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Abstract

With the decreasing cost of next-generation sequencing, deep sequencing of clinical samples provides unique
opportunities to understand host-associated microbial communities. Among the primary challenges of clinical
metagenomic sequencing is the rapid filtering of human reads to survey for pathogens with high specificity and
sensitivity. Metagenomes are inherently variable due to different microbes in the samples and their relative abundance, the
size and architecture of genomes, and factors such as target DNA amounts in tissue samples (i.e. human DNA versus
pathogen DNA concentration). This variation in metagenomes typically manifests in sequencing datasets as low pathogen
abundance, a high number of host reads, and the presence of close relatives and complex microbial communities. In
addition to these challenges posed by the composition of metagenomes, high numbers of reads generated from high-
throughput deep sequencing pose immense computational challenges. Accurate identification of pathogens is confounded
by individual reads mapping to multiple different reference genomes due to gene similarity in different taxa present in the
community or close relatives in the reference database. Available global and local sequence aligners also vary in sensitivity,
specificity, and speed of detection. The efficiency of detection of pathogens in clinical samples is largely dependent on the
desired taxonomic resolution of the organisms. We have developed an efficient strategy that identifies ‘‘all against all’’
relationships between sequencing reads and reference genomes. Our approach allows for scaling to large reference
databases and then genome reconstruction by aggregating global and local alignments, thus allowing genetic
characterization of pathogens at higher taxonomic resolution. These results were consistent with strain level SNP
genotyping and bacterial identification from laboratory culture.
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Introduction

Despite its importance for infectious disease diagnosis, the
ability to rapidly and conclusively identify the causative agents for
infections remains an elusive goal. When a symptomatic patient
enters the healthcare system, the infectious etiologic agent is rarely
known. Patients often are subjected to a battery of expensive tests,
often taking days to weeks for results, to narrow down the
etiological agent; meanwhile the treating physician is typically
forced to make management decisions based on patient sympto-
mology and history. Next-Generation sequencing technologies
have transformed our ability to rapidly generate sequence data [1–
3]; and as such, whole metagenome sequencing is emerging as the
future of clinical diagnostics by providing a rapid and highly
sensitive method of diagnosing and characterizing infectious
agents in clinical samples [4–9]. The goal is to replace the
multitude of clinical microbiological tests with a single diagnostic
approach. In clinical metagenomic analysis, microbial and host

DNA are sequenced together and the likely pathogens identified
and characterized to streamline treatment. Despite this seemingly
simple process, there are numerous obstacles to efficient and
accurate identification of pathogens in clinical samples.

Over the past 5–10 years, the composition of microbial
communities (i.e., the microbiome) in clinical samples, and
elsewhere, has been estimated using conserved gene amplicon
sequencing (e.g., 16S rRNA for bacteria). More recently, whole
genome sequencing (WGS) approaches have emerged as a
powerful alternative that gives a relatively unbiased and global
representation of the members of the microbial community
[7,10,11]. With the advances in sequencing technology, along
with decreasing cost, it is now possible to fully interrogate the
microbial communities within clinical samples [6,12,13], including
the ability to genotype community members and understand gene
composition. This diagnostic advancement can provide important
insights for accurate and timely clinical management of patients.
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For clinical diagnostics, genus- or even species-level identification
may not be sufficient for proper clinical treatment. For example, a
patient suffering from methicillin resistant Staphylococcus aureus
TCH1516 requires different treatment than a patient colonized by
methicillin sensitive S. aureus Newman.

A primary issue for metagenomic analyses is read alignment
methodology, for analysis of the hundreds of millions of reads per
run generated through sequencing technologies [14,15]. Different

metagenomic analysis pipelines incorporate available aligners
(local/global) in a computational infrastructure, such as cloud
computing or high performance computing (HPC), to provide
accurate sequence interrogation, computational speed and the
scalability necessary to query enormous numbers of metagenome
reads against reference databases. There is, however, a tradeoff
between the accuracy of detection and computational speed. Local
alignment algorithms are considered to be more sensitive and

Table 1. Description of different steps of human filtration of pipeline utilized to compare sensitivity/specificity of detection and
performance of runtime and computational resources of the simulated reads.

Quality Filter Fast Alignment Data Compression Sensitive Alignment Repeat DB

mg_bw2 yes bowtie2 - - -

mg_bwa yes bwa - - -

mg_dc yes bwa - stampy yes

mgall_bw2 yes bowtie2 Yes stampy yes

mgall_bwa yes bwa Yes stampy yes

Dash (-) represents that the option was not utilized.
doi:10.1371/journal.pone.0110915.t001

Figure 1. The workflow of the pipeline. A. Human read reduction module B. Pathogen detection module C. Multithreaded input sequence file
query the multiple partition reference database to address the scalability.
doi:10.1371/journal.pone.0110915.g001
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accurate than global alignment algorithms [16,17]. On the other
hand, existing global aligners [18–26] are typically preferred over
local aligners, given the high volumes of metagenome sequences
[27]. For example, PathSeq [6], MePIC [28] and SURPI [29]
utilize cloud computing platforms to expand computational
scalability. These computing platforms are usually available
externally or commercially and have associated utilization costs
but do not require server maintenance costs by the user. PathSeq,
IMSA [30], VirusHunter [31] and MEGAN [32] are capable of
characterizing unknown reads with BLAST, a local aligner [33];
however, with the high number of metagenome reads (.1
million), BLAST is often not optimal for clinical diagnostics given
the high computational time required [16,17]. RINS [34] and
IMSA [30] invoke processes such as BLAT [35] but without
parallelization and consequently have scalability issues with large
reference databases.

An additional issue beyond alignment methodology is read
assignment. Each metagenomic sequencing read, in theory,
originates from a single genome. Assigning large numbers of
reads (especially 50–200 bp short reads) back to their genome of
origin is problematic for multiple reasons including: a) the
presence of overlapping/shared genomes from other organisms
in the sample; b) querying these reads against related genomes
from publicly available databases may result in a greater number
of hits due to homology; and c) the computational resources
required to scan through large reference databases. We have
developed a pipeline, MetaGeniE, which has been designed for
accurate, sensitive and specific detection of taxa in complex
microbial samples and to address all of the above limitations with
typical metagenomic analyses. The MetaGeniE pipeline generates
an all-against-all comparison dataset between the reads and the
reference database and then uses these results to generate
cumulative statistics from combined local and global alignment.
MetaGeniE also incorporates features such as comprehensive
human read filtration and scalability to search large reference
databases such as the microbial Refseq database (http://www.
ncbi.nlm.nih.gov/refseq/), which is increasing with each release
and presently around 20 GB in size.

Methods

Ethics Statement
All work with tissues derived from human subjects was

approved by the Institutional Review Boards of Northern Arizona
University and the Translational Genomics Research Institute.
Both Institutional Review Boards waived the need for patient
consent for these de-identified samples.

Data
Human Datasets. Seven whole genome sequences of human

datasets were downloaded from Sequence Read Archive (SRA) at
NCBI (http://www.ncbi.nlm.nih.gov/sra/). The accessions and
read number for these datasets are ERR191896: 53.03 million
reads; ERR218094: 49.50 million reads; ERR237515: 2.54
million reads; SRR032752: 35.29 million reads; SRR033605:
23.53 million reads; SRR054743: 40.63 million reads;
SRR054753: 39.76 million reads. We simulated 30 million reads
from human reference genome (build 37.2) (ftp://ftp.ncbi.nih.
gov/genomes/H_sapiens) with GRINDER version 0.5.3 [36]. We
incorporated total 0.5% variability in the simulated human reads,
0.1% as expected human SNP frequency [19] and 0.4% as the
average sequencing error for Illumina reads [37].

Bacterial Datasets. Average Illumina sequencing error of
0.4% was incorporated in all the simulated reads generated from
bacterial reference genomes (ftp://ftp.ncbi.nih.gov/refseq/
release/bacteria/). To study sequencing error and its effect on
detection and characterization, additional variability of 0.1%,
0.2%, 0.5% and 1% were incorporated in each simulated bacterial
library.

In-house Clinical Dataset. Three throat swabs (CF1, CF2,
CF3) and one nasopharyngeal swab (CF4) from cystic fibrosis (CF)
patients were sequenced with Illumina GA IIx using paired-end
100 bp reads (total reads ,37–58 million). Culture-based methods
were also performed for the CF samples to identify microbial
infection.

We benchmarked our work using only simulated Illumina reads
since this is currently the leading sequencing platform in overall
usage and its high throughput provides an opportunity to test
computational scalability. The pipeline can utilize other platforms

Figure 2. Benchmarking the human read reduction module of the pipeline. A. Total numbers of reads remaining after human read
reduction with different filtration parameters B. Runtime for human read filtration with different aligner and filtration parameters (in minutes).
doi:10.1371/journal.pone.0110915.g002
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and as expected, the detection will incorporate platform-specific
biases [38].

Design
The pipeline is designed as a distributed and scalable software

package to analyze millions of reads and query large reference
databases and consists of two modules: Read-Reduct and Patho-
Detect. The Read-Reduct module sequentially filters and reduces
the low quality, redundant, and human reads (Figure 1-A). The
low quality reads are filtered using PRINSEQ [27]. Human read
filtration can be performed with the short read aligners that are
classified into Burrows-Wheeler Transform (BWT) mappers and
hash-based mappers. The BWT mappers such as BWA, SOAP2
and Bowtie are fast but considered less sensitive, while the hash-
based aligners are slow but more accurate such as MAQ, ELAND,
Novoalign and STAMPY [19]. To reduce overall computational
processing time and memory, one of two faster BWT aligners,
BWA [18] or BOWTIE2 [21], are utilized initially in the pipeline.
Higher CPU and memory intensive features such as data
compression [27] and hash-based sensitive alignment STAMPY
[19] are then utilized to further reduce the overall number of
reads. The second module of the pipeline, Patho-Detect, aligns the
remaining reads against known bacterial, fungal and viral
sequences with BWT alignment followed with the local aligner
BLAT [35] (Figure 1-B).

Scalability
Incorporating a large reference database such as RefSeq rather

than using just a few selected complete genomes allows identifi-
cation to subspecies/strain level for a broad range of taxa. The
RefSeq bacterial database has doubled from 8.7 G in Release 54
to 19 G in Release 60 for bacteria and will be increasing in the
future. This results in increasing demand for computational
memory to scale to sizeable reference databases. To address the
issue of scalability with large reference databases, we designed the
pipeline to handle multiple partitions of a reference database for
better memory management (Figure 1-C). Multithreaded input
files query each smaller database partition (,1 GB) iteratively and
thus reduce the overall memory footprint. This querying of each
input file fragment generates higher number of mapped-
unmapped relationships against the partitioned database results
per iteration, which increases the computational time. To address
this issue, the pipeline utilizes custom hash functions and indexing
tools formatdb and fastacmd (ftp://ftp.ncbi.nlm.nih.gov/blast/
executables/) to allow faster extraction of millions of reads as an
input for the next reference database search.

Normalized Genome Coverage
Assessing the detection of a pathogen by the total number of

reads that hit/align to the respective genome(s) is not always an
accurate predictor of presence of an organism due to repeat
elements, close relatives in the metagenome and PCR amplifica-
tion biases. To overcome these issues, MetaGeniE detects
microbial presence by genomic reconstruction, which is the

Figure 3. Effect of human filtration on percent genome coverage and read recall percentage of pathogen detection. The legends of
the figure are prefixed with the number of reads (0.1K = 100; 1K = 1000; 10K = 10000; 100K = 100000; 1M = 1000000) followed by mg_bw2 for only fast
alignment feature of human read reduction; mg_dc for all features of human read reduction except data compression; mgall_bw2 for all features of
human read reduction module).
doi:10.1371/journal.pone.0110915.g003
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percent of the genome mapped to the reference genome(s) for each
organism. The pipeline first converts the local and global
alignment output to common BED format. Genome coverage of
each mapped organism is then calculated from the global and local
alignments with BEDTOOLS [39]. The total genome recon-
structed for each mapped organism is the sum of genome coverage
from global and local alignments for any metagenome. The
normalized genome coverage (% genome coverage) is calculated as
follows:

Normalized Genome Coverage~

(½Genome Coverage by local alignment

zGenome Coverage by global alignment"

=Total Genome Size) # 100

The normalized genome coverage allows comparison of
different organisms with different genome sizes, which is helpful
in representing the abundance of various organisms in each
metagenome for community analysis (See Clinical Samples
Section below).

Computing Infrastructure
To benchmark the performance of the pipeline, all the human

datasets and simulated (human and bacterial) datasets were run on
the same High Performance Computing (HPC). A 47 GB RAM
and 6 processor limit was set for all the simulated and downloaded
human datasets. Analysis of the CF clinical dataset was executed
with eight processors and 100 GB RAM in a HPC cluster. The
CPU hour logs are generated by the pipeline for comparison of
runtime between different processes. Simulated datasets were
generated in FASTA format without quality values. Downloaded
human datasets were filtered at a quality threshold of Phred value
.15. Only the quality-filtered sequences were utilized to
benchmark, as some samples had higher percentages of low
quality reads.

Benchmarking
To test the sensitivity of the pipeline, synthetic reads 100 bases

in length were generated from respective reference genomes with a
range of read numbers. These are represented as follows: 0.1K:
100 reads; 1K: 1,000 reads; 10K: 10,000 reads; 100K: 100,000
reads; 250K: 250,000 reads. Human filtration is a five step process
and different steps are utilized to compare the sensitivity/
specificity of detection of simulated reads, execution speed and
memory usage (Table 1). All these steps utilized the same

Figure 4. Detection of genomes in complex community. Relationship between genome size and genome coverage with increasing
sequencing reads. Effect of detection on E. coli APEC O1 in simple and complex community.
doi:10.1371/journal.pone.0110915.g004
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parameters as follows, BWA (default), BOWTIE2 (default with
very sensitive mode), STAMPY (default), PHRED quality score .
15, minimum length .50, low complexity (dust) and BLAT (80%
identity).

SNP Genotyping
The reads mapping to organisms with the highest genome

coverage, as detected by the pipeline, were extracted. Besides
genome coverage that is proportional to pathogen DNA (and
usually incomplete), other factors like depth, recombinant
genomes are factors to be considered for performing SNP
genotyping. FASTA formatted sequence files generated from
mapped reads can then be used for SNP genotyping for such goals
as the identification of specific lineages, fine-scale strain differen-
tiation, and determination of antibiotic resistance variants. We use
an in-house SNP Pipeline that integrates the SNPs detected by
SolSNP (http://sourceforge.net/projects/solsnp/) from BWA
alignment and Mummer 3.22 [40] from available public genomes
although other SNP pipelines can be incorporated. These SNPs
can then be utilized for phylogenetic analysis using a program such
as MEGA version 5.04 [41].

Visualization of genome reconstruction
The genome reconstruction provides an overview of the entire

genome recovered for organisms identified from the metagenome
sequences. The genome reconstruction of the identified organism
is performed with the reference-based assembly [42]. The resulting
contigs are merged as super scaffolds (http://abacas.sourceforge.
net/Manual.html) and visualized with MAUVE [43].

Results and Discussion

The goal of clinical metagenomics is often to identify the cause
of infection amidst a veritable sea of host and microbial sequences.
No two metagenomes are the same and broad variation exists due
to the differences in microbial diversity and abundance as well as
the size and architecture of genomes in the sampled community
[44]. Other factors that dictate metagenome variation are the low
amount of target DNA (often a pathogen), DNA from other
microbes in the community, and the amount of host DNA, in
addition to variation based on clinical sample type. The variation
in metagenomes and the needs of researchers and clinicians makes
it challenging to develop a ‘‘one-size-fits-all’’ method for analysis.

The characterization of community composition using micro-
bial sequences can now be approached at three specific taxonomic
levels: genus, species and strain/genotype (Figure S1), rather than
the limited subfamily/genera that are the observable taxonomic
units of 16S microbiome analysis. There are, however, fewer
species- and strain-specific regions of the genome than genus-
specific regions, given the relationships of genome composition
with taxonomy. Increasing sequencing breadth across a genome
allows for better taxonomic resolution of any organism present in a
sample, especially for taxa that have been genetically well
characterized. For metagenome data, single reads may map to
multiple organisms either due to conserved microbial genomic
regions (e.g., genus-specific genes) or due to the presence of closely
related organisms in queried reference databases or the commu-
nity being analyzed. Studies have shown metagenomic sequences
share similar regions for even the simplest microbial communities
[17,45,46]. Assigning each read to all mapped genomes might be
an effective strategy as metagenome community analysis is
unbiased and researchers may have no a priori knowledge about
the community composition [38]. The genus specific reads will
map to higher numbers of organisms followed by reads specific to
species and sub-species/strains. The organism with the highest
shared (genus-specific) regions, as well as unique regions, which
generally belong to species- and strain-specific genes, will result in
a higher percent of the genome mapped. The taxonomic rank and
the detection resolution is proportional to sequencing throughput,
richness of pathogen(s) in metagenome sampling and the
availability of genomic data from the community members (e.g.,
target pathogens), or close relatives, in the reference database. We
benchmarked the sensitivity and specificity of the detection step of
the pipeline by evaluating simulated read libraries through
identification of correct pathogen, corresponding percent read
recalled, genome coverage detected, correct percentage of host
reads filtered and false detection of host and/or non-host.

Human Read Reduction
To detect the ‘‘needle’’ (e.g. pathogen reads), reducing the size

of the ‘‘haystack’’ (non-target reads) is critical [6]. This starts with
removing the overwhelming majority of reads, i.e. host DNA
sequence. The efficiency of human read filtration can be measured
by the total number of human reads removed from clinical
samples. To test the effect on human read filtration with different
parameters, seven whole genome sequencing datasets from

Figure 5. Comparison of detection of close relative in co-infection versus single infection. A. Comparison of percent genome coverage of
true detection in co-infection versus false detection of S. aureus Newman. B. Comparison of percent genome coverage of S. aureus TCH1516 in co-
infection versus simple infection.
doi:10.1371/journal.pone.0110915.g005
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humans and one simulated dataset created from human reference
genome (Hg19) were analyzed. The mg_bwa and mg_bw2 uses
only BWA and BOWTIE2 aligners only, while mgall_bw2 and
mgall_bwa uses all five steps of pipeline including fast alignment
with BOWTIE2 and BWA, respectively (Table 1). We found that
use of a single aligner (mg_bwa/mg_bw2) is not always efficient in
removing human reads. Utilizing all the features of the
MetaGeniE pipeline (mgall_bw2 and mgall_bwa) allowed higher
filtration of human reads (Figure 2-A). The runtime of single step
(mg_bwa/mg_bw2) was faster than running all steps of human
filtration (mgall_bwa/mgall_bw2) (Figure 2-B). Keeping all pa-
rameters the same, we found that the BWA aligner ran faster than
BOWTIE2 (Figure 2-B) but that this increased speed comes at a
cost; BOWTIE (mg_bw2) was more sensitive than BWA (mg_bwa)
and correctly aligned a higher number of human reads (Figure 2-
A). However, the total number of reads removed by mgall_bw2
and mgall_bwa (that utilizes all the steps of human filtration) was
nearly equal, irrespective of whether the BWA or BOWTIE2
aligner was used.

Remaining human reads that were not filtered were aligned
against the NCBI Refseq bacterial database. These ‘‘human’’
reads mapped to the bacterial database and as expected, were
higher for single step alignment (*_mg_bw2) than with compre-
hensive human read reduction with pipeline (*_mgall_bw2)
(Figure S2). The unfiltered human reads not only mapped
incorrectly to microbial datasets, but also contributed to overall

runtime during pathogen detection. Removal of human reads with
high specificity is advantageous for sensitive clinical interpretation.

Pathogen Detection
Metagenome datasets derived from clinical samples typically

have analytical challenges such as a) the often extremely low
abundance of pathogens; b) the analyzed sample may contain
single infection (with only one dominant infection); c) contain
multiple infectious agents from close relatives; and d) samples may
house highly complex microbial communities (e.g. sputa from
cystic fibrosis patients). The sequencing reads aligned against the
reference genome(s) may have high divergence resulting from
sequencing error or/and mutations. We created and analyzed
simulated libraries based on varying community complexities to
estimate the efficiency of pathogen detection.

Simple Community. Metagenome sequences are often
processed as a single genome alignment to a reference genome
[16]. In a single genome alignment, reads aligning to multiple loci
in a reference genome are randomly assigned to a locus and
SAMTools only parses these as ‘‘main’’ hits [47]. To evaluate the
ability of MetaGeniE to distinguish a known target strain from its
close relatives with our all-against-all strategy, we utilized S.
aureus strain TCH1516 to assess the detection of a single infection
by a known strain. Staphylococcus is well-characterized genus with
high number of sequenced strains, allowing us to test the specificity
of detecting the correct organism from not only among the many

Figure 6. Relationship between percent genome coverage and read recall percentage with incremental divergence (i.e. error).
doi:10.1371/journal.pone.0110915.g006
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species of Staphylococcus in the reference genome database, but
also from members of its own strain or subtype (i.e. ST8-MRSA-
IVa/USA300). Typically the genus-specific regions of Staphylo-
coccus are assigned to several, or all, of the members of the genus.
Reads that contribute to unique regions, which may belong to its
species (S. aureus), and strain-specific genes (clonal complex 5),

will result in highest percent genome coverage of the correct
organism. We were able to detect S. aureus TCH1516 in all the
test sets as the top hit (highest genome reconstruction/coverage)
even with lowest number of reads (i.e., 100 reads). This detection
occurred even when single genome alignment was not able to
report correct detection (Table S1). We found that the single

Figure 7. Sequential reduction of the metagenome reads for 4 clinical samples from cystic fibrosis patients. Data points represent the
remaining reads after each processing step of the pipeline. First six data points (Initial, Quality Filter, BWT Alignment, Data Compression, Sensitive
Alignment, Human Repeat Alignment) represent the Human Read Reduction and BWA Bacteria and BLAT Bacteria represent Pathogen Detection
against bacterial database.
doi:10.1371/journal.pone.0110915.g007

Table 2. Bacterial infection detected by MetaGeniE confirmed with the laboratory culture media.

Sample Culture Report Metagenome Detection

CF1 MRSA Staphylococcus aureus subsp. aureus USA300 TCH1516

ENCL Enterobacter cloacae subsp. cloacae ATCC 13047

CF2 ECOL Escherichia coli APEC O1

HAEM Haemophilus influenzae 10810

CF3 ECOL Escherichia coli S88

ENSP Enterococcus italicus DSM 15952

CF4 MSSA Staphylococcus aureus subsp. aureus str. Newman

PSAR Pseudomonas aeruginosa PAO1

MRSA: Methicillin resistant Staphylococcus aureus; ENCL: Enterobacter cloacae; PSAR: Pseudomonas aeruginosa; MSSA: Methicillin sensitive S. aureus; ECOL:
Escherichia coli; ENSP: Enterococcus sp.; HAEM: Haemophilus influenza.
doi:10.1371/journal.pone.0110915.t002
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alignment underestimates the genome coverage compared with
the results from MetaGeniE, and the coverage detected by our
approach approximated to the actual coverage detected (Table
S2).

We also compared the effect on pathogen detection based on
factors such as quantity of reads, percent genome coverage and
read recall (reads aligning correctly to its genome of origin)
percentage against different parameters available in human
filtration module of the MetaGeniE (Figure 3). Read recall
percentage is the percent of simulated reads that correctly align
to the reference genome after human filtration. As the read
number increased, the expected genome coverage percentage also
increased; genome coverage reached 99.9% at 250K reads and
thus had coverage across nearly the entire genome. The 250K
reads were approximately the number of reads necessary to
reconstruct the entire genome of S. aureus TCH1516 from the
metagenome. As more reads were sequenced (simulated), a higher
number of duplicate reads was also expected. Using the data
compression feature of human filtration of pipeline (*_mgall_bw2)
to remove duplicates reduced the read recall percentage but had
no effect on genome coverage percentage or detection of the
correct organism. The duplicate reads therefore did not add
additional information; to manage computational scalability,
removal of these duplicates improved MetaGeniE performance.
We also found that using all the human filtration steps of the
pipeline (*_mgall-bw2) as compared to using just fast alignment
(*_mg_bw2) or not utilizing data compression (*_mg_dc) did not
lead to underestimation of the percent genome coverage for
correct pathogen detection.

Complex Community. The ability to detect and differenti-
ate the members of the community in complex clinical samples,
such as those from cystic fibrosis patients, should be helpful in
generating insight for proper treatment. Shared regions are
expected in even the simplest microbial communities so careful
attention is necessary for these orthologs. The simulated library
allowed us to evaluate the impact on detection due to the presence
of multiple organisms in community with different genome sizes.
We designed a simulated complex community of five bacteria
based on a similar community composition that was previously
detected from a cystic fibrosis clinical sample (See Methods).
Simulated reads were generated from the reference genome of
each of the five organisms and four libraries with different read
numbers (i.e., 100, 1000, 10K, 100K per organism) were created.
In metagenomes, many organisms may not have any complete or
incomplete entries in the reference genome database. To test the
specificity of detection of an unknown organism, Veillonella dispar
ATCC 17748 was added to this complex community. This
organism was not present in the bacterial reference genome
database (RefSeq Build 60). Querying a large reference database
usually results in detection of multiple organisms within same
genus due to sequence homology. Therefore, for organism
detection we selected the highest mapped genome percentage
(i.e., the top hit) within the same genus. The correct detection was
confirmed for all of the organisms except for V. dispar ATCC
17748 (Table S3). This indicates that the pipeline allowed
detection of the correct organisms even in a complex community.

Different genera in a complex community may share genomic
regions. The robustness of detection can be measured by loss of
sensitivity (i.e., genome coverage) of any organism in a complex
versus simple community infection. We compared the percent
genome coverage of E. coli APEC O1 as single pathogen and in
complex community. We found no loss in percent genome
coverage for the E. coli APEC O1 between simple and complex
community and the trend for simple and complex community

overlaps completely in the Figure 4. The all-against-all relation-
ship between the reads and reference database, therefore, allows us
to detect any organism without loss in sensitivity, which could
potentially occur in samples containing organisms with shared
genomic regions.

For simulated reads of V. dispar ATCC 17748 (not present in
reference database), V. parvula DSM 2008 chromosome was
detected as top hit with lower percent genome coverage compared
to other hits (Figure 4). We can infer that true calls (i.e. detections)
may not always be possible, given the limited, albeit growing,
nature of genomic databases and the taxonomic resolution might
decrease to genus, (e.g. Veillonella in this case).

Co-infections
We were able to accurately detect and identify the target

organism (as a top hit) for each taxon from multiple genera in a
complex community as discussed above. However, some clinical
samples will have pathogens from same species, for example co-
infections with methicillin resistant S. aureus (MRSA) and
methicillin sensitive S. aureus (MSSA). Staphylococcus aureus
TCH1516 and S. aureus Newman belong to different clonal
complexes (CC8 & CC5) and are abbreviated as MRSA and
MSSA, respectively. To test the specificity of detecting and
distinguishing these two distinct strains in clinical samples, we
created co-infection libraries consisting of simulated reads from S.
aureus Newman and S. aureus TCH1516 genomes.

The presence of S. aureus Newman in co-infection library (true
positive) was compared with its detection in a single infection
library (false positive) containing only simulated reads from the S.
aureus TCH1516 genome (Figure 5-A). Any genome coverage
percentage detected for S. aureus Newman in single infection
library can be considered as false detection. The percent genome
coverage of S. aureus Newman (false call) was slightly less than its
true presence in multiple-infection library, due to contribution of
homologous reads from S. aureus TCH1516. As summarized in
(Table S4), S. aureus Newman ranked behind few other closely
related genomes of S. aureus TCH1516 (CC5) in the single
infection library (Table S5) but was detected as top hit in co-
infection library (Table S6).

The co-infection library consisted of reads from both S. aureus
TCH1516 and S. aureus Newman. Due to the all reads mapped
against all reference strategy, the shared homology between these
two organisms resulted in a higher percent genome coverage of S.
aureus TCH1516 in the co-infection library than the single-
infection library (Figure 5-B). The S. aureus TCH1516 was
detected as top hit per genus in single infection library (Table S5)
and as one of top hits with S. aureus Newman in co-infection
library (Table S6). We can infer that although the ‘‘top hit per
genus’’ detection was correct in identifying the correct strain in a
co-infection, proper detection of the strains in a co-infection is
difficult and will require additional validation.

Diversity
Metagenome reads may have artificial variation due to

sequencing error. The ability to assign these reads back to their
genome can affect the sensitivity of detection. However, utilizing
only a global aligner may result in loss of sensitivity of divergent
reads detection. To incorporate these divergent reads for sensitive
detection, we utilized BLAT, which is ,500 times faster than
preexisting tools with comparable sensitivity [35].

We designed the simulated reads from S. aureus TCH1516
genome with increasing amounts of error in the reads. To evaluate
sensitivity to error, reads that the global aligner was unable to
map, but were aligned by a local aligner (BLAT), were categorized
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as divergent reads. With increasing sequence divergence, higher
numbers of reads were not aligned by global aligner (Figure 6).
MetaGeniE is nonetheless able to incorporate these divergent
reads through local alignment without a decrease in the genome
coverage detected (Figure 6). In all 25 of the simulated test cases
(0%, 0.1%, 0.2%, 0.5% and 1% divergence for 100, 1K, 10K,
100K, 250K reads), S. aureus TCH1516 was detected correctly in
all except one: at 1% divergence with 100 reads. The limitation of
detection for correct identification can therefore be seen at highest
divergence with low number of reads.

Clinical Samples
Workflow. Due to the variations and limitations in metagen-

ome analyses and importance of detection accuracy given clinical
perspective, the analyses of clinical samples might require a cycle
of Detection R Validation R Confirmation (Figure S3). After
detection of the pathogen likely responsible for the infection as well
as assessing the rest of the microbial community, the validation of
clinical datasets can be done through analysis such as SNP
genotyping and BLAST analysis, depending on the number of
reads aligned to the detected organism to more fully characterize
the organism(s). These inferences from clinical datasets can finally
be confirmed with laboratory test/culture, PCR, and/or patient’s
clinical history. We performed DetectionR Validation R
Confirmation workflow to evaluate overall performance in the
cystic fibrosis (CF) clinical dataset.

Detection. We first removed low quality, redundant and
human reads with the MetaGeniE Read-Reduct module on the
initial metagenomic reads (Figure 7). For the CF samples, the data
were reduced 33–90%. The remaining reads after running the
read filtration module were mapped against bacterial reference
genome to detect pathogens. Different steps utilized by the
pipeline have varying effects of reduction/filtration on these
metagenomes (Figure 7). The total number of reads that mapped
against the bacterial database was 24–68% for these four samples.
The increase in number of reads mapping due to local alignment
in these samples was 27–53% and therefore implementation of
local alignment in the pipeline helped in aligning a higher number
of divergent reads that increased the sensitivity for detection
(Figure 7).

The mapped reads in the Patho-Detect module of the pipeline
was utilized to understand the community with percent genome
mapped for top-hit per genus for the CF samples (Table S7). The
percent genome mapped (i.e., genomic reconstruction of the top
hits for CF samples) ranged from 55–99% (Table S8). The four CF
samples presented different genomic signatures (Table 2) and thus
different communities in each patient (Table S8). Infectious agents
in CF patients are acquired through nosocomial, social and
environmental factors [48–50]. These pathogens, along with
commensal microbiota, represent the microbial community in
CF patients. The community for each CF metagenome sample
was represented by normalized (%) genome coverage of top hit per
each genus that was detected by MetaGeniE (Figure S4).
Organisms from genera such as Gemella, Granulicatella, Hae-
mophilus, Neisseria and Streptococcus are commonly found in the
oral microbiome, including oral samples from CF patients
[48,49,51,52].

Validation. SNP Genotyping: Single nucleotide polymor-
phism (SNP) genotyping is widely used in analysis of WGS to
accurately identify and discriminate between strains of a species
[53]. Figure S5-1 represents the phylogenetic tree for the
metagenome sequences mapping to top hit (S. aureus USA300
TCH1516) detected by pipeline for sample CF1. To confirm the
accuracy of the detection of S. aureus USA300 TCH1516 for CF1

sample, the close relatives of available S. aureus from GenBank
were downloaded and SNP genotyping was performed. We found
that S. aureus USA300 TCH1516 detected by MetaGeniE is
confirmed through SNP genotyping for CF1 and other CF
samples (Figure S5). We are able to validate that detection at a
high taxonomic level is possible in a clinical metagenome sample.

Genome Reconstruction and Visualization. We extracted
and then assembled the reads mapped to these identified genomes
to generate contigs and scaffolds. This pre-selection approach is
different than assembling entire metagenome as this might result
in chimeric contigs [17,41,42]. We were able to reconstruct all
features of the identified MRSA and MSSA strains in CF1 and
CF4 respectively (Figure S6). Due to low coverage, identified
strains of sample CF2 and CF3 were not fully reconstructed.

Confirmation. The top hits for pathogen detection and
community composition were confirmed in all four CF samples
using culture-based methods from clinical laboratory (Table 2).
The ability of MetaGeniE to correctly identify infections to the
strain level, for example MRSA versus MSSA detection,
demonstrates higher resolution than amplicon sequencing com-
munity analysis (e.g., 16S microbiome).

Conclusions

Various features have been incorporated and validated in the
MetaGeniE pipeline to improve computational scalability, speed,
and accuracy, which allowed us to perform comprehensive
analysis of the clinical samples from whole sample sequence data.
We successfully tested the pipeline on various simulated clinical
datasets, available public datasets and in-house sequenced clinical
datasets.
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