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Abstract

Certain environmental microorganisms can cause severe human infections, even in the absence of an obvious requirement
for transition through an animal host for replication (‘‘accidental virulence’’). To understand this process, we compared
eleven isolate genomes of Burkholderia pseudomallei (Bp), a tropical soil microbe and causative agent of the human and
animal disease melioidosis. We found evidence for the existence of several new genes in the Bp reference genome,
identifying 282 novel genes supported by at least two independent lines of supporting evidence (mRNA transcripts,
database homologs, and presence of ribosomal binding sites) and 81 novel genes supported by all three lines. Within the Bp
core genome, 211 genes exhibited significant levels of positive selection (4.5%), distributed across many cellular pathways
including carbohydrate and secondary metabolism. Functional experiments revealed that certain positively selected genes
might enhance mammalian virulence by interacting with host cellular pathways or utilizing host nutrients. Evolutionary
modifications improving Bp environmental fitness may thus have indirectly facilitated the ability of Bp to colonize and
survive in mammalian hosts. These findings improve our understanding of the pathogenesis of melioidosis, and establish Bp
as a model system for studying the genetics of accidental virulence.
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Introduction

Burkholderia pseudomallei (Bp), the causative agent of the often-fatal

disease melioidosis, represents one of the most complex bacterial

genomes sequenced to date [1]. Comprising two circular

chromosomes with a combined length of 7.2 Mb, the Bp genome

contains an estimated ,5800 genes involved in a myriad of

functions, allowing microbial survival in extreme environments

and virulence in diverse host species including humans, gorillas,

pigs, and fish [2–3]. Epidemiological and genetic evidence suggests

that Bp is likely an ‘accidental pathogen’, in that adaptations

incurred by Bp in its natural environmental reservoir (soil) may

have indirectly contributed to its ability to colonize a mammalian

host [4–7]. Understanding the genetic basis of these environmental

adaptations may thus provide important insights into the

pathogenesis of melioidosis, and shed light on how environmental

microorganisms are able to acquire novel traits enhancing their

ability to cause opportunistic disease.

The evolutionary success of Bp as a thriving soil microbe suggests

that most Bp strains are likely to possess a common repertoire of

genes (the Bp core genome, or BpCG) regulating survival and fitness

in this highly competitive environmental niche. Specific selective

pressures encountered in soil, such as evading phagocytosis by

amoebae [8] or ingestion by nematodes [9] might further enhance

Bp environmental fitness by inducing modifications in BpCG genes,

and some of these modifications might also contribute indirectly to

mammalian virulence. Indeed, many classical virulence genes such

as adhesins, fimbrae, exopolysaccharides and Type III secretion

(TTS) systems are part of the BpCG [7], suggesting a plausible link

between the BpCG and mammalian pathogenicity. Currently, little

is known regarding the extent of genetic variation in the Bp core

genome (BpCG) and whether BpCG variations might underlie
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potential virulence phenotypes. In this study, we undertook a

comprehensive qualitative and quantitative survey of the BpCG

across a panel of eleven Bp genomes, comprising nine indepen-

dently derived strains, and two related strain pairs isolated from

human patients at primary infection and disease relapse. We found

evidence for the presence of several new genes in the Bp genome,

and discovered a sizeable degree of genetic variation in BpCG

genes. We identified over two hundred BpCG genes with signatures

of positive selection, likely reflecting the activity of multiple distinct

environmental pressures. Finally, we provide experimental evidence

that some of these positively selected genes may have indirectly

contributed to Bp pathogenesis in mammals, by facilitating

interactions with host cellular pathways or the use of host nutrients.

Results

Genome Sequencing and Annotation
We analyzed whole-genome sequences from eleven Bp strains,

comprising ten clinical isolates from four countries (Australia,

Thailand, Singapore, and Vietnam) and one soil isolate (S13) from

Singapore. To achieve maximal genetic diversity, we elected to

analyze all Bp strains regardless of their source of isolation (clinical

or environmental). Notably, environmental Bp isolates have also

been shown to exhibit high levels of virulence in animal models

[10]. Among the clinical isolates, strain pairs 1106a–1106b and

1710a–1710b were isolated from the same patients during either

primary infection or disease relapse (Table S1). Reflecting the

genetic diversity in this panel, the Bp isolates belong to different

multi-locus subtypes (MLST) with an overall MLST allele/subtype

ratio of 2.67, markedly higher than the allele/subtype ratio of the

general Bp population (0.43, as of Jan 2009). Ten genomes were

sequenced by conventional Sanger based shotgun methods

(coverage range 7.75x – 11.4x), while strain Bp 22 was sequenced

using next-generation instrumentation (GS20-454, average read

length 100 bp, 206coverage) followed by de novo assembly using a

custom 454 large-insert paired-end sequencing protocol (CN and

YR, manuscript in prep). The genome sequences were uniformly

annotated by a FGENESB gene prediction pipeline [11], and

predicted protein-coding regions, tRNAs, rRNAs, and potential

promoters, terminators and operons were identified. Predicted

genes were comprehensively annotated against known proteins in

the NR, COG, KEGG and STRING databases (details in

Methods). All genomes revealed similar benchmark data such as

genome size, GC content, and numbers of predicted genes

(Table 1).

Chromosomal Organization
Both chromosomes (1 and 2) were highly syntenic across the Bp

genomes (Figure 1 [12–13] and Figure S1). No evidence for inter-

chromosomal exchange of genetic material across the two

chromosomes was observed. We identified three large-scale

inversions of 1.6 Mb, 1.2 Mb and 880 Kb on Chromosome 1,

largely flanked either by rRNAs, tRNAs, or inverted protein units

(Text S1). The 1.2 Mb inversion was observed in two strains, 1655

and Pasteur 52237, hailing from distinct geographic origins

(Australia and Vietnam) and belonging to unrelated MLSTs,

suggesting that this rearrangement may have independently

occurred at least twice during Bp genome evolution. The other

two inversions were only observed in single strains (406e and

K96243), however it is worth noting that K96243 represents the

original Bp reference genome described in 2004 [1].

An Updated Bp Annotation Reveals Additional Genomic
Complexity

Our comparative analysis allowed us to revisit the original 2004

genome analysis with updated annotation protocols. Our annota-

tion pipeline identified 6332 protein coding genes in Bp K96243

(Datasets S1 and S2), a considerably higher number (,10%) than

the 5855 genes originally described [1]. The vast majority (90%) of

genes, however, were commonly identified in both annotation

pipelines (Figure 2A), indicating that differences in the two

annotation sets are likely due to subtle differences in the prediction

algorithms used [14–15] (FGENESB vs GeneMark/Glimmer).

Deciding to investigate these previously unreported genes, we

sought to distinguish between likely bona-fide new genes and those

arising due to computational over-prediction (false positives). We

manually curated a set of 519 novel predicted genes exhibiting

non-overlapping start-stop boundaries to the previously reported

genes (see Figure 2B for an example), and subjected the 519

putative novel genes to three independent lines of analysis (mRNA

transcript information, homology to previously reported genes,

and presence of ribosomal binding sites, RBSs).

First, using whole genome tiling microarrays covering the entire

non-repetitive Bp K96243 genome, we identified transcription

units from Bp cultures isolated from six distinct growth conditions

(see Methods, [16]). Confirming the accuracy of the microarray,

many mRNA transcripts were tightly associated with the

boundaries of previously-identified genes (Figure S2). Of the 519

novel genes, we found that 280 (53%) were associated with discrete

mRNA transcripts. 178 novel genes exhibited mRNA transcripts

in at least 1 out of 6 different growth conditions, indicating that

they are differentially-regulated (Figure 2C), while the remaining

102 were constitutively expressed across the six conditions. The

presence of several novel gene transcripts was also directly

confirmed by targeted RT-PCR assays (Figure S3). To investigate

if any of the novel genes might correspond to non-coding RNAs

(ncRNAs), we used Rfam, a public database of non-coding RNA

families [17], to identify ncRNAs in the BpK96243 reference

genome. Of 82 small ncRNAs identified by Rfam analysis, 8

ncRNAs corresponded to the novel genes.

Second, using matching criteria similar to other studies [18–19]

(see Methods, [20]), approximately 46% of the novel genes (239)

were associated with at least one other matching protein in the

COG, KEGG, STRING and NR databases (Figure 2D, [21]). 138

novel genes had matching proteins previously observed in other

Bp strains, and 97 novel genes had matches to other Burkholderia

Author Summary

With recent advances in genomics now permitting the
systematic comparison of dozens, if not hundreds, of
closely related bacterial strains, the opportunity arises for
developing novel approaches to identify the complete
repertoire of molecular factors governing interactions
between hosts and pathogens. We explored these
approaches using the model system Burkholderia pseudo-
mallei (Bp), a Gram-negative bacterium that causes the
tropical disease melioidosis. At 7.2 Mb, the Bp genome
represents one of the most complex bacterial genomes
sequenced to date. In this study, we present the first
nucleotide-resolution comparative analysis of a panel of
sequenced Bp strains. We identified a novel panel of genes
demonstrating ‘‘positive selection’’, referring to functional
adaptations related to survival in soil, the natural reservoir
of Bp. We propose a model and provide functional
evidence that some of these genes may also have
indirectly facilitated the ability of Bp to colonize and infect
a mammalian host.

A Genomic Survey of Burkholderia pseudomallei
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species. A small fraction (,1%) exhibited homology to other non-

Burkholderia species (eg Xanthomonas oryzae pv. oryzae MAFF, Sodalis

glossinidius str morsitans).

Third, using the RBSfinder program [22–24], we checked the

novel genes for the presence of ribosome binding sites (RBS). The

ability of RBSfinder to detect true RBSs in the Bp genome was

confirmed by benchmarking the numbers of RBS predictions

using previously-identified Bp genes against a set of background

randomized sequences [25–26] (Text S2). Of the 519 novel genes,

we identified high-confidence RBSs in 309 genes (59.5%), without

requiring alteration of the predicted gene start/stop coordinates.

Combining these three lines of supporting evidence (mRNA

transcripts, database matches, presence of RBS), we identified 282

novel genes supported by two lines of evidence (‘‘dual evidence

Figure 1. Genome Alignment of Bp Chromosome 1 Across Strains. Each strain chromosome is depicted as a series of ordered LCBs (Locally
Collinear Blocks) with the putative origin of replication indicated by a black rectangle on the left side of each alignment. Vertical lines connect
homologous LCBs across the genomes. LCBs identically present in the eleven genomes are given the same colors and horizontally flipped LCBs
identify chromosomal inversions. Genomic locations of tandem repeats [12] (pink), rRNAs (red), tRNAs (green) and IS elements (blue) are depicted as
short vertical lines below the LCBs. IS elements were identified using the ISfinder database [13]. Gaps or white spaces in LCB order represent strain-
specific regions. Three large-scale inversions (dark orange) occurring in 4 strains are shown at the bottom of the alignment.
doi:10.1371/journal.ppat.1000845.g001

Table 1. Genome Statistics of Sequenced B. pseudomallei Strains.

Genomes K96243 1655 Pasteur 52237 406e S13 22

Chromosome I II I II I II I II I II I II

Genome size 4074542 3173005 4001239 2982333 4128191 3168620 4058126 3211140 4192562 3117285 3937887 3090538

# Predicted ORFs 3713 2619 3601 2524 3771 2612 3716 2657 3770 2594 3652 2636

Total predicted ORFs 6332 6125 6383 6373 6364 6288

# Operons 774 475 784 471 801 483 794 502 802 472 776 520

Genome GC% 67.71 68.49 67.92 68.11 67.7 68.4 67.72 68.25 67.76 68.55 67.78 68.32

CDS length 924 1026 936.009 996.161 919.881 1022.21 918 1016 937.716 1017.72 885 949

# tRNA 53 7 43 5 50 5 50 7 47 5 52 7

# rRNA 9 3 7 1 5 2 8 3 5 2 9 3

Genomes 668 1106a 1106b 1710a 1710b

Chromosome I II I II I II I II I II

Genome size 3912947 3127456 3988455 3100794 3976828 3117768 4118877 3175883 4126292 3181762

# Predicted ORFs 3460 2688 3560 2551 3553 2576 3748 2622 3733 2603

Total predicted ORFs 6148 6111 6129 6370 6336

# Operons 737 488 759 458 761 473 796 469 793 472

Genome GC% 68.02 68.63 67.96 68.64 67.97 68.63 67.59 68.41 67.61 68.46

CDS length 949 990 949 1029 950 1020 926 1019 923 1035

# tRNA 52 7 52 7 47* 7* 50 5 53* 7*

# rRNA 9 3 9 3 6* 6* 8 2 9* 3*

*Differences in tRNA and rRNA numbers between primary and relapsed pairs arise due to differences in genome sequence coverage.
doi:10.1371/journal.ppat.1000845.t001
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genes’’), and 81 novel genes supported by all three lines (Table S2).

A comparison of compositional features (length, G+C content, CAI,

hydrophobicity [27]) between the 282 dual evidence genes and 5728

protein-coding genes from the original 2004 annotation revealed

striking differences in gene length between the sets (average gene

length 98656 aa vs 3486307 aa between novel and 2004 genes,

p = 1.236102304) (Figure 2E). Significant differences in G+C

content, CAI, and hydrophobicity were also observed (eg G+C

content 0.6360.1 vs 0.6860.05, p = 9.69610217) (Table S3).

Interestingly, some of these latter compositional differences might

be indirectly related due to the short lengths of the novel genes, as

significant G+C content, CAI, and hydrophobicity differences were

also observed when a set of ‘‘short length’’ genes from the original

annotation (,200 aa) were compared against the entire 5728 set

(Table S3). Because compositional differences can often influence

gene prediction accuracy [28–29], it is possible that some of these

differences might have contributed to the novel genes being missed

in the original annotation. To facilitate integration with existing

genome features, we assigned identities to the 282 novel genes based

on their proximity to existing genes (eg BPSL2192.1) (Table S2).

We also investigated the 120 genes missed in the current gene

prediction analysis but identified by the previous 2004 genome

annotation (Table S4). Of these 120 genes, 87 genes (73%) were

categorized either as ‘‘doubtful CDs’’, ‘‘gene remnants’’, or

‘‘pseudogenes’’ in the original 2004 annotation, indicating that

these genes were likely regarded as ambiguous in the previous

annotation as well. Of the remaining 33 genes, 21 genes encode

hypothetical proteins while another 6 appear to have bacterio-

phage origins that may contain coding signals distinct from the rest

of the Bp genome. The ambiguous nature for three-quarters of

these genes, coupled with presence of atypical coding signals,

provides the most likely explanation for their failure to be detected

by the current automated prediction pipeline.

The availability of multiple Bp genomes also permitted the

analysis of pseudogene dynamics within a species. Of 26

previously-described pseudo-genes in Bp K96243 [1], at least 6

were ‘resurrected’ in .6 other Bp genomes. For example, the

BPSL2828 pseudo-gene exhibits a premature truncation due to a

stop codon at position 107 (TGG R TGA). This mutation,

however, was only observed in Bp K96243 and Bp Pasteur 52237;

while the other 9 Bp genomes had an extended gene sequence to

position 147 (Figure S4). The differential presence of multiple

pseudogenes across the Bp strains suggests that pseudogene

formation in Bp is likely to be an active and highly dynamic

process, consistent with its role as a recently evolved pathogen.

Comparative Analysis of the Bp Core Genome
An analysis of gene orthologs across the Bp genomes identified a

BpCG of 4908 genes present in all 11 strains (Figure 3A, [30]),

with slight variations in individual genomes due to the presence of

gene duplications and paralogs (range 5049–5139 genes). Similar

core genome estimates were obtained when the analysis was

confined to the nine independently derived isolates (Figure S5).

We confirmed the robustness of this BpCG estimate using the

method of Tettelin et al [31]. An evolutionary comparison of the

BpCG against two closely related Burkholderia species with highly

distinct niches - B. mallei ATCC23344 (Bm), a intracellular

pathogen specific to horses [32], and B. thailandensis E264 (Bt), a

non pathogenic, environmental bacterium [33–34], defined a

common set of ,3616 genes found in all three species (Figure 3C).

270 out of 335 genes are common to Bp and Bm with no orthologs

in Bt, while 641 out of 769 genes are common to Bp and Bt with

no ortholog in Bm. Besides the core genes, gene accumulation

curves also project the global gene repertoire of Bp (the Bp

pangenome) to be ,7,500 genes (Figure 3B), a number close to

1.5x the size of the Bp core genome. A detailed analysis of the Bp

pangenome will be described elsewhere.

Genetic Variation in the Bp Core Genome
To survey the landscape of genetic variation in Bp, we focused

on a high quality ortholog set of 4673 BpCG genes (one

orthologous gene per genome with .50% sequence similarity,

each member exhibiting positional conservation to every other

member, and excluding paralogs). We catalogued single-nucleo-

tide polymorphisms (SNPs) and insertion/deletion sequences

(indels) in the BpCG. Each Bp strain exhibited an average of

,8594 SNPs compared to the K96243 reference genome,

resulting in an overall SNP/Kb frequency of ,2.0 for BpCG

genes, while indels account for 0.1% and 0.3% of the total genetic

variation in chromosomes 1 and 2 respectively. We confirmed the

reliability of the genetic variation data by several methods. First,

we confirmed by targeted resequencing .100 randomly-selected

SNPs and 25 randomly-selected indels (data not shown). Second,

83% of identified SNPs are either (a) recurrently observed across

multiple genomes (Table S5) [35], or (b) observed in Bp genomes

of particularly high sequence quality (1106a, 1710b, 22, K96243

and 406e) (Table S5). Third, the SNP distributions are entirely

consistent with geographic models in that strains with the highest

levels of genetic variation compared to K96243 were observed in

isolates from Australia, the most geographically distant locale

(Figure 4A). This is consistent with previous proposals that strains

from Australia are genetically distinct from their Asian counter-

parts [36] and form an ancestral population [35]. The existence of

a deep genetic distinction between the South East Asian and

Australian strains was further supported by phylogenetic analysis

of 14,544 shared orthologous SNPs across 23 Bp genomes

(including the genomes analyzed in this study), and also by an

Figure 2. Experimental Re-annotation of the Bp Genome. A) Venn diagram showing the number of predicted genes either shared (black) or
uniquely found in either the 2009 Bp annotation (red) or the original 2004 K96243 annotation (green). B) Bp K96243 genomic tracks showing novel
genes. Row 1: Genomic locations of 9 Bp genes on Chr1 on both the positive (+) and the negative (2) strand in the 2009 genome annotation
including a novel gene BPSL2192.1 (red arrow) on the positive (+) strand. Row 2: Genomic locations of 8 Bp genes on the same region of Chr 1 in the
2004 genome annotation. C) mRNA transcripts associated with novel genes. (left) Row 1: Genomic locations of 5 Chr 2 Bp genes (blue bars) and 1
novel gene (BPSS1202.1: red bar) in the 2009 annotation. The novel gene lies on the negative (2) strand. Row 2: Genomic locations of the same 5 Chr
2 genes on Chr 2 (green bars) in the 2004 annotation. Rows 3–7: Transcript expression under six growth conditions. BPSS1202.1 is expressed in all
conditions except early stationary phase in minimal media. Row 8: Probe coverage associated with these genes. (right) A second example of a novel
gene (BPSS0279.1) expressed primarily in both early and late stationary phase in rich media. D) Evolutionary conservation of a novel gene. Cross
species comparison by BLAST of a predicted novel gene (BPSL3348.1) across five Burkholderia species. Multiple sequence alignments were generated
using ClustalX [21]. Organism names are indicated at the beginning of the alignment. Identical residues are indicated as black dots. The conserved
domain (identified by CDD search) is shown at the top of the sequence alignment in pink. The red block below the alignment indicates the level of
conservation. The sequence logo of the alignment is shown at the bottom. E) Comparison of gene length between the 282 novel genes supported by
two lines of evidence (red), and all 2004 genes (green) for chromosomes 1 and 2. The graph plots cumulative gene frequency against gene length in
amino acids.
doi:10.1371/journal.ppat.1000845.g002
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MLST population structure analysis involving .1800 Bp strains

(647 sequence types) (Figure S6).

Among the clinical isolates, strain pairs 1106a–1106b and

1710a–1710b were isolated from the same patients during either

primary infection or disease relapse, with intervening periods of

approximately three years (Table S1). Surprisingly, a comparison

of the primary and relapse strain genomes in both pairs failed to

reveal a significant number of newly acquired mutations in

relapsed strains (4 variants in 1106a vs 1106b, 6 variants in 1710a

vs 1710b, none recurrent between both pairs) (Table S6). This lack

of genetic variation between the primary and relapsed strains

suggests that the former may have remained dormant in the

human host during this intervening period, supporting the notion

that that the Bp genome is likely to exhibit a high degree of

stability during in vivo infection and persistence.

Positive Selection in the Bp Core Genome
To assess the functional implications of BpCG variation, we

divided the BpCG SNPs into subsets predicted to cause either

synonymous (Ks) or nonsynonymous (Ka) nucleotide substitutions.

The Ks rate was similar between Bp Chr 1 and 2, indicating

comparable levels of background genetic diversity between the two

chromosomes. However, the Ka rate of Chr 2 was significantly

higher than Chr 1 (P = 2.42610221, unpaired t-test, under a one-

ratio model (M0) assuming a constant Ka/Ks ratio, Figure 4B),

indicating that BpCG genes on Chr 2 are experiencing a higher

degree of functional substitution than Chr 1. These chromosomal

differences support the model of Holden et al [1] that Chr 1 of Bp

represents the ancestral chromosome, with genes primarily related

to housekeeping functions while Chr 2 contains genes involved in

accessory functions and secondary adaptation.

We identified BpCG genes with signatures of positive selection

using established methods [37–39] (Figure S7 and Methods, [40]).

A maximum likelihood analyses was performed on each Bp core

gene to detect coding sequence sites displaying features of

differential selective pressure (positive selection) using two different

likelihood ratio (LR) models (M1a-M2a, or M7-M8). Out of 4673

genes, Model M1a-M2a was significant for 212 genes, while model

M7 -M8 test was significant for 239 genes (Ka/Ks.1; ,2% FDR;

P,0.001, LR Test). In total, 211 genes were commonly identified

by both models as being positively selected (Table S7). Consistent

with these 211 genes exhibiting above-background rates of

functional variation (median Ka/Ks = 60.07 and P,0.001, LR

Test), the average Ks value of the 211 positively selected genes was

similar to the Ks value of non-PS genes (Ks = 0.2 for PS and non-

PS genes, p = 0.56), while in contrast, Ka, the rate of non-

synonymous substitution was 3 times greater in the positively-

selected genes compared to genes under neutral selection

(p = 0.561025, t-test). The Ka/Ks value of the positively selected

genes was also markedly higher compared to seven housekeeping

genes typically used in MLST analysis (ace, gltB, gmhD, lepA, lipA,

narK and ndh) (P,0.001, LR Test). A significantly greater fraction

of positively-selected genes were identified on Chr 2 than Chr 1

(P = 0.006, x2 test, 10000 simulations). These observations suggest

that a significant proportion of the Bp core genome (,4.5%) may

be under positive selection.

We investigated whether the elevated Ka/Ks rate of the 211

positively selected genes might be due to mutation or recombination

between the genomes in this strain panel. All 4673 core genome

Figure 3. Comparative Analysis of the Bp Core Genome. A) Depletion curves for the Bp core genome (blue). Vertical bars represent standard
deviation values based upon one hundred randomized input orders of the Bp genomes (http://www.rproject.org/, The R Project for Statistical
Computing) [30]. B) Accumulation curves for the Bp pan genome (green). C) Distribution of orthologous genes between the Bp K96243 core genome
(4908 core genes + K96243 paralogs = 5063 genes), B. mallei ATCC23344 and B. thailandensis E264. The Venn diagram depicts the number of genes
either shared or unique between one or more Burkholderia species. Figures in brackets indicate the total number of genes compared.
doi:10.1371/journal.ppat.1000845.g003
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alignments were tested for the potential presence of recombination

using two different methods (GENECONV [41], and the Pairwise

Homoplasy Index (Phi)) [42]. Combining both methods, 56 out of

4673 core genes were identified as exhibiting a recombination

signature. Of these 56, only 3 belong to the 211 positively selected

genes, indicating that only a relatively minor component of the 211

genes are associated with a recombination signature. We also

assessed rho/theta, the recombination/mutation ratio, of the Bp

genomes analyzed in this study [43]. Using the Clonalframe

algorithm [43], an inspection of 4294032 variation sites estimated

rho/theta to be 0.012–0.015 (95% credibility region) for Chr 1 and

0.015–0.019 for Chr 2 respectively. This low value suggests that

mutation rather than recombination appears to be the predominant

evolutionary process explaining the patterns of genetic variation

observed in the current panel of Bp strains.

Consistent with the BpCG responding to multiple selective

pressures, the positively selected genes were widely dispersed

across a wide variety of functions, including metabolic processes,

membrane functions, signal transduction, and gene expression

regulation (Table 2). A functional category analysis subsequently

revealed that positively selected genes in the Bp core genome were

significantly enriched in COG categories related to secondary

metabolism (P = 0.036) and carbohydrate metabolism (P = 0.01,

binomial test after correction for multiple hypotheses) (Figure 4C),

highlighting these two metabolic pathways as major processes

experiencing selective pressure.

Positively Selected Genes May Contribute to Mammalian
Virulence

We were intrigued by the possibility that the positively selected

genes, while overtly responding to environmental pressures

encountered by Bp in soil, might indirectly facilitate the

colonization of mammalian hosts. Supporting this notion, the

positively selected genes were significantly enriched in genes

previously identified as putative virulence-related genes [1] (20

genes, P = 0.019, based on 10,000 empirical permutations). For

example, one representative class of virulence-related genes are

Type IV pili (TFP), which are bacterial surface proteins implicated

in multiple cellular processes, including motility, cell adhesion,

Figure 4. Genetic Variation in the Bp Core Genome. A) Distribution of SNPs across 11 Bp genomes. Core genome genes in all strains were
compared against Bp K926243 to identify SNPs. For primary and relapse strain pairs (1106a/b and 1710a/b), only the primary strain is depicted.
Geographical origins of the strains are depicted as different column colors. B) Chromosomal patterns of synonymous and nonsynonymous SNPs.
Rates of synonymous (Ks) and nonsynonymous (Ka) substitution were estimated for Chromosomes 1 and 2 using a set of 4673 high-quality
orthologous genes covering the 11 Bp strains. Each hourglass plot (interquartile range, IQR) represents the 25% to 75% range for that chromosome,
with the bottleneck placed at the sample median. Horizontal tick marks show the range of all elements within Quartile 1–1.5 X IQR and Quartile 3+1.5
X IQR (equivalent to the 99.3% interval of a normal distribution). Open circles represent outliers (data points outside this range). The width of the
bottleneck (i.e., the length of the V-shaped notch) is an indication of the confidence of the median; a lack of overlap of the bottleneck between
samples implies that the samples are statistically different. Chromosomes differ significantly in Ka values (P = 2.42610221, t-test) but not in Ks values.
C) Functional enrichments in the Bp core genome. COG functional categories are indicated on the x axis, and the percentage of genes in each COG
category is shown on the y axis. Dark blue bars represent Bp core genes. Light blue bars indicate genes under positive selection in Bp strains. COG
categories that are significantly enriched, (P,0.05, binomial test; bonferoni correction applied) in positively selected genes relative to the core genes
are indicated by an asterisk.
doi:10.1371/journal.ppat.1000845.g004

Table 2. Representative Bp Genes Exhibiting Signatures of Positive Selection.

Gene P value Ka/Ks COG Annotation

BPSL0321 2.0161024 6.77 G N-acyl-D-glucosamine 2-epimerase

BPSL0709 1.3861027 116.83 K Transcriptional regulator

BPSL0719 1.2561025 140.56 M Membrane carboxypeptidase (penicillin-binding protein)

BPSL0837 2.3461026 17.35 G Arabinose efflux permease

BPSL1057F1 8.3861024 62.27 - Hypothetical protein

BPSL2084 2.9061024 23.87 Q O-Methyltransferase involved in polyketide biosynthesis

BPSL1628 2.2161026 10.86 N P pilus assembly protein, porin PapC

BPSL2015 7.1361027 36.39 G Beta-glucosidase-related glycosidases

BPSL2770 8.39610211 175.40 M Predicted sugar phosphate isomerase involved in capsule formation

BPSL3029 8.6761028 33.88 M UDP-N-acetylmuramyl pentapeptide synthase

BPSS0117 6.1361026 32.67 T Signal transduction histidine kinase

BPSS0151 7.5961024 27.17 I Fatty acid desaturase

BPSS0161 7.4861024 57.64 Q Probable taurine catabolism dioxygenase

BPSS1403 3.5661024 14.20 N Flagellar motor switch/type III secretory pathway protein

BPSS0415 2.1161026 8.25 - Putative lipoprotein

BPSS0460 5.0061024 205.37 N Methyl-accepting chemotaxis protein

BPSS0893 5.81610212 48.72 M Outer membrane protein (porin)

P values are derived from likelihood ratio tests (Model M2a vs M1a, or M8 with M7). Ka/Ks - Ratio of nonsynonymous (Ka) to synonomous (Ks) mutation rates. Ka/Ks values
of .1 indicate positive selection, with larger values indicating stronger selection. COG pathway codes are as follows: G, carbohydrate transport and metabolism; I, Lipid
transport and metabolism; K, transcription; M, cell wall/membrane biogenesis; N, cell motility; Q, secondary metabolites biosynthesis, transport and catabolism; and T,
signal transduction mechanisms; ‘‘-’’ indicates that no COG category was assigned.
doi:10.1371/journal.ppat.1000845.t002
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microcolony formation, and virulence [44]. Of eight previously

identified TFP loci in Bp K96243 [45], positively selected genes

were associated with three TFP loci (TFP2, TFP4 and TFP7), with

the TFP4 Type IVA minor pilin locus containing two positively

selected genes (BPSL2754 pilW and BPSL2755 pilV). To evaluate

if TFP4 might be involved in mammalian virulence, we generated

isogenic Bp mutant strains deleted in the TFP4 locus, and tested

the virulence of TFP4 deletion strains in a BALB/c mouse

intranasal infection assay [46]. TFP4 deleted strains exhibited

significantly reduced virulence compared to parental Bp K96243

wild-type controls (p = 0.048, Mantel-Haenszel log-rank test,

Figure 5A), supporting a role for Type IV minor pilin activity in

murine virulence. These results suggest that a subset of positively

selected genes in Bp may influence virulence in mammals.

To further explore if other positively selected genes might

conceivably provide traits facilitating successful mammalian

infection, we then investigated two other features typically

associated with successful intracellular human pathogens - a) the

ability to interact with host cellular processes, and b) the ability to

utilize host metabolites as nutrients. Previous studies have shown

that many microbial pathogens can alter host cytoskeletons and

cell morphology during infection, using proteins such as TTS

factors to induce actin stress fibers, lamellipodia, and filapodia

[46–48]. To examine the role of positive selection in this process,

we curated a list of ten positively selected genes, either related to

TTS biology (BPSS1552) or present in Bp and Bm (both

pathogenic species) but absent from Bt (non-pathogenic) (Table

S8). We cloned and expressed these ten genes in Hela cells, and

examined the transfected cells for cytoskeletal perturbations. As a

positive control, we also included BopE (BPSS1525), a TTS effector

protein capable of inducing actin rearrangements [49]. Nine of the

positively selected genes were successfully expressed in Hela cells

but did not induce any significant differences in actin morphology

compared to vector controls (eg BPSS0415, Figure 5B). In contrast,

cells transfected with BPSL1057F1, a hypothetical protein and one

of the novel genes identified in this study, exhibited a marked

increase in actin stress fiber formation in the majority (60%) of

transfected cells, with phenotypes very similar to BopE transfection

(Figure 5B and 5C). Protein analysis of BPSL1057F1 revealed the

presence of a twin-arginine signal peptide sequence, often found in

proteins exported into an extra-cellular environment [50]. These

results suggest that some positively selected genes in Bp may

provide Bp with the potential to interact with host cellular

pathways.

We also analyzed the list of positively selected genes for

potential genes involved in host metabolite catabolism. Of

metabolites linked to the 10 positively selected secondary

metabolism genes, we focused on taurine (2-aminoethanesulfo-

nate), since taurine is an amino acid found at high levels in

potential mammalian hosts in muscles, bile, and white blood cells,

but absent or present at only trace levels in bacteria and plants

[51]. Supporting the notion that Bp has developed an ability to

metabolize taurine, the taurine dixoygenase gene BPSS0161 (tauD)

exhibited a significant degree of positive selection across the eleven

Bp genomes (P,0.001, Ka/Ks = 57.6, EC 1.14.11.17). Prompted

by this finding, we further explored the role of taurine metabolism

genes in Bp and discovered a previously-unreported species-

specific expansion of additional tauD gene members in Bp.

Specifically, compared to Bt or Bm which have three tauD genes

on Chr 2, the Bp Chr 2 genomes harbor eight-nine tauD genes, a

three-fold expansion (Figure 5D [52–53], also on Chr 2). The Bp

tauD genes all share the same tauD pfam family domain (PF02668)

but otherwise exhibit low sequence similarity between each other

(average nucleotide homology of 36%), arguing against this

expansion occurring by gene duplication. Instead, sequence

analysis suggests that many of the Bp tauD genes were likely

acquired by lateral gene transfer. For example, BPSS0665, another

tauD gene, is localized to genomic island 14 (GI14), a region of

codon bias deviation and atypical % GC content (Figure S8).

Intriguingly, despite exhibiting many features of mobile elements,

GI14 has been previously shown to be consistently present across a

large panel of natural Bp isolates in contrast to other GIs [7]

(Figure S8). It is possible that a selective requirement for

maintaining levels of tauD activity might have contributed to

GI14 behaving as a conserved feature of the Bp genome.

In other bacterial species, tauD is required to metabolize taurine

as a sulphur source [54–55]. Experimental assays comparing the

growth Bp and Bt strains confirmed that Bp also exhibits a

significantly enhanced ability to efficiently utilize taurine as a

sulphur source compared to Bt (p = 0.002, Figure 5E). The ability

of Bp to metabolize taurine for sulphur utilization is specific, as Bp

was unable to use taurine as an alternative carbon or nitrogen

source, activities which are not mediated by tauD (Figure S8).

Finally, to investigate the molecular response of Bp to taurine, we

generated whole-genome transcriptome profiles of Bp exposed to

high levels of taurine (250 uM). Here, the taurine concentrations

used were based on previous reports studying taurine metabolism

in E. coli [54–55]. Compared to Bp grown in standard laboratory

media, taurine-exposed Bp exhibited transcriptional up-regulation

of ,280 genes, of which 40% (126 genes) have been previously

associated with pathogenicity, host–cell interaction, or survival in

diverse and challenging environments [1]. Specific examples of

taurine-regulated genes implicated in virulence included several

flagella gene clusters (BPSL0024-BPSL0032, BPSL0224-BPSL0236,

BPSL0266-BPSL0282, BPSL3288- BPSL3330) [56], siderophore

biosynthesis and iron metabolism genes (BPSL1771- BPSL1787,

BPSS0239- BPSS0244, BPSS0581- BPSS0588) [57], and fimbrae/

pili (BPSL2026- BPSL2031, BPSS1593- BPSS1605) [45] (Figure 5F,

Table S9A and S9B). Taken collectively, these findings suggest

that altered taurine metabolism likely mediated by tauD may

represent a species-specific adaptation of Bp that may have also

facilitated its ability to survive in infected mammalian hosts [58].

Discussion

In this, the first nucleotide-scale comparative analysis of multiple

Bp genomes, we expanded the known gene repertoire of Bp, defined

the BpCG, and described the extent of genetic variation in BpCG

genes. We identified a set of genes exhibiting positive selection, and

examined how such variations can impact genomic organization

and structure. Our results suggest that a significant proportion of the

BpCG may be experiencing functional selection, and that a large

aspect of this selection involves the modification of preexisting

metabolic circuits related to carbohydrate and secondary metabo-

lism. Importantly, we also provide evidence that a subset of these

genes may have also facilitated the ability of Bp to interact with

mammalian hosts, either structurally or nutritionally.

In our analysis, we have proposed that many of the genetic

alterations observed in the positively selected genes were primarily

driven by environmental pressures outside the human or

mammalian host. Nevertheless, if Bp undergoes cryptic cycling

through normal humans or other potential mammalian hosts, such

as livestock or wild cattle [59], it remains possible that certain

survival and virulence traits were directly selected for in mammals.

In melioidosis-endemic NE Thailand, the majority of healthy

individuals have antibodies to Bp by the age of 4 years, indicating

constant exposure to the bacterium that may occur by inoculation,

inhalation or ingestion [4]. Within such hosts, Bp might spend
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Figure 5. Functional Analysis of Positively Selected Genes. A) Relative Virulence of TFP4 Deletion Mutants: Graphs show survival curves of BALB/
c mice following intranasal challenge with varying dosages of Bp (left – K96243 wild-type, right – TFP4 deletion strains). See Methods for infection assay
details. The TFP4 deletion strain is significantly less virulent compared to Bp K96243 parental controls (p = 0.048, Mantel-Haenszel log rank test). Units in
the color bar refer to Bp colony forming units (CFU). B) Transfection of HeLa cells using i) vector, ii) BPSS0415, iii) BPSS1525 (BopE) and iv) BPSL1057F1. Cells
were stained with rhodamine-phalloidin and DAPI to identify actin filaments and nuclei respectively. All genes were tagged with GFP at the N-terminus.
Cells transfected with either empty vector or BPSS0415 exhibited normal actin structures and filaments (arrowheads). Cells transfected with either BopE
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periods of time being exposed to the mammalian immune

response and various physiologic traits. Subsequent return to the

environment in a viable state, through skin desquamation or in

urine and stool, could also lead to the selection of factors that

promote survival in vivo. However, because we a) consider the

mammalian host to be a relatively minor component of Bp

ecology, b) such cryptic cycling through mammalian hosts has yet

to be documented, and c) the lack of genetic variation between the

primary and relapsed strains suggests that the Bp genome is likely

to exhibit a high degree of stability during mammalian infection,

we argue that this scenario is, on balance, possible but less likely.

A large proportion of Bp genes are still unannotated or poorly

characterized, raising the need for systematic approaches to link

discrete sets of Bp genes to their specific biological and cellular

functions. The genomic identification of these positively selected

genes should facilitate the process of targeted experimentation to

elucidate the pathogenesis of melioidosis. The prioritization of

candidate genes for targeted experimentation is particularly

relevant for Bp due to its classification as a potential biothreat

agent. Under international biosafety regulations, Bp research is

typically conducted in high containment (Category 3) facilities and

limited to highly focused projects [60] (http://www.selectagents.

gov/). Finally, it is worth noting that the ability of this approach to

uncover candidate host interaction genes and pathways from a

genome as complex as Bp suggests that similar approaches should

prove equally fruitful in elucidating novel aspects of biology in

other recently emergent pathogens as well.

Methods

Ethics Statement
This research was approved by the Genome Institute of

Singapore Institutional Review Board. All animal experimentation

was conducted at DSTL (Defence Science and Technology

Laboratory) in the United Kingdom (UK) under Animal (Scientific

Procedures) Act 1986.

Genome Annotations and Comparative Analysis
Bp genes were predicted using FGENESB [http://linux1.

softberry.com/berry.phtml?topic = fgenesb&group = help&subgroup

= gfindb (Softberry)]. tRNA genes were identified using tRNAScan-

SE [20], and rRNA genes by sequence conservation (blastn, e-value

threshold: 1e-08). Operons were identified based on a) distances

between genes, b) likelihood of neighboring genes also appearing in

other bacterial genomes as neighbors, and c) locations of predicted

promoters and terminators. Genes were annotated against the NR,

COG, KEGG and STRING [www.ncbi.nlm.nih.gov (NR); www.

ncbi.nlm.nih.gov/COG (COG); www.genome.jp/kegg (KEGG);

http://string.embl.de/ (STRING)] databases using the following

criteria: i) BLASTP e-value threshold of ,1e-10; ii) percent identify

threshold of .60%, and iii) a percentage coverage threshold of 80%.

These criteria were used based on previous studies [18–19].

Ribosome binding sites (RBSs) were identified using RBSfinder

[22–24]. Notably, the consensus RBS sequences between E. coli and

Bp are similar [25–26]. Non-coding RNAs were identified using the

Rfam database [17]. CodonW (http://codonw.sourceforge.net/) was

used to identify codon adaptation indexes (CAI), Kyte and Doolittle

scales of hydrophobicity [27], GC percentages and gene lengths.

Multiple whole-genome alignments were performed using Mauve

2.2.0 [61].

Transcriptome Profiling
Bp K96243 cultures were isolated from six conditions: Luria-

Bertani broth (mid-logarithmic, early stationary and late stationary

phases, conditions 1–3), minimal media (mid-log and early

stationary, conditions 4–5), or exposure to 1x PBS solution

(condition 6). Bacterial mRNAs were profiled on a high-density Bp

tiling array representing both strands of the Bp K96243 genome

(7.2 Mb) (Nimblegen) (50-mers, 15-base overlap). All transcrip-

tome profiles are the average of 2 biological replicates. Three

distinct criteria were employed to consider a novel gene as

‘‘expressed’’. First, an ‘‘expressed’’ novel gene was required to

exhibit a minimum of 3 consecutive array probes with fluorescence

intensities above the array median intensity. Second, for genes

covered by more than five array probes, the combined pseudo-

median expression value of the novel gene was assessed using the

SIGN Test, a statistical method previously used to measure the

transcriptional activity of genes using tiling microarrays [16]. Only

novel genes passing the SIGN test were considered as ‘‘expressed’’

(p,0.05). Third, short novel genes covered by less than five probes

that did not qualify for the SIGN Test were manually curated to

confirm the presence of contiguous expression signals for each

gene. For analyses of differential gene expression, ratios of

normalized probe signals were computed. Probe identities with

more than 2-fold up-regulation or down-regulation were matched

to Bp gene identities. Genes that have 50% or more probes

showing at least 2-fold up-regulation or down-regulation were

taken as differentially expressed between the conditions compared.

Bp Core Genome and Pan Genome
Gene orthologs across the Bp genomes were determined using

OrthoMCL [62]. An all-against-all BLASTp [63] was performed,

followed by a reciprocal BLAST to define putative ortholog pairs

or recent paralogs (genes within the same genome that are

reciprocally more similar to each other than any sequence from

another genome). Reciprocal BLASTp values were converted to a

normalized similarity matrix that was analyzed by the Markov

Cluster algorithm MCL to define ortholog clusters. OrthoMCL

was run with a BLAST e-value cut-off of 1e-5, and an inflation

parameter of 1.5. The OrthoMCL output was used to construct

tables of shared orthologs and strain-specific genes.

or BPSL1057F1 exhibited dissolution of normal actin filaments with the presence of actin stress fibers (arrowheads); Bar 10 mm. C) Population analyses of
transfected cells. Values were presented as percentage of the total number of transfected cells (n = 40), obtained from four independent experiments. D)
Protein sequence relationships of nine taurine dioxygenase (tauD) genes from Burkholderia pseudomallei K96243. Bootstrapped Neighbor-Joining trees
[52] were constructed using ClustalX [21], and drawn using NJplot [53]. Each branch was compared against 1000 resamplings of the alignment data.
Bootstrap values and branch lengths are shown at the branch points, and distance units are shown in the lower right hand corners of the tree. The blue
bar indicates the presence of a tauD homolog in B. thailandensis, red bar in B. mallei. BPSS0665 is the tauD gene located in GI14. The tauD gene BPSS0161
exhibits a signature of positive selection. E) Taurine utilization in Bp and Bt. Strains were grown in medium containing either taurine or free sulfate
(Na2SO4-). To normalize differences in intrinsic growth rate, each strain was plotted as a ratio between its growth in taurine compared to free sulphate (y-
axis) during 0 hrs or log-phase growth (x-axis). No growth was observed in taurine or Na2SO4-deficient media. Error bars represent the standard
deviations between replicate cultures. F) Identification of taurine-regulated genes. Transcriptome profiles of taurine-exposed Bp were compared to Bp
grown in laboratory rich media. Both populations were isolated at stationary phase. Rows represent Bp Chr 1 and Chr 2. Y-axes represent levels of
transcriptional up-regulation of Bp genes in the presence of taurine relative to rich media (LB). Arrows depict gene clusters related to flagella (blue), iron
metabolism (black), fimbrae/pili (green), and taurine metabolism (pink, BPSS1572-1575).
doi:10.1371/journal.ppat.1000845.g005
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Bp Core Genome Variation and Positive Selection
Orthologs exhibiting positional conservation across the Bp

genomes were aligned at the DNA level with ClustalW [21] and

manually confirmed. SNAP.pl was used to calculate the number of

synonymous vs. non-synonymous base substitutions (Nei and

Gojobori method) for all pairwise comparisons of ortholog

sequences [40]. Ambiguous codons or codons with insertions were

excluded from the tally of compared codons. Base-substitutions

were also manually inspected to remove from consideration

substitutions indirectly caused by upstream frame-shifts. GENE-

CONV [41] was used to identify recombination breakpoints, and

genes exhibiting a recombination signature were fragmented at the

predicted breakpoints. The recombination sub-fragments (total 152

sub-fragments) were individually applied to the PHYLIP pipeline to

infer maximum parsimony trees. The core gene alignments were

also tested for the presence of recombination using the Pairwise

Homoplasy Index (Phi) as implemented in the HYPHY package

(100000 permutations, cutoff at ,1% FDR) [42]. ClonalFrame

version 1.1 was used to compute rho/theta, the recombination/

mutation ratio [43]. Protein sequences were aligned using ClustalW

(‘ktuple’ ) 2 and ‘matrix’ ) ‘BLOSUM’). PAL2NAL [64] Perl

scripts were used to convert the multiple sequence protein

alignments and corresponding DNA sequences into codon

alignments. Maximum parsimony (MP) trees were generated using

PHYLIP (‘dnapars’ module) using default values (http://evolution.

genetics.washington.edu/phylip.html). Codon alignments and MP

trees were analyzed by PAML 4.0 [38] to calculate Ka/Ks (or v)

ratios and test different evolutionary models. The following nested

models were used: M1a-M2a and M7-M8 [39]. A likelihood ratio

test was used to compare model M2a with M1a, and model M8 with

M7, at a significance cutoff of ,2% FDR [38]. The nested model

M0 (one-ratio)-M3 (discrete) was also used to confirm heterogeneity

of Ka/Ks in the cohort of positively selected genes [65].

Construction of Isogenic Mutant Strains
Isogenic unmarked mutant Bp strains carrying a 3.7 kb deletion

of the TFP4 gene cluster were generated as previously described in

Boddey et al., 2006 [66]. Briefly, a TFP4 (BPSL2749-BPSL2755)

targeting vector was constructed and conjugated into Bp K96243.

Integrants were selected on chloramphenicol plates (100 ug/ml)

and confirmed by PCR. Merodiploid integrants were then

cultured without selection and plated onto medium lacking

sodium chloride but containing 15% sucrose to enrich for colonies

carrying a deleted chromosomal locus. Bp TFP4 mutants were

confirmed both by PCR and Southern blotting.

Mouse Virulence Studies
Virulence of wild-type and mutant Bp strains were assessed

using an intranasal BALB/c mouse model as previously described

[45]. Briefly, groups of six age-matched BALB/c female mice were

anesthetized and infected intranasally with 10-fold dilutions (101–

106) of either wild-type Bp K96243 or TFP5 deletion strains

grown overnight at 37degC with shaking. Mice were recovered

and survival was recorded for up to 51 days. The survival data was

analyzed using the Mantel-Haenszel log rank test in GraphPad

Prism 4 or by Regression with Life Data in MIniTAB v13.0, using

a significance threshold of a= 0.05.

Cell Culture, DNA Transfection and Immunoflouresence
Positively selected genes were PCR-amplified from Bp genomic

DNA and subcloned into Vivid ColorsHpcDNAH 6.2/N-EmGFP-

GW/TOPOH mammalian expression vectors (Invitrogen). Hela

cells were transfected using Gene Juice (Novagen), and cultured for

24 h after tranfection. Cells were fixed in 3.7% paraformalde-

hyde/PBS (pH 7.0). After washing and preincubation, cells were

stained with Alexa Flour 555 phalloidin (Invitrogen) and DAPI

(Sigma-Aldrich). Stained cells were visualized using a confocal

Zeiss LSM 150 inverted laser scanning microscope and analyzed

using Zeiss LSM Image Browser software (Carl Zeiss, Oberko-

chen, Germany).

Taurine Utilization
2 Bp and 2 Bt strains (Bp K96243, Bp 22, Bt ATCC700388 and

Bt E305) were cultured in modified M63 media, or media

supplemented with 250 mM taurine or 250 mM Na2SO4. Cultures

were grown at 37uC, 150 rpm and OD600 readings were taken

every 2 hrs for 72 hrs. To study differential gene expression, Bp

K96243 was cultured in modified M63 medium with 250 mM

taurine at 37uC, 150 rpm for 48 hrs to reach stationary phase.

The expression profile obtained was compared with that obtained

for Bp K96243 cultured in LB at stationary phase. All

transcriptome profiles are the average of 2 biological replicates.

Supporting Information

Figure S1 Genome Alignment of Bp Chromosome 2 across Bp

Strains. Each genome is depicted as a single LCB (Locally

Collinear Block) with the putative origin of replication being

indicated by a black rectangle (left side of each alignment). Gaps or

white spaces within the LCBs represent strain-specific regions.

Found at: doi:10.1371/journal.ppat.1000845.s001 (0.20 MB PDF)

Figure S2 Bp transcript expression is associated with previously-

identified genes. Top Row: Locations of 5 Bp genes on Chr 1

(green bars) and 6 Bp genes on Chr2 (green bars) on the positive

(+) and negative (2) strands. All 10 genes are commonly found in

both the 2004 and 2009 annotations. Bottom row: Transcript

expression on both positive and negative strands as measured

using tiling microarrays. Notice that the transcripts are tightly

associated with the previously-identified genes. Red regions likely

correspond to either 59 or 39 untranslated UTR regions.

Found at: doi:10.1371/journal.ppat.1000845.s002 (0.13 MB PDF)

Figure S3 Experimental PCR Validation of mRNA transcripts

associated with novel genes. (A) mRNA transcripts detected by

tiling microarrays associated with novel 2009 genes BPSL1301.1

and BPSL2337.1. Top Row: Locations of Bp genes on

Chromosome 1 on positive (+) and negative (2) strands. Novel

genes validated are shown in red. Bottom row: Transcript

expression on both the positive and negative strands. (B) RT-

PCR validation of novel gene transcripts. Lane 1: Blank/Negative

control (water); Lane 2: positive control: 16S rRNA; Lane 3: Novel

gene BPSL1301.1; Lane 4: Novel gene BPSL2337.1. The 100 bp

molecular weight ladder is shown on the left.

Found at: doi:10.1371/journal.ppat.1000845.s003 (0.15 MB PDF)

Figure S4 Example of a differential pseudogene. Multiple

sequence alignment of BPSL2828 identified as a pseudogene in

BpK96243, against its homologs from other sequenced Bp

genomes [a) gene sequence b) protein sequence]. Alignments were

performed using ClustalW [6–7]. The Bp strain names are

indicated at the beginning of the alignment. The black bar at the

bottom of the alignment indicates the consensus. The mutation is

encircled by a blue box.

Found at: doi:10.1371/journal.ppat.1000845.s004 (3.81 MB PDF)

Figure S5 Bp Core genome estimates from nine isolates.

Depletion curves for the Bp core genome (blue: 11 Bp genomes;

brown: nine genomes representing independently-derived strains).
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Vertical bars represent standard deviation values based upon one

hundred randomized input orders of the Bp genomes [8]. The

analysis revealed a highly similar BpCG gene set based on 9

isolates, comprising 4920 ORFs (compared to the 4908 ORFs

based on the 11-isolate analysis).

Found at: doi:10.1371/journal.ppat.1000845.s005 (0.15 MB PDF)

Figure S6 Phylogenetic and MLST Analysis of Sequenced Bp

Strains. To infer phylogenetic relationships between the sequenced

Bp strains, we generated phylogenetic trees based on whole-

genome shotgun sequencing data of 33 Burkholderia strains,

including 23 Bp strains and 10 B. mallei strains as an outlier

group. Consistent with Figure 4A in the Main text, the two

Australian strains (668 and 1655) segregated in phylogenetic

subbranches distinct from the South-East Asian strains (Figure

S6A). This phylogenetic separation was further supported by a

larger MLST-based population genetic analysis of 1827 isolates

(647 sequence types), confirming the division of Bp into two major

populations (Figure S6B). These results suggest that there are two

major populations of Bp, an Australian and a Southeast Asian

population [5], and that the Australian population may be more

ancient and more diverse than the Southeast Asian population. A)

Phylogenetic relationships of Bp isolates used in this study

compared to other Burkholderia isolates with whole genome

sequences. This phylogeny contains 33 genomes of Bp and Bm

and is based on 14,544 shared orthologous SNPs [5]. Genomes

used in this study are shown in red. B) Estimated population

structure of Bp and B. mallei using allele frequencies of MLST

data. Each thin vertical line represents a sequence type that is

divided into two portions that resemble the proportion of 5,000

iterations where that sequence type was assigned to each of two

populations. The red population is dominated by sequence types

from Australia, while the black population is dominated by

sequence types of Southeast Asian origin. Geographic affiliations

of sequence types are labeled below the figure. Isolates whose

genomes were used in this study are indicated along with the

percentage of iterations that assigned them to each population.

Data used was downloaded from http://bpseudomallei.mlst.net/

on November 23rd, 2009. Isolates with no information on the

country of origin were excluded, leaving 647 sequence types of Bp

(n = 645) and B. mallei (n = 2). Structure 2.2 [9] was used to analyze

these sequence types according to the methods described in

Pearson et al. 2009[5].

Found at: doi:10.1371/journal.ppat.1000845.s006 (0.15 MB PDF)

Figure S7 Schematic of Positive Selection (PS) Analysis Work-

flow. Overview of the positive selection analysis scheme. Size of

each dataset is indicated in parentheses. Programs used are

indicated next to the arrows.

Found at: doi:10.1371/journal.ppat.1000845.s007 (0.12 MB PDF)

Figure S8 Expansion of tauD Taurine Dioxygenase Genes in Bp.

A) Row 1: Genome organization of GI14 (BPSS0652-BPSS0666)

and surrounding regions on Burkholderia pseudomallei K96243

chromosome 2. Row 2: Columns represent codon bias deviation

(dark blue) and %GC bias (grey) respectively, using a six-gene

sliding window. Values were obtained using PredictBias Server

[10]. The location of GI14 is shown in red at the bottom,

corresponding to a region of codon bias and atypical GC content.

The tauD gene BPSS0665F is highlighted in red. B) Hardwiring of

GI14 in the Bp genome. Presence and absence of all 16 GIs were

assessed in a panel of 98 Bp isolates by aCGH [11]. Both GI7 and

GI14 (marked in red) are present in all Bp strains. C) Utilization of

taurine as the sole i) carbon source or ii) nitrogen source by Bp

K96243 and Bt ATCC700388. Cultures with taurine as the sole

carbon and nitrogen source showed comparable growth with the

respective negative controls, which is significantly less than the

respective positive controls. Error bars represent the standard

deviations between replicate cultures.

Found at: doi:10.1371/journal.ppat.1000845.s008 (0.30 MB PDF)

Table S1 List of B. pseudomallei Strains

Found at: doi:10.1371/journal.ppat.1000845.s009 (0.08 MB PDF)

Table S2 Novel genes supported by two or three lines of

evidence

Found at: doi:10.1371/journal.ppat.1000845.s010 (0.06 MB PDF)

Table S3 Compositional Features of Novel Predicted Genes and

Short-Length Sanger Genes Compared to All Sanger Genes.

*Sanger genes less than 200 aa were defined as ‘‘short length’’. All

p-values were determined using an unpaired two tailed t-test

(unequal variance).

Found at: doi:10.1371/journal.ppat.1000845.s011 (0.06 MB PDF)

Table S4 Previously-predicted BpK96243 genes missed by the

FGENESB pipeline

Found at: doi:10.1371/journal.ppat.1000845.s012 (0.11 MB PDF)

Table S5 Recurrent SNPs and SNPs identified in five high-

quality Bp genomes. jSNP observed in at least two of eleven Bp

genomes. *SNPs observed across 23 Bp genomes after removal of

paralogous and non-shared loci [5]. {The five high sequence

quality genomes are: B. pseudomallei K96243, B. pseudomallei 22, B.

pseudomallei 1106a, B. pseudomallei 1710b, B. pseudomallei 668.

Found at: doi:10.1371/journal.ppat.1000845.s013 (0.04 MB PDF)

Table S6 Sequence Variations between Primary and Relapse Bp

Strains. GeneID: Based on 1106a annotation; SNP a -. b:

nucleotide changes; S/N: Synonymous vs Nonsynonymous

alteration; BPCG+: Present in Bp core genome.

Found at: doi:10.1371/journal.ppat.1000845.s014 (0.07 MB PDF)

Table S7 List of Positively Selected Bp Genes (ranked by Ka/

Ks). A) Chromosome 1. B) Chromosome 2. *Genes with a

recombination signature.

Found at: doi:10.1371/journal.ppat.1000845.s015 (0.14 MB PDF)

Table S8 List of selected gene candidates for transfection

Found at: doi:10.1371/journal.ppat.1000845.s016 (0.06 MB PDF)

Table S9 A) List of taurine regulated genes in Bp K96243 Chr 1

(up regulated . = 2 fold). B) List of taurine regulated genes in Bp

K96243 Chr 2 (up regulated . = 2 fold).

Found at: doi:10.1371/journal.ppat.1000845.s017 (0.09 MB PDF)

Dataset S1 GenBank file of Bp K96243 Chromosome 1

Found at: doi:10.1371/journal.ppat.1000845.s018 (8.10 MB TXT)

Dataset S2 GenBank file of Bp K96243 Chromosome 2

Found at: doi:10.1371/journal.ppat.1000845.s019 (6.22 MB

TXT)

Text S1 Motifs at inversions

Found at: doi:10.1371/journal.ppat.1000845.s020 (0.06 MB PDF)

Text S2 Accuracy Estimate of RBSfinder on the B. pseudomallei

genome

Found at: doi:10.1371/journal.ppat.1000845.s021 (0.11 MB PDF)
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