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A new numerical method for semiconductor device simulation is presented. The additive
decomposition method has been successfully applied to Burgers’ and Navier-Stokes
equations governing turbulent fluid flow by decomposing the equations into large-scale
and small-scale parts without averaging. The additive decomposition (AD) technique is
well suited to problems with a large range of time and/or space scales, for example,
thermal-electrical simulation of power semiconductor devices with large physical size.
Furthermore, AD adds a level of parallelization for improved computational efficiency.
The new numerical technique has been tested on the 1-D drift-diffusion model of a p-i-n
diode for reverse and forward biases. Distributions of b, n and p have been calculated
using the AD method on a coarse large-scale grid and then in parallel small-scale grid
sections. The AD results agreed well with the results obtained with a traditional one-
grid approach, while potentially reducing memory requirements with the new method.
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INTRODUCTION

The numerical method, additive decomposition,
has been successfully applied in mechanical and
chemical engineering to Burgers’ equation and the
Navier-Stokes equations governing turbulent fluid
flow by decomposing governing equations into

large-scale and small-scale parts without aver-

aging, e.g., [1-3]. The additive decomposition
(AD) technique is well suited to problems with a
large range of time and/or space scales, for
example, thermal-electrical simulation of power
semiconductor devices with large physical size.
Thermal-electrical effects have a large range of
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time scales since the electrical time constants are
much faster than the thermal time constants.

Furthermore, additive decomposition adds a level
of parallelization for improved computational
efficiency. Thus, semiconductor device simulation
is a natural application of the additive decomposi-
tion numerical technique. Initially, we decompose
the simplest device equations, the drift-diffusion
model, to test the method. After successful im-
plementation for the drift-diffusion equations, we

plan to apply the new approach to the hydro-
dynamic semiconductor model.

ADDITIVE DECOMPOSITION
OF THE DRIFT-DIFFUSION EQUATIONS

The standard drift-diffusion model of semiconduc-
tors consists of the following equations. Poisson’s
equation is

V2 q
(p- n + Nd- Na) (1)

Es

and the continuity equations for electrons and
holes are

On
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where the symbols have their standard mean-
ing [4].

Additive decomposition of the drift-diffusion
semiconductor model proceeds as follows. First,
the basic variables, electrostatic potential, electron
density and hole density, are divided into large-
scale and small-scale components:- +*, n +n*, p-p+p*. (4)

here is the large-scale component and * is the
small-scale component of the potential, and
similarly for n and p. After substituting Eq. (4)
into Eq. (1) through (3), the equations are then

decomposed additively into large-scale and small-
scale equations:

V2 q
( Nda) (5a)
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where Nda-- Nd-Na, and
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+
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Equation (5a) is the large-scale Poisson’s equa-
tion, (5b) is the small-scale Poisson’s equation,
(6a) is the large-scale current continuity equation
for electrons, and (6b) is the small-scale current

continuity equation for electrons. The decomposi-
tion of the current continuity equation for holes is
similar to (6). The additive decomposition is done
in such a manner, that Eqs. (5a) and (5b) added
together are equivalent to Eq. (1), and in the same

way, Eqs. (6a) and (6b) added together result in
the original Eq. (2).
The decomposition parameter /3 is a coupling

coefficient between large-scale and small-scale
solutions [1, 2]. The parameter /3 controls the
large-scale/small-scale interaction. For example, in
the limit/3 1, the effect of large scale changes is
transferred to the small scale, but not vice versa. In
principle, /3 can be assigned any value between 0
and implying nonuniqueness of the decomposi-
tion, but Brown et al. [5] have recently demon-
strated optimal values for the incompressible
Navier-Stokes equations. In the present study,
/3 has been used.

Decomposition of the variables in the recombi-
nation term R requires a special treatment. In the
Shockley-Read-Hall expression for recombina-

tion-generation, n and p appear in the numerator
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as well as in the denominator. This makes a

straight implementation of the additive decom-
position impossible. One possible solution to this
problem is to calculate the value of the denomi-
nator with the n and p values from the previous
iteration. Then, treat the denominator as a
constant and decompose only the numerator,
using the decomposition parameter/3, which will
generate both R* and/. Another possible method
is to linearize R by expanding in a Fr6chet-Taylor
series, and then decompose the basic variables n
and p of the linearization in the usual way. In the
preliminary tests of the AD method presented
here, the authors used the first method to
decompose the recombination term. It is impor-
tant to note that the decomposition has been
designed so that sums of the large and small-scale
equations are the original Eqs. (1-3). For linear
problems, this represents a straightforward ap-
proach, the validity of which is trivial to demon-
strate. For problems of the type considered here,
the proof is more involved, and we refer the reader
to Brown et al. [5] for an indication of what is
needed.
For a 1-D simulation, each large-scale equation

is solved on the larg.e-scale grid with N points
across the device (N is quite a small number), and
the small-scale equations are solved on the small-
scale grid over a section of the device centered
around a large-scale grid point; see Figure 1. There
is a separate set of small-scale equations (for small-

N large-scale grid points

IltllIt! ,,a,,l

small-scale grid
for one section

FIGURE Illustration of large-scale and small-scale dis-
cretization grid.

scale space or time points) for each large-scale grid
point. Thus, the small-scale equations can be
solved independently and in parallel in N sections.
The large-scale solution, which depends on the
small-scale solution, combines these to produce
total results over the whole simulation domain.
The large-scale function may be defined in

various ways between the large-scale grid points.
In our first calculations, the large-scale values were
set constant within one section, equal to the values
obtained from the large-scale solution for the
large-scale point of the section; i.e., the large-scale
solution representation is piecewise constant when
used in the small-scale equations. The small-scale
values are variations of the exact solution around
the (local) constant large-scale value within one
section. The total small-scale function along the
entire device length is, of course, not continuous,
although the derivative of the small-scale function
is the same as the derivative of the total solution
where both are well defined. We also tried the
approach which is a linear interpolation of the
large-scale solution between the large-scale grid
points. In this case, the small-scale function is
continuous but has discontinuous slope between
sections. Nevertheless the convergence of the final
solution was much worse with this method than
with the first one.
Boundary conditions between the separate

sections pose a significant problem, particularly if
the sections are computed in parallel. Two types of
boundary conditions have been tested, viz., the
Neumann type and the Dirichlet type, and it has
appeared that properly calculated Dirichlet condi-
tions result in more stable solutions.

NUMERICAL EXPERIMENTS

As a first test, the new AD technique has been
applied to the 1-D solution of the drift-diffusion
transport equations of the p-i-n diode for reverse-

bias and forward-bias conditions. The test p-i-n
diode structure is presented in Figure 2. As a

computational platform, the PASSC semiconduc-
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boring sections overlapping, the sections included
from 5 to 12 small-scale grid points for 7 sections,
and 15, 9 and 18 small-scale grid points per section
in the case of 3 sections. After the large-scale
solution has been calculated, the small-scale initial
guess values are updated by interpolation using the
large-scale solution. Then the accurate small-scale
solutions are computed in separate (parallel)
sections around each large-scale point. The final
results for the forward bias VAK 1.0V, calcu-
lated with the large grid of N 5, are shown in
Figure 3. These results are very close to the
reference results obtained with the standard one-
grid method. The biggest problem in this approach
is setting up appropriate boundary conditions
between sections, because the final results are very
sensitive to the slightest change in boundary
conditions of each section. The current density

FIGURE 2 Potential distribution for zero bias and doping
profile of the best p-i-n diode structure.

tor simulation program [6] has been used, with
extensive physical models included [7, 8]. In the
present calculations, the decomposition parameter
fl has been set to 1. The distributions of electro-
static potential qS, electron concentration n and
hole concentration p have been calculated as basic
results. As a measure of quality of computed
results, the space charge formation has been used
in the case of zero bias [9] and reverse bias, and the
distributions of qS, n, and p as well as current
density in the case of forward bias.

First, as a reference, the solution with the
traditional method has been obtained, using a
non-uniform grid with 40 points in one dimension.
Then, a large-scale solution has been computed on
N grid points uniformly distributed along the
device. In the present study, we have tried N 9
and N 5. Small-scale results have been calcu-
lated in separate sections surrounding each large-
scale point, except the border ones, which resulted
in 7 or 3 separate sections along the device,
respectively. With the boundary points of neigh-

FIGURE 3 Final additive decomposition solution for the
forward bias V.4/ 1.0V the thicker grid lines (circled)
correspond to the large-scale grid, N- 5.
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from the reference results for VAI + 1.0 V was
134.7 A/cm2. The current density calculated using
only the large-scale solution was 168.4 A/cm2 for
N 5 (error 25%), and 135.8A/cm2 for N 9
(error 0.8%), and the values were uniform along
the entire device length. After solving the small-
scale equations in each section, the final current
density values obtained with the AD method were
slightly different in different sections (within 10%),
which was due to inaccurate small-scale boundary
conditions for separate sections. Iterating the
small-scale results to recalculate small-scale boun-
dary conditions and re-solving small-scale equa-
tions improved the uniformity of the resulting
current density, although the rate of improvement
was slow.

In a similar manner, results for the reverse bias
were calculated. As mentioned already, in this
case, the space charge formation has been used as
a measure of accuracy of results. Figure 4 shows
the net charge (Q p-n + Na-Na) calculated on a
non-uniform single grid (40 points in l-D) with the
traditional method for the reverse bias VA:

1.0 V. The net charge distribution calculated
only with the coarse large-scale grid (N 9) is
presented in Figure 5a. After solving the small-
scale equations in separate sections and adding the
large and small components according to Eq. (4),
the resulting space charge distribution (Fig. 5b)

FIGURE 4 Net charge (Q p-n+ Nd-N,) for the reverse
bias VA/ -1.0 V, calculated with the traditional method on
one non uniform discretization grid.

[I net charge

FIGURE 5 Net charge distributions for the reverse bias
1.0 V: a) results calculated using only the large-scale grid with

9 points uniformly distributed, b) results obtained using AD
method after adding the large-scale and small-scale components
(the thicker, circled grid lines correspond to the large-scale
grid); note the good agreement with the reference results in
Figure 4.

was almost identical to the reference space charge
distribution obtained with the traditional method
(Fig. 4). While the current density for the reverse
bias calculated using only the coarse large-scale
grid is the same order as the reference solution
(error below 36%), the local charge distribution is
absolutely missing from large-scale solution
(Fig. 5a), and is updated only by adding the
small-scale components (Fig. 5b).

Here, we discuss if there is any physical meaning
of the basically arithmetic operations leading to
the additive decomposition of the semiconductor
model into large-scale and small-scale compon-
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ents. The method was originally conceived for a
more accurate description of turbulent fluid flow,
where the two types of phenomena could be
observed: large-scale fluid flow in the main stream,
and turbulences which might be perceived as
small-scale fluctuations over the large-scale flow.
Is there anything similar in semiconductors? The
results shown above suggest that the current
density may be treated as a "large-scale value" as
it can be calculated with a reasonable accuracy
even on very coarse grids. We have checked
various forward bias values; the error of large-
scale current density ranged from 0.8% for

VAI + 1.0 V to 20% for VAry + 2.0 V. In the
1-D case, the value of the total current density
should be uniform and equal over the entire length
of the device, which again shows its large-scale
character. On the other hand, results in Figure 5
indicate that the space charge shows a "small-scale
character", as it can be only calculated using a fine
small-scale grid. These observations actually agree
with the more rigorous analysis of the basic
semiconductor equations using a singular pertur-
bation approach [10]. There, it is concluded that if
the Scharfetter-Gummel discretizetion [11] of the
continuity equations is used (which is used also in
our calculations), the current density can be
calculated accurately even on a coarse discretiza-
tion grid, virtually ignoring "layers", i.e., thin
regions of rapid variations of the potential and the
carrier densities, which physically correspond to
junctions between differently doped regions of the
device. However, to solve the continuity equations
and Poisson’s equation accurately in the neighbor-
hood of junctions, a much finer grid is required.
Therefore, the distributions of the potential and
carrier densities (hence, also the net charge)
indicate a "small-scale character" near the junc-
tions. The presented additive decomposition ap-
proach revealed also this feature of the
semiconductor drift-diffusion equations.

In both cases, i.e., forward bias and reverse bias
of the p-i-n diode, the additive decomposition
results agreed quite well with the results obtained
with traditional one-grid approach, while the AD

method allows for potentially significant reduction
of matrix computation and computer memory
requirements. Although in this case the sections
with small-scale grid were calculated sequentially,
the code has been written as if the sections were
processed in parallel. Hence, the possible parallel
implementation ofAD has been verified. Extensive
parallelization studies have been conducted for
l-D, 2-D and 3-D Navier-Stokes equations solved
with this general approach by McDonough and
co-workers [12-14].

CONCLUSION

The main advantage of the new method is that the
matrix equations for sections with small-scale
points can be solved independently, which allows
for parallel computations and smaller memory
requirements. Furthermore, computations for few
large-scale points are very fast. After the large-
scale solution is computed an initial guess for the
small-scale solution may be updated using inter-
polation of large-scale solution, which also leads
to more efficient computation.

After successful implementation and testing of
the AD method for the drift-diffusion equations,
the authors intend to apply the new approach to
the hydrodynamic semiconductor model, for
which the AD technique should be also suitable.
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