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Abstract

Keane, Robert E.; Ryan, Kevin C.; Veblen, Tom T.; Allen, Craig D.; Logan, Jessie; Hawkes, Brad. 2002. Cascading
effects of fire exclusion in the Rocky Mountain ecosystems: a literature review. General Technical Report. RMRS-
GTR-91. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.  24 p.

The health of many Rocky Mountain ecosystems is in decline because of the policy of excluding fire in the management
of these ecosystems. Fire exclusion has actually made it more difficult to fight fires, and this poses greater risks to the
people who fight fires and for those who live in and around Rocky Mountain forests and rangelands. This paper discusses
the extent of fire exclusion in the Rocky Mountains, then details the diverse and cascading effects of suppressing fires in
the Rocky Mountain landscape by spatial scale, ecosystem characteristic, and vegetation type. Also discussed are the
varied effects of fire exclusion on some important, keystone ecosystems and human concerns.
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Research Summary

Since the early 1930s, fire suppression programs in the United States and Canada successfully reduced wildland fires
in many Rocky Mountain ecosystems. This lack of fires has created forest and range landscapes with atypical accumulations
of fuels that pose a hazard to many ecosystem characteristics. The health of many Rocky Mountain ecosystems is now in
decline because of fire exclusion; fire exclusion has actually made it more difficult to fight fires, and this poses greater risks
to the people who fight fires and for those who live in and around Rocky Mountain forests and rangelands. This paper
discusses the extent of fire exclusion in the Rocky Mountains, then details the diverse and cascading effects of suppressing
fires in the Rocky Mountain landscape by spatial scale, ecosystem characteristic, and vegetation type. A description of the
effects of fire exclusion on some important, keystone ecosystems is also included. Effects of fire exclusion are detailed at
the stand and landscape levels. Stand-level effects include increases in woody fuel loading, canopy cover, vertical fuel
distribution, canopy stratum, and fuel continuity. Landscape-level effects include increases in landscape homogeneity, fuel
contagion, and hydrology. Cross-scale exclusion effects concern increases in fire intensity, severity, and size as fuels
increase and become more connected. Insect and disease epidemics are also likely to increase, and streamflows are
likely to decrease. Restoration of some semblance of the native fire regimes seems a critical step toward improving the
health of many Rocky Mountain ecosystems.
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Introduction

The extensive wildfire season of 1910 was a defining

moment for the United States wildland fire management or-

ganization (Koch 1942). Although the primeval role of fire

had already been altered in some areas of the Rocky Moun-

tains since the mid-1800s by heavy livestock grazing, the

General Land Office had established only a primitive fire

control structure to suppress fires in the remote Rocky Moun-

tains prior to 1910 (Benedict 1930; Koch 1942). Then, 1.5

million ha burned during that dry windy summer of 1910,

and the Forest Service initiated a more aggressive fire sup-

pression policy (Cohen and Miller 1978). The enactment of

the Weeks Act in 1911 improved fire suppression coordina-

tion by providing funding to those states willing to adopt

comprehensive fire suppression plans (Babbitt 1995). By

1929, this emergent fire suppression organization was fully

functional with hundreds of fire towers built and thousands

of men employed (Agee 1993; Koch 1942). Its effective-

ness has accelerated in intensity and technology until present

day. Similar advances in fire suppression organizations oc-

curred after 1945 in the Canadian Rocky Mountains

(Woodley 1995). However, Canadian National Parks policy

was changed in 1979 to allow for natural ecosystem pro-

cesses such as fire to occur under conditions dictated by

park vegetation and fire management plans (Hawkes 1990).

This largely successful suppression program owes much

of its success to strong governmental support and extensive

advertisement campaigns. Smokey Bear’s message was

simple, direct, and effective—“Prevent wildfires”—but it

was also shortsighted (Pyne 1982). In a perfect world, we

should have known that there would be adverse conse-

quences of this pervasive fire exclusion policy. But growth

of Rocky Mountain forest and range vegetation and the sub-

sequent accumulation of hazardous fuels are gradual pro-

cesses, so it was difficult for one generation of forest and

range biologists and scientists to observe and agree upon

the adverse effects of excluding fire from Rocky Mountain

ecosystems. Now we are faced with some critical ecologi-

cal issues in the aftermath of our war on forest and range

fires. The health of many Rocky Mountain ecosystems is

now in decline because of fire exclusion. Moreover, fire

exclusion has actually made it more difficult to fight fires,

and this poses greater risks to the people who fight fires and

for those who live in and around Rocky Mountain forests

and rangelands. This report discusses the extent of fire ex-

clusion in the Rocky Mountains and details the diverse and

cascading effects of suppressing fires in the Rocky Moun-

tain landscape by spatial scale, ecosystem characteristic, and

vegetation type. We also describe the effects of fire exclu-

sion on some important, keystone ecosystems.

It is well documented that most Rocky Mountain eco-

systems evolved with fire (Arno 1980; Pyne 1982; Quigley

and Arbelbide 1997; Swetnam and Baisan 1996). John Muir

stated that fire, along with temperature and moisture, is one

of the greatest factors that govern forest growth (Pinchot

1899). The importance of fire in maintaining ecosystem

health and reducing fuel loads was also identified by Aldo

Leopold (1924) in one of his essays on the subject (Flader

and Callicott 1991). Even Gifford Pinchot (1899) recognized

the critical role of fire in shaping North American forests.

He noted, “the most remarkable regulative effects of forest

fires relates to the composition of the forest,” referring to

the “qualities of resistance to fire the trees possess.” Gruell

(1985b) documents an extensive historical record of fire on

the western landscape since the late 16th century. In

Weaver’s (1943) seminal paper, evidence shows that peri-

odic fires operated to control the density, age, and composi-

tion of ponderosa pine stands. He further states that removal

of fire would “threaten sound management and protection”

of these forests. Benedict (1930) documented an “increas-

ing hazard” over 21 years of fire protection. Yet despite these

early warnings, fires continued to be suppressed on the

majority of public lands because suppression was the more

desirable land management policy (Mutch 1995). It wasn’t

until the late 1970s and early 1980s that wildland fires were
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allowed to return to some National Parks and Wilderness

Areas (Kilgore 1985; Kilgore and Heinselman 1990).

The ecological role of fire is to function as an extrinsic

disturbance factor (Crutzen and Goldammer 1993). It is a

“keystone” disturbance that (1) recycles nutrients, (2) regu-

lates succession by selecting and regenerating plants, (3)

maintains diversity, (4) reduces biomass, (5) controls insect

and disease populations, (6) triggers and regulates interac-

tions between vegetation and animals, and, most importantly,

(7) maintains biological and biogeochemical processes

(Agee 1993; Crutzen and Goldammer 1993; Mutch 1994).

Fire is neither good nor bad; fire is an important ecological

process that can produce variable effects. The value of these

effects must be interpreted in the context of human desires

and needs. One fact is known: the removal of fire from the

fire-dominated ecosystems of the Rocky Mountains has

caused a plethora of cascading effects that has permeated

nearly every part of this rugged landscape (Allen and others

1998; Arno and Brown 1989; Bogan and others 1999; Ferry

and others 1995; Mutch and others 1993). At first glance,

the effects of fire exclusion may seem beneficial to society

(for example, preservation of timber resources and water-

shed protection), but on closer scrutiny, there seems little

doubt this policy has created many unhealthy features on

Rocky Mountain landscapes.

It is important to clarify some terminology used in this

chapter. First, “fire suppression” is the act of extinguishing

or fighting fires, while “fire exclusion” is the defacto policy

of trying to eliminate fires from the landscape using fire

suppression techniques. A “fire regime” is a description of

the long-term, cumulative fire characteristics of a landscape

and is often described by frequency, extent, pattern, sever-

ity, and seasonality (Agee 1993; Malanson 1987; Martin and

Sapsis 1992). Time periods commonly used in discussing his-

torical changes in Rocky Mountain fire regimes include: (1)

“Recent Native American Period,” including the four or five

centuries prior to permanent settlement by Euro-Americans

(about 1850), (2) “Euro-American Settlement Period,” which

was a time of large uncontrolled resource exploration and

utilization (about 1850 to 1920), and (3) “Fire Exclusion

Period,” during which government agencies, transportation

facilities, and fire-control infrastructures have had a major

impact on fire regimes. “Native fire regime” describes when

fires are allowed to burn across the landscape, and eventu-

ally the character of the vegetation will reflect the character

of the fires. It is often assumed that historical fire regimes

prior to 1850 were native fire regimes. They may or may

not have involved significant numbers of Indian-caused fires

(Barrett and Arno 1982). “Fire severity” describes the

impact of the fire on the biota and is quite different from

fire intensity, which is the heat output from a fire. Three fire

severity classes are commonly used—nonlethal (low inten-

sity surface fires that do not kill larger individuals), mixed

(patchy severity burns that create mosaics of severity), and

stand replacement (lethal surface and crown fires that kill

over 90 percent of trees) (Morgan and others 1996).

“Ecological processes” are those factors that influence the

flow of energy in an ecosystem and include transpiration,

photosynthesis, and disturbances (Waring and Running

1998). “Keystone” refers to the presence of an important

species or process that is crucial in maintaining the organi-

zation and diversity of an ecosystem (Mills and others 1993).

A discussion of fire exclusion effects must also include

the role of burning by indigenous peoples on the Rocky

Mountain landscape. There is substantial evidence that por-

tions of the Rocky Mountain landscape were extensively

humanized by the early 16th century (Denevan 1992). John

Mullan (1866) recognized that these early inhabitants had a

profound bearing on forest structure and composition re-

sulting primarily from fires they set. They started fires for

many reasons including land clearing, wildlife habitat im-

provement, cultivation, defense, signals, and hunting (Bahre

1991; Gruell 1985a; Kay 1995; Lewis 1985). However, there

is great debate as to whether fire regimes maintained by

Native Americans would have been similar if maintained

by lightning fires alone (Barrett and Arno 1982; Fisher and

others 1986; Silver 1990), and whether anthropogenic burn-

ing is considered part of the native fire regime (Arno 1985;

Kilgore 1985). Fires set by Indians are often different from

lightning fires in terms of seasonality, frequency, intensity,

and ignition patterns (Frost 1998; Kay 1995). For this

report, we assume anthropogenic ignitions are part of the

Rocky Mountain historical fire regimes and, therefore, re-

flect the native or natural fire regimes (Arno 1985; Bahre

1991; Russell 1983). Separating anthropological fires from

the historical fire record would be an impossible task with

highly speculative results.

It is also important to recognize the critical role of

livestock grazing on the decline in wildland fire in the

Rocky Mountains. Extensive grazing of sheep, cattle, and

horses from the early 1850s to the present removed an

important layer of fine fuel (in other words, grass and

forbs) from the landscape (Covington and Moore 1994).

The reduction in grass cover not only removed fuel for

fire spread, but it also limited the dry material available

for fire ignition. Moreover, the elimination of grass com-

petition allowed rapid conifer encroachment that further

reduced grass cover by shading (Hansen and others 1995).

Intensive grazing on Rocky Mountain landscapes has

certainly exacerbated the impacts of modern fire suppres-

sion efforts (Bunting 1994; Gruell 1983; Shinn 1980;

Swetnam and Baisan 1996).

Extent of the Problem

Impacts of fire exclusion are different from the effects of

other management actions, such as logging, because the im-

pacts occur gradually and are manifest in nearly every por-

tion of the landscape rather than localized to small areas. It

is difficult to comprehensively describe and quantify these

effects across large regions because exclusion effects are

tied to native fire regimes, which are extremely variable in

time and space (Agee 1993; Arno 1980; Barrett and Arno

1993; Heinselman 1981; Heyerdahl and others 1995).
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Moreover, not all fires can actually be suppressed on the

landscape and, when these wildfires occur on fire-excluded

landscapes, they are often different in severity and aerial

extent from fires that occurred prior to the exclusion era

(prior to 1900) (Mutch 1995; Swetnam and Baisan 1996).

And last, there have been some major land use practices,

such as agricultural development and urbanization, that

have completely altered ecosystems so an historical com-

parison of fire effects would not be meaningful (Morgan

and others 1998). As a result, there have been few re-

gional assessments of fire exclusion effects for the

Rockies, especially for both public and private lands

(Ferry and others 1995).

It appears that only a small fraction of the pre-1900 an-

nual average fire acreage is being burned today. Barrett and

others (1997) estimated an average of 2.4 million ha burned

annually in the interior northwestern United States prior to

1900. Even the biggest wildfire years of the 21st century

burned less than half of this historical average. Approxi-

mately two-thirds of this annual historical burned area oc-

curred in sagebrush and grassland vegetation that have

mostly been converted to agriculture or dry pasture for live-

stock (Morgan and others 1998). Gruell (1985b) estimated

from early journalist accounts of fire throughout the Rocky

Mountain region that modern fires burn less than one-fourth

of the land that burned historically. Leenhouts (1998) per-

formed a comprehensive assessment of burning in the con-

tiguous United States and estimated that approximately 3 to

6 times more area must be burned to restore historical fire

regimes, thereby consuming 4 to 8 times more biomass and

producing 6 to 9 times more emissions than present. Smoke

emission production from prehistoric wildland fires in Brit-

ish Columbia was estimated to be 3 to 6 times larger than

the average annual contemporary production because of the

vast area burned prior to the 1900s (Taylor and Sherman

1996). A mapping of presettlement fire regimes for the

United States revealed more than half the country experi-

enced fires at intervals between 1 and 12 years (Frost 1998).

Kilgore and Heinselman (1990) classified historical conti-

nental fire regimes and found the greatest detrimental im-

pacts of fire exclusion were in frequently occurring (less

than 25 years), low-intensity fire regimes (for example,

grasslands and ponderosa pine) that encompass a large part

of the Rocky Mountains.

A comparison of current and historical fire regimes for

the Interior Columbia River Basin (ICRB) using compre-

hensive digital maps developed by Morgan and others (1996,

1998) provides another spatial assessment of the extent of

fire exclusion. Generally, they found that recent fires tended

to be less frequent and more severe than those that occurred

prior to 1900. The greatest change in fire regimes were in

the shrublands, grasslands, dry forests, and woodlands,

which accounted for over 40 percent of ICRB area (88 mil-

lion ha). Fire regime changes were especially dramatic in

areas converted to agriculture and pastures. As expected,

short fire return interval ecosystems were most affected by

fire suppression. For example, ponderosa pine cover types

decreased by 23 percent, while Douglas-fir cover types in-

creased by 40 percent in aerial extent.

Not all ecosystems or all Rocky Mountain landscapes

have experienced the impacts of fire exclusion as yet. In

some wilderness areas, where in recent decades natural fires

have been allowed to burn, there have not been major shifts

in vegetation composition and structure (Brown and others

1994). In some alpine and desert-scrub ecosystems, fire was

never an important ecological factor. In some upper subal-

pine ecosystems, fires were important, but their rate of oc-

currence was too low to have been significantly altered by

the relatively short period of fire suppression. For example,

the last 70 to 80 years of fire suppression have not had much

influence on subalpine landscapes with fire intervals of 200

to several hundred years (Romme and Despain; Veblen and

others 1994; White 1985, 1989). White (1985) mentions fire

suppression was not effective enough to reduce subalpine

burned area in Bannff National Park in Canada, but Rogeau

(1996) found recent shifts in forest stand ages to older age

classes. Consequently, it is unlikely that fire exclusion has

yet to significantly alter stand conditions and forest health

in these subalpine ecosystems. Yet, Barrett and others (1991)

recognized that fire exclusion effects in long fire interval

fire regimes, such as those in lodgepole pine and spruce fir,

are not yet manifest at the stand level, but are detectable at

the landscape level. For example, they mentioned young

age classes are often missing from subalpine landscapes

where fires have been excluded. Thus, the well substanti-

ated relationship of reduced forest health due to fire exclu-

sion in ecosystems characterized by high fire return inter-

vals (for example, low-elevation ponderosa pine woodlands)

cannot be applied to all mesic subalpine ecosystems with

long fire return intervals. But despite these exceptions, the

Rocky Mountain landscape, taken as a whole, is not burn-

ing at the pre-1900 rate (Covington and others 1994; Frost

1998; Mutch 1995).

Stand-Level Effects

Stand Composition and Structure

Perhaps the most documented and studied effect of fire

exclusion is the change in stand composition and structure.

In general, forest composition has gone from early seral,

shade-intolerant tree species to late seral, shade-

tolerant species, while stand structure has gone from

single-layer canopies to multiple-layer canopies with fire

exclusion (Mutch and others 1993; Quigley and Arbelbilde

1997; Steele 1994; Veblen and Lorenz 1991). This phenom-

enon is repeated over and over again for most fire-

dominated ecosystems of the United States and Canada

(Chang 1996; Ferry and others 1995; Frost 1998; Kolb and

others 1998; Quigley and Arbelbide 1997; Taylor 1998). It

is well illustrated by comparing historical and current pho-

tographs for identical landscapes, such as those shown in

figure 1, as compiled from a wide variety of vegetation

change studies (Gruell 1980, 1983). It is this fundamental
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Figure 1(B)—September 1979—
70 years later. Camera point
replicated original position.
Soil disturbance during log-
ging and exclusion of wildfire
allowed ponderosa pine and
Douglas-fir seedlings to be-
come established and de-
velop into a dense understory.
The large ponderosa pine in
center foreground in the 1909
view, as well as others trees,
were cut during shelterwood
and selection harvests in
1952 and 1962 (photograph
by W. J. Reich).

Figure 1(A)—1909. Fire Group 4: warm-dry Douglas-fir. Elevation 4,400 ft (1,341 m). A northwesterly view show-
ing cleanup operations on the Lick Creek timber sale, Bitterroot National Forest, near Como Lake. The num-
ber of stumps and slash piles suggests that this was an open ponderosa pine stand, a condition typical of the
bitterroot Valley where stands had been subjected to frequent ground fires. Fire scar samples showed a mean
fire interval of 7 years between 1600 and 1900. The understory appears to have a high incidence of lupine, but
few shrubs are evident. Forest Service “lumberman” C. H. Gregory stands in foreground (USDA Forest Ser-
vice photograph 86476 by W. J. Lubken).

Figure 1—Historical and current photographs illustrating the changes in vegetation structure and
composition due to fire exclusion (figures 1a through 1h; photos and text from Gruell 1993).
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Figure 1C—1871. Fire Group 5: cool-dry Douglas-fir. Elevation 6,200 ft (1,890 m). High on the slopes above the
Yellowstone River 10 miles southeast of Livingston, the view is east toward the head of Suce Creek. Snags and
age of young limber pine on near slope indicate locality was swept by wildfire several decades earlier. Based on
present plant composition, ground cover was apparently dominated by Idaho fescue and bluebunch wheat-
grass. Fire mosaics are evident in the distance (W. H. Jackson photograph 57-HS-1213, courtesy of National
Archives).

Figure 1(D)—July 27, 1981—110 years later. A dense stand of Douglas-fir, limber pine, and Rocky Mountain
juniper now occupies near slope shown in original view. The grass cover on this slope has been largely
eliminated by tree canopy closure. Camera was moved approximately 100 yards down slope to allow unob-
structed view of distant slopes. Tree cover on distant slopes has increased dramatically (photograph by R. F.
Wall).
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Figure 1(F)—August 20, 1980—71 years later. Camera was moved left of original point to avoid trees that screened early view.
Regeneration of Douglas-fir has resulted in a landscape dominated by conifers. The rock outcrop visible in 1909 is now
almost totally obscured by tee growth. Conifer competition has a largely eliminated early successional understory species
(photograph by W. J. Reich).

Figure 1(E)—1909. Fire Group
6: moist Douglas-fir. Eleva-
tion 6,100 ft (1,860 m). Look-
ing north-northwest up
Blake Creek at a point 1
mile above forest boundary
on south side of Big Snowy
Mountains, Lewis and Clark
National Forest. Scene
shows effects of wildfire in
the late 1800s that burned
both sides of drainage.
Scattered ponderosa pine
and Douglas-fir occupy
near slope and canyon bot-
tom. Herbs and shrubs
comprise early succes-
sional vegetation in burned
areas. On right, fire created
a mosaic of burned and
unburned timber. Note rock
outcrop in burned stand
(U.S. Geological Survey
photograph 114 by W. R.
Calvert).



USDA Forest Service RMRS GTR-91. 2002 7

Figure 1(G)—1900. Fire Group 6: moist Douglas-fir. Elevation 5,300 ft (1,616 m). From the ridge about 5 miles west of Haystack
Butte, the view is southwest across Smith Creek toward Crown Mountain on east front of Rocky Mountains, Lewis and Clark
National Forest. Near slopes are in early succession following wildfire in latter 1900s that removed conifers and stimulated
production of aspen, willow, chokecherry, mountain maple, and other deciduous vegetation. Stumps resulting from timber
cutting and snags indicate that the pre-1900 conifer stands were less dense than current stands (U.S. Geological Survey
photograph 665 by C. D. Walcott).

Figure 1(H)—September 16, 1981—81 years later. Slopes below camera point and adjacent terrain as well as near slope are
now densely covered by Douglas-fir. View was obtained by cutting screening fir and climbing one of the larger Douglas-fir
about 50 yards from original camera position at top of ridge. Canopy closure has resulted in a decline in condition of
deciduous species (photograph by G. E. Gruell).
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change in vegetation composition and structure that cas-

cades downward to impact a myriad of other ecosystem

characteristics. Table 1 summarizes the effects of fire

exclusion at the stand and landscape levels described in

detail in the following sections.

The compositional and structural shifts are consistent with

the current successional theory that characterizes how veg-

etation will change without disturbance (Arno and others

1985; Drury and Nisbet 1973; Horn 1974). Plant species

adapted to the early stages of succession, such as those that

best survive or regenerate after a fire, are replaced by spe-

cies that are better able to compete for growing resources in

the absence of fire (Bazzaz 1979; Noble and Slatyer 1980).

Species adapted to the latter stages of succession tend to

possess ecophysiological and morphological characteristics

that dramatically alter the dynamics of stands and landscapes

Table 1—Summary of the documented effects of fire exclusion by organizational level and ecosystem characteristic.
References for each effect are detailed in the chapter.

Scale Ecosystem attribute Fire exclusion effect

Stand Composition Increased number of shade-tolerant species, decreased number of
 fire-tolerant species, decreased forage quality, decreased plant vigor,
 and decreased biodiversity in plant and animals.

Structure Increased vertical stand structure, multistoried canopies, increased
canopy closure, increased vertical fuel ladders and continuity, greater
biomass, higher surface fuel loads, and greater duff and litter depths.

Ecosystem processes Slowed nutrient cycling, greater fire intensities and severities, increased
chance of crown fires, increased insect and disease epidemics, short-
term increase in stand productivity, decrease in individual plant vigor,
and decreased decomposition. Increased leaf area; increased
evapotranspiration, rainfall interception, autotrophic and heterotrophic
respiration; increased snow ablation.

Soil dynamics Decreased nutrient (N,P,S) availability; increased pore space,
water-holding capacity; lower soil temperatures; increased hydrophobic
soils; and increased seasonal drought.

Wildlife Increased hiding and thermal cover, increased coarse woody debris,
lower forage quality and quantity, increased insect and disease, and
decreased biodiversity.

Resources Decrease in aesthetics, increased timber production, decreased
visitation, increased risk to human life and property, increased fire
fighting efforts, and improved air quality.

Landscape Composition Decrease in early seral communities, increased landscape homogeneity,
increase in dominance of one patch type, and decreased patch diversity.

Structure Increase in patch evenness, patch size, patch dominance, and
contagion.

Disturbance Larger and more severe fires, increase in crown fires, increased insect
and disease epidemics, and increased contagion resulting in more
severe insect and disease epidemics.

Carbon and water cycles Increased water use, increase in drought, lower streamflows, higher
emissions of carbon dioxide from respiration, increased water quality,
and decreased stream sediment.

Resources Decreased visitation, visual quality, and viewing distance.

as succession progresses (Bazzaz 1979, 1990; Drury and

Nisbet 1973; Grime 1966, 1974; Noble and Slatyer 1980;

Wallace 1991). For instance, early seral species tend to have

high photosynthetic rates, low tolerance for shade, rapid

height and diameter growth, frequent cone crops, long

lifespans, and short crown lengths, while most late seral spe-

cies generally have the opposite characteristics (Bazzaz

1990; Grime 1979; Horn 1974; Van Hulst 1978). Since late

seral species are shade tolerant and able to photosynthesize

under low light conditions, forests composed of late seral

species commonly have higher plant densities (plants per

unit area) with many individuals of different size classes

(Oliver and Larson 1990). Especially abundant are the young

shade-tolerant individuals, which bide their time in the un-

derstory waiting for a gap to open in the overstory canopy.

Shade-tolerant trees also tend to have denser crowns that
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often extend to the ground (Brown 1978). These thick crowns

coupled with high densities and many size classes create

multilayered stand structures with sparse undergrowth (Frost

1998) ( fig. 1b).

The increase in density, biomass, and number of woody

species also seems to be a common theme in most fire-al-

tered ecosystems (fig. 1). Invasion of shrubs and trees into

grasslands and shrublands due to the lack of fire and heavy

grazing is evident in many areas of the Rocky Mountains

(fig. 1c,d). In southern Canada, Taylor (1998) reported that

fire suppression has become increasingly effective during

the last 40 years, and ecosystems that historically experi-

enced surface fire regimes are now experiencing a reduc-

tion of grassland and open forests and an increase in shade-

tolerant species and dense forests (Taylor and others 1998).

Deep-rooted shrubs increased dramatically in shrub-steppe

ecosystems (Link and others 1990). Inland Douglas-fir in-

vasion into western grasslands of Montana has been well

documented (Arno and Gruell 1986; Hansen and others

1995), as has ponderosa pine into the Colorado Front Range

grasslands (Veblen and Lorenz 1991). Limber pine is en-

croaching prairie grasslands in many parts of its range due

to the removal of fire (Gruell 1983). Extensive conifer in-

vasion into ancient montane grasslands is occurring in the

Southern Rocky Mountains (Allen and others 1998; Bogan

and others 1999). Lodgepole pine invades sagebrush com-

munities when fire is removed from Yellowstone National

Park uplands (Patten 1969). Ogle and DuMond (1997) docu-

mented the increase in woody material due to increases in

tree density for many parts of the Intermountain region

across many forest types and fire regimes. Habeck (1994)

and Arno and others (1995) documented a three- to fivefold

increase in density of shade-tolerant conifers in ponderosa

pine forests (fig. 1a,b). Covington and Moore (1994) re-

corded a tenfold increase in ponderosa pine density since

European settlement.

Biodiversity

Diversity of plants, animals, and ecological processes are

enhanced by fire in many ecosystems. Martin and Sapsis

(1992) mentioned that the control of fire reduces biodiversity,

and it is the variability of fire regimes in time and space that

creates the most diverse complexes of species. Higgins and

others (1991) detailed the adverse effects of fire exclusion

on grass diversity, quality, and vigor in rangelands. Vogl

(1979) related that the healthiest and most diverse grass-

lands are composed of a complex mosaic of burning histo-

ries. Landscapes having fires with high variability in tim-

ing, intensity, pattern, and frequency tend to have the great-

est diversity in ecosystem components (Brown and others

1994; Romme 1982; Sieg 1997; Swanson and others 1990).

Long-term health of below-ground fauna depends on the

variability of fires, whereas the diversity of soil organisms

can be reduced by the severe fires that can occur in stands

where fire has been removed for long periods (Borchers and

Perry 1990). Biondini and others (1989) documented the

complex effect of the season and frequency of fire on in-

creased herbaceous diversity in composition and structure

in grasslands. In Canada’s Banff National Park, Achuff

and others (1996) modeled future vegetation succession

for 95 years without disturbance and found an overall

loss of biodiversity caused by a loss of 19 of 29 vegeta-

tion types.

Successional floristics in most Rocky Mountain ecosys-

tems are best described by the Initial Floristics Model of

Egler (1954), which states that the majority of plant species

present before the fire will be there after it burns the stand

(Anderson and Romme 1991; Veblen and Lorenz 1986).

However, plant diversity tends to decrease with advancing

succession because there are higher numbers of species

adapted to colonize postfire settings from highly dispersed

or dormant propagules (Gill and Bradstock 1995; Stickney

1990). In addition, the density, cover, height, and vigor of

undergrowth species tend to decrease as the overstory be-

comes dense and tree leaf area increases because of domi-

nance by shade-tolerant species (fig. 1a,b) (Gruell 1986;

Stickney 1985). Therefore, undergrowth vascular plant

species richness and density tend to be low in the late suc-

cessional communities commonly found on fire-excluded

landscapes.

Many rare and threatened species have declined with the

reduction of fire (Greenlee 1997). Hessl and Spackman

(1995) found that 135 of the 146 threatened, endangered,

and rare plant species in the United States benefit from wild-

land fire or are found in fire-adapted ecosystems. Although

local species extinction can occur with fires that occur too

frequently or fires that burn too severely, it is generally ac-

cepted that the locally rare plants have greater chances of

thriving on those landscapes that have diverse vegetation

communities and structures created by diverse disturbance

histories and fire regimes (Gill and Bradstock 1995).

Sheppard and Farnsworth (1997) point out that while his-

torical fires were beneficial ecological agents of change,

today’s fire can be a destructive force that endangers rare

plant species because these fires have a greater probabil-

ity of being large, severe, and stand replacing (see later

sections).

Crown and Surface Fuels

One important stand characteristic that changes with ad-

vancing succession is the increase in amount of dead and

live biomass, which the fire community calls “fuels” (Peet

1992). Fuel loadings (mass per unit area) generally increase

in the absence of fire because of a myriad of ecological fac-

tors (fig. 1a,b) (Brown 1985). First and most important, long

fire return intervals mean live fuels have longer times to

grow and dead fuels have longer periods to accumulate on

the ground. Next, crown fuels (aboveground foliar biom-

ass) increase because late seral, shade-tolerant species tend

to have more biomass in the forest canopy due to their high

leaf areas, and the biomass tends to be well distributed over

the height of the trees (Brown 1978; Minore 1979; Waring
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and Running 1998). Stand leaf area generally increases over

successional time because shade-tolerant species generally

have longer needle retention times, higher leaf area:sapwood

ratios, and more leaf mass in the crown (Brown 1978;

Callaway and others 1998; Keane and others 1996; Peterson

and others 1989; White and others 1990). Higher leaf areas

usually require additional conducting tissue for support,

which means the tree may need to produce more branch and

twig wood along greater portions of its stem (Landsberg

and Gower 1997). And because late seral species are shade

tolerant, there are many smaller seedlings and saplings

present in the understory to take advantage of any gaps in

the canopy. So, the greater crown leaf and branch biomass

distributed along greater parts of the stem, coupled with high

seedling and sapling densities, can create “ladder” fuels that

allow flames from surface fires to climb into the forest

canopy and result in “crown” fires.

Surface fuel loadings increase as fire is eliminated be-

cause the greater crown biomass ultimately results in in-

creased leaf and woody material accumulating on the forest

floor fuel because the recycling process of fire is absent

(Brown and Bevins 1986; Covington and Moore 1994; Fulé

and others 1997). Dense crowns also reduce solar radiation

attenuated to the forest floor which may lower soil tem-

peratures resulting in decreased decomposition rates and still

higher branch and litter accumulations (Borchers and Perry

1990; Brown and Bevins 1986). Duff and litter depths gen-

erally increase proportionate to the crown closure and leaf

area because of the additional needlefall and reduced de-

composition (DeBano 1991). The rate and maximum amount

of fuel buildup depend on many biophysical factors that con-

trol decomposition, including site productivity, rainfall, and

climate (Olsen 1981). Habeck (1985) found large surface

fuel accumulations on those moist sites with long fire re-

turn intervals such as subalpine fir and western red cedar

forests. Van Wagtendonk (1985) simulated a decrease in

fine fuels but a large increase in large woody fuels when

fires are suppressed in short fire interval ecosystems.

However, Keane and others (1990, 1997) simulated two-

to threefold increases in live and dead biomass as fires

were removed from several ecosystems in the Northern

Rockies. Thick litter and duff layers with high woody fuel load-

ings are commonly found in fire-excluded stands of ponderosa

pine (Covington and Moore 1994; Habeck 1994; Keane and

others 1990; Steele and others 1986), lodgepole (Arno and oth-

ers 1993; Brown 1973), whitebark pine (Keane and others

1994), and aspen (DeByle 1985).

Soils

Soil properties change as fires are reduced and succes-

sion advances in an ecosystem. Organic matter generally

increases with decreased fire frequency, and this improves

pore space, water-holding capacity, and aggregation. How-

ever, when soils with thick organic horizons are burned,

some of the volatilized organic matter moves downward

along a steep temperature gradient and condenses to form a

water repellent layer that impedes infiltration and can cause

massive erosion (DeBano 1991). Endo- and ectomycorrhizae

are particularly sensitive to soil heating by fire because they

are concentrated in the organic and upper mineral soil lay-

ers (Borchers and Perry 1990; Hungerford and others 1991).

While historical fires often killed some of these microor-

ganisms, severe fires resulting from the abnormally high

fuel loadings after fire exclusion can severely reduce their

populations (DeBano 1991). Consumption of the thick soil

organic matter accumulations (in other words, duff and lit-

ter) from fire exclusion will result in deep soil heating that

can kill more plant propagules and microorganisms

(Hungerford and others 1991). Most fires generally increase

soil pH due to ash accretion, which directly affects avail-

ability of many nutrients (Higgins and others 1991). Tem-

peratures of burned soils rise earlier in the season, which

may stimulate some decomposing bacteria and early sea-

son grasses and forbs (Higgins and others 1991). Upper

subalpine soils are often classified as Cryochrepts or

Cryoboralfs during whitebark pine dominance, but con-

vert to Cryoborolls under subalpine fir canopies (Hansen-

Bristow and others 1990).

Fire exclusion effects on nutrient cycling are more com-

plex and confounding (Grier 1975; Klopatek and others

1990). While there is abundant nitrogen in the large amounts

of organic matter accumulated as a result of fire exclusion,

only a small portion of this nitrogen is made available to

plants each year from decomposition by soil organisms (War-

ing and Running 1998). Fire’s combustion process releases

some of the nitrogen sequestered in the fuels and makes it

available as ammonium-N to the plants as it condenses on

lower soil layers, even though a large portion of nitrogen is

volatilized and lost to the atmosphere depending on amount

of combusted organic matter (Grier 1975; Little and Ohmann

1988; Pehl and others 1986; Schoch and Binkley 1986). Ni-

trogen fertilization is also increased by the actions of de-

composing bacteria that are stimulated with fire (Sharrow

and Wright 1977). White (1994, 1996) found that ground

fires consumed volatile organic compounds that could in-

hibit decomposition. Klopatek and others (1990) found sig-

nificant losses of N from the forest floor of a pinyon-juniper

woodland after fire, while White (1996) found nitrogen min-

eralization and nitrification rates were higher in recently

burned stands, and Ryan and Covington (1986) found 80

times more ammonium-nitrogen in burned ponderosa pine

stands. Only 60 percent of phosphorous is lost during fuel

consumption, so substantial amounts of highly available P

are found in ash and at soil surface after fires. Sulphur avail-

ability is also increased by fires (DeBano 1991). Higgins

and others (1991) documented several cases where grass-

land production and yield increased after burning in the Great

Plains due to recycled nutrients. White and others (1990)

found high nitrogen and magnesium levels in whitebark pine

litter, while subalpine fir and Engelmann spruce litter had

high calcium and high lignin contents. In summary, it seems

intact fire regimes ensure continued nutrient cycling and

soil health in the drought-frequent Rocky Mountains.
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Carbon and Water Cycles

Some interesting and complex changes in major ecophysi-

ological processes result as species and structure changes

occur during the prolonged successional cycle resulting from

the absence of fire (table 1). Increased leaf area at the spe-

cies and stand level triggers complex physiological responses

in the ecosystem dynamics of the stand. Transpiration, snow

ablation, and canopy interception generally increase with

higher leaf areas, and this can result in periodic seasonal

depletion of soil water, increased canopy evaporation, and

decreased streamflow (Hann 1990; Kaufmann and others

1987; Skidmore and others 1994; Troendle and Kaufmann

1987; Waring and Running 1998). Increased water use of-

ten results in seasonal droughts that reduce water availabil-

ity to individual trees (Kolb and others 1998). High leaf

areas also diminish radiation attenuated to the forest floor,

which when coupled with lower soil moistures, can slow

decomposition rates, limit snow accumulation, and delay

soil thaw (Bazzaz 1979; Kaufmann and others 1987; White

and others 1990). Reduced decomposition can then result

in delayed nutrient cycling, and most often, high woody fuel

and duff accumulations, which when burned, can cause se-

vere wildfires with deep soil heating and high plant mortal-

ity (Kolb and others 1998). Hungerford and others (1991)

identified the role of fire as the primary control of decom-

position and nutrient cycling in fire-prone ecosystems.

Fauna

The high canopy cover and multistoried stand structure

found in late stages of succession certainly improves big

game thermal and security cover (Gruell 1980). However,

the dense canopies also shade out early seral shrubs and

grasses that usually have high forage value for many ungu-

lates. Production of palatable shrub forage in old, fire-

excluded stands may be less than 1 percent of that found in

young postfire communities. Moreover, ungulates may find

dense late seral stands difficult to traverse because of the

abundance of downed logs and thick understory (fig. 1b, f)

(Gruell 1979; Lonner and Pac 1990). In Canada, prime wood

bison habitat consists of early successional mesic prairie

that depends on frequent fire to prevent conifer encroach-

ment and organic matter buildup (Gates and others 1998).

In contrast, Gruell (1986) hypothesized that mule deer ir-

ruptions from 1930 to 1970 were primarily a result of range-

land succession from grasses to shrubs due to reduction in

fire size and frequency. Bighorn sheep can benefit from fire

by reduced lungworm infections, improved forage, and re-

duced tree cover (Peek and others 1985). Freedman and

Habeck (1985) noted that fire exclusion reduced winter range

and forage quantity and quality eventually reducing deer

populations in Montana. Reduction of aspen forests from

the absence of fire has significantly affected the diets of

ungulates that highly prize this valuable forage species

(DeByle 1985). The decline of whitebark pine from fire

exclusion and blister rust in the Northern Rockies can

adversely affect summer range for elk and deer (Lonner and

Pac 1990). Carrying capacity for elk can be diminished by

removing fire from the ecosystem due to reduction in qual-

ity browse plant species (Gruell 1979). Drew and others

(1985) noticed a significant reduction in winter ticks, para-

sites on large mammals, with spring prairie burning in

Alberta.

The plant species that define many fire-adapted ecosys-

tems (for example, aspen, ponderosa pine, whitebark pine)

are often keystone species that are critical for the survival

of many other animals in that ecosystem (deMaynadier and

Hunter 1997). For instance, Hutchins (1994) has chronicled

over 110 animals that consume whitebark pine seeds in high-

elevation ecosystems. DeByle (1985) documented over 134

birds and 55 species of mammals that regularly utilized as-

pen forests. Kendall and Arno (1990) mention that whitebark

pine dominance benefits many wildlife species because the

typically open canopy promotes undergrowth forage qual-

ity and production (for example, increased berry produc-

tion). Higgins and others (1991) detailed the significantly

higher number of insects, birds, waterfowl, and small mam-

mals on prairie landscapes with healthy fire regimes.

Perhaps the largest impacts of fire exclusion may be felt

by nongame wildlife species. Hutto (1995) noted the im-

portance of fire, especially stand-replacement fire, for cre-

ating habitat for many Rocky Mountain bird species. Around

15 species were solely associated with postburn communi-

ties, and over 87 species were found in burned stands. Hejl

(1992) identified the importance of fire-dominated hetero-

geneous landscapes to bird diversity. Landscapes with in-

tact fire regimes have high variability in patch size, shape,

and type, which is extremely beneficial for the existence of

many avian species. This can also be said for many insect

and rodent species (Higgins and others 1991). Finch and

others (1997) mention that fire exclusion in Southwestern

forests tends to favor generalist bird species that can utilize

all stages of succession rather than specialist bird species

found primarily on heterogeneous landscapes, open forests,

burns, snags, or a combination of all. Small mammal popu-

lations may increase with the number of down logs as fuels

accumulate during succession, but many mice, shrews, and

gophers are found mostly in those early seral communities

that directly follow fire. Moreover, the diverse mosaic of

stand structures and composition created by an intact fire

regime greatly correlate with higher numbers of small mam-

mal individuals and species (Ream and Gruell 1980).

Covington and others (1994) noted that the increased ero-

sion from large-scale fires on landscapes with altered fire

regimes degrades riparian habitat and adversely impacts

aquatic organisms because of high sediment loadings.

Exotics

The introduction of exotics into Rocky Mountain eco-

systems has complicated and, in some cases, intensified fire

exclusion effects. Some exotic plant species tend to effi-

ciently colonize following disturbances so restoration of fire
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regimes may increase exotic dominance and reduce diver-

sity (Covington and others 1994). However, landscapes will

burn regardless of fire control measures, and the severely

burned areas created by wildfires on fire-excluded land-

scapes might accelerate exotic invasions. Low-severity burns

may tend to favor native plants adapted to survive fire. The

invasion of annual grass exotics such as cheatgrass (Bromus

tectorum) into sagebrush-steppe vegetation types has actu-

ally increased fire frequency because of the presence of

abundant fine fuels (in other words, grasses) resulting in

the elimination of sagebrush and a permanent conversion to

annual grasslands (Whisenant 1990). The use of fire for

control of exotic weed species has had mixed results.

Some exotic diseases and pests have accelerated the suc-

cessional cycle resulting in mid-seral stands having com-

positions and structures similar to old-growth stands. For

example, white pine blister rust (Cronartium ribicola) has

killed many mature whitebark pine in northern Montana and

Idaho rapidly converting stands to subalpine fir (Keane and

others 1994; Kendall and Arno 1990). Blister rust has also

speeded succession in western white pine forests to grand

fir, western red cedar, and western hemlock. This has se-

verely altered the fire regime and successional process,

making restoration difficult but not impossible.

Cultural and Natural Resources

People have changed the way they used fire-dominated

ecosystems as fire was removed from the landscape. Gruell

(1990) noted that the absence of fire has had profound im-

plications on natural resource management. Livestock for-

age resources in the West have been depleted in some areas

because of conifer shading (Gruell 1979). Livestock and big

game carrying capacities have decreased because of conifer

and tall shrub encroachment. And, although fire is often

blamed for destroying visual quality, it can enhance long-

term visual quality and viewing opportunities by reducing

tree densities. The dense tree growth found in forests with-

out fire restricts viewing and detracts from the outdoor ex-

perience. Open-grown, parklike stands of ponderosa pine

created by frequent surface fires have a high aesthetic qual-

ity and are preferred by today’s outdoor enthusiasts

(Warskow 1978). A decrease in recreation activities and visi-

tation can occur as tree cover and density increase with fire

exclusion.

Fire exclusion will heighten fire hazards to forest homes

as people continue to develop and settle lands along the

urban-wildland interface (Fischer and Arno 1988). The loss

of homes and human life can escalate as the surrounding

forest advances in succession because of the buildup of

canopy and surface fuels (Freedman and Fischer 1980).

Moreover, multilayered canopies and dense crowns will in-

crease the chance of crown fires that are difficult to control,

especially in an urban setting (Alexander 1988). This could

increase the risk of harm to the people who own the prop-

erty and the firefighters who try to protect it. This is re-

flected in figure 2 where the amount of area burned in the

Western United States has actually increased even though

we are currently using better fire suppression technology

and are spending more money to fight fires.

The amount and availability of wood biomass will defi-

nitely increase with the continued ingrowth of woody ma-

terial resulting from fire exclusion. Accretion in Western

United States conifer forests was estimated at 1.7 times the

historical average (Covington and others 1994). Keane and

others (1990) simulated a tripling of stand basal area as fire

was excluded in ponderosa pine-Douglas-fir stands. Parker

(1988) found nearly double the basal area in stands where

fire was excluded as species diameter-class distributions

went from even aged to uneven aged in mountain hemlock

and red fir stands. Most literature sources contend that pro-

ductivity will tend to decline after a stand reaches maturity

as old-growth stands photosynthesize only enough carbon

to meet respirative demands (O’Laughlin 1995). However,

this assumes the same tree species is present throughout

stand development. Callaway and others (1998) found up-

per subalpine sites dominated by seral whitebark pine

reached peak productivities at around 150 years. But, pro-

ductivity decreased only slightly as subalpine fir trees re-

placed whitebark pine in the stand because the fir’s thin sap-

wood layer reduced stemwood respiration and allowed the

stand to maintain high productivities into the latter stages

of succession. Nevertheless, tree vigor will tend to decrease

as stands of shade-tolerant and shade-intolerant species be-

come dense and stagnated as resources become limiting

(O’Laughlin 1998). Moreover, thinning by periodic fire

tended to concentrate productivity in fewer, but larger indi-

viduals, thereby resulting in larger stems for a wider variety

of wood products and a higher percent utilization (Harvey

and others 1989; O’Laughlin 1995).

Air quality has improved, somewhat, at the expense of

ecosystem sustainability with fire exclusion policies (Brown

and Bradshaw 1994; Covington and others 1994). Less

smoke from summer fires lowers atmospheric particulate

levels, improves visibility, and decreases natural pollution,

but this may only be a short-term advantage. However,

Figure 2—Annual area burned is increasing despite recent
advances and increases in fire suppression technology
and resources.
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Brown and Bradshaw (1994) found similar smoke pollu-

tion in the era of total fire exclusion (1930 to 1970) to that

generated during the prescribed natural fire period (1971 to

1992) for the Selway-Bitterroot Wilderness Area. Mutch

(1994) and Leenhouts (1998) noted that smoke produced

from uncontrolled wildfires occurring on fire-excluded land-

scapes may greatly exceed historical levels, and these high

smoke emissions may be more harmful to people than smoke

released from a prescribed burning program. The worst

smoke pollution in recent times was from unusually severe

fires burning on Columbia River Basin fire-excluded land-

scapes that historically experienced lower severity fire re-

gimes (Ottmar and others 1996). Moreover, less smoke does

not mean less carbon dioxide is released into the atmosphere.

Computer simulations by Keane and others (1997) showed

an increase in atmospheric CO
2
 inputs from fire-excluded

landscapes due to the increased autotrophic and het-

erotrophic respiration with advancing succession. At a con-

tinental scale, the cumulative effects of this high atmospheric

CO
2
 input from respiration could have profound effects in

global climate warming.

Landscape-Level Effects

Composition and Structure

Historical fire regimes created shifting mosaics of

patches, processes, and habitats on Rocky Mountain land-

scapes (Agee 1993; Romme 1982; Swanson and others

1990). These landscapes tend to become more homogeneous

as fire is removed because succession will eventually ad-

vance all stands to similar communities dominated by shade-

tolerant species (fig. 1e,f,g,h) (Keane and others 1996, 1997;

Marsden 1983; Turner and others 1994). Even though late

seral species may differ across a landscape depending on

site, the multilayer structures of these late seral stands are

nearly identical across most biophysical settings (Oliver and

Larson 1990). Habeck (1970) noted that fire control on Gla-

cier National Park landscapes resulted in shifts of young

and intermediate-aged forests to older forests where com-

munities less than 10 years old were rare. Arno and others

(1993) and Hartwell (1997) measured declines of whitebark

pine and young lodgepole pine stands and increases in sub-

alpine fir after 91 years on a fire-excluded Northern Rocky

Mountain subalpine landscape. Rogeau (1996) reported

shifts to older age classes in Banff National Park. McKenzie

and others (1996) constructed transition pathways from the

current landscape with fire exclusion to a future landscape

with increased fire intensity for the conterminous United

States and found that increased fire activity could actually

decrease broad-scale landscape diversity by increasing the

extent of grassland and shrubland types.

Landscape structure (spatial distribution of patches) also

changes with fire exclusion as landscapes generally become

less fragmented, have lower patch density, and evolve de-

creased patch diversity, which often results in more conta-

gion, corridors, and large patches (Hann 1990; Hessburg

and others 1999; Keane and others 1998; Li and others 1996)

(fig. 1g,h). Romme (1982) found that fire control policies

tended to reduce landscape richness and patchiness, and to

increase evenness and dominance in Yellowstone National

Park, but there were situations where the exclusion of fire

actually increased landscape diversity. Murray (1996) found

that the lack of fire created high-elevation landscapes with

low diversity, high mean patch size, and high fractal dimen-

sion indices. This creates an interesting situation because

larger patches and high homogeneity tend to foster more

continuous crown and surface fuels, which can then burn in

large fires that create still larger patches and so on in this

downward “fire-exclusion” spiral. Baker (1992) found lower

fractal dimension, mean shape, Shannon diversity, and patch

richness on simulated landscapes with suppression of all

fires as compared to landscapes with intact historical fire

regimes.

The effect of fire exclusion on patch dynamics depends

on the biophysical complexity of the landscape. Often, ter-

rain and landforms, rather than disturbance history, will be

the primary factor determining patch dynamics in heavily

dissected landscapes (Kushla and Ripple 1997; Li and oth-

ers1996; Swanson and others 1990). This is because com-

plex landforms create unique and diverse environments that

partially control the structure and composition of the poten-

tial and existing vegetation (Daubenmire 1966; Pfister and

others 1977). But more importantly, fire behavior and growth

are heavily influenced by slope, elevation, and aspect, so

fire patterns tend to follow topographic landforms

(Rothermel 1972, 1991). As a result, it is difficult to gen-

eralize about changes in landscape structure with fire exclu-

sion without knowing the degree of topographic complexity.

Hydrology

Landscape hydrologic cycles can be altered as late seral

communities progressively dominate landscapes without

fires (Covington and others 1994). Higher leaf areas from

increased woody biomass will increase evapotranspiration

and interception (table 1), resulting in lower streamflows

and the drying of springs (Gruell 1979; Romme 1982;

Troendle and Kaufmann 1987). This would limit the amount

of water available for irrigation and community water sup-

plies, especially during the late summer and early autumn.

Fire exclusion generally reduces soil water and overland

flow thereby reducing surface erosion, mass movement, and

sediment yield, depending on geomorphic landforms

(Swanson 1981). Warskow (1978) demonstrated the criti-

cal role of fire in regulating surface and ground-water pro-

duction in southwestern ponderosa pine forests. Link and

others (1990) found range fires removed deep-rooted, woody

shrub species from a shrub-steppe ecosystems thereby elimi-

nating the ability of the vegetation to access deeply stored

soil water, making more available for human use. Pielke

and others (1997) simulated accelerated thunderstorm de-

velopment and turbulence with increasing landscape het-

erogeneity indicating vastly different rainfall patterns on
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fire-dominated landscapes (Pielke and Avissar 1990). Clark

(1989) measured more positive water balances on landscapes

with fire.

Fire-excluded landscapes are especially vulnerable to ad-

verse changes in the hydrology when stand-replacement

wildfires inevitably occur. Severe fires that burn in heavily

grazed forested stands that are outside historical fire fre-

quencies may cause excessive erosion that degrades water

quality and aquatic habitat (Covington and others 1994;

Tiedemann and others 1979). Snowmelt may be faster from

the larger patches created by modern wildfires resulting in

earlier and higher spring runoffs. Peak flows usually increase

severalfold after large, intense wildfires (Dennis 1989;

Tiedemann and others 1979), which would presumably in-

crease surface and mass erosion (Covington and others

1994). The increased vegetation cover near streams on fire-

excluded landscapes would probably decrease stream water

temperatures, increase long-term inputs of coarse woody

debris to streams, and delay and reduce peak runoffs

(Dennis 1989). However, when wildfires eventually occur

on these protected watercourses, their high severity can re-

duce shading, increase erosion, and increase water tempera-

tures by 3 to 10 oC depending on streamflow (Amaranthus

and others 1989).

Cross-Scale Disturbance Effects

Fire

Perhaps the most important ecosystem process altered

by fire exclusion is the native fire regime (Arno and Brown

1991; Covington and others 1994; Morgan and others 1998;

Mutch and others 1993). Fires generally become less fre-

quent and more severe with active suppression on the land-

scape (Arno and others 1993; Loope and Gruell 1973; Steele

and others 1986). Modern wildfires on late seral landscapes

tend to be larger, more intense, and more severe because of

high biomass loadings, multilayer stand structures, and the

high connectivity of the biomass at the stand and landscape

level (Arno and Brown 1991; Keane and others 1997; Knight

1987). Moreover, only the unusually severe wildfires es-

cape our suppression efforts in our present de facto exclu-

sion policy (Arno and Brown 1989; Brown 1995). Covington

and others (1994) state “the end result of fire exclusion in

fire-prone forests is increasingly synchronous landscapes

dominated by large, catastrophic disturbance regimes.”

There is a close inverse relationship between available

fuel and mean fire frequency, so fire return intervals tend

to increase with increasing fuels, and with increasing fu-

els comes increasing fire severities (Olsen 1981). Romme

and Despain (1989) mentioned that the principal effect

of 30 years of fire exclusion in Yellowstone National Park

was to delay the onset of a major fire event, which was

inevitable.

Fires on fire-altered landscapes may burn more area in

fewer years, meaning that rare fire years, like 1910, may be

especially high in fire activity (Bessie and Johnson 1995).

And the increasing numbers of large, severe fires in 1 fire

year will make suppression and control increasingly diffi-

cult further risking human life and property. This is again

illustrated in figure 2 where the area burned has recently

been increasing despite continually higher suppression

efforts and technology. Few fire years will also tend to

create less diversity in patch age and size because large

areas tend to burn in 1 year, as demonstrated by the

Yellowstone fires of 1988 (Baker 1989; Romme and

Despain 1989).

High surface fuel loads and complex vertical stand struc-

tures increase the chance that modern surface fires will be-

come crown fires and burn overstory trees through torching

and crowning (Brown and Bevins 1986; Kolb and others

1998; Steele 1994). Early seral tree crowns tend to be heat

porous and high off the ground while late seral trees have

dense crowns extending nearly the entire length of the stem

(Minore 1979). Higher flame lengths due to more surface

fuels, coupled with lower and thicker shade-tolerant tree

crowns, hasten the transition of a surface fire to a crown

fire. Once a crown fire has started, the high leaf areas and

high crown bulk densities typical of late seral forests favor

propagation of fire throughout the crowns in a stand (Brown

and others 1994; Rothermel 1991). Furthermore, these crown

fires are likely to be propagated across the homogenous land-

scapes because high contagion between multilayered stands

ensures high connectivity in crown fuels. Taylor and others

(1998) estimated fire behavior potential changes using the

frequency of three crown fire severity and six fire intensity

classes on a southeastern British Columbia landscape dur-

ing a climatologically normal fire season. The proportion

of the landscape susceptible to a fire with more than 50 per-

cent crown consumption increased from 7 to 14 percent from

1952 to 1992, and projected that proportion to increase to

29 percent by 2032. Therefore, the long-term consequences

of fire exclusion in Rocky Mountain ecosystems is the con-

version of historically low- to moderate-severity fire regimes

to a high-severity, stand-replacement fire regime (Mutch

1994; Morgan and others 1998).

Land use changes on the Rocky Mountain landscape have

also altered the ignition and spread patterns of historical

fires. Barrett and others (1997) noted the majority of his-

torical area burned occurred in sagebrush-grasslands that

have now been altered and interrupted by agriculture, graz-

ing, and land development. Fires burning through these

rangelands often gained access to adjacent forest lands

prior to European settlement and livestock grazing. Now,

the continuity of fine fuels across these nonforest range-

lands has been reduced or eliminated because of human

land use activities such as development, agriculture, and

grazing.

Insects and Disease

Insect and disease processes are also affected by the shift

in host tree species across a landscape as fires are suppressed.

Increases in insect and disease activity are attributed mostly
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to increased stress and reduced vigor of the early seral, fire-

dependent tree species (Heinrichs 1988; Hessburg and

others 1994; Kolb and others 1998). This plant stress is a

direct result of the increased competition from rising stand

biomass and ballooning plant density (Harvey 1994, 1998;

O’Laughlin 1998). Stressed plants and dense canopies are

usually a recipe for severe insect and disease infestations

(Heinrichs 1988). Harvey (1994) recognized that ecosys-

tems with intact fire regimes have lower levels of plant stress,

which reduces insect and disease infestations.

There are many examples of heightened insect and dis-

ease activity with fire suppression (Veblen and others 1994).

Dwarf mistletoe (Arceuthobium spp.) has proliferated on

landscapes with more older age classes resulting from fire

exclusion especially in lodgepole pine and ponderosa pine

(Alexander and Hawksworth 1976; Wilson and Tkacz

1996; Zimmerman and Laven 1984). The absence of fire

is implicated in chronic spruce budworm (Choristoneura

occidentalis) epidemics in many Douglas-fir and true fir

stands in the Rockies (Carlson and others 1983; Hadley and

Veblen 1993; Holland 198; Swetnam and Lynch 1993). Per-

sistent defoliation by budworm outbreak can predispose host

trees to Douglas-fir beetle (Dendroctonus pseudotsugae) and

root rots. Bark and pine beetle and blister rust epidemics

are replaced by root rot and fir decline diseases as the land-

scape converts from whitebark pine to subalpine fir and

spruce cover types (Arno and Hoff 1989; Alexander and

others 1990). Mountain pine beetle (Dendroctonus

ponderosae), bark beetles, and dwarf mistletoe outbreaks

are more common in southwestern ponderosa pine forests

because tree densities increased due to lack of fire

(Covington and others 1994). In spruce-fir forests of

Colorado, spruce beetle (Dendroctonus rufipennis) out-

breaks do not affect young (less than 80 years) postfire

stands (Veblen and others 1994), which implies that long-

term fire exclusion in the subalpine zone eventually would

result in increased beetle activity as a larger portion of

the landscape enters old-growth stages. However, it is

debatable if fire suppression can actually prevent the in-

frequent but widespread fires of the subalpine zone that

are associated with unusual weather events (Romme and

Despain 1989).

Increased patch contagion from lack of fire may amplify

the severity of insect and pathogen outbreaks. Contagion is

generally described as the probability that similar patches

are adjacent to each other. Landscapes dominated by one

cover type seem to have the greatest potential for epidemic

infestations of insects and disease because host species

patches are near and migration distances are small. Con-

versely, patchy landscapes under native fire regimes often

had greater probabilities of nonhost patches being barriers

to pathogen dispersal. Research by Hessburg and others

(1994) showed increases in budworm and tussock moth as

the host tree species become more continuous across the

landscape. Increased bark beetle outbreaks have been re-

ported in many pine ecosystems where fires have been ex-

cluded (Wilson and Tkacz 1996).

Affected Rocky Mountain Ecosystems

The complex effects of fire exclusion are best understood

when illustrated by examples. We selected several keystone

Rocky Mountain ecosystems where fires were historically

common but now have experienced several decades of fire

exclusion (deMaynadier and Hunter 1997; Ferry and others

1995). Not all forest and range types are discussed because

of lack of space, but it is estimated the ecosystems presented

here comprise over 60 percent of Rocky Mountain lands

(Ferry and others 1995).

The absence of fire on many Rocky Mountain grassland

ecosystems usually resulted in the invasion of woody spe-

cies (Arno and Gruell 1986). Historical grassland fire re-

turn intervals ranged anywhere from 2 to 27 years depend-

ing on topography and native American settlement, and have

increased to over 27 years in many places because of devel-

opment and fire suppression (Gruell 1986; Higgins and oth-

ers1991; Seig 1997; Wright and Bailey 1982). Arno and

Gruell (1986) found frequently occurring fires prior to 1890

tended to favor grasslands and confined tree establishment

to rocky areas or topographically moist sites, but grazing

and fire exclusion has allowed extensive areas of inland

Douglas-fir (Pseudotsuga menziesii v. glauca) invasion into

mountain grasslands. Fisher and others (1986) found an ex-

pansion of closed ponderosa pine forests at the expense of

pine savannas and grasslands after 50 years of fire exclu-

sion. Shinn (1980) documented how the association of fire

with the deterioration of range resources by the public led

to fire exclusion policies that resulted in juniper invasion

and herbland decline in grass and shrublands of the Central

Rockies. Conifer encroachment into montane sagebrush

grasslands has resulted from delayed fire activity (Patten

1969).

Sagebrush-steppe ecosystems, encompassing some 45

million ha in the Western United States, typically burned at

60- to 110-year intervals prior to European settlement. How-

ever, fire frequency has increased in many areas due to the

invasion of cheatgrass (Bromus tectorum) and medusahead

Taeniatherum caput-medusae) (West and Hassan 1985;

Whisenant 1990). Cheatgrass could expand from currently

6.8 million ha to over 25 million ha in the Great Basin (Ferry

and others 1995). This increase in fire frequency would ex-

ert strong selective pressure against many native plants and

animals.

Juniper and pinyon pine woodlands have been increas-

ing in density and distribution since the early 1900s due to

climate change, grazing, and most importantly, lack of fire

(Gottfried and others 1995). The expansion is mostly into

grass and shrublands (Ferry and others 1995). Bunting

(1994) mentioned that the advance of juniper woodlands

would have been curbed if the historical fire regime with

50-year fire-return intervals had not been altered by graz-

ing, climate change, and wildfire suppression.

Aspen (Populus tremuloidies) is a short-lived, broadleaf

tree species (100 to 125 years) that is seral to conifers in

much of its nearly 3 million ha range in the Western United
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States (DeByle and Winokur 1985). It is maintained by pe-

riodic mixed- to high-severity fires that kill most trees and

allow aspen to regenerate from root suckers. The lack of

fire has allowed the encroachment and dominance of coni-

fers in many aspen stands. Restoration of fire is compli-

cated by the fact that, today, aspen is becoming scarce and

has poor vigor. On some landscapes, aspen is so rare that

ungulates will concentrate in regenerating aspen stands to

eat the high-quality aspen suckers, thereby preventing suck-

ers from becoming trees.

Ponderosa pine forests occur on approximately 16 mil-

lion ha in the Western United States. These low- and mid-

elevation forests were historically maintained as grassy,

parklike stands by frequent (2- to 40-year average fire re-

turn intervals), low-severity surface fires that killed many

seedlings of its competitors, namely inland Douglas-fir and

other true firs (fig. 1a) (Allen and others 1998; Arno and

others 1995; Bogan and others 1999; Covington and Moore

1994). Removal of fire in these forests has created multiple-

storied, dense forests that have a greater potential for stand-

replacement fires (fig. 1b) (Steele and others 1986). Crown

fires were historically rare in these forests, yet several Idaho

fires in the 1980s and 1990s were active crown fires that

burned large areas (USDA Forest Service 1993). Ponderosa

pine forests in the Southern Rockies have been severely al-

tered by the combined effects of heavy grazing, logging,

and fire exclusion (Covington and Moore 1994; Fulé  and

others 1997). Historically, rare crown fires are now com-

mon in today’s southwestern ponderosa pine forests, and

these fires tend to be larger, more severe, and less com-

mon (Covington and Moore 1994; Swetnam and Baisan

1996). Tree density has experienced an almost tenfold

increase, and basal areas have nearly doubled from 1883

to 1994 (Fulé and others 1997). Litter and duff depths

have thickened by 200 percent, and woody fuels have

also increased.

Although the effects of fire exclusion are not readily evi-

dent on lodgepole pine (Pinus contorta) landscapes, this for-

est type deserves mention because of its large range (4 mil-

lion ha in the Rockies) and management implications in most

of the Rocky Mountains (Romme 1982). Franklin and Laven

(1990) recognized two types of fires occur in lodgepole pine

forests: surface and crown fires. Crown fires killed all spe-

cies but gave colonization advantage to the serotinous lodge-

pole pine. Surface fires only scarred lodgepole but killed

most subalpine fir and spruce thereby delaying succession

(Brown 1973). However, Brown and others (1995) found

the majority of stand-replacement fire in lodgepole pine was

actually severe surface fires. Fire exclusion has converted

some forests from lodgepole pine to fir and spruce. In

addition, some stand structures have gone from single-

age or diameter-class dominance (even aged) to multiple

age and diameter classes (unevenaged). As a result, these

lodgepole pine stands are currently experiencing heavy

infestations of mountain pine beetle, dwarf mistletoe, and

root diseases (Alexander and Hawksworth 1976; Romme

1982; Zimmerman and Laven 1984).

Fire regimes in high-elevation whitebark pine forests,

which occupy around 1 million ha in the Rocky Mountains,

are typically described as mixed severity occurring at 80- to

500-year intervals (Arno 1980; Keane and others 1994). Al-

though whitebark pine is long lived (more than 400 years),

it is eventually replaced by subalpine fir and spruce without

fire. Encroachment of subalpine fir into seral whitebark pine

stands creates multilayered canopies with low crown base

heights and high crown bulk densities, increasing the chance

of stand-replacement fires (Murray and others 1995). The

long-term consequence of fire exclusion in whitebark pine

ecosystems is the conversion of a mixed-severity fire re-

gime to a stand-replacement fire regime (Arno and others

1993; Loope and Gruell 1973; Hartwell 1997). Fires in this

new regime will tend to be larger and more intense (Keane

and others 1997). Effects of fire exclusion have recently

been accelerated by the introduction of the exotic disease

white pine blister rust (Cronartium ribicola), which has dev-

astated many whitebark pine stands in the Northern Rockies,

resulting in landscapes with abnormally high coverages of

subalpine fir types (Keane and others 1994).

What’s Next?

Restoration of some semblance of the native fire regimes

seems a critical step toward improving the health of many

Rocky Mountain ecosystems. However, there are problems.

First, the immensity of any Rockies restoration effort is

somewhat daunting considering projected future fires would

need to burn from 3 to 7 times more than present. The 70

years of fire suppression have caused usually high live and

dead fuel accumulations in many stands that, when ignited,

would create a fire that would be abnormally severe and

kill most of the trees (Mutch 1994). So, reintroduction of

fire must be done carefully to prevent further damage to the

stressed old-growth trees and other ecosystem components

(Arno and others 1995). Developing a fire prescription (in

other words, a set of weather conditions in which to burn)

to minimize fire intensity but still accomplish restoration

objectives is problematic because the high fuel loadings may

preclude the implementation of a low-severity burn

(Covington and Moore 1994). In addition, land management

agencies are limited in conducting the extensive restoration

treatments that are needed because of competing govern-

mental regulations (for example, smoke, Endangered Spe-

cies Act) and the high cost of implementation from envi-

ronmental assessments to executing treatments. Despite

these challenges, a functional restoration program is pos-

sible and necessary (Arno and Brown 1991; Babbit 1995;

Brown 1995; Hardy and Arno 1996; Harvey 1998; Parsons

and Landres 1998).

Many believe silvicultural cuttings are the only feasible

method to remove some combustible biomass and thereby

reducing fire intensities so fire severity will be similar to

historical events (Arno and others 1995; Covington and

Moore 1994). Baker (1992) felt that landscapes altered by

settlement and fire suppression cannot be restored using only
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the traditional methods of prescribed burning. Moreover,

fire restoration cannot be done with just one or two pre-

scribed burns or silvicultural treatments. Some field and

simulation studies have shown that it may take as many as

50 to 75 years or at least two and as many as seven fire

treatments or rotations to restore native fire regimes to stands

and landscapes where fire has been excluded (Baker 1993,

1994; Keane and others 1997). Additionally, it may take

more than one treatment to accomplish the objectives for

one prescribed burn. For example, it may take two low-

severity prescribed burns to achieve 90-percent mortality

in shade-tolerant species for a stand. Site-specific studies

and careful monitoring of the consequences of prescribed burn-

ing are essential to obtain goals related to ecosystem restora-

tion. Even for ponderosa pine ecosystems, the role of surface

versus stand-replacing fires in the pre-1900 fire regime is some-

times a contentious issue (Shinneman and Baker 1997).

The role of fire will continue to change in the Rocky

Mountains as we continue to exclude fires from landscapes.

It is not a question of “if” a landscape will burn, but rather,

when it burns, how severe that fire will be. There are pro-

found consequences of altered fire regimes as summarized

in table 1. Fires occurring on fire-excluded landscapes will

generate significantly different effects compared with ef-

fects of pre-1900 historical fires. Modern fires will be large

and severe, killing more plants and altering many ecosys-

tem processes. Bessie and Johnson (1995) point out that fires

occurring in subalpine forests during severe weather years

burn the most land area because wind coupled with exces-

sive drought, and not fuels, drive these fires. Extreme fire

years, such as 1910, 1987, 1994, and 1996, will tend to burn

most plant communities regardless of fuels or ecosystem health,

but the severity of these burns at the stand- and landscape-

level will be dictated by the fuel loadings. One can only

wonder what would happen if the extreme weather condi-

tions of 1910 occurred today on our fire-excluded landscapes

of the Rocky Mountains.
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