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Abstract

The functional diversity of a community can influence ecosystem functioning and reflects assembly processes. The large
number of disparate metrics used to quantify functional diversity reflects the range of attributes underlying this concept,
generally summarized as functional richness, functional evenness, and functional divergence. However, in practice, we know
very little about which attributes drive which ecosystem functions, due to a lack of field-based tests. Here we test the
association between eight leading functional diversity metrics (Rao’s Q, FD, FDis, FEve, FDiv, convex hull volume, and species
and functional group richness) that emphasize different attributes of functional diversity, plus 11 extensions of these existing
metrics that incorporate heterogeneous species abundances and trait variation. We assess the relationships among these
metrics and compare their performances for predicting three key ecosystem functions (above- and belowground biomass and
light capture) within a long-term grassland biodiversity experiment. Many metrics were highly correlated, although unique
information was captured in FEve, FDiv, and dendrogram-based measures (FD) that were adjusted by abundance. FD adjusted
by abundance outperformed all other metrics in predicting both above- and belowground biomass, although several others
also performed well (e.g. Rao’s Q, FDis, FDiv). More generally, trait-based richness metrics and hybrid metrics incorporating
multiple diversity attributes outperformed evenness metrics and single-attribute metrics, results that were not changed when
combinations of metrics were explored. For light capture, species richness alone was the best predictor, suggesting that traits
for canopy architecture would be necessary to improve predictions. Our study provides a comprehensive test linking different
attributes of functional diversity with ecosystem function for a grassland system.
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Introduction

Functional diversity, commonly referred to as the value, range,

and distribution of functional traits of organisms in a community

[1,2], is hypothesized to reflect many processes in community and

ecosystem ecology. Researchers have examined how different

community assembly processes (e.g. limiting similarity, habitat

filtering, neutrality) influence functional diversity [1,3–6], as well

as how varying levels of functional diversity influence ecosystem

processes and properties [7–9]. Because functional diversity plays

such a central role in many areas of ecological research,

understanding and quantifying this concept is considered vital to

a wide spectrum of research topics in ecology.

Historically, biodiversity research on plant communities has

focused on the number of species within a community (species

richness) as an implicit reflection of functional diversity and as a

driver of ecosystem processes [8,10]. Although increased species

richness is typically associated with greater levels of ecosystem

functioning [11,12], this approach does not explicitly incorporate

the traits responsible for these processes. Research over the past

decade has considerably advanced the field, with at least 10 trait-

based functional diversity metrics being proposed thus far

(reviewed in [13–15]). These include the unadjusted sum

(Functional Attribute Diversity, FAD; [16]) or average [17] of

pair-wise distances between species in trait-space (functional

dissimilarity), the abundance-weighted variance in traits using

multiple traits (Rao’s quadratic entropy, Q; [18,19]), the abun-

dance-weighted variance of traits using a single trait (FDvar; [20]),

the regularity of trait distribution (Functional Regularity Index,

FRO; [21]), the sum of branch lengths following cluster analysis of

traits in a community (FD,; [22]), the volume of trait space

occupied (Convex Hull Volume, Hull; [23]), the evenness of the
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abundance distribution in the minimum spanning tree linking all

species (FEve, [24]), the divergence of abundance distributions

relative to the community centroid (FDiv, [24]), as well as the mean

distance of species from the community centroid after adjusting for

abundances (FDis, [25]).

Unfortunately, there is no consensus at to which functional

diversity measure performs best. Mason et al (2005) and Villéger

et al (2008), instead, emphasize that there may not be a single

‘‘best’’ metric for measuring functional diversity - each has its own

merits and accentuates different attributes of the concept. The

question then becomes, and the one which we focus on in this

study, which attribute(s) of functional diversity has a stronger

influence on which ecosystem processes and under which

conditions [26]? Mason et al. (2005) suggested that functional

diversity can be generally deconstructed into three components:

functional richness, functional evenness, and functional diver-

gence. Functional richness indices measure the amount of trait

space occupied by the community. Functional evenness indices

measure how regularly that space is filled. Functional divergence

measures whether species are generally clustered towards the

center of the community centroid, or are more dispersed towards

the edges of trait-space [14,24]. Some ecosystem processes might

be affected more by the total volume of trait space occupied, and

others by the packing of species within that space. For example, if

a process is dominated by disparate species, such as perennial C4

grasses and legumes jointly affecting production in Minnesota

grasslands [27], metrics that emphasize richness or divergence

might better predict that function than metrics that emphasize

species evenness. If a process is influenced by species more evenly,

a metric that focuses on functional evenness might outperform

others. A deeper understanding of these linkages would aid

conservationists and decision makers to determine which sets of

species and traits affect particular ecosystem services of concern.

Unfortunately, field tests based on empirical data examining

which attributes of functional diversity best predict ecosystem

dynamics are relatively scarce in the literature. The few field

studies to date have found that some functional attributes predict

some functions in certain cases but not in others [26,28,29].

Mouillot et al. (2011) found in an analysis of a German grassland

biodiversity-ecosystem-function study that functional identity,

measured as the first three axes from a trait-based PCA, and

functional diversity, measured as three metrics (FDiv, FEve, and

FRic), explained most of the variation in six ecosystem processes

[52]. In particular, functional divergence measured as FDiv was

prominent in its explanatory ability for individual functions and

ecosystem multifunctionality. However, similar analyses that

incorporate multiple aspects of functional diversity in real (non-

simulated) communities remain rare.

Also relatively scarce from the functional diversity literature

have been efforts to combine the attributes from different

approaches that have strong theoretical support. In particular,

the functional richness metrics FD [22] and Convex Hull Volume

[23] give equal weight to species regardless of their abundance,

and could be combined with approaches that incorporate

abundance to generate hybrid metrics with combined attributes.

These two metrics for example have each found some successes in

predicting ecosystem function and community assembly [23,29–

32]. However, neither adjusts a species’ influence by its relative

abundance, a concept that has strong theoretical support (i.e. the

‘‘mass ratio effect’’; [33]). Indeed, FD does not change unless

unique species are added or lost from the community; and Hulls

do not change unless these new species extend the hypervolume.

Rao’s Q describes both functional richness and divergence and

can be a useful summary measure that can be decomposed into

alpha-, beta-, and gamma-diversities [1,34]. Whether the blurring

of these attributes is desirable or not likely depends on the needs of

the user and the question being addressed.

In addition to the above considerations of abundance,

functional diversity metrics ignore the fact that not all traits are

equally variable. This creates an implicit assumption, for example,

that a 15% change in one trait (e.g. leaf N) is ecologically

equivalent to a 15% change in another (e.g. seed mass). This

assumption, which we term the ‘‘homogeneous variation assump-

tion’’ stems from the initial normalization procedure that all

metrics utilize in order to generate scale neutrality. This

assumption stands somewhat at odds with the notion that

functional diversity is influenced by the variation of traits in the

community (which may differ for different traits), and remains

untested with very few exceptions (e.g. [23]).

Thus, there are many issues that remain unresolved in terms of

the linkages between functional diversity and ecosystem function

in real systems. We address several of these, centered around a

single experiment, in an effort to synthesize greater understanding

than a piecemeal approach would afford. Here we use long-term

field data from a grassland biodiversity experiment to (1) test which

attributes of functional diversity more closely describe two

prominent ecosystem functions (aboveground biomass and light

capture), and (2) incorporate into this test hybrid metrics, or

augmentations to existing metrics, that incorporate heterogeneous

variation among traits and abundance-weighting to FD and

Convex Hulls. It is not the goal of this effort to find the best

functional diversity metric for all systems or all processes, but

rather to gain more understanding of which attributes of

functional diversity, embodied to different degrees by different

metrics, map to these two ecosystem functions.

Materials and Methods

Plant Community and Trait Data
We used plant-community and species-trait data from a 10 year

experiment in Minnesota designed to examine the effect of plant

biodiversity and global change (elevated versus ambient CO2 and

N) on grassland function [35,36]. We focus on plots receiving

ambient CO2 and N treatments for the present study. Thus, we

only used data from 59 plots (2 m62 m) which were planted with

4, 9, and 16 species under ambient conditions. The 16 species used

in this study were all native or naturalized to the Cedar Creek

Ecosystem Science Reserve. They include four C4 grasses

(Andropogon gerardii, Bouteloua gracilis, Schizachyrium scoparium, Sorghas-

trum nutans), four C3 grasses (Agropyron repens, Bromus inermis, Koeleria

cristata, Poa pratensis), four N-fixing legumes (Amorpha canescens,

Lespedeza capitata, Lupinus perennis, Petalostemum villosum) and four

non-N-fixing herbaceous species (Achillea millefolium, Anemone

cylindrica, Asclepias tuberosa, Solidago rigida), and all are referred to

by genus elsewhere.

A trait-based approach to predicting ecosystem function

involves defining a function of interest, determining predictive

traits for that function, and measuring representative values for

those traits (summarized in [13]). We were most interested in

functions associated with plant growth and biomass production,

and focused on aboveground biomass as our primary function of

interest. Additionally, we assessed the ability of functional diversity

metrics to predict light interception and belowground biomass in

order to test the transferability of the process between related

functions. We compiled a list of candidate traits based on previous

work here and elsewhere, and on availability of trait data, which

included specific leaf area, leaf nitrogen concentration (by mass),

specific root length, height, N-fixation ability, seed mass, and root
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mass fraction. Many of these traits have been found to be collinear

in trait screening studies [37–39], with a smaller set of traits

desired for predicting function [13]. For trait numbers, we were

somewhat restricted by a dimensionality requirement of Hulls in

that there must be more species (S) than traits (T) to define a

unique Hull volume (Smin.Num(T)). Thus, with a lowest richness

treatment of 4 species, we could have no more than 3 traits for

comparison across diversity metrics. To relax this restriction, we

conducted additional tests excluding Hulls to incorporate a larger

number of traits, as well. Specific leaf area (SLA), leaf N

concentration (leaf N) and root mass fraction (RMF) capture

plant strategies for resource consumption and biomass production

above- and belowground, and much prior research at this and

other sites have found these traits to be good predictors of

functions associated with aboveground productivity [40]. These

three traits were not highly correlated with one another in our

dataset and were used for all subsequent calculations (range of

significance values for Spearman’s r: 0.06–0.13). For trait values,

we used data from monocultures of each species averaged over

2000 and 2001, collected using standardized protocols [41]. As an

additional test, we included species mean seed mass, height, and

specific root length (SRL) [42–44]. For aboveground biomass,

plants were harvested each year in a 106100 cm section of each

plot. Clippings were sorted to live material and litter, live material

was sorted to species, and all material was dried and weighed.

Light was measured at peak biomass, averaging over three

subsamples per plot at the soil surface relative to ambient light

using an integrating light ceptometer (Decagon Devices, Inc,

Pullman, WA). Additional experimental details are available in

prior publications [35,36].

Calculation of Diversity Metrics
For each plot and each year, we calculated 8 foundational

indices and 11 modified indices (Table 1). Foundational indices

included Rao’s quadratic entropy (Q), Villéger et al’s (2008)

functional evenness and functional divergence metrics (FEve and

FDiv, respectively), Laliberté and Legendre’s (2010) functional

dispersion metric (FDis), Petchey and Gaston’s (2006) functional

dendrogram (FD), Cornwell et al’s (2006) convex hull volume

(Hull), as well as species richness (S; either assessed by planned

treatment or by measured observation), and functional group

richness (FGR; either assessed by planned treatment or by

measured observation).

We modified FD and Hulls each in two ways: (1) to incorporate

relative abundances of the constituent species, and (2) to

incorporate heterogeneous variation among traits. FD is calculat-

ed, in short, using a normalized species6trait matrix (columns are

by trait and have mean zero, standard deviation unity), by

calculating multivariate distances between species based on their

traits, clustering those distances into a dendrogram, and summing

the branch lengths in a given community [22]. This process

requires several decisions, including the choice of appropriate

distance metric and clustering algorithm [45,46]. Although no

single best procedure exists for all research endeavors [47],

Gower’s distance is generally preferred because it can accommo-

date multiple data types [45]. We use Gower’s distance to enable

greater generalization and future comparability of this approach.

The choice of the clustering algorithm can also have consequences

for the FD calculation in some cases [47]. We tested several

clustering algorithms (e.g. centroid, single-linkage, Ward’s mini-

mum variance) and selected UPGMA, as it yielded a dendrogram

with the highest cophenetic correlation with the original distance

matrix [48]. The cophenetic correlation measures how faithfully a

dendrogram preserves the original pairwise distances among

multivariate data points. UPGMA has been found to often

outperform other clustering algorithms (Mouchet et al. 2008).

Thus, we present Gower’s distance and UPGMA clustering

algorithm throughout. A Hull, in short, is calculated using a

normalized species6trait matrix, as the minimum volume required

to contain a set of points in trait space [23]. Thus, as originally

formulated, FD does not change unless unique species are added

or lost from the community. Hulls do not change unless these

unique species are very different from others in the community (i.e.

on the surface of the volume, species internal to the volume

contribute nothing to functional diversity measured by Hulls).

Two alternative abundance weightings were constructed for FD

based on abundances from harvested clip strips. First, trait data for

each species were weighted by individual species abundance

(‘‘FDabun’’) prior to calculating multivariate distances. Since trait

data were always scaled to center on zero (see below), and

abundances were relative, ranging from 0–1, this weighting

procedure moves rare species towards the centroid of the trait

distribution (de-emphasizing their influence on trait diversity)

while leaving abundant species comparatively unchanged (pre-

serving their influence on trait diversity; Figure 1, Appendix 1).

This adjustment alters the interpretation of the metric from a

functional diversity metric, to an effective functional diversity metric

based on abundance. For processes that scale positively with

abundance, the metric will accentuate this linkage, while the

metric will perform poorly for processes that scale independently

with abundance. Abundance-weighting of convex hull volumes

was done in an identical fashion, weighting trait values directly

prior to calculating multivariate volume.

The second weighting approach for FD is similar in structure to

Rao’s Q which weighs by the joint abundances of pairs of species

(termed ‘‘FDjoint.abun’’; [18]). For this approach, the multivariate

distances between species were weighted by the product of species

relative abundances, prior to clustering into a functional trait

dendrogram (i.e. the new distance between two species d’ is related

to the original distance, d, by: d 0~1zpipjd , where pi and pj are

the relative abundances of species i and j, respectively). We

performed this calculation with and without unity and found no

difference in prediction of ecosystem function. It is worth noting

that recalculating dendrograms for each community has been

previously proposed [45], and while this process differs from the

original functional diversity index (based on the entire species

pool), in practice the results are identical [49]. We also explored

using abundance-adjustments using data from visually estimated

percent cover subplots. Because adjustments using biomass data

were often better predictors, and qualitatively similar to those with

cover, we focus on the former.

In addition to abundance weighting, we investigated how

variance-weighting of trait values alters functional diversity

metrics. To perform this adjustment, after traits were standardized

(mean zero standard deviation unity) we multiplied the trait value

for each species by the coefficient of variation (CV) of the raw trait

data. This process ‘‘stretches out’’ axes with a higher CV and

‘‘compresses’’ those with a lower CV, retains inter-species spacing,

and emphasizes traits that have a higher degree of variation. We

also performed this adjustment on Rao’s Q for comparative

purposes.

Analyses
We assessed correlations among the 19 diversity metrics. We

used Spearman’s r throughout because several of the associations

were nonlinear and some of the metrics were not normally

distributed. To determine which metric(s) most accurately

predicted ecosystem function, we ran analyses similar to those in
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previous examinations of this experiment [36], using a linear

mixed-effects model with the diversity metric as the fixed effect,

and plot within ring as a random effect (ambient CO2 in three of

the six rings) across time to account for intra-plot dependencies

through the long duration of the experiment. Analyses were run

separately for each of the three functions of interest (aboveground

biomass, light incident on the soil surface, and belowground

biomass). We used Akaike weights to differentiate among models,

with the best models scoring the highest Akaike weight, and other

models scoring lower by comparison [50]. We carried out an

additional analysis by combining multiple measures of functional

diversity to test which set of metrics best predicted each function of

interest. Two hundred twenty two combinations of metrics were

assessed, out of many more possible ones; the selective set of

combinations always included species richness, and then tested the

addition of the dendrogram-based, functional richness, and

functional dispersion measures. Linear regressions of selected

relationships are provided for illustrative purposes. All models

satisfied assumptions of homogeneity of variance and normality,

and residuals were inspected for patterns and none were found.

Results

Associations among Predictors
All metrics except FDiv, FEve, FDabun, and FDcv.abun tended to

be highly correlated (average r .0.30) with other metrics, and all

except FDabun and FDcv.abun were significantly correlated with

species richness (whether planned or observed; Table 1, Figure 2).

Simulation studies using randomly constructed communities have

shown a correlation with species richness is not inherent to FDiv or

FEve [24]. Associations were generally similar between species and

functional group richness, and between planned and observed

richness. Variations within Hull-based metrics were often highly

correlated with one another regardless of adjustments (all r
$0.49). Within FD metrics, those weighted by joint abundances

(FDjoint.abun, FDcv.joint.abun) were very highly correlated with

unweighted FD (all r .0.95), while metrics weighted by trait

abundances were not (Figure 2). CV-weighting had little effect on

metric correlations, as the selected traits had similar levels of

variation across the 16 species in this study.

Predictions of Ecosystem Function
Akaike weights suggested that the best single predictor was FD

that was CV- and abundance-adjusted by traits, explaining

approximately 36% of the variation in aboveground biomass

Table 1. Summary of diversity metrics used in this study.

Metric # Base Metric ID Metric Description Correlation: mean
Correlation: with
Strt(#17)

1 FD 1FD Total branch length of functional dendrogram 0.60 0.79***

2 2FDabun Traits weighted by pi 0.17 0.03 ns

3 2FDjoint.abun Distance weighted by 1+pipj 0.61 0.78***

4 2FDcv Trait axes scaled by CV 0.60 0.80***

5 2FDcv.abun Combination of #2 and #4 0.15 0.003 ns

6 2FDcv.joint.abun Combination of #3 and #4 0.61 0.78***

7 Hull 3Hull Minimum volume circumscribed by species in
multidimensional trait-space

0.53 0.70***

8 2Hull abun Traits weighted by pi 0.32 0.32***

9 2Hullcv Trait axes scaled by CV 0.50 0.70***

10 2Hull cv.abun Combination of #8 and #9 0.32 0.32***

11 Other 4Q Rao’s quadratic entropy 0.53 0.62***

12 2Qcv CV-weighted Rao’s quadratic entropy 0.53 0.62***

13 5FEve Evenness of abundance distribution in the minimum
spanning tree

20.08 20.16***

14 5FDiv Divergence of abundance distributions relative to the
community centroid

0.14 0.12**

15 6FDis Mean distance of individual species to the community
centroid

0.55 0.62***

16 Sobs Observed species richness 0.52 0.91***

17 Strt Treatment species richness 0.51

18 FGRobs Observed functional group richness 0.46 0.63***

19 FRGtrt Treatment functional group richness 0.50 0.63***

Abundances of species i and j abbreviated pi and pj. Also shown are average correlations with the 18 other indices, and correlation with planned richness (significance
denoted as: *, ns, P.0.05; *, P,0.05; **, P,0.01; ***, P,0.001).
1Petchey OL, Gaston KJ. 2002. Functional diversity (FD), species richness and community composition. Ecology Letters 5:402–411.
2This study.
3Cornwell WK, Schwilk DW, Ackerly DD. 2006. A trait-based test for habitat filtering: Convex hull volume. Ecology 87:1465–1471.
4Rao CR. 1982. Diversity and Dissimilarity Coefficients – A unified approach. Theoretical Population Biology 21:24–43.
5Villéger S, Mason NWH, Mouillot D. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301.
6Laliberté E, Legendre P. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305.
doi:10.1371/journal.pone.0052821.t001
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(FDcv.abun, Table 2, Figure 3). Nonetheless, many diversity metrics

explained similar amounts of variation in aboveground biomass

(R2.0.3, Table 2), and all the best metrics and were positively and

significantly associated with aboveground biomass. In particular,

FDcv.abun, FDcv, Q, Qcv, FDis, and FDiv all performed similarly in

terms of R2 in our analysis. However, Akaike weights gave

virtually no support for any metrics other than FDcv.abun (e.g. 10:1

odds or worse for any of the other metrics, Table 1). Hereafter, we

term FDcv.abun as FD’ for simplicity. FD-based indices generally

predicted aboveground biomass better than Hull-based indices,

and all abundance-adjusted FD metrics performed better than

their unadjusted counterparts. Other diversity metrics predicted

aboveground biomass poorly by comparison. Qualitatively similar

results were found for belowground biomass (Table 3).

Many diversity metrics also explained similar amounts of

variation for light capture (Table 4). However, the best predictor

for light capture was treatment species richness (Strt, Table 4,

Figure 3), with increases in the diversity metric associated with

increased light capture. Treatment functional group richness

(FGRtrt) performed similarly, while other diversity metrics

predicted light capture poorly by comparison on the basis of

model fit (Table 4).

Discussion

Several criteria have been proposed for the selection of a

suitable index of functional diversity: (1) the metric should measure

what it is intended to describe, (2) the metric should be

uncorrelated with other metrics, and (3) the metric should

conform to certain expectations and mathematical properties

(usually more important for functional richness indices). Parallel to

the above criteria is the acknowledgement that most, if not all,

metrics represent one attribute or another of functional diversity to

varying degrees [1,24,51,52]. Indeed, our overall findings suggest

that for this system functional richness (estimated by FDcv.abun) was

statistically the best predictor, although other metrics for

functional evenness (Q) and functional divergence (FDiv) also

predicted aboveground biomass fairly well. The choice of the three

traits focused on in this study did not bias the results, as a re-

analysis with additional traits demonstrated (Table S1). In this re-

analysis, it was necessary to exclude the Hulls metrics to still

analyze the four species communities, as Hulls requires fewer traits

than species.

We additionally ran supplemental analyses examining all

possible models with one to six linear combinations of metrics to

explore the hypothesis that the best models overall for above-

ground biomass would incorporate all three aspects of functional

diversity (Table S2). Best models invariably included FD’, as well

as species richness, functional group richness, Rao’s Q, and then a

combination two terms (Hull or Hullabun combined with FDis or

FEve; all four combinations). Mouillot et al. (2011) found that

some combination of FDiv, FEve, and Hulls (termed FRic in that

publication) consistently predicted decomposition, productivity,

and nutrient cycling, using several different analytical approaches.

Indeed, FDiv appeared the most predictive single metric of that

set, with the highest function when abundant species were quite

different from one another. Similar combinations were not

similarly predictive in our system.

One reason for these differences could be related to the size of

trait space sampled in this experiment. Namely, that the

multidimensional size of trait space sampled in our experiment

(Minnesota prairie species) may have been demonstrably smaller

than that in Mouillot et al (2011) (mid European hay meadow). In

any generic community, as the total volume of trait-space occupied

Figure 1. Illustration of abundance weighting procedure for FD and Hulls. Calculations are shown for a simplified community of three
species with unequal abundances (abundance represented by the size of circles). Subscripts are for species i and trait j. Trait values for species are
standardized to a mean of zero and standard deviation of one (Z-scores). Trait values for species are then multiplied by the proportional relative
abundance (bound between zero and one), which results in a translation towards the origin, more so for rare species and less so for abundant species
(see Appendix 1 for calculation). This modified distribution is then used for subsequent metric calculation. Weighing by the CV involves multiplying
each standardized trait value by the CV (a positive value). This ‘‘stretches’’ trait axes with CV.1, effectively spreading species further apart along that
axis, and ‘‘compresses’’ trait axes with CV,1, effectively crowding species closer together along that axis. We performed CV weighting prior to
abundance weighting.
doi:10.1371/journal.pone.0052821.g001
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declines, the ratio of the multidimensional surface to volume

increases. Thus, the potential explanatory power of richness

measurements (the surface) should increase as the total trait

volume sampled declines, a hypothesis that deserves testing.

Because all species in our system are adapted to a fairly harsh

environment, they represent a restricted subset of trait combina-

tions already. Thus, we might expect functional richness estimates

(like FD’) to be larger in their relative explanatory power in

simpler communities than metrics describing the filling of trait

space.

What is the abundance- and trait variation-weighted version of

FD (FD’) really measuring? The strong association commonly

reported between unadjusted FD and species richness [1] was

eliminated with abundance-adjustments. FD’ was most highly

correlated with Rao’s Q (r= 0.38), suggesting that like Q it might

represent multiple attributes of functional diversity simultaneously.

This could be considered a strength or a weakness, depending on

whether your priority is centered on disaggregating different

components of diversity, or on developing a useful summary

variable. Conceptually, FD’ measures the functional richness

within the community, discounting species that are rare, aggre-

gating species that are similar, and increasing contributions from

traits that are inherently more variable. Thus, only species or

species-groups that are functionally distinct based on trait-

abundance combinations contribute in a meaningful way to the

index. This also means that rare species that are very different

from each other have similar (minor) influences on ecosystem

function, which may or may not enhance prediction depending on

the degree to which abundance translates to function. This is

neither desirable nor undesirable for a metric, but merely

accentuates abundant and different species. We suggest interpret-

ing FD’ as a measure of effective functional richness rather than

absolute or potential functional richness, which unadjusted

richness measures more faithfully describe. A more comprehensive

assessment of the behavior of FD’ is underway (Flynn et al.

unpublished data). Nonetheless, this smoothing over of the trait

Figure 2. Associations among functional diversity metrics explored in this study. Shown below are bivariate plots (upper panels),
distributions (diagonal), and Pearson’s r (lower panels, significant terms are in bold, P,0.05) for the 19 diversity metrics examined here.
doi:10.1371/journal.pone.0052821.g002
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variation within a community by FD’ appears to strengthen the

linkage between functional diversity and aboveground biomass.

Several other generalizations emerged from our analysis of

above- and belowground biomass. First, our finding that

abundance weighting greatly improved the association between

functional diversity and biomass production, is strong support for

Grime’s ‘‘mass ratio’’ hypothesis. We acknowledge that the scaling

of function with abundance is not always the case [53], but our

results demonstrate a strong mass ratio effect for biomass

production. Second, although variance weighting generally

improved the predictive power of diversity metrics over their

unweighted counterparts, this improvement was much more subtle

because the CV’s for our traits were very similar. Nonetheless,

heterogeneous variation among traits is common and we feel

should be incorporated into any comprehensive measure of

functional diversity. Third, dendrogram-based diversity metrics

greatly outperformed Hulls, suggesting that the functional

associations among all species within a community are more

predictive of ecosystem function than associations among species

with extreme trait values (but see [51]). Fourth, joint-abundance

weighting (e.g. Q, FDjoint.abun) performed much more poorly than

single-abundance weighting on species trait values (e.g. FD’).

Weightings based on the product of abundances of two species

emphasize evenness more than trait distinctiveness, which did not

enhance predictive ability in our system.

We ran preliminary analyses to explore the behavior of FD’

more fully. FD’ was not highly correlated with the abundance of

any species in this system except the legume Lupinus perennis

(Figure 4), with greater FD’ values as Lupinus became more

dominant. The association with the legume however was not

inherent to the metric. For FD’, as a species becomes increasingly

abundant within the community, the value of the metric

increasingly represents the multidimensional distance between

that species and the centroid of the community. Thus, the value of

FD’ could increase or decrease as a species came to dominate

depending on whether that target species was different from, or

similar to, the other species in the community (e.g. increasing for

Lupinus and decreasing for Bromus, respectively, Figure 4). As the

abundance of the target species continues to increase, FD’ declines

to zero because the individual abundance-adjusted distances

approach zero either from low abundances (for rare species) or a

low distance to the centroid (for the dominant species). Thus, FD’

is maximized when several species that are very different co-

dominate, similar in concept to a one-dimensional approximation

of FDiv [24]. Thus, although the relative abundance of Lupinus

alone was not a strong predictor of total aboveground biomass

(R2 = 0.02, Figure 5), plots were especially productive when Lupinus

coexisted with a diverse assemblage of species that were different

from itself (e.g. C4 grasses). This is a general result that has been

reported for this and other studies but never synthesized into one

Figure 3. Illustrative bivariate plots for select functional diversity metrics and ecosystem function. Relationships between aboveground
biomass (top row) or light (bottom row) with functional diversity metrics. Leftmost panels show the strongest predictors based on AIC, and selected
representative metrics are shown to the right for comparison. Reproduced from Tables 1 and 2 are Akaike weights (wi), with larger weights indicating
greater relative strength of evidence for that predictor.
doi:10.1371/journal.pone.0052821.g003
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metric (e.g. [27]). This association may prove general if tested in

other real (not simulated) systems.

Our results revealed some important differences between

analyses on randomly assembled communities versus real com-

munities. Schleuter et al. (2010) found that dendrogram-based

measures of functional diversity (termed FRD there) were

uncorrelated with other diversity indices, and several other studies

have found that Rao’s Q is not strongly associated with species

richness [1,13]. Both of these contrast with our results, and suggest

that the assembly process in real communities can cause

associations to emerge between functional diversity metrics which

are not mathematically predetermined.

The notable mismatch we found between results for the three

ecosystem properties was not expected given the direct association

between aboveground biomass, belowground biomass, and light

interception. Both aboveground and belowground biomass were

well predicted by only a few traits related to production of

photosynthate (SLA, leaf N) and its relative allocation above- and

belowground (RMF), which were selected a priori based on

previous research. The addition of seed mass, height, and specific

root length strengthened the performance of abundance-weighted

FD, although the CV-weighted version became slightly less

predictive (Table S1). On the other hand, light capture appears

to be a much more complex process, and was best predicted by

species richness alone. This discrepancy is likely explained in that

light interception is a function of not only the total aboveground

biomass, but also the geometric configuration of the canopy. This

might be expected for a community such as ours that includes

species with generally vertical foliage (monocots) as well as more

heterogeneous and horizontal foliage (dicots). None of the traits we

examined were related to canopy architecture. Strong relation-

ships with richness rather than species-level trait-based metrics

might also be expected if there is significant plasticity at the

individual level of traits, in this case leaf and stem deployment.

Thus, each additional species appeared to ‘‘fill in’’ the canopy,

resulting in species richness predicting light interception best.

Incorporation of additional traits such as leaf angle and plasticity

in leaf and stem deployment may enhance our ability to predict

light capture from functional traits. More generally, the discrep-

ancy between response variables in this study stresses that no

combination of traits is likely to be universally applicable to the

study of all ecosystem functions, even those that are closely related

such as biomass accumulation and light interception.

Predicting ecosystem function requires incorporating contribu-

tions from several interacting sources, including the regional

climate, biogeochemical attributes of the habitat, and character-

istics from the biota [54]. Our analyses suggest that the biotic

contribution to predicting ecosystem function is larger when trait-

based measures of functional diversity are utilized that include

contributions from all species within the community, and that

incorporate heterogeneous variation in species abundances and in

trait variation. However, this result holds only for the ecosystem

function for which traits were specifically selected (aboveground

Table 2. Results for linking functional diversity with
aboveground biomass.

Metric R2 DAIC
Akaike
weight Slope P-value

FDcv.abun 0.362 0 0.906 61.71 ,,0.001

FDabun 0.355 4.77 0.083 59.24 ,,0.001

Q 0.387 10.25 0.005 61.56 ,,0.001

Qcv 0.387 10.25 0.005 61.56 ,,0.001

FDis 0.363 16.84 ,0.001 56.63 ,,0.001

FDiv 0.386 20.58 ,0.001 46.97 ,,0.001

FDcv.oint.abun 0.254 27.02 ,0.001 52.30 ,,0.001

FDjoint.abun 0.254 27.62 ,0.001 51.58 ,,0.001

FD 0.235 29.70 ,0.001 49.93 ,,0.001

FDcv 0.240 29.91 ,0.001 49.63 ,,0.001

Strt 0.325 31.23 ,0.001 48.88 ,,0.001

FGRtrt 0.331 32.27 ,0.001 44.58 ,,0.001

FGRobs 0.266 38.56 ,0.001 33.96 ,,0.001

Sobs 0.270 40.99 ,0.001 30.90 0.005

Hull 0.291 44.39 ,0.001 19.11 0.066

Hull cv 0.291 44.39 ,0.001 19.11 0.066

FEve 0.312 46.01 ,0.001 210.38 0.249

Hull cv.abun 0.313 47.17 ,0.001 20.54 0.956

Hull abun 0.313 47.17 ,0.001 20.54 0.956

Summary of linear mixed-effects models for diversity metrics on aboveground
biomass in the BioCON experiment. R2 are shown for observed versus predicted
values. Comparisons are based on Akaike weights, with larger weights
indicating greater relative strength of evidence for that predictor. Slopes are
standardized and associated P-values are for significance of diversity metrics on
aboveground biomass.
doi:10.1371/journal.pone.0052821.t002

Table 3. Results for linking functional diversity with
belowground biomass.

Metric R2 DAIC
Akaike
weight Slope P-value

FDcv.abun 0.330 0 0.861 288.575 ,,0.001

FDabun 0.321 3.68 0.137 284.096 ,,0.001

FGRobs 0.262 15.08 ,0.001 74.296 ,,0.001

FDcv 0.254 15.60 ,0.001 74.608 ,0.001

FD 0.253 15.62 ,0.001 74.346 ,0.001

FDjoint.abun 0.251 17.13 ,0.001 71.177 ,0.001

FDcv.joint.abun 0.249 17.26 ,0.001 70.749 ,0.001

Hull 0.244 19.60 ,0.001 60.603 0.001

Hullcv 0.244 19.60 ,0.001 60.603 0.001

Sobs 0.247 20.46 ,0.001 63.238 0.001

FDiv 0.299 21.41 ,0.001 250.674 0.002

Q 0.318 22.06 ,0.001 258.774 0.001

Qcv 0.318 22.06 ,0.001 258.774 0.001

FGRtrt 0.241 22.36 ,0.001 58.066 0.006

Strt 0.241 24.94 ,0.001 51.462 0.023

FDis 0.303 25.76 ,0.001 243.278 0.016

Hullcv.abun 0.252 27.95 ,0.001 28.332 0.095

Hullabun 0.252 27.95 ,0.001 28.332 0.095

FEve 0.266 28.65 ,0.001 223.250 0.140

Summary of linear mixed-effects models for diversity metrics on belowground
biomass in the BioCON experiment. R2 are shown for observed versus predicted
values. Comparisons are based on Akaike weights, with larger weights
indicating greater relative strength of evidence for that predictor. Slopes are
standardized and associated P-values are for significance of diversity metrics on
belowground biomass.
doi:10.1371/journal.pone.0052821.t003
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biomass), and surprisingly, not for a closely related function (light

capture). The finding of an association between a functional

diversity metric, and a particular function of interest, does not by

itself establish an association between functional diversity (the

concept) and ecosystem function, nor does it invalidate the value of

alternative metrics for describing functional diversity. Different

functional diversity metrics highlight different aspects of functional

diversity. Species richness highlights the aspect of uniqueness,

where every species is valued equally irrespective of traits, while

functional evenness (e.g. FEve, [24]) highlights the evenness of

spread for physical traits within the community. Different

circumstances (i.e. functions of interest) will likely favor some

metrics more than others in terms of predictability. We feel that

continued study on which underlying attributes of functional

diversity matter for which function of interest would greatly

advance the field of ecology.

Conclusion
Interest in continuous measurements of functional diversity has

grown substantially in recent years, with an ever-growing number

of metrics available for researchers to use. These metrics perform

in different ways, and capture different aspects of biological

communities [55]. For researchers interested in understanding the

consequences of biodiversity loss, until recently there have been no

direct comparison of these predictors with experimental data [51].

Here, we have provided another such comparison, and tested

several established metrics against hybrid metrics that combine

approaches that have shown prior success. We found that even

though our new metric based on abundance- and variance-

adjusted dendrograms outperformed other metrics for above-

ground biomass, several existing metrics performed similarly. Each

of these metrics represent valid and different attributes of

functional diversity, the combination of which is likely to better

Table 4. Results for linking functional diversity with light
capture.

Metric R2 DAIC
Akaike
weight Slope P-value

Strt 0.260 0 0.921 20.082 ,,0.001

FGRtrt 0.263 4.98 0.076 20.069 ,,0.001

FDcv.joint.abun 0.242 13.83 0.001 20.052 ,,0.001

FDjoint.abun 0.241 13.89 0.001 20.052 ,,0.001

FDcv 0.234 16.14 ,0.001 20.048 ,,0.001

FD 0.234 16.91 ,0.001 20.046 ,0.001

S 0.222 21.14 ,0.001 20.038 0.002

FDis 0.284 24.23 ,0.001 20.022 0.018

Q 0.289 24.58 ,0.001 20.022 0.023

Qcv 0.289 24.58 ,0.001 20.022 0.023

Hull 0.235 25.19 ,0.001 20.020 0.047

Hull cv 0.235 25.19 ,0.001 20.020 0.047

FGR 0.239 25.92 ,0.001 20.020 0.082

FDcv.abun 0.215 26.98 ,0.001 0.011 0.164

FDabun 0.218 27.11 ,0.001 0.011 0.182

FDiv 0.228 27.92 ,0.001 0.008 0.333

Hullabun 0.246 28.59 ,0.001 20.002 0.784

Hullcv.abun 0.246 28.59 ,0.001 20.002 0.784

FEve 0.245 28.62 ,0.001 20.004 0.589

Summary of linear mixed-effects models for diversity metrics on light incident
on the soil surface in the BioCON experiment. R2 are shown for observed versus
predicted values. Comparisons are based on Akaike weights, with larger
weights indicating greater relative strength of evidence for that predictor.
Slopes are standardized and associated P-values are for significance of diversity
metrics on light not captured by the canopy.
doi:10.1371/journal.pone.0052821.t004

Figure 4. Associations between FD’ and species abundances.
Shown are associations between FD’ and three example species:
Lupinus perennis (N-fixer), Bromus inermis (C3 grass) and Schizachyrium
scoparium (C4 grass).
doi:10.1371/journal.pone.0052821.g004
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predict ecosystem function. The choice of which traits to include in

any measure of functional diversity remains crucial and should be

tailored to the ecosystem process of interest. Moving towards

consensus in how to assess functional diversity will aid in the work

to both understand the processes regulating community assembly

and the consequences of biodiversity for ecosystem processes.
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