages estimated
from lidar-derived juniper heights over large areas beyond
the field plots.

2.4. Tree Biomass Estimate

[12] Aboveground biomass was estimated for the individual
trees that were cored in the field. Basal circumference of
each tree was calculated from increment core sample radius
(e.g., distance from bark to pith). Biomass was estimated
using allometric relationships between tree basal circumference
and biomass of total foliage, live and dead branch, and stem
wood and bark [Gholz et al., 1979]. These component
biomass estimates were then added together to calculate
total aboveground biomass of individual trees.

2.5. Lidar Data and Preprocessing

[13] The airborne lidar data were acquired in November
2007 through Watershed Sciences Inc. using a Leica
ALS50 Phase II laser [Leica Geosystems AG, Heerbrugg,
Switzerland] mounted on a Cessna Caravan 208B fixed
wing aircraft flying at a 900m height and an average 105
knot speed with 50% flightline overlap and a scan angle
of ±14 degrees off nadir. The study area spanned four
postprocessed lidar data tiles, which included a total of 11
original flightlines. The Leica ALS50 Phase II is a discrete
return system that measures up to four laser returns per
pulse. The lidar point cloud data had a maximum of four
returns and mean point density of 5.6 points/m2 with an
average horizontal point spacing of approximately 17 cm.
The mean horizontal relative and absolute accuracies were
32 cm and 33 cm, respectively, as reported by the vendor.

The vertical accuracy was approximately 10 cm. Each point
had the following attribute information: scan angle, return
number, intensity, X, Y, and Z coordinates. The point cloud
data were processed using previously described methods
[Streutker and Glenn, 2006; http://bcal.geology.isu.edu/
tools/lidar] to separate ground and vegetation returns. The
vegetation point cloud data were first used to delineate
individual juniper tree crowns and estimate individual
juniper tree height and biomass. Next, the vegetation point
cloud data were converted into a raster format to estimate
total juniper tree density and canopy cover per unit area,
which were then used as the two primary variables to
classify juniper encroachment phases. The raster outputs
were all produced in 30 × 30m cells to compare with the
field-based measurements in 30 × 30m plots.

2.6. Lidar-Derived Juniper Crown Delineation

[14] The crowns of individual juniper trees were delineated
using the lidar point cloud data via segmentation followed
by a region-growing approach (Figure 1). eCognition
software version 8.0 [Trimble Geospatial Inc., Colorado,
USA] was used to perform a multiresolution segmentation
of rasterized canopy height model (CHM) with 30 cm
resolution. Multiresolution segmentation divides the CHM
into groups of similar pixels using relative homogeneity
criteria based on spectral value, shape, and texture of the
features [Benz et al., 2004]. A scale parameter of 10, shape
parameter of 0.1, and compactness value of 0.5 were used.
The segments with multiple pixels and mean vegetation
height>1m were further divided into 30 cm squares, which
were used to perform a variable window local maxima
[Popescu and Wynne, 2004] to identify tree tops. Individual
tree tops identified from local maxima were used as seed
pixels for region growing to delineate individual tree
crowns. The total area of lidar-delineated individual tree
crown area was summed in 30m cells (and divided by
900m2) and regressed with the total canopy diameter of
all individual trees mapped in the 30m plots (and divided
by 900m2) via a linear regression.

2.7. Lidar-Derived Juniper Tree Biomass

[15] The lidar-delineated individual tree boundaries were
overlaid on the lidar points and descriptive statistics
computed for the distribution of lidar returns within each
individual tree crown (Table 2). These descriptive statistics
were regressed with estimated aboveground biomass. Once
all significant variables were identified among the lidar
descriptive statistics (Table 2), the best-subsets regression
approach was used to select a parsimonious set of predictor
variables to be included in the final model [Minitab
version 16.1.1 software, Minitab Inc., Pennsylvania,
USA]. Multicolinearity of all independent variables was
tested using variance inflation factors (VIF) [Hocking,
2003]. If any of the variables had VIF value >10, then the
variables with the highest VIF were removed, and the VIF
was computed again with the new set of variables. This
process was repeated until all the variables had VIF of
≤10. The best-subset regression was performed with the
remaining independent variables that were significant
(α= 0.05). The preferred regression model was selected
using the following criteria [Montgomery et al., 2006]: (1)
maximum adjusted coefficient of determination (adj. R2),

Table 2. Candidate Individual Tree Metrics Used as Predictor
Variables to Estimate Tree Biomassa

Statistics
All

Returns
Canopy
Returns

Ground
Returns

Maximum height HMAX

Minimum height HMIN HMIN
C

Mean height HMEAN HMEAN
C

Range of height HR HR
C

Standard error of mean of height HSE HSE
C

Sum of squares of height HSS HSS
C

Quadratic mean of height HQUAD HQUAD
C

Trimmed mean of height (mean
after excluding 5% highest and 5%
lowest values)

HTMEAN HTMEAN
C

Standard deviation of height HSTD HSTD
C

Variance deviation of height HVAR HVAR
C

Coefficient of variation of height HCV HCV
C

Mean of squared successive difference HMSSD HMSSD
C

x % Quantile of height (x =10, 25,
50, 75, 90)

HQX HQX
C

Interquartile range HIQR HIQR
C

Skewness of height HSKW HSKW
C HSKW

Kurtosis of height HKUR HKUR
C HKUR

Total returns NT NC NG

Crown area CA

aThe final regression model included only two of these variables: crown
area and sum of squares of vegetation height.
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(2) minimum Mallows Cp, and (3) minimum mean square
error. Models with fewer variables were preferred over
larger models with slightly better values of adjusted R2 or
Cp. The predictive capability of the selected model was
assessed using cross-validation multiple correlation
[Rozeboom, 1978].
[16] Once the preferred regression model was identified,

regression coefficients and lidar-derived variables were used
to estimate the biomass of all trees delineated in the study
area. Individual tree biomass was then converted to C by
multiplying the weight by a factor of 0.5 following Strand
et al. [2008], who estimated western juniper C content at a
nearby site using aboveground tree biomass. The resulting
individual tree C storage map was then overlaid with the
encroachment phase map to estimate average aboveground
C storage within each encroachment phase.

2.8. Tree Biomass Uncertainty Analysis

[17] We used a Monte Carlo approach adapted from
Gonzalez et al. [2010] to quantify uncertainty in the
biomass estimates. The approach estimated and propagated
uncertainties for each major source and methodological step
in the biomass calculations including field-based estimates,
biomass regression estimates, lidar-derived estimates, and
spatial autocorrelation [Wang et al., 2005; Aalde et al.,
2006; Gonzalez et al., 2010].
[18] We performed 100 realizations of the field-based

individual tree (n = 104) biomass allometric estimates. In
the realizations, we incorporated error terms for the (1) field
measurement errors of basal circumference and (2) statistical
uncertainty of the tree allometric regression equations derived
by Gholz et al. [1979]. We estimated the error term for the
field measurement from the RMSE of the comparison of
(i) basal circumference derived from basal diameter calculated
(n = 95 trees) from the radius using the distance from bark to
pith in a tree core sample versus (ii) basal circumference
measured in the field. We estimated the error term for the
allometric regression estimates from the standard error of
regression for each allometric relationship in the component
biomass estimates [reported in Gholz et al., 1979].
[19] For each set of tree biomass estimates derived from

the outcome of the 100 realizations above, we regressed
field-based individual tree (n = 104) biomass as a function

of the VHSS and CA lidar variables, resulting in 100 regression
equations. Following Gonzalez et al. [2010], we selected
the coefficients and standard error of regression of the
median of the 100 regression equations. The coefficients
were used to estimate individual tree biomass for each tree
(n = 60,628) identified by lidar analysis in the study area.
[20] Next, we performed 100 realizations of the biomass

estimates incorporating error terms for (3) statistical uncertainty
of the lidar variables and tree biomass relationship and (4)
spatial autocorrelation. We estimated the error term for the
lidar variables and tree biomass relationship from the
standard error of regression of the median regression
equation. Following Gonzalez et al. [2010], the error term
for spatial autocorrelation was estimated from the standard
error of the median regression scaled for each location by
the absolute value of local Moran’s I (measure of local
spatial autocorrelation that ranges from negative- to no- to
positive-correlation with possible values of �1 to 0 to 1,
respectively).The local Moran’s Iwas calculated for a one-cell
lag from a raster of total biomass estimated in 30m cells
from the median regression equation and therefore
identified the relative degree of local self-similarity across
the continuum of spatially uniform to spatially random
estimates. This resulted in 100 realizations of individual tree
biomass for each tree identified by lidar in the study area. A
mean and standard deviation for each tree was estimated
from the 100 realizations in units of biomass (kg) and also
approximated for C (biomass * 0.5).

2.9. Lidar-Derived Juniper Tree Density

[21] A variable local maxima approach [Popescu andWynne,
2004] was used with the lidar point cloud data and lidar
CHM to identify tree tops of the dominant canopy. Within
each dominant tree, the lidar point cloud data across the
voxel space was analyzed to identify subcanopy trees.
When the distribution of aboveground height of lidar points
showed multiple peaks at lower canopy levels, a horizontal
window was moved downwards from the top to the bottom
of each tree at a 1m interval, and maxima was identified at
every level. Overlapping maxima were later merged into a
single tree top. All identified tree tops were then counted
within 30 × 30m cells. These estimates were regressed with
field-based juniper density estimates in 30 × 30m plots via a
linear regression. The regression model was used to produce

Figure 2. Western juniper tree-age distribution in South
Mountain, Idaho, USA.

Figure 3. Relationship between lidar-predicted and observed
juniper tree biomass.
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a lidar-derived juniper tree density map of the study area in
30m cells.

2.10. Lidar-Derived Juniper Canopy Cover

[22] The vegetation point cloud data were converted
into a raster format to estimate juniper tree canopy cover
in 30 × 30m cells. To generate this map, the vegetation
point cloud data were first rasterized into 3 × 3m cells
using maximum vegetation height, so a total of 100 cells
fell within each 30 × 30 cells thereby directly translating to a
percent estimate comparable to the field measurement in the
30m plots. A simple linear regression was performed to
correlate the lidar-derived and field-measured individual
juniper tree heights [SPSS 14.0 for Windows, 2005]. The
regression model was used to produce a maximum tree
height map across the study area in 3m cells. A vegetation
height binary map with a 3m height threshold was then
produced from the maximum vegetation height map. In
the binary map, all pixels having maximum vegetation

Figure 4. Juniper tree biomass in the South Mountain watershed study area. A total of 60,628
individual juniper trees were identified and their aboveground biomass estimated using lidar point
cloud data (a). Uncertainty in the individual tree biomass estimates were then quantified using a
Monte Carlo approach (b).

Figure 5. Relationship between field-measured and
lidar-derived individual juniper tree heights.
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height>3m were classified as juniper presence, while all
other pixels were classified as juniper absence. This height
threshold was chosen to best separate juniper trees from
shrubs following Sankey et al. [2010]. A grid of 30 × 30m
cells of the study area was overlaid on the 3m resolution
binary height map and the number and percent of the 3m
pixels classified as having juniper presence within each
30 × 30m cell was calculated to estimate juniper canopy
percent cover. These estimates were regressed with the
field-based juniper canopy cover estimates in 30 × 30m
plots via a linear regression. The regression model was used
to produce a juniper canopy cover map of the study area in
30m cells.

2.11. Lidar-Derived Classification of Juniper
Encroachment Phases

[23] The lidar-derived canopy cover map was used to
classify juniper encroachment phases across the watershed
using phase thresholds suggested by Miller et al. [2005].
All pixels having <10% juniper cover were classified as
encroachment phase I, while pixels with 10–30% and
>30% were classified as encroachment phases II and III,
respectively (Table 1). The lidar-derived canopy cover
map was also used to classify encroachment phases using
Miller et al. [2000] thresholds (<10%, 10–49%, and
>49% for encroachment phases I–III, respectively).
[24] The lidar-derived tree density map was used to classify

juniper encroachment phases across the watershed. All
pixels having <18 trees (<200 trees/ha) were classified
as encroachment phase I, while pixels with 18–70 trees
(200–780 trees/ha) and >70 trees were classified as
encroachment phases II and III, respectively (Table 1).
[25] The lidar-derived juniper phase maps derived from

canopy cover and density thresholds were combined in
ArcMap 9.3 to produce a final map of encroachment phase
across the study area. All pixels classified into the same
encroachment phase in both of the individual classifications
remained the same. Any pixels that were classified in more
than one phase were assigned the lower phase classification

since they satisfied only one of the two criteria (e.g., cover
or density).

3. Results

3.1. Field Measurements

[26] A total of 2613 juniper stems were mapped in 85
plots. Based on height, 554 of these stems were classified
as seedlings and 2059 as mature trees. Mean juniper stem
density was 288 stems/ha. Mean mature tree height was
7.3m, and mean mature tree age was 72 years (Figure 2).
Mean seedling height was 1.2 m, and mean seedling age
was 48 years. Juniper tree age and height were significantly
correlated (Adj. R2 = 0.48, p< 0.001, RMSE = 23.63 years).
However, given the relatively low coefficient of determination
of 0.48, juniper tree age was not predicted across the watershed
from lidar-derived height estimates.

3.2. Lidar Point Cloud Measurements

[27] The crown delineation approach identified 60,628
individual juniper trees across the study area. The best
aboveground biomass model, which produced an adjusted R2

value of 0.76 (Adj. R2=0.76, p< 0.001, RMSE=0.58 kg)
(Figure 3), was

TB ¼ 0:15þ 0:46CAþ 0:31VHSS (1)

where TB is the natural log-transformed total biomass, CA
is the natural log-transformed crown area, and VHS is the
natural log-transformed vegetation height sum of squares.
The leave-one-out cross-validation R2 of the model was
0.75. The estimate of mean aboveground tree biomass from
this model was 45.5 kg (standard deviation +34.8 kg). The
total aboveground woody biomass in the watershed was
2760Mg. The mean aboveground woody biomass was
13.5Mg/ha, and the estimated mean aboveground woody
C storage was 6.77Mg/ha. Mean aboveground woody
biomass in phases I, II, and III were 8.5, 18.9, and
23.1Mg/ha, respectively.

Figure 6. Relationship between field-measured [30 × 30m
plots] and lidar-derived [30 × 30m cells] juniper tree canopy
cover.

Figure 7. Relationship between lidar-derived [30 × 30m
cells] and field-measured [30 × 30m plots] juniper tree
density.
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3.3. Uncertainty

[28] The median of the 100 regression equations for
field-based individual tree biomass as a function of the
VHSS and CA lidar variables was:

TB ¼ 0:36þ 0:42CAþ 0:30VHSS (2)

where TB is the natural log-transformed total biomass, CA
is the natural log-transformed crown area, and VHSS is the
natural log-transformed vegetation height sum of squares
(R2=0.72, p< 0.001, RMSE=0.63 kg). The aboveground
biomass of all individual trees delineated across the study area
and determined for equation (2) is presented in Figure 4A.
When the uncertainties in these estimates were examined
using the Monte Carlo simulation of all four major error
sources, the range in the predicted mean individual tree
biomass and associated uncertainty (standard deviation)
were 0.7 – 287.2 kg and 1.0 – 2.5 kg, respectively, for the
entire study area (Figures 4A and 4B). These translate to
C ranges of 0.35 – 143.6 kg and 0.5 – 1.25 kg, respectively.
Visual examination of the map in Figures 4A and 4B indicates
larger values of predicted biomass in areas of higher juniper
density and later encroachment phases. The ranges in
uncertainty (standard deviation) associated with individual
tree biomass predictions from the Monte Carlo simulation were
1.1–2.4 kg, 1.0–2.5 kg, and 1.5–2.3 kg for encroachment phases
1–3, respectively. When the range in standard deviation for
individual tree C estimates (0.5 – 1.25 kg) is extrapolated to

the entire study area (60,628 trees within ~ 92 ha), an
estimated range in uncertainty produced for C storage
estimates is 0.16 – 0.40Mg C/ha.

3.4. Lidar Raster Measurements

[29] Lidar-derived juniper tree heights were strongly
correlated with field measurements (Adj. R2 = 0.84,
p< 0.001, RMSE = 1.07m) (Figure 5). Lidar-derived
juniper tree canopy cover in 30 × 30m cells was strongly
correlated with field-measured tree canopy cover in 30m plots
(Adj. R2 = 0.82, p = 0.04, RMSE = 11.27%) (Figure 6). A
juniper tree canopy cover map of the study area is presented
in Figure 8A. When successional phases of juniper
encroachment were classified based on the lidar-predicted
juniper tree canopy cover and Miller et al. [2005] thresholds,
12% of the watershed was classified as phase I, 23% as
phase II, and 65% as phase III. When Miller et al. [2000]
thresholds were used instead, 12% were classified as phase
I, 60% as phase II, and 28% as phase III.
[30] Lidar-derived and field-measured juniper tree density

estimates were also strongly correlated (Adj. R2 = 0.79,
p< 0.001, RMSE=4.55 trees/pixel) (Figure 7). A juniper tree
density map of the study area is presented in Figure 8B. In the
density-based classification model, 43% of the watershed was
classified as phase I, 57% as phase II, and only 0.3% as
phase III. In the fusion model that combined density
thresholds with Miller et al. [2005] cover thresholds

Figure 8. Lidar-predicted juniper canopy cover estimates in 30 × 30m cells (a), lidar-predicted juniper
tree density in 30 × 30m cells (b), and final encroachment phase classification based on both juniper canopy
cover and density estimates in 30 × 30m cells (c).
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(Figure 8C), 10%, 89.7%, and 0.3% of the watershed were
classified as phases I–III, respectively.

4. Discussion

4.1. South Mountain Juniper Communities

[31] Field-measured tree-age data indicate that the western
juniper communities in the study area are characteristic of
postsettlement expansion communities [Miller and Wigand,
1994; Miller et al., 2005]. The juniper tree-age distribution
in this study included very few trees established prior to
1850 (Figure 2). Johnson and Miller [2006] indicate that
western juniper encroachment rates increase as trees reach
maximal reproductive maturity at 50–70 years of age
[Miller and Rose, 1995]. The mean mature tree age of
72 years in the study area might, therefore, indicate that
the juniper communities are at a critical morphological
stage. In the coming decades, juniper management could
become increasingly difficult in these watersheds because
encroachment rates would be expected to continue to
increase, while control treatments might become less
effective [Tausch et al., 1981, Miller et al., 2000, Johnson
and Miller, 2006].
[32] Tree age was significantly correlated with height, but

the relationship was relatively weak (R2 = 0.48) most likely
due to the large variability in height of older trees [e.g.,>80
years old;Miller et al., 2005]. Previous studies indicate that
the growth of western juniper trees in height is relatively
slow at 30–40mmyr �1 for the first 10 years, but increases
to 90–170mmyr �1 for older trees [Miller et al., 2005].
Western juniper tree canopy height reaches its maximum
at approximately 80 years of age and maximum heights
can range between 6 and 15m [Miller et al., 2005]. The
relatively low mature tree heights (mean = 7.3m) observed
in the study area might indicate that many of the trees have
not reached their potential maximum heights. Lidar-derived
juniper tree heights provide information on the spatial
variability of active canopy growth.

4.2. Carbon Stocks in Juniper Woodlands

[33] Our results indicate that lidar-derived, three-dimensional
measurements provide accurate estimates of aboveground
woody C. The estimated mean aboveground woody biomass
in this study was 13.5Mg/ha. Huang et al. [2009] estimated
aboveground woody biomass of 10.9Mg/ha using Landsat
ETM+data and indicated that the estimate was significantly
lower than field-based estimates. Huang et al. [2009] also
estimated aboveground woody biomass of 17.3Mg/ha
using higher-resolution AVIRIS data, which they documented
to have better correlation with field-based juniper cover
measurements than Landsat ETM+. Strand et al. [2008]
further illustrated the need for high-resolution C estimates
at regional scales by documenting that the difference
between C accumulation rates estimated with coarse
versus fine spatial resolution data ranged between 3.3
and 22 g C/m2/year for western juniper in Idaho as well
as 1.9 and 50 g C/m2/year for mesquite in Texas, and
16.9 and 180 g C/m2/year for oak savanna in Minnesota.
[34] Lidar-derived juniper canopy cover had a stronger

correlation with field measurements compared to previous
two-dimensional measurements using aerial photography
and Landsat ETM+ [Strand et al., 2008, Huang et al.,

2009]. Lidar-derived versus field-based estimates of juniper
cover in this study had a correlation coefficient of 0.82 with
estimated error [RMSE] of 11%, while Strand et al. [2008]
documented correlation coefficients of 0.60 and 0.74 with
error [RMSE] of 13% and 27%, respectively, using wavelet
and texture analyses. However, Strand et al. [2008] found
smaller errors in their individual crown diameter estimates
[RMSE=2.60m in crown diameter versus RMSE= 10.07m
in crown area in this study], and Huang et al. [2009] reported
a stronger correlation, though no RMSE was reported,
between their AVIRIS-based and field-based canopy cover
estimates [R2 = 0.92]. The integration of lidar-derived
height of individual juniper trees might have contributed
to the strong correlation [R2 = 0.77] with observed
aboveground woody biomass in our study. Huang et al.
[2009] documented R2 of 0.52 when correlating Landsat
ETM+ estimates with observed aboveground woody
biomass and suggested that the uncertainties in C estimates
could be reduced by using lidar data and integrating juniper
height, which they hypothesized would be strongly correlated
with aboveground woody biomass.
[35] The observed errors in our estimates might be due to

the vegetation characteristics and plot sizes (Zolkos et al.,
2013). Additional errors might have been introduced due
to the characteristics of the lidar system used including
sampling density, footprint size, and the digitization interval
of return pulses. Most small-footprint systems such as the
one used in this study typically have a footprint size of up
to 50 cm, which lends itself to undersampling the vegetation
canopy tops and hence underestimating the vegetation
height [Dubayah and Drake, 2000; Nelson, 1997].
Furthermore, discretization interval in discrete return
systems is usually around 2–3m, which limits the vertical
discrimination distance (the Leica ALS50 used in the study
has an interval of 2.8m [Leica, 2013]). In the future, some
of the errors attributed to lidar systems may be minimized
as airborne systems with higher point density and
full-waveform capability become widely available.
Also, with the advancements in multisensor fusion
technology, the inherent limitations of lidar systems can
be mitigated by using lidar data in synergy with other
sensors (e.g., hyperspectral).
[36] The estimated aboveground woody C storage in our

study supports previous conclusions that woody encroachment
can increase the aboveground C sink [Pacala and Hurtt, 2001].
Juniper encroachment has been documented to lead to loss
of understory sagebrush cover in the Great Basin [Miller
et al., 2000]. In intact sagebrush shrublands that are not
invaded by juniper, aboveground C storage in plant biomass
has been estimated at 250–650 gC/m2 by several studies
[Bradley et al., 2006; Hooker et al., 2008; Cleary et al.,
2008, 2010]. Based on an approximate average of 450 gC/m2

from these studies, and the mean western juniper aboveground
woody C estimate of 677 gC/m2 (with an uncertainty
estimate in the range of 16 – 40 gC/m2 derived from
standard deviations estimated for individual tree biomass
calculations) from our study, we estimate that juniper
encroachment might lead to an average increase in above-
ground C of 227 gC/m2. As sagebrush steppe vegetation is
eventually replaced by juniper, the average increase in
aboveground C would be 2.27 MgC/ha across the landscape.
At a broader scale, this might translate to a total C sink of
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27,559,092 MgC across the entire juniper woodland
distribution of 12,140,569 ha in the United States when
assuming a complete shift from sagebrush steppe vegetation
to juniper woodlands.
[37] Strand et al. [2008] estimated belowground C stocks

in juniper woodlands from aboveground biomass using a
factor of 0.25. While belowground carbon estimate was
not our objective in this study, we cautiously use this factor
as a general guideline to approximately estimate belowground
carbon. We estimate that the increase in the aboveground C
sink that might occur with a complete shift from sagebrush
steppe vegetation to juniper woodlands would translate to
an additional 13,779,545 MgC belowground across the
entire distribution of sagebrush communities in the USA.
However, this does not account for the relatively large
belowground C storage capacity of sagebrush steppe
that has been estimated at 20Mg/ha by one previous study
[Rau et al., 2009]. This suggests that the increase in
aboveground C storage might not offset the changes to
belowground C that can occur from the conversion of
sagebrush shrublands to juniper woodlands. Furthermore, the
impact of woody encroachment on soil C pools so far has been
controversial as some studies have shown an increase in soil C
following woody plant encroachment [Harrington and
Williams, 2008; Reiley, 2003; Conant et al., 1998; Krammer
and Green, 2000; Liao et al., 2006; Neff et al., 2009], while
others have found soil C stocks to either decrease or have a
more complex response that varies nonlinearly by encroach-
ment phase [Rau et al., 2011; Jackson et al., 2000]. Clearly,
an integrated approach that simultaneously quantifies changes,
and associated uncertainties, in both above- and belowground
C pools is necessary for future research to determine whether
juniper encroachment leads to a net C sink or source.

4.3. Lidar-Derived Variables

[38] Our results indicated that lidar-derived measurements
produced accurate estimates of juniper tree height, canopy
cover, and density. The strong relationships between
lidar-derived and field-measured tree heights were similar
to a previous lidar-based juniper study [Sankey et al.,
2010]. However, tree heights appear to be underestimated
especially for taller trees as the underestimation seem
greater for these trees. Previous lidar studies have documented
greater relative height error in trees compared to lower
vegetation of herbaceous and shrub species [Hopkinson
et al., 2004]. Previous studies have also documented
underestimation of vegetation height with lidar [Mitchell
et al., 2011; Glenn et al., 2011; Sankey and Bond, 2011]
associated with laser pulse penetration into the vegetation
canopy, low point density of the lidar data in the upper canopy
portions that potentially miss the canopy top [Gaveau and
Hill, 2003], and overestimation of ground height in densely
vegetated areas that prevents laser pulse penetration
[Hopkinson et al., 2004; Gould et al., 2013].
[39] The lidar-derived canopy cover was significantly and

strongly correlated with field-measured canopy cover
resulting in an R2 of 0.82, which is greater than previous
juniper cover estimates based on lidar data (R2 = 0.74 in
Sankey and Glenn [2011]; R2 = 0.69 in Sankey et al.,
2010]). Lidar, however, tended to overestimate juniper
canopy cover, which was evidenced by both the steep slope
and relatively large intercept of the regression line relating

lidar-derived and field-measured canopy cover (Figure 6).
Overestimation was greater when smaller height thresholds
of 1m and 2m were used. Consistent with a previous
finding [Sankey et al., 2010], the 3 m height threshold
appeared most appropriate as it produced a similar coefficient
of determination, but smaller regression intercept and slope
coefficients compared to the lower (1 and 2m) height
thresholds. The observed overestimation might be due to
the 3 × 3m cells, in which juniper presence/absence was
determined. Trees that are in reality smaller than 3 × 3m in
canopy diameter were assumed to take up the entire 3 × 3m
pixels. Smaller pixel sizes might be considered and tested for
more accurate canopy cover prediction.

4.4. Classification of Encroachment Phases

[40] The encroachment phase classification results varied
greatly depending upon the lidar variable used as well as the
cover thresholds used. The first juniper cover-based
classification indicated that 63% of the area was in
encroachment phase III (>30% canopy cover) whereas
12% was in encroachment phase I (<10% cover). Miller
et al. [2005] recommended these canopy cover thresholds
as characteristics that can be used regardless of plant
association or site potential. In contrast, when tree density
thresholds were used, only 0.3% of the watershed was
classified as encroachment phase III, and an overwhelming
majority of the watershed was classified as encroachment
phases I and II [43% and 57%, respectively]. Tree density
thresholds in this study were based on Johnson and
Miller’s [2006] modeled estimates of tree density on vary-
ing topographic positions in the three encroachment phases.
Given these large inconsistencies and commonly used land
management practices that consider both juniper cover and
density, it was important to integrate both variables. When
we combined the lidar-derived cover and density estimates
in the fusion model, a majority of the pixels met only one
of the two criteria used (e.g., cover or density threshold)
and were classified as encroachment phases I and II.
Tree density was generally much lower in the study area
(mean = 288 trees/ha) compared to that modeled in
Johnson and Miller [2006]. Juniper canopy cover instead
might be a more useful variable due to its variability across the
watershed. In using canopy cover alone as a key criterion, the
thresholds defined byMiller et al. [2000] might provide better
guidelines than the Miller et al. [2005] thresholds since the
observed variability in juniper cover is more consistent
with the ranges found in the former. Furthermore, our
field observation and local knowledge of the area do not
support the finding that a large majority of the watershed is
in encroachment phase III as would be indicated when using
the approach of Miller et al. [2005]. Taken together, our
results indicate that managers interested in accurately
identifying encroachment phases might have to carefully
consider whether to base the classification on juniper
canopy cover or density.
[41] The thresholds defined in previous studies were

intended to help identify windows of opportunity for
efficient juniper control before reaching the phase III stage
[Johnson and Miller, 2006]. Federal land management
agencies now regularly perform intensive land treatments
to reduce juniper cover and density [Miller et al., 2005].
These treatments include prescribed burning, cutting, and
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mechanical shredding of trees [Cline et al., 2010].
Treatment effectiveness, however, varies as a function of
encroachment phase [Cline et al., 2010]. Treatments are
most effective during the early stages of stand development
[Miller et al., 2000] and can be much more expensive
and less effective for encroachment phase III [Johnson
and Miller, 2006]. As juniper trees mature and canopies
close during phase III, understory sagebrush and
herbaceous cover drastically decline [Blackburn and
Tueller, 1970; Tausch et al., 1981; Miller et al., 2000;
Waichler et al., 2001] leading to soil exposure and in-
creased probabilities of erosion [Pierson et al., 2010].
Re-establishment of herbaceous and shrub species after
juniper removal can be compromised if soil organic
matter and nutrients were lost to erosion in phase III
conditions [Cline et al., 2010].

5. Conclusions and Management Implications

[42] Our results indicated that aboveground C storage is
enhanced during the transition from phase I to phase III of
successional stages of juniper encroachment. Phase III can
store almost three times the aboveground C as encroachment
phase I. While the net effect of encroachment on combined
above- and belowground C storage is unclear and likely varies
with the composition of the previous vegetation community,
intensive juniper treatment activities that are commonly
employed to counteract woody encroachment can potentially
have long-lasting influences on C dynamics. Prescribed
burning, cutting, and mechanical shredding are common
intensive treatments that specifically result in an immediate
and significant decline in aboveground C. Increased restoration
challenges and unpredictable treatment effects are especially
prevalent in the later stages of encroachment. We suggest
that prioritizing locations in the earlier stages of encroachment
for intensive treatment might strike a better balance between
the success of management treatments on the one hand, and
C storage goals on the other, over geographically extensive
areas. Land managers might be better able to effectively
maintain desired shrub steppe or grassland vegetation
communities and have a less detrimental impact on C
storage by focusing intensive treatment in phase I. It is
important to acknowledge, however, that impacts of
treatment activities such as overstory vegetation removal
and prescribed fire on many ecosystem C processes, and
especially belowground soil processes, are uncertain. We,
therefore, recommend techniques that combine an improved
understanding of belowground effects of management
treatments with accurate estimates of aboveground biomass
and C over large geographic areas using a three-dimensional
approach such as illustrated here.
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