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Abstract

Using multiple detection methods can increase the number, kind, and distribution of individuals sampled, which may
increase accuracy and precision and reduce cost of population abundance estimates. However, when variables influencing
abundance are of interest, if individuals detected via different methods are influenced by the landscape differently, separate
analysis of multiple detection methods may be more appropriate. We evaluated the effects of combining two detection
methods on the identification of variables important to local abundance using detections of grizzly bears with hair traps
(systematic) and bear rubs (opportunistic). We used hierarchical abundance models (N-mixture models) with separate model
components for each detection method. If both methods sample the same population, the use of either data set alone
should (1) lead to the selection of the same variables as important and (2) provide similar estimates of relative local
abundance. We hypothesized that the inclusion of 2 detection methods versus either method alone should (3) yield more
support for variables identified in single method analyses (i.e. fewer variables and models with greater weight), and (4)
improve precision of covariate estimates for variables selected in both separate and combined analyses because sample size
is larger. As expected, joint analysis of both methods increased precision as well as certainty in variable and model selection.
However, the single-method analyses identified different variables and the resulting predicted abundances had different
spatial distributions. We recommend comparing single-method and jointly modeled results to identify the presence of
individual heterogeneity between detection methods in N-mixture models, along with consideration of detection
probabilities, correlations among variables, and tolerance to risk of failing to identify variables important to a subset of the
population. The benefits of increased precision should be weighed against those risks. The analysis framework presented
here will be useful for other species exhibiting heterogeneity by detection method.
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Introduction

Many species exhibit individual heterogeneity in their suscep-

tibility to different detection methods. When estimating population

size is the goal, using multiple detection methods can reduce

heterogeneity, increase accuracy and precision, and reduce cost

through increasing the number, kind, and distribution of

individuals sampled [1–3], e.g., [4–6]. However, we know of no

research evaluating the benefits and risks of combining multiple

detection methods when the goal is identification of environmental

variables influencing local abundance, as in N-mixture models [7].

N-mixture models link a Poisson or negative binomial distribution

that represents the local abundance of individuals with a binomial

detection process that yields observed counts of individuals.

Covariates for the two levels of the hierarchical process permit

identification of variables explaining either abundance or detec-

tion [8,9].

Analyzing detection methods jointly may be appropriate and

improve precision of estimates when both methods sample the

entire population, when biases in sampling different components

of the population can be accounted for with detection covariates,

or when methods sample different subsets of the population, but

both subsets are influenced similarly by environmental covariates.

In contrast, analyzing datasets separately may be more appropri-

ate when individuals more susceptible to capture via one method

are influenced by the landscape differently than individuals not

susceptible to that method. For instance if a bear that has been

harassed with rubber bullets avoids hair snags (one detection

method that uses a scent lure) and avoids high human use areas

(habitat displacement influencing local abundance), combining

detections of hair snags with a second detection method may mask

the influence of high human use areas.

We test a set of hypotheses and conduct a thought experiment to

evaluate whether joint or separate analysis of multiple detection

methods is most appropriate in a dataset from a natural
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population, when truth is unknown. If both methods sample the

same population, the use of either data set alone should (1) lead to

the selection of the same variables as important and (2) provide

similar estimates of relative local abundance. In contrast, if

different subsets of the population are sampled with each method

and these groups respond differently to the landscape, separate

analyses would identify different variables as important. If the

variables identified as important differ greatly, the distribution of

local abundance should also vary greatly. On the other hand, we

hypothesized that the inclusion of 2 detection methods versus

either method alone should (3) yield more support for variables

identified in both of the single method analyses (i.e. fewer variables

and models with greater weight), and (4) improve precision of

covariate estimates for variables selected in both separate and

combined analyses because sample size is larger.

To evaluate these hypotheses we used a model that includes

multiple detection methods in N-mixture models that we

developed for the northern quarter of a population of grizzly

bears (Ursus arctos) sampled in the year 2000 [10]. Previous work

[6,11] found that inclusion of both detection methods increased

the number of bears detected, particularly males, which led to

increased precision of overall abundance estimates, at relatively

low cost. To obtain high precision (coefficient of variation = 3.8%)

for a population abundance estimate across the whole ecosystem,

the same 2 kinds of data (systematically-located hair trap and

opportunistically monitored bear rubs) were collected in 2004

[12]. We demonstrate an assessment of the pros, cons, and

appropriateness of analyzing multiple detection methods separate-

ly or jointly for the goal of identifying covariates influencing local

abundance in a natural population.

Methods

Field and Genetic Methods
We used 2 independent, concurrent, non-invasive genetic (hair)

sampling methods to detect grizzly bears across a 31,410 km2 area

that encompassed occupied range associated with the Northern

Continental Divide Grizzly Bear Recovery Zone (USFWS 1993)

in northwestern Montana. (1) We distributed hair traps using a

systematic grid of 641 767- km cells during 15 June–18 August

2004 (Fig. 1A). We placed one trap in a different location in each

cell during 4 14-day sampling occasions. When bears crossed the

barbed-wire corral to approach the scent lure in the center, they

often left behind hair. Trap locations within the grid cell were

selected a priori with consistent criteria based on maps and expert

knowledge of bear activity, natural travel routes, seasonal

vegetation, and recent wildfire severity. (2) We also collected hair

from bear rubs from 15 June–15 September 2004. Bears naturally

rub on trees and other objects. We placed strands of barbed wire

on 4,795 rubs to facilitate hair collection. We sampled bear rubs

along trails, forest roads, and power and fence lines. At each visit

to a hair trap or bear rub, we collected all hairs so only newly

deposited hairs would be collected at the next visit. Due to paucity

of resources, 198 cells of 641 did not have any bear rub sampling

effort (Fig. 1B). From hair collected with both methods, we

genotyped 545 individuals at 16 microsatellite loci plus a locus

identifying sex. Considering the multiple, powerful measures to

prevent and correct genotyping errors, it is unlikely that our data

included any misidentified individuals [12]. The study area was

highly heterogeneous, with multiple land-ownerships, two climatic

zones, rugged and flat terrain, and varied land-use. See [12] for

further details on study area, sampling design, genetic methods,

and ecosystem-wide results.

All necessary permits were obtained for the described field

studies (Supporting Information S1).

Modeling Methods

We conducted analyses for females using a grid of cells

representing median female home range size (10.3610.3 km) that

we placed over the study area. We used a grid of 19.7619.7 km

cells, representing median male home range size for males (D.

Carney, S. Courville, T. Graves, K. Kendall, R. Mace, C.

Servheen, J. Waller, unpublished data). We calculated the number

of individual bears detected in each grid cell, i, in each of the 4 hair

trap and 5 bear rub sessions, t, and formatted the dataset as in

Table 1. Within each grid cell we summarized 15 variables

(Table 2) we hypothesized could influence local bear abundance

and 3 variables we hypothesized could influence detection at bear

rubs. We summarized landscape characteristics within ArcGIS

(ESRI, Redlands, CA). Detection of bears is higher within 2 km of

baited hair traps [13]. Therefore, we summarized 9 variables that

plausibly could influence detection for hair traps by session in a

2 km radius around each hair trap. Our hair trap detection model

component included sampling effort (# of hair traps), time (Julian

day), and characteristics used in trap location selection within our

767 km grid cells: distance to water, road density, proximity

(,500 m) of traps to a trail, amount of mesic habitat, proximity

(,1 km) of traps to a recent burn, whether the trap was located in

an avalanche chute, and whether the trap was on a ridge (because

bears often travel along ridges). Bear rub detection covariates

evaluated included sampling distribution (sd of distance among

rubs in a grid cell), time (Julian days), and sampling effort (bear rub

days, which we defined as the sum of the number of days since the

previous visit for all bear rubs within a grid cell). In N-mixture

models, detection covariates must be summarized by site, but can

be constant across or vary by session, while abundance covariates

must be summarized by site and cannot vary by session. We

analyzed data only from grid cells sampled with both hair traps

and bear rubs to ensure we were sampling the same spatial area.

We repeated the analysis three times for each sex: (1) with hair

traps separately (4 sessions), (2) bear rubs separately (5 sessions),

and (3) combined hair trap and bear rub (9 sessions).

We analyzed counts, yi,t, for each grid cell, i, in each session, t,

with the N-mixture model (Supporting Information S2). The

observed counts were modeled as binomial random variables,

conditional on abundance, Ni, but with separate detection

components for each sample type using the following structure.

Hair Trap Detection : yi,t*Binomial Ni, ph,i,tð Þ

Bear Rub Detection : yi,t*Binomial Ni, pr,i,tð Þ

We modeled local abundance, Ni, as a Poisson variable.

Abundance : Ni*Poisson(li)

We included covariates, using a log link for the Poisson abundance

process and a logit link for covariates for detection as follows:

Abundance : log(li)~b0zb1 � Covariate1z . . . z

b16 � Covariate16

Multiple Detection Methods and Variable Selection
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Figure 1. Sampling sites. Location of (A) hair traps distributed on a 767 km grid and (B) bear rubs sampled to detect grizzly bears in northwestern
Montana, USA, in 2004. Position of the same bear rubs within a (C) 10.3610.3 km (median female home range size)) and (D) 19.7619.7 km (median
male home range size) grid scale used for analysis. Highlighted cells contain both hair traps and bear rubs and were used in our analyses comparing
variable selection with each method.
doi:10.1371/journal.pone.0049410.g001

Multiple Detection Methods and Variable Selection
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Hair Trap Detection : logit ph,itð Þ~ah0zah1 � CovariateH1z

. . . zah5 � CovariateH5

Bear Rub Detection : logit pr,itð Þ~ar0zar1 � CovariateR1z

ar3 � CovariateR3

We conducted model selection using covariate indicators [14] in

which the model is extended to include a collection of indicator

variables, wj, having a Bernoulli distribution, that determine

whether covariate j is included in the model (wj = 1) or not (wj = 0).

Abundance : log(li)~b0zw1 � b1 � Covariate1z . . . z

w16 � b16 � Covariate16

We estimated parameters using Markov chain Monte Carlo

(MCMC) methods [15] with program R [16], R2WinBUGS [17],

and WinBUGS [18]. If a variable is important, it should be

included in the model, i.e. wj = 1, in $50% of the posterior

samples [19,20]. Best models are defined as variable combinations

that appear most often and model weights are the percent of

samples in which those variable combinations occur. After a burn-

in of 10,000 samples, we saved every 20th sample of 190,000

samples from the posterior distribution. We assessed model

performance (mixing, convergence, and autocorrelation) visually,

and with the Brooks-Gelman-Rubin statistic (BGR#1.01) [21].

We ran the models with only the important variables to assess

predictions of local abundance. For each sex, we calculated

correlations among abundance estimates for hair trap-only, bear

rub-only, and combined datasets. We also mapped median local

abundance estimates to examine spatial differences in prediction

patterns among datasets. We quantified the impact of using a

single versus multiple detection method in predictions of relative

local abundance by dividing by the maximum local abundance for

a model, such that each model had relative abundances between 0

and 1. We mapped the grid cells where the addition of the second

data source had opposite impacts on predictions, i.e. adding bear

rubs to the hair trap-only analysis increased relative predicted

abundance while adding hair traps to the rub-only analysis

decreased relative predicted abundance.

Results

After removing grid cells without bear rub sampling, our

analysis of female detections (10.3610.3 km grid cells) included

245 grid cells with an average of 8.51 hair traps (sd = 2.033) and

1265.5 bear rub days (sd = 1070.3, range: 28–5472 rub days, and

1–96 bear rubs) per cell (Fig. 1C). The male analysis

(19.7619.7 km grid cells) included 79 grid cells with an average

of 28.5 hair traps (sd = 7.5) and 3921.7 bear rub days (sd = 3035.0,

range: 70–11683 rub days, and 1–201 bear rubs) per cell (Fig. 1D).

Our first hypothesis, that the same variables would be selected

as important in the hair trap-only and bear rub-only analyses, was

not supported. For females, the joint hair trap and bear rub

Table 1. Format of capture histories for our N-mixture model.

Hair trap Counts Bear Rub Counts

Grid
Cell Session 1 … Session 4 Session 1 … Session 5

1 3 … 0 1 … 3

2 2 … 1 15 … 5

… … … … … … …

245 4 … 2 3 … 1

Each session indicates a different time period of sampling. Values are counts of
individuals within a grid cell for a session.
doi:10.1371/journal.pone.0049410.t001

Table 2. Comparison of top models from 2 datasets for grizzly bear local abundance.

Females Weights*

Combined Mesic Habitat, Meadow Shrub Habitat, Bear Protection Level, Historical Bear Presence,
Building Density

0.90

Hair trap-only Mesic Habitat, Meadow Shrub Habitat, Bear Protection Level, Historical Bear Presence,
Building Density

0.83

Bear rub- only Mesic Habitat, Historical Bear Presence 0.21

Mesic Habitat, Historical Bear Presence, Area Burned 5–20 Years Ago 0.17

Mesic Habitat, Meadow Shrub Habitat, Historical Bear Presence 0.15

Males Weights*

Combined Mesic Habitat, Meadow Shrub Habitat, Bear Protection Level, Historical Bear Presence 0.74

Hair trap-only Mesic Habitat, Meadow Shrub Habitat, Bear Protection Level, Historical Bear Presence, Trail
Density

0.21

Mesic Habitat, Bear Protection Level, Historical Bear Presence, Trail Density 0.18

Mesic Habitat, Meadow Shrub Habitat, Bear Protection Level, Historical Bear Presence 0.13

Bear rub- only Bear Protection Level, Number Hunter Days 0.21

Mesic Habitat, Number Hunter Days 0.19

Precipitation, Number Hunter Days 0.14

*Weights are the proportion of MCMC samples with these covariates and represent support for models of the effect of human and habitat factors potentially influencing
grizzly bear abundance in northwestern Montana, USA, in 2004. We report models up to cumulative weight = 0.5. Combined analyses include both hair trap and bear
rub data.
doi:10.1371/journal.pone.0049410.t002
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analysis identified exactly the same variables as the hair trap-only

analysis, but the bear rub-only analysis only identified 2 of the 5

variables identified as important in the other analyses (Table 3).

For males, the combined hair trap and bear rub analysis identified

all of the variables identified in the hair trap-only analysis, except

trail density, while the bear rub-only analysis identified only one

unique variable (Table 3).

Furthermore, models fitted to each of the two methods

separately did not yield similar estimates of relative local

abundance (Figure 2). Correlations of female local abundance

estimates between hair trap-only and bear rub-only datasets were

only moderate, at r = 0.52. Correlations of male local abundance

estimates between hair trap-only and bear rub-only datasets were

higher at r = 0.79. However, for females, estimates of local

abundance for combined and hair trap-only analyses were highly

correlated (r = 0.98), while estimates for females for combined and

bear rub-only analyses were only moderately correlated (r = 0.66).

For males both hair trap-only and bear rub-only were highly

correlated with combined estimates (r = 0.92). Hair trap-only and

combined dataset predictions of local abundance were higher

within and near Glacier National Park. Predictions tended to be

relatively similar for neighboring cells. Compared to hair trap-only

predicted abundance, bear rub-only predictions were generally

lower, with high abundance estimates distributed unevenly

throughout the study area (Figure 2). A map of changes in

predicted relative abundance, highlighting those grid cells where

the addition of the second detection method yields increases from

one detection method and decreases from the other, demonstrates

the large portion of the study area where distribution predictions

differ among single and multiple-detection analyses (Figure 3).

Combining both detection methods yielded higher weights for

variable and model selection as predicted. The combined analyses

resulted in a single model for each sex with very high weight

(Table 2), while more models with lower weights resulted from

single-method analyses. In particular, weights were much lower in

the analyses where variables selected differed from the combined

data analysis (Table 2). More models were needed to reach a

combined model weight of 50% for bear rub-only analyses than in

the combined data analyses for both sexes. For males, more

models were also needed to reach a combined model weight of

50% for the hair trap-only analyses than in the combined analyses.

Our fourth hypothesis was also supported: for variables present in

both the single and combined detection methods, precision

increased as expected (Supporting Information S3).

Discussion

Our results indicate that variables identified as important were

not consistent across detection methods and this influenced the

distribution of relative local abundance. This suggests that our two

detection methods could be sampling different segments of the

population, i.e., un-modeled individual heterogeneity occurs, but

because this dataset is from a natural population, and truth is

unknown, alternate causes of this pattern need to be considered.

Different variables could also be selected because sampling is a

random process and the number of bears caught in a grid cell is

stochastic. A combination of both sampling stochasticity and

heterogeneity by detection methods could also explain our results.

These possible explanations lead us to important and different

conclusions about how to develop models from such data.

Table 3. Comparison of variable weights from 2 datasets for grizzly bear local abundance.

Sex: Scale in Km Females: 10.3610.3 Males: 19.7619.7

Data type used: HT only BR only Both HT only BR only Both

Mixing of MCMC chains: Good Good Good Slow Good Good

Variables

Amount of Mesic Habitat 1.00 0.90 1.00 0.83 0.29 0.92

Bear Management Level1 1.00 0.09 1.00 0.87 0.33 0.93

Amount of Meadow-Shrub Habitat 1.00 0.32 1.00 0.49 0.03 0.93

Historical Presence of Bears 0.99 0.97 1.00 0.99 0.05 1.00

Building Density 0.97 0.09 0.99 0.02 0.03 0.02

Number Hunter-Days 0.02 0.02 0.02 0.15 0.99 0.10

Trail Density 0.01 0.02 0.01 0.79 0.03 0.02

Area Burned 5–20 Years Ago 0.01 0.37 0.01 0.01 0.01 0.01

Road Density (Total) 0.02 0.15 0.01 0.03 0.02 0.01

Avalanche Chute Area 0.01 0.01 0.01 0.17 0.03 0.01

Terrain Ruggedness 0.01 0.01 0.01 0.16 0.02 0.03

Outfitter Camp Density 0.01 0.02 0.01 0.02 0.11 0.01

Precipitation 0.02 0.04 0.01 0.04 0.20 0.01

Range of Solar Radiation 0.04 0.02 0.02 0.02 0.01 0.03

Area Burned Within 5 Years 0.02 0.01 0.01 0.05 0.02 0.02

Importance (weight) of variables influencing grizzly bear abundance in northwestern Montana, USA, in 2004. Only candidate variables for abundance, not detection, are
shown. Weights for variables that were in the model $50% of iterations are in bold. Data include only cells with both types of sampling. HT = Hair Trap, BR = Bear Rub.
See Graves et al. (In Review) for more details on specific variables. We did not include further details to maintain focus on the influence of different detection methods.
1Experts assigned a value 1–10 to ownership categories based on efforts to protect bears including 1) attractant storage management, 2) enforcement of food storage
regulations, and 3) road density and use management. Glacier National Park = 10, US Forest Service = 7, other public land = 3, and private = 1.
doi:10.1371/journal.pone.0049410.t003
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We could identify different important variables with different

detection methods by chance if the detection process for one or

both methods had low detection rates and high variability such

that the spatial distribution of a sample varied greatly each time

the population was sampled. Our median detection rates per cell

per session are relatively low (female hair trap p = 0.07; bear rub

p = 0.13; male hair trap p = 0.06; bear rub p = 0.13), suggesting this

may occur in our data. We would also be more likely to identify

different important variables by chance if high correlation existed

among variables such that small, stochastic shifts in detection

changed the distribution of detections to more closely match a

highly correlated variable or set of variables in our multiple-

variable case. This may occur in our male bear rub-only dataset.

Number of hunter days was closely related to the combination of

bear protection level, the amount of meadow-shrub habitat and

historical bear presence (adjusted R2 = 0.61), although the univariate

correlation between hunter days and bear protection was low

(r = 20.32).

If sampling variation alone caused different variables to be

identified as important, inclusion of all data increases sample sizes

and overall detection. We demonstrated greater support for

variables selected in the combined analysis than in single detection

method analyses. If the same variables were supported in the

separate and joint analyses, or if there were strong reason to

believe that sampling variation alone caused different variable

selection, the variables identified from the combination of all

available data should be reported.

However, some evidence suggests that we may have sampled

different segments of the population with each method. This could

result because a detection method has some un-modeled sampling

bias yielding inaccurate local abundance estimates or because

some bears respond differently to landscape characteristics and are

more susceptible to detection by either bear rubs or hair traps (i.e.,

individual heterogeneity).

Bear rub sampling could have been biased in several ways. First,

our bear rubs had an opportunistic distribution within the cell. We

Figure 2. Predictions of relative local grizzly bear abundance. Predictions resulted from hair trap-only, bear rub-only, and combined models
in northwestern, Montana, USA. A) Female hair trap-only. B) Female bear rub-only. C) Female combined. D) Male hair trap-only. E) Male bear rub-only.
F) Male combined. Analysis included only grid cells with both detection methods.
doi:10.1371/journal.pone.0049410.g002

Multiple Detection Methods and Variable Selection
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modeled this by the inclusion of detection covariates for effort and

spatial distribution, but perhaps did not fully correct for variation

in spatial distribution of rubs within cells. A bear’s decision to use a

bear rub may also depend on learned behaviors, which other bears

have previously used the rub, dominance status or size of the bear

rubbing, the status of other bears that used the rub, whether the

bear chooses a specific path to walk along, and the amount of

human trail-use, none of which are easily mapped. If human trail

use decreased detection, lower counts of bears on heavily used

trails could occur. Without trail use in the model, the estimates of

local abundance in areas with heavily used trails would be biased

low. This could create a different distribution of very local

abundance across our study area and result in spurious identifi-

cation of important variables. We examined the pattern of

estimates of local abundance resulting from bear rub-only data,

but could not identify a missing detection covariate. If covariates

describing the influence of landscape on detection for a given

sampling method can be developed, and at least some variation in

these covariates exists, inclusion of detection covariates may

correct for opportunistic sampling methods. Any abundance

model could suffer from this same issue. Only the presence of

different variables selected from our second detection method

indicated this might have occurred.

Individual heterogeneity in detection may occur within a

detection method (where 2 segments of the population exhibit

different detection probabilities with that method) or between

methods (if one segment of a population cannot be detected with a

method). Because the sampling unit is the grid cell rather than the

individual animal and the model is based on counts that do not

require knowledge of individual identity, no clear way exists to

incorporate individual heterogeneity within an N-mixture model.

The only approach is to separately analyze groups known to differ

in their detection or response to landscape. In our case, we

mitigated for two forms of individual heterogeneity that likely

occurred in our dataset, namely, different detection rates by sex

[13], and the tendency for some (but not all) dependent cubs to be

sampled along with their mothers [12]. We analyzed males and

females separately, which reduced heterogeneity because male

cubs would then be independent of their mother’s detection and

only female cub detections would be dependent.

We have confidence in hair trap-only results because the sample

design is stronger, we identified the same variables in the hair trap-

only and joint models, and the pattern of abundance from hair

trap-only models is supported by other data [10,12]. However,

despite our efforts to mitigate for individual heterogeneity, the

maximum per-cell abundance estimates from the hair trap-only

analysis of males were unrealistically high (N = 150 in one cell).

Other research [22] found that when detection of individuals is

correlated, which could result from non-independent movement of

animals, abundances were overestimated. Although it is unknown

whether other forms of individual heterogeneity yield inflated

abundance estimates, it seems likely that other forms of individual

heterogeneity remain within our hair trap-only sample for males.

Bears previously captured by humans are less likely to be detected

at hair traps [12,13]. By sampling at bear rubs we were more likely

to detect this segment of the population [12]. [13] documented a

male bear that was not detected although it was within 1.69 km of

17 different hair traps and speculated that preoccupation with

breeding (and thus disinterest in hair traps) or other behavioral

differences may lead some bears to have very low capture

probabilities (,37% of GPS-collared bears in their sample that

encountered hair traps were not detected in them). Other kinds of

heterogeneity in response to the landscape could also exist. For

instance, adults may respond differently to the landscape than

juveniles, females with cubs may respond differently than females

without cubs, or bears with history of a negative interaction with

humans may have stronger avoidance of human activities.

We have some support for both sampling variation and the

sampling of unique segments of the population with each method.

We would like to identify important variables for monitoring the

Figure 3. Differences in predictions of relative local grizzly bear abundance between single and multiple detection method analyses for A)
Females and B) Males. Light brown cells are those where the relative abundance was predicted to increase with the addition of bear rubs and
decrease with the addition of hair traps. Dark brown cells are those where the relative abundance was predicted to decrease with the addition of bear
rubs and increase with the addition of hair traps. Light yellow circles indicate the degree of increase predicted by the addition of rub trees (up to
11%). Orange circles indicate the degree of increase predicted by the addition of hair traps, ranging from 0 (no circles) to 50% (large circles). Lack of
circles occurs where the addition of either method decreased predictions, they stayed the same, or we did not have data from both detection
methods.
doi:10.1371/journal.pone.0049410.g003
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population, so we conducted a thought experiment to explore the

consequences of using data from each detection method. Sampling

bear rubs opportunistically did not adequately sample the entire

population. Hair trap-only data are based on a systematic

sampling effort, and thus this analysis has stronger theoretical

support. However, we want to identify variables important to

abundance of all bears to focus management efforts on those

variables. If some bears respond differently to the landscape and

are more susceptible to detection via bear rubs, we want to know

the variables important to that subset of the population. Therefore,

to take a precautionary approach, we recommend that researchers

in this situation report important variables for both kinds of data

separately and include a discussion of strengths and weaknesses of

each detection method as well as the potential for sampling

multiple segments of the population. These same considerations

apply to parallel situations with occupancy models.

Although we have no method to model the existence of

individual heterogeneity for unknown groups within N-mixture

models, the use of multiple detection methods becomes particu-

larly important when some individuals have a zero probability of

detection with one method. Indeed, it is the only way to identify

that a segment of the population is not being sampled with the

primary detection method and to determine the differing influence

of the landscape on that segment of the population. Our

comparison of results from different detection methods can

identify the possibility that strong individual heterogeneity occurs,

but we cannot exclude the possibility that sampling variability also

plays a role. Using statistical sampling protocols should reduce the

potential for spatially biased detections of individuals. We

recommend against using opportunistic detection methods alone

in N-mixture models for either predictions of local abundance or

to identify variables affecting animal abundance. This is consistent

with recommendations for occupancy studies [23].

Compared to ordinary mark-recapture and occupancy models,

combining data from multiple detection methods in analysis has

additional risks, namely that sampling different segments of the

population that respond differently to both detection method and

landscape could lead to biased estimates of the spatial distribution

of local abundance. Because these models do not account for the

proportion of individuals in different groups (e.g., adults versus

dependent offspring), the variables are not weighted in a known

way so we cannot determine whether the variables identified in the

combined analysis represent the variables that are most important

to the entire population. This also makes interpretation of relative

predicted differences in distribution quite difficult. When research-

ers want to identify important variables, a combined analysis

should only be used when both separate analyses identify the same

variables or detection probability is extremely low. In that case,

strong individual heterogeneity is unlikely to exist and combining

data will improve precision of estimates for the influence of

covariates. Our model assumes that detection of animals in one

sampling method is independent of detection via the other

sampling method, which in our case study was likely given that

bears are both locally rare and largely solitary [24]. If detection

methods are not independent, a variation of a robust design model

could be used instead [24].

Our analysis led to some complex conclusions for incorporating

multiple detection methods in N-mixture models when identifica-

tion of important variables is the goal. This highlights the

importance of the use of detection methods where all individuals

are equally susceptible to detection, or where knowledge of the

segment of the population targeted with a particular detection

method is sufficient to explain results in the context of the targeted

population. Our approach that 1) evaluates variables selected in

separate via joint analyses, 2) assesses detection probabilities, 3)

and considers correlations among variables identified as important

in separate via joint analyses, will be useful for others interested in

identifying variables important to local abundance.
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