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ABSTRACT 

UNMANNED AERIAL VEHICLES FOR ESTIMATING FOREST CANOPY 

FUELS IN PONDEROSA PINE FOREST 

 

 
BY PATRICK C. SHIN 

 

Forests in the southwestern United States are becoming increasingly susceptible to large 

wildfires with significant environmental and economical impacts. As a result, forest land 

managers are planning and conducting forest fuel reduction treatments, in which spatial forest 

fuels and structure information are necessary, but currently have coarse spatial resolution and 

limited accuracies. This study tested the feasibility of using an unmanned aerial vehicle (UAV) 

with a multispectral sensor for estimating forest canopy fuels and structure in a southwestern 

ponderosa pine forest. The UAV-derived 2D multispectral orthomosaic images and 3D 

Structure-from-Motion point clouds were used to estimate canopy cover, canopy height, tree 

density, canopy base height, and canopy bulk density. The estimates were validated with field 

measurements within 57 plots, 10 x 10 m in dimension, and commonly used aerial photography 

from the National Aerial Imaging Program with 1 m spatial resolution. The results indicate that 

the 15 cm resolution UAV images can be used to accurately estimate forest canopy cover in 10 

m cells (R2 = 0.82, RMSE = 8.9% canopy cover). Tree density estimated from individual tree 

segmentation outputs resulted in true positive detection of 74% of the field-mapped trees with a 

16% commission error rate. The individual tree height estimates were strongly correlated to field 

measurements (R2 = 0.71, RMSE = 1.83 m), while canopy base height estimates had a weaker 

correlations with an R2 of 0.34 and RMSE of 2.52 m. Estimates of canopy bulk density showed 
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no correlation to estimates derived from field measurements. The UAV-derived canopy cover, 

canopy height, and canopy base height resulted in drastically different estimates of potential 

crown fire behavior compared to the coarse resolution LANDFIRE dataset. In particular, 

estimates from LANDFIRE data showed the study area as 86% active crown fire, 14% passive 

crown fire, and 0% surface fire. Whereas, UAV-derived estimates showed 100% surface fire and 

no active or passive crown fire. These results suggest that the spatial resolution of the data can 

have a large impact on the estimated crown fire behavior and, therefore, on the final forest fuels 

reduction treatment prescription and monitoring. 
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Chapter 1 Introduction 

The southwestern US is home to the largest contiguous ponderosa pine (Pinus ponderosa) forest 

in the world (Cooper, 1960; Allred, 2015). The southwestern ponderosa pine forests serve an 

ecologically important role by providing biodiversity, carbon storage and sequestration functions 

(Van Mantgem et al., 2009), and wildlife habitat. These forests are home to many plant species 

and over 250 species of vertebrates (Patton & Severson, 1989; Laughlin et al., 2006). Ponderosa 

pine forests in the Southwest also provide economic and social values from wood products, 

recreation opportunities, and watershed values (Baker, 1986; Allen et al., 2002; Noss et al., 2006; 

Mueller et al., 2013). Fire suppression, heavy grazing, logging, and climate change in these 

forests have created characteristics that are more susceptible to high-intensity crown fires putting 

these values, and neighboring communities, at risk (Cooper, 1960; Covington & Moore, 1994a; 

Savage et al., 1996; Moore et al., 2004). 

Historically, southwestern forests experienced frequent low-intensity fires that effectively 

thinned younger trees and consumed forest fuels keeping a low tree density. Euro-American 

settlement brought changes in land use and introduced fire suppression which removed this 

natural balancing mechanism (Covington et al., 1997). The forests that were naturally maintained 

by frequent low-intensity fires are now characterized by an overabundance of forest fuels 

(Fitzgerald, 2005; Westerling et al., 2006; Miller et al., 2009; Stephens et al., 2013). 

Southwestern forests are now densely stocked with an excess of small trees making them 

increasingly susceptible to high-intensity crown fires (Covington & Moore, 1994b).  

The Schultz Fire of 2010 was an example of the disastrous effects of a high-intensity 

crown fire just outside of Flagstaff, AZ. The wildfire burned over 6,000 hectares and caused an 

estimated $133-147 million in damage from the wildfire and subsequent flood events (Combrink 
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et al., 2013). Shortly after the Schultz Fire, residents of the City of Flagstaff voted for the 

Flagstaff Watershed Protection Project (FWPP) that allocated a $10 million bond for fuel 

reduction treatment in key areas around Flagstaff and its watershed (Figure 1). The FWPP is a 

multiple agency partnership with the City of Flagstaff, Arizona State, and Coconino National 

Forest with the goal to protect the city from wildfire, and subsequent flooding, which could 

damage key city infrastructure including its water supply. The FWPP is also the first fuel 

reduction treatment in the United States to be funded by a municipal bond (Mottek Lucas, 2015). 
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Figure 1: Study area map. The study area is located near Flagstaff, AZ and the Coconino 

National Forest within the state of Arizona (Panels A and B). This study focused on a Phase 1 

area of the Flagstaff Watershed Protection Project (FWPP) treatment area (Panel C), which was 

scheduled for fuel reduction thinning in Summer and Fall 2017. Other areas of the FWPP and 

associated land ownership by the US Forest Service, City of Flagstaff, and the State of Arizona 

are also shown (Panel C). 

 

 Forest fuel reduction treatments, such as those treatments within the FWPP, often include 

a combination of mechanical, or hand thinning followed by the reintroduction of periodic low-

intensity fire. Forest thinning is designed to manipulate forest structure such as canopy cover, 

canopy height, crown base height, and crown bulk density, to produce forest conditions within 

the natural range of variability and less susceptible to catastrophic crown fires (Graham et al., 

2004; Agee & Skinner, 2005; Larson & Churchill, 2012; Reynolds et al., 2013). Reintroduction 
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of low-intensity fire is used to restore the natural fire regime and maintain a balance of forest 

fuels (Landres et al., 1999; Mast et al., 1999). These techniques can decrease the risk of wildfire, 

lessen the impacts of wildfire, reduce outbreaks of insects and disease, and help mitigate the 

effects of a changing climate (Savage et al., 1996; Kolb et al., 1998; Covington et al., 2001; 

Moore et al., 2004; Van Mantgem et al., 2009; Stoddard et al., 2015). 

Land managers often use detailed spatial forest structure information when planning, 

implementing, and monitoring forest fuels treatments. This information, in addition to data from 

field measurements, is used to prioritize areas that require treatment and to develop treatment 

prescriptions for specific areas. In addition to treatment planning, this information is also used to 

monitor forest characteristics and determine the effectiveness of the treatments at accomplishing 

desired management objectives (Lackey, 1998; Mueller et al., 2013). 

Currently, most fuels treatment projects use spatial fuels information from the Landscape 

Fire and Resource Management Planning Tools Project (LANDFIRE) database. LANDFIRE is 

an interagency partnership between the United States Department of Agriculture (USDA) Forest 

Service and the United State Department of Interior (DOI). Major partners to the program 

include the US Geological Survey (USGS), US Bureau of Land Management (BLM), Natural 

Resources Conservation Service (NRCS), National Agricultural Statistics Service (NASS), 

National Association of State Foresters, Texas Forest Service, and the Nature Conservancy. The 

LANDFIRE data production process is designed to be fully repeatable and is based on the latest 

science. LANDFIRE utilizes a combination of several geospatial technologies including 

biophysical gradient analysis, remote sensing, vegetation modeling, ecological simulation, 

landscape disturbance, and succession modeling (Rollins, 2009). First, a field-referenced 

database is created using field data primarily from the US Forest Service Forest Inventory and 
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Analysis program, but also including data from the US Geological Survey Gap Analysis 

Program, Bureau of Land Management, State agencies, and other partners. Next, spatial layers 

such as topography, satellite imagery, biophysical gradients, and training data from field-

referenced data are used to predict existing vegetation type, vegetation height, and canopy cover. 

These data are then used to model fire regime departure from historical conditions, as well as 

current vegetation characteristics.  

The field-reference data, spatial layers, and modeled vegetation characteristics are then 

used to estimate surface and canopy fuel components including fire behavior fuel models, 

canopy base height, and canopy bulk density (Reeves et al., 2006; Rollins, 2009). An overview 

of the LANDFIRE data production process from Rollins (2009) is shown in Figure 2. 

Specifically, canopy fuels products of LANDFIRE are a function of 40 separate predictor 

variables that are derived from LANDSAT satellite imagery (Homer et al., 2004), DAYMET 

meteorological database (Thornton et al., 1997), LANDSUM fire succession model (Keane et al., 

2006), USGS elevation data (USGS, 2008), and previously modeled vegetation characteristics 

from LANDFIRE (Zhu et al., 2006) (Appendix A). 
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Figure 2: Overview of the LANDFIRE data production procedure. LANDFIRE mapping 

processes begin with the creation of the LANDFIRE reference database, which comprises a set 

of all available georeferenced plot information from within each mapping zone. The reference 

and spatial databases are used in a classification and regression tree-based framework for 

creating maps of environmental site potential (ESP) and biophysical settings (BpS), existing 

vegetation type (EVT) and structure (canopy height, EVH and cover, EVC). These core 

vegetation maps formed the foundation for the simulation of historical fire regimes and the 

subsequent calculation of current departure from historical vegetation conditions. In addition, the 

vegetation maps served as the basis for mapping surface and canopy fuel for simulation of fire 

behavior and effects. LANDFIRE fire effects data products include Fuel Loading Models 

(FLMs) and Fuel Characterization Classes (FCCs). 

(Rollins, 2009) 
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Figure 3: The LANDFIRE fuels product data processing diagram. Spatial data layers and field-

referenced data are used to model fire behavior fuel models (FBFM), canopy height (CH), 

canopy cover (CC), canopy base height (CBH), and canopy bulk density (CBD). A subsequent 

process using a combination of model output evaluation, and expert opinion, are then used to 

develop the final LANDFIRE fuel data products. 

(Reeves et al, 2009) 
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Data from LANDFIRE is relatively easy to acquire from the federal website 

(www.landfire.gov) and comes at no cost to the user. The database offers nationwide coverage of 

spatial forest fuels data in 30 m spatial resolution, and is updated every 2-5 years (Table 1). The 

spatial fuels products produced by the LANDFIRE project include: canopy cover, canopy height, 

crown base height, crown bulk density, and fire behavior fuel models. Canopy cover is the 

percent of horizontal space that is covered by tree canopy within a 30 m grid cell. Canopy height 

describes the average height of the forest canopy within a 30 m grid cell (Reeves et al., 2009). 

Crown bulk density is the mass of canopy fuel per canopy volume that would burn in a crown 

fire (Wagner, 1977; Scott & Reinhardt, 2001; Keane et al., 2005). Crown base height is the 

lowest point at which there is sufficient canopy fuel for ignition (≥0.012 kg/m3) (Reeves et al., 

2006). The fire behavior fuel models refer to the 13 Anderson Fire Behavior Fuel Models 

(Anderson, 1982) and the 40 Scott and Burgan Fire Behavior Fuel Models (Scott & Burgan, 

2005), which describe surface fuel composition and associated fire behavior (Rothermel, 1972). 

These forest fuels raster products can be useful for prioritizing and planning at a landscape scale. 

However, their accuracy can vary by location compared to field-based measurements and often 

need to be adjusted to better represent actual site-specific conditions (Rollins, 2009). For 

example, in a study conducted by Reeves et al. (2009) across 12 different sites, LANDFIRE 

canopy base heights had R2 values that ranged from 0 to 0.93 when compared to field data. 
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Table 1: Spatial fuel products of LANDFIRE. The spatial fuels products produced by the 

LANDFIRE program with associated units that are binned into different categories. For example, 

canopy cover is presented in 10% bins, and canopy height is in 5 m height bins. 

LANDFIRE Spatial Fuels Products 
*All products are in 30 m spatial resolution and updated every 2-5 years 

 

Data Type Units Bin Size 

Canopy Cover Percent Cover (%) 10% 

Canopy Height Meters (m) 5 m 

Canopy Base Height Meters (m) 0.1 m 

Canopy Bulk Density 
Kilograms per cubic meter 

(kg/m3) 0.01 kg/m3 

Fire Behavior Fuel Model Fuel Type and Fire Behavior N/A 

  

The spatial fuels data from the LANDFIRE database are formatted for use with fire 

behavior modeling software, such as FlamMap (Stratton, 2006) (Figure 4). FlamMap is used to 

combine forest fuel characteristics, topography, fuel moisture, and weather factors to model fire 

behavior outputs. Some of these outputs include: flame length in meters, rate of spread in meters 

per minute, and crown fire activity. These are all generated with geospatial attributes and can be 

analyzed in a spatial environment (Finney, 2006). This study used FlamMap to model potential 

crown fire activity which uses spatial fuels data to model a particular area as potential surface, 

passive crown, or active crown fire. Surface fire is defined as a fire burning through the fuels on 

the ground surface. Passive crown fire occurs in an area that exhibits surface fire and contains a 

canopy base height low enough to initiate crown fire, however the canopy bulk density is 

insufficient to carry the crown fire. Active crown fire occurs where crown fire initiation is 

achieved and canopy bulk density can adequately carry a crown fire (Cruz et al., 2002; Scott, 

2006). 
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Figure 4: Topographic and spatial fuels variables that comprise the FlamMap landscape file. 

These variables are required to model fire behavior with FlamMap. These layers are readily 

available as 30 m rasters from the LANDFIRE database. 

By using the spatial fuels products from LANDFIRE with FlamMap fire behavior 

software, users can model fire behavior on a landscape scale in an area of their interest. In 

planning the FWPP treatment, the Coconino National Forest utilized LANDFIRE data, with 

supplementary field surveys, as inputs to FlamMap software to spatially model fire hazard and 

behavior near Flagstaff, AZ. They were able to use this information to examine the different 

alternatives that were analyzed in the Environmental Impact Statement (EIS). During this 

analysis, the Coconino National Forest found that the fuel reduction treatment could reduce the 

(Finney, 2006) 
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potential active and passive crown fire area by about 83% in the Dry Lake Hills area of the 

project (Table 2). 

According to the Environmental Impact Statement prepared by the Coconino National 

Forest (Coconino National Forest, 2015) for the FWPP, fire behavior analyses was performed by 

utilizing spatial fuels data from LANDFIRE, that were supplemented with field surveys. These 

field surveys were conducted across approximately 50% of the Dry Lake Hills area and were 

collected using the US Forest Service Field Sampled Vegetation (FSVeg) protocols 

(https://www.fs.fed.us/nrm/fsveg/). Local weather conditions from those that were exhibited 

during the 2010 Schultz Fire were used in modelling potential fire behavior in FlamMap. By 

using FlamMap in conjunction with Forest Vegetation Simulator (FVS), which is used to model 

the growth of forests, simulate management actions, and predict future forest structure, the 

Coconino National Forest staff modeled future potential fire behavior for simulated treatments 

representing each of the alternatives that were analyzed during the EIS process (Coconino 

National Forest, 2015). 

Table 2: Outputs from the crown fire potential model conducted by the Coconino National 

Forest during the FWPP Environmental Impact Statement analysis, which estimated the amount 

of total area in each fire behavior category (active crown fire, passive crown fire, and surface 

fire) for the Dry Lake Hills area. The weather conditions used in modelling were those exhibited 

during the 2010 Schultz Fire near Flagstaff. By implementing alternatives 2 and 3, the total 

active and passive crown fire was reduced by about 83%. See Figure 5 for associated crown fire 

potential maps. 

Crown Fire Potential in the Dry Lake Hills Area as 

Modelled in the FWPP EIS by the Coconino National Forest 

Fire Behavior 

Existing Crown Fire 

Potential 

Post-treatment Crown Fire 

Potential 

Active Crown 1,550 hectares 266 hectares 

Passive Crown 303 hectares 38 hectares 

Surface 1,166 hectares 2,706 hectares 
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Figure 5: Crown fire potential maps for the Dry Lake Hills area of Flagstaff Watershed 

Protection Project as illustrated in the Environmental Impact Statement conducted by the 

Coconino National Forest. Crown fire potential with the existing forest conditions (Panel A) 

contains more area modeled for potential active crown fire than post-treatment conditions (Panel 

B). Both models used weather conditions found during the 2010 Schultz Fire. See Table 2 for 

acreages by each modeled fire behavior type. 

Although LANDFIRE provides comprehensive U.S. nationwide coverage, the spatial 

information from the database is too coarse to represent the variations of forest fuels in an area 

smaller than landscape scale (Stratton, 2004). In southwestern ponderosa pine forests, landscape 

scale is defined as being >405 hectares, mid-scale is 4-405 hectares, and fine-scale is <4 hectares 

(Reynolds et al., 2013). Planning and evaluating fuels treatments with LANDFIRE data are 

limited to landscape scale applications and often requires supplementary data to make it 

applicable on a local level (Reeves et al., 2006; Stratton, 2009). Additionally, the LANDFIRE 

database is updated every 2-5 years making it further difficult to use as a timely monitoring tool. 

Therefore, land managers often conduct monitoring through traditional field surveys that can be 
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time-consuming and costly, often leading to a lack of comprehensive monitoring and evaluation 

of the treatment. 

Remote Sensing of Forest Characteristics 

Remote sensing offers a valuable method for understanding forest characteristics and lessens the 

need for costly field inventory campaigns. Spectral remote sensing in a form of passive remote 

sensing measures electromagnetic radiation that is reflected by objects of interest, and is 

commonly conducted using satellite- and aerial-based platforms. In forestry applications, these 

data can be used to estimate canopy cover, as well as species composition and arrangement (X. 

Li & Strahler, 1985; Franklin et al., 2000; Key et al., 2001; Ozdemir & Karnieli, 2011). 

However, passive remote sensing is less effective at estimating three-dimensional forest 

attributes such as tree height, canopy base height, tree density, and diameter at breast height 

(DBH) (Roberts et al., 2004; Hyde et al., 2006; Wulder et al., 2009). 

Light detection and ranging (lidar) is a form of active remote sensing that emits laser 

pulses towards the ground and measures the energy that is reflected back to the sensor. The 

resulting data is in the form of a 3D point cloud, where each point represents a surface, or 

feature, that reflected a pulse. The resolution of lidar data is measured by point density, or the 

number of points per area (points/m2). 

Manned aerial lidar uses a manned aircraft as a platform for a lidar sensor. Generally, 

when applied to measuring forest structure, a relatively high point density is desired (≥ 6-8 

points/m2) (Hummel et al., 2011; Edson & Wing, 2011). Manned aerial lidar has become a 

proven method for measuring forest structure across various regions and forest types. Aerial lidar 

was used to estimate forest canopy fuels in a coniferous forest west of the Cascade Range in 

Washington State within the Capitol State Forest managed by the Washington State Department 
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of Natural Resources (WA DNR). The study site was primarily composed of Douglas-fir 

(Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla), with a small hardwood 

component of red alder (Alnus rubra) and bigleaf maple (Acer macrophyllum). The study area 

was located within a commercial forest that had varying age and tree density due to harvesting, 

however specific forest metrics for the study area were not given. The study compared field-

based canopy fuel estimates to those derived from lidar data and had strong relationships for 

crown bulk density (R2 = 0.86), canopy base height (R2 = 0.77), and tree height (R2 = 0.98) 

(Andersen et al., 2005). Additionally, a study was also conducted in Washington State in the 

drier ponderosa pine forests east of the Cascade Range within the Ahtanum State Forest managed 

by WA DNR. The study site contained mostly ponderosa pine and additional components of 

Douglas-fir, grand fir (Abies contorta), lodgepole pine (Pinus contorta), Engelmann spruce 

(Picea engalmanii), and western larch (Larix occidentalis). Similar to the Capitol Forest site in 

Andersen et al (2005), the Ahtanum State forest is an active commercial forest which led to 

varying tree ages and tree density across the study site. Field data from this study showed that the 

study area contained an average canopy cover of 49.24% (SD = 18.74%) and average tree 

density of 423.98 tree per acre (SD = 344.34). When comparing field-based estimates to lidar-

derived estimates, strong positive relationships were shown for tree heights (R2 = 0.94), canopy 

base height (R2 = 0.78), and canopy bulk density (R2 = 0.83) (Erdody & Moskal, 2010). Another 

study used aerial lidar to measure canopy base height, tree height, and crown diameter in eastern 

Texas within the Sam Houston National Forest. The study site was described as pine plantations 

of various ages and also contained upland and bottomland hardwood species. However, specific 

species and forest metrics for the site are not described. The study compared lidar-derived crown 

base heights, tree heights, and crown widths to field measurements. Crown base height was 
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positively correlated with an R2 of 0.80 (0.79 for pines, 0.74 for hardwoods). Tree heights were 

positively correlated with an R2 of 0.95 (0.96 for pines, 0.90 for hardwoods). Lastly, crown 

widths were also positively correlated, although less strongly, with an R2 of 0.53 (0.57 for pines, 

0.59 for hardwoods) (Popescu & Zhao, 2008). A study in southwestern Norway used aerial lidar 

to estimate tree height and height to live crown. The study contained two areas, the Ostmarka 

Nature Reserve and a forest near the municipality of Valer, both of which were in southeast 

Norway and dominated by Norway spruce (Picea abies). When compared to field measurements, 

lidar-derived estimates for tree heights were positively correlated (R2 = 0.75). Lidar-derived 

estimates for height to live crown were less strongly correlated (R2 = 0.53) (Naesset & Bjerknes, 

2001). Additionally, manned aerial lidar has the advantage of being able to cover a large area 

from 5,000 ha (Edson & Wing, 2011) to over 12,000 ha (Hummel et al., 2011) for a single 

acquisition. However, it can be very costly ($78,900 for ~12,000 ha acquisition (Hummel et al., 

2011)) making it inaccessible for some land managers. 

Recent miniaturization of sensors have allowed them to be deployed on small unmanned 

aerial vehicles (UAVs). Remote sensing with UAVs offers an efficient method for gathering 

information about forest characteristics. Similar to aerial- and satellite-based spectral remote 

sensing, UAVs equipped with spectral sensors are able to produce data that can be used to 

classify vegetation types and estimate canopy cover (Dunford et al., 2009; Makynen et al., 2011; 

Saari et al., 2011; Getzin et al., 2012; Sankey et al., 2017). Compared to the resolution of aerial 

images (1 m resolution) or satellite data (2 - 30 m resolution), imagery acquired from UAVs 

tends to have very high spatial resolution (15 cm) due to a lower altitude of acquisition and less 

atmospheric interference. The higher spatial resolution allows users to detect finer scale 

variability within images (Woodcock & Strahler, 1987), and may be more representative of the 
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actual target. Additionally, UAVs offer the ability to control the image acquisition process, 

timing, and obtain overlapping images to the users’ specifications. If acquired with high-overlap, 

these images can be used with Structure-from-Motion (SfM) algorithms to produce 3D point 

cloud data similar to aerial lidar. 

SfM is a photogrammetric method that allows users to create 3D models of a feature of 

interest (buildings, vegetation etc.) by using overlapping 2D images taken from a wide range of 

angles and perspectives. The concept behind SfM is similar to stereoscopic photogrammetry 

where users rely on the parallax between images to measure 3D structure. However, SfM can 

recreate feature geometry, camera position, and orientation through the use of computer 

algorithms and is not reliant on ground targets. SfM algorithms detect matching features in 

multiple, overlapping images and estimates the camera positions and feature geometry (Westoby 

et al., 2012). With this information, SfM can then generate a point cloud of the feature, similar to 

those generated with lidar. For some applications, SfM can provide an economical alternative to 

lidar (Morgenroth & Gomez, 2014). SfM produces the most accurate models when using images 

with high overlap and taken from many positions around the feature of interest. These images are 

best acquired from a moving platform that is able to take many images as it travels around the 

feature (Westoby et al., 2012). When conducted over forests, images taken from a UAV can be 

processed using SfM software to produce point clouds that represent both the ground surface and 

vegetation in 3D (Westoby et al., 2012; Dandois & Ellis, 2013). Using this method, remote 

sensing with UAVs offers an efficient method for gathering forest structure information. 

A study was conducted in temperate deciduous forests across three sites in Maryland that 

produced high-density (14+ points/m2), 3D point cloud data to derive forest canopy height 

estimations and compare them to field measurements. The first site was located on the University 
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of Maryland Baltimore County campus and contained a mixed-age of deciduous tree species 

including American beech (Fagus grandifolia), oak (Quercus spp.), hickory (Carya spp.), white 

ash (Fraxinus americana), and tulip-poplar (Liriodenron tulipifera). The second site contained 

similar forest composition as the first, however it included a riparian area that consisted of black 

locust (Robinia pseudoacacia), honey locust (Gleditsia triacanthos), and green ash (Fraxinus 

pennsylvanica). The third site was located at the Smithsonian Environmental Research Center 

(Maryland) and contained mostly tulip-poplar, American beech, and oak species. Aside from 

species composition, other forest metrics information was not given for this study. UAV-derived 

canopy height was strongly correlated to field measurements (R2 = 0.86, RMSE = 3.6 m) 

(Dandois & Ellis, 2013; Dandois et al., 2015). A study in Tasmania, Australia compared UAV-

derived canopy height and canopy cover to those estimated from aerial lidar and field 

measurements. This study was conducted in a dry sclerophyll eucalypt forest that was dominated 

by white peppermint (Eucalyptus pulchella). The entire study area was a 30 x 50 m rectangular 

plot and contained a range of tree density and canopy cover. Field measured canopy cover was 

59%, UAV canopy cover was estimated to be 50%, and lidar canopy cover was estimated to be 

63%. Field measured tree density was 907 trees per hectare (tph), and was estimated to be 747 

tph with UAV data, and 813 tph from lidar data indicating 82% and 90% detection. UAV-

derived tree height was positively correlated with field measurements (R2 = 0.68, RMSE = 1.3 

m), although lidar tree height estimates were more highly correlated to field measurements (R2 = 

0.84, RMSE = 0.92 m) (Wallace et al., 2016). In southeast Norway, another study used UAV 

imagery to estimate forest inventory metrics including tree heights, basal area, and stem 

volumes. The study area was across a 195 ha boreal forest that was mainly composed of Norway 

spruce and Scots pine (Pinus syvestris), and also included a small component of downy birch 
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(Betula pubescens). Although specific forest metrics for canopy cover and density are not given, 

a qualitative assessment of the sample UAV imagery of the study site shows conditions that 

appear relatively denser and more continuous canopy cover than the study area in the present 

study. The study estimated forest inventory metrics using UAV imagery, however ground points 

from aerial lidar were used to establish a digital elevation model (DEM) across the study area. 

When compared to field estimates, the UAV-derived estimates for Lorey’s mean height, 

dominant height, stem numbers, basal area, and stem volume were measured with respective R2 

values of 0.71, 0.97, 0.60, 0.60, and 0.85 with RMSE values of 1.4 m, 0.7 m, 538.2 ha, 4.5 

m2/ha, and 38.3 m3/ha (Puliti et al., 2015). In a study conducted in the Northern Territory, 

Australia, the authors used UAV imagery to delineate individual trees and estimate aboveground 

biomass. The study area was mainly composed of Darwin woollybutt (Eucalyptus miniata) and 

Darwin stringybark (Eucalyptus tetrodonta) and exhibited >30% canopy cover. When compared 

against aerial lidar-derived data, UAV-derived estimates were able to detect 70% of dominant or 

co-dominant trees, and 35% of suppressed trees. However, when compared to field-derived 

estimates, aboveground biomass estimates were relatively poor using UAV data (R2 = 0.15) 

(Goldbergs et al., 2018). A study was conducted near Flagstaff, AZ that used UAV imagery to 

estimate individual tree heights, crown diameters, canopy cover, and tree density. The primary 

overstory tree species in this study was ponderosa pine which varied in tree density and canopy 

cover across the study area. The study area contained both an ecotone area and forest area. The 

ecotone area was described as the transition zone of shrubland-grassland meadow and ponderosa 

pine forest. The forest area contained primarily a ponderosa pine overstory and contained an 

untreated control site, and three treatment sites including a burn-only, thin-only, and a thin-and-

burn. According to field measurements in the forest area, the control site had the highest mean 
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canopy cover (50%) and tree density (3.5 trees/100 m2). In descending order this was followed 

by the burn-only site with 43% canopy cover and 2.7 trees/100m2, the thin-only site with 33.8% 

canopy cover and 1.3 trees/100m2, and the thin-and-burn site with 21.8% canopy cover and 1 

tree/100m2. Across the study area, UAV-derived canopy cover estimates were highly correlated 

to field measurements (R2 = 0.74, RMSE = 8.5%). Tree height estimates had an R2 of 0.93 

(RMSE = 1.5 m) in the less dense ecotone area, and R2 of 0.64 (RMSE = 2.9 m) in more dense 

forest areas. Crown diameter estimates had an R2 of 0.66 (RMSE = 0.72) in the ecotone area, and 

R2 of 0.70 (RMSE = 1.9 m) in the forest area. However, the individual tree delineation showed a 

weaker correlation in both the ecotone and forest areas (R2 = 0.36, RMSE = 0.83 trees/100 m2 

and R2 = 0.53, RMSE = 2.2 trees/100 m2 respectively) (Sankey et al., 2017). The forested area 

found in the study conducted by Sankey et al (2017) represented the most comparable site 

characteristics to those found in our study area. Therefore, we expect similar results for our 

estimations of canopy cover, tree heights, and individual tree delineation. At the time of this 

study, no previous literature has used UAV-SfM methods to estimate canopy base height or 

canopy bulk density. 

With modern advances in UAV platforms, sensor capabilities, and SfM computer vision 

algorithms, UAV SfM is becoming a potential economical alternative to aerial lidar for some 

applications (Dandois & Ellis, 2013; Morgenroth & Gomez, 2014; Dandois et al., 2015; Puliti et 

al., 2015; Jensen & Mathews, 2016; Wallace et al., 2016). Currently, UAV SfM has a smaller 

footprint than aerial lidar, but it is often higher in resolution (10+ points/m2 (Dandois et al., 

2015)) due to the interpolated nature of the points. Additionally, the lower cost allows a higher 

frequency of surveys and gives the user the option to survey a small area (40-120 hectares) 

without paying for an aerial lidar acquisition that is often not economically justifiable to obtain at 
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this scale. Relative to the cost of aerial lidar acquisitions, the cost of UAV SfM equipment 

(roughly around $30,000 for UAV and sensor) makes it possible for landowners to purchase their 

own and conduct surveys as needed. When compared to field surveys, UAVs can offer more 

comprehensive coverage and a less human-biased assessment of forest structure characteristics. 

The average cost to conduct fixed-radius forest inventory is $104-180/plot (Hummel et al., 2011) 

and field-based survey is often implemented at a sampling frequency of one plot for every 2-3 

ha. UAV surveys can potentially be cheaper, thus being an easier method for land managers to 

conduct more frequently (Puliti et al., 2015) leading to adaptive management opportunities and 

more informed decision-making. 

Objectives 

The overall objective of this project is to use UAV imagery and SfM method to estimate forest 

canopy fuels and estimate crown fire behavior. Specific objectives include the following: 

1. Test and quantify UAV SfM capabilities in measuring forest structure in the FWPP area: 

a. Estimate canopy cover in 10 m cells using orthomosaic images from the UAV 

b. Delineate individual trees by segmenting the UAV SfM-derived point cloud to 

estimate tree density in 10 m cells and estimate for each individual tree: total tree 

height, canopy base height, and canopy bulk density. 

2. When the above variables are reasonably accurately derived, estimate the following variables 

in 10 m cells using the UAV data: elevation (m), slope (degrees), aspect (azimuth), total 

canopy cover (%), mean canopy height (m), mean canopy base height (m), and mean canopy 

bulk density (kg/m3) for use in FlamMap software for fire behavior modeling. 
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3. Conduct sensitivity analysis in FlamMap using each UAV-derived raster variable 

individually to determine the effects of these variables on modeled potential crown fire 

behavior. 

Hypotheses 

1. UAV images can be used to accurately estimate canopy cover in 10 m cells. 

2. Detection of individual trees from UAV SfM will decrease with increasing tree density. 

3. UAV-derived estimates of total tree heights for individual trees will be accurate when 

compared to field measurements.  

4. UAV-derived individual tree canopy base height will have relatively lower accuracies, since 

below-canopy variables are challenging to detect with SfM-derived 3D data.  

5. If canopy base height cannot be reliably estimated, canopy bulk density estimates will not be 

accurate, since it is directly related to canopy base height estimates.  

6. Due to the finer spatial resolution, UAV-derived crown fire behavior models will show more 

spatial variation than LANDFIRE-derived models leading to varying estimates of forest fire 

behavior. 

Implications of Research 

UAV-derived imagery can produce high spatial resolution data that can be used to more 

accurately and cost-efficiently represent forest fuels. These data could offer a fuels measurement 

method that is more efficient than field surveys and potentially more accurate with less bias 

introduced by the observer. By supplementing, or replacing, LANDFIRE data (30 m spatial 

resolution, 2-5 year temporal resolution) forest fuels can be assessed at a fine- to mid-scale 

giving land managers the ability to conduct more precise and targeted treatments and monitoring. 

UAVs also have the added benefit of being relatively less costly and more repeatable than other 
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methods. Thus, UAVs can also provide land managers with a means to perform rapid 

assessments of fuels treatments. This would make it possible for managers to prioritize 

treatments, calibrate ongoing treatments, and conduct responsive adaptive management. The 

results of our project can be used to assist forest land managers with integrating UAV technology 

in their future land management activities, potentially increasing efficiency of fuels reduction 

treatments. 

Chapter 2 Methods 

Study Area Description 

This study focused on a 12.14 ha area located about 3 km northeast of downtown Flagstaff, AZ 

and about 0.5 km north of Buffalo Park, a park owned and managed by the City of Flagstaff 

(Figure 1). The study area is under Coconino National Forest land ownership and is within the 

wildland-urban interface of Flagstaff, AZ. It is within 200 m from the nearest residential 

structure. Due to the close proximity to residential structures, the City of Flagstaff has identified 

this area as a high priority for treatment and has planned it to be mechanically thinned as part of 

Phase 1 FWPP in 2017. Phase 2 is located north of Phase 1 on Coconino National Forest 

ownership and includes operationally complex thinning areas mostly due to steep slopes. Phase 2 

is planned to include helicopter and skyline cable harvesting techniques and planned to be treated 

in future years. The final treatment area, Phase 3, is located about 25 km southeast of Flagstaff in 

the Mormon Mountain area. 

The elevation of the study area ranges from 2,158 to 2,188 meters above sea level with a 

southwest aspect of 0-10 degrees slope. The Flagstaff Pulliam Airport weather station is about 20 

km south of the study area and provides the most representative climate data. Annual records 

from this station between 1981 and 2010 include a mean annual precipitation of 55.5 cm, which 
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predominantly occurs during summer monsoon events and winter snowfall, and a mean annual 

temperature of 7.9° C, with a mean low temperature of 0.1° C, and a mean high temperature of 

16.0° C. On average the coolest month is December with an average temperature of -1.3° C, 

whereas July is the warmest month with an average temperature of 18.9° C (National Oceanic 

and Atmospheric Administration, n.d.). 

The dominant overstory vegetation type is ponderosa pine (Pinus ponderosa) forest with 

a small Gambel oak (Quercus gambelii) component. Native understory vegetation is primarily 

comprised of Arizona fescue (Festuca arizonica), bottlebrush squirreltail (Elymus elymoides), 

mountain muhly (Muhlenbergia montana), and Fendler’s ceanothus (Ceanothus fendleri). 

Common invasive species in this area include Dalmatian toadflax (Linaria dalmatica), common 

mullein (Verbascum thapsus), and cheatgrass (Bromus tectorum). 

The climate, vegetation, and soils of the study area are similar to those found in most of 

the forested areas that surround the City of Flagstaff. Forests with similar characteristics are also 

commonly found across northern Arizona among ponderosa pine forests of comparable elevation 

ranges. According to the Natural Resources Conservation Service (NRCS) Web Soil Survey tool, 

the study area contains Baldy stony loam soils, which have a rhyolite parent material, are well-

drained, and have a medium runoff potential (Natural Resources Conservation Service, 2017). 

 The area surrounding the study area is a popular location for recreationists, specifically 

hikers and mountain bikers. Although the area only contains one sanctioned trail, the Pipeline 

Trail No 42 (Coconino National Forest, n.d.a.), there are numerous unsanctioned social trails that 

have been developed over time, most likely due to the close proximity to residential areas. Most 

recent management activity in the study area occurred in 2016 when a noxious weed treatment 

was implemented on approximately 0.73 ha. The study area has not seen any timber harvesting 
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between 1970 and present. However, there is evidence of historical logging activity in the form 

of historical cut stumps. In 1998, there was one wildfire within the study area that was 

documented to be human caused and less than 4 ha in size in the southernmost end of the study 

area. The southwest perimeter of the Radio Fire of 1977 (1800 ha in size) is about 1.5 km due 

east, and the southern boundary of the Schultz Fire of 2010 (6000 ha in size) is about 4.2 km due 

north of the study area (Coconino National Forest, n.d.b). 

Data Collection 

Site Selection 

The FWPP Phase 1 area was examined using ArcMap 10.4 software (ESRI, 2015) to locate areas 

for potential UAV surveys. Adequate take-off and landing space to safely implement UAV 

flights proved to be the most limiting factor in site selection. The study area was chosen due to 

its operational feasibility for UAV use. After identifying an appropriate study area, two UAV 

surveys were planned: Flight 1 and Flight 2. Although the flights are in close proximity to one 

another, the areas do not overlap and are about 60 m apart. 

UAV Platform and Sensor 

This study utilized a SenseFly eBee fixed-wing UAV platform (Figure 6). The eBee aircraft 

weighs approximately 537 g with no payload, has a maximum takeoff weight of 750 g, and a 

wingspan of 96 cm (Puliti et al., 2015; Sankey et al., 2017). The eBee has a cruising speed of 40-

90 km/h, maximum flight duration of 50 minutes, and maximum flight coverage of 12 km2 under 

optimal conditions (SenseFly, n.d.a.). The eBee is launched by hand and lands by reducing speed 

and altitude until it “belly lands” (Sankey et al., 2017). The eBee operates with eMotion 2, a 

custom flight planning software package (SenseFly, n.d.b). In this study, this software was used 

to develop the flight mission plan and carry out the mission. A Microsoft Surface™ tablet was 
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used to run the eMotion 2 software and the ground station. The eBee performed an autonomous 

flight on the planned flightpath, collected images at preset intervals, and returned to the landing 

area. 

The eBee UAV was equipped with an Airinov Multispec 4C multispectral sensor. The 

sensor collected images in four different spectral bands via four separate lenses (Figure 6). These 

wavelengths are centered at green (550 nm), red (660 nm), red edge (735 nm), and near-infrared 

(790 nm).  

 

Figure 6: The eBee fixed-wing UAV with the Microsoft Surface tablet used for flight planning 

and operation (Panel A) and the spectral bands of the Airinov Multispec 4C sensor used aboard 

the UAV (Panel B). Bands 1 through 4 respectively are the green, red, red edge, and near 

infrared wavelengths. They have corresponding mean wavelengths of 550 nm, 660 nm, 735 nm, 

and 790 nm. 

UAV Image Acquisition 

Flight 1 was completed on August 21, 2016 and Flight 2 on November 22, 2016. Both surveys 

were conducted with 85-90% latitudinal and longitudinal overlap, respectively, at a maximum 

flight altitude of 120 m. This flight altitude resulted in pixel resolution of 15 cm. Both flights 

were performed close to solar noon to minimize shadowing. Flight 1 lasted for 15 minutes 

(Airinov, 2016) 
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resulting in 960 individual images taken (240 images x 4 bands). Perpendicular flight lines were 

planned for both flights to maximize the number of images collected and to achieve higher image 

overlap. However, Flight 1 only obtained perpendicular flight lines for approximately half of its 

survey area before landing due to impending weather. Flight 2 was successful at acquiring 

perpendicular flight lines for its entire survey area. Flight 2 took 22 minutes to complete and 

acquired a total of 1,828 individual images (457 images x 4 bands).  

Field Validation Data Collection 

Field measurements were designed to provide a validation dataset for the forest characteristics 

and individual tree measurements derived from the UAV data. Two specific forest stand-level 

variables that required validation data were: tree canopy cover and tree density. In this study, 

both of these variables were estimated in 10 x 10 m cells (100 m2). Additionally, within each plot 

individual trees were measured to provide a validation dataset for UAV-derived individual tree 

measurements. 

Using ArcMap 10.4 software (ESRI, 2015) along with polygons of the study areas 

imaged with the UAV, field plot locations were chosen by first overlaying a 10 m grid across 

both flight polygons to produce the 10x10 m grid cells. Within this grid, 100 non-adjacent cells 

with a minimum distance of 10 m (one cell) between cells were randomly chosen. An initial tree 

density (trees/cell) for each random cell was visually estimated by examining the high-resolution 

(~15 cm) orthomosaic image from the UAV surveys. Field sampling was then stratified by tree 

density with a goal of sampling 10 cells with a density of 1, 2, 3, and 4 trees/cell. The study area 

contained only a few areas of higher tree density, but the desired goal of this study was to 

measure and evaluate tree canopy cover and tree density estimates across the entire possible 

range of tree densities. I, therefore, actively sought and located at least 5 cells with 5, 6, and 7 
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trees/cell, respectively (Table 3). The sampling goal was achieved at all density levels with a 

total 57 plots distributed across the study area. 

Table 3: Distribution of the field samples. Field sampling was stratified by tree density to collect 

individual tree measurements in areas of varying density. The sampling goal was to measure 10 

cells with a density of 1, 2, 3, and 4 trees/cell, and 5 cells with a density of 5, 6, and 7 trees/cell. 

The sampling goal was met at all densities. 

Tree Density 

(trees/cell) 

Sampling Goal 

(cells) 

Actual Measured 

(cells) 

1 10 12 

2 10 10 

3 10 10 

4 10 10 

5 5 5 

6 5 5 

7 5 5 

Total 55 57 

 

Once the final plot locations were identified, an iPad tablet was connected to a Bad Elf 

GPS PRO and used to navigate to each plot location. Although the tablet was equipped with a 

GPS, the tree location was based on the UAV-derived georeferenced orthomosaic image (see 

“UAV Image Pre-Processing”), which was used as a basemap in Avenza Maps software. I 

navigated to the four corners of each plot to match the locations of the field plots with the 10 m 

cells derived in ArcMap 10.4. Plot boundaries were then delineated and trees were determined to 

be either in or out of the plot based on their canopy position on the orthomosaic map. At each 

plot, the GPS location of each tree was digitized on the orthomosaic map. For the purpose of this 

study, the recorded tree locations were relative to the orthomosaic map and not true locations on 

the ground. However, this procedure ensured that the exact matching area and individual trees 
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were examined in both the field plots and UAV images, and also eliminated the need for high-

precision GPS and correcting for GPS errors. 

 

Figure 7: Map of study area with field sampling points. General vicinity of the study area with 

the two flight areas and their proximity to the City of Flagstaff (Panel A). Flight 2 Area with a 10 

m grid and locations of field measured trees (Panel B). Flight 1 Area with a 10 m grid and 

locations of field measured trees (Panel C). 

The following measurements were then recorded for each tree: species, DBH, canopy 

diameter in the North-South axis, canopy diameter in the East-West axis, tree height, and canopy 

base height. The DBH was measured using a diameter tape at a height of 1.37 m on the upslope 

side of the tree. Canopy diameter was measured using a Leica DISTO E7500i laser rangefinder 
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in both the North-South and East-West axes, which were determined using a Suunto MC2 

compass with 10° E magnetic declination adjustment. Canopy height and canopy base height 

were measured by using the laser rangefinder to determine horizontal distance to the tree, and a 

Suunto PM-5 clinometer to measure the angles to tree base, canopy top, and canopy base. 

Canopy base was the lowest point of continuous canopy. The distance and angle measurements 

were then used to calculate tree height and canopy base height. Canopy bulk density was 

calculated by first estimating canopy mass using DBH and allometric equations (eq. 1, 2, 3) by 

Kaye et al. (2005). The canopy volume was then calculated using the average canopy radius, 

overall tree height, and canopy base height, and assuming a cylindrical canopy model (eq. 4). 

Crown mass was divided by crown volume to estimate a crown bulk density for each tree (eq. 5). 

 

𝑀𝑎𝑠𝑠 𝑜𝑓 𝐿𝑖𝑣𝑒 𝐵𝑟𝑎𝑛𝑐ℎ 𝑊𝑜𝑜𝑑 𝑎𝑛𝑑 𝐵𝑎𝑟𝑘 (𝑘𝑔) = 1.0425𝑒−6.0278+ln(𝑑𝑏ℎ)×2.8655 eq. 1 

𝑀𝑎𝑠𝑠 𝑜𝑓 𝐷𝑒𝑎𝑑 𝑏𝑟𝑎𝑛𝑐ℎ 𝑤𝑜𝑜𝑑 𝑎𝑛𝑑 𝑏𝑎𝑟𝑘 (𝑘𝑔) =  1.1322𝑒−5.3589+ln(𝑑𝑏ℎ)×2.250 eq. 2 

𝑀𝑎𝑠𝑠 𝑜𝑓 𝐹𝑜𝑙𝑖𝑎𝑔𝑒 (𝑘𝑔) =  1.0672𝑒−4.1317+ln (𝑑𝑏ℎ)×2.0159   eq. 3 

𝐶𝑎𝑛𝑜𝑝𝑦 𝑉𝑜𝑙𝑢𝑚𝑒 =  [𝜋 (𝑎𝑣𝑔. 𝑐𝑎𝑛𝑜𝑝𝑦 𝑟𝑎𝑑𝑖𝑢𝑠)2]  × (𝑡𝑟𝑒𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 − 𝑐𝑎𝑛𝑜𝑝𝑦 𝑏𝑎𝑠𝑒 ℎ𝑒𝑖𝑔ℎ𝑡) 

            eq. 4 

𝐶𝑎𝑛𝑜𝑝𝑦 𝐵𝑢𝑙𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑆𝑢𝑚 𝑜𝑓 𝐶𝑎𝑛𝑜𝑝𝑦 𝑀𝑎𝑠𝑠

𝐶𝑎𝑛𝑜𝑝𝑦 𝑉𝑜𝑙𝑢𝑚𝑒
   eq. 5 

 

The individual tree measurements were appended as attributes to the GPS coordinates 

corresponding to each tree location. The resulting spatial data represents the location of each tree 



 

30 

 

with the associated attributes and was used as a validation dataset for the UAV-derived 

individual tree measurements. 

UAV Image Pre-Processing 

Following the UAV survey flights, the acquired images and flight logs were retrieved from the 

UAV. These files were then processed using Pix4D (Pix4D, Switzerland) to create a single 

orthomosaic image and 3D point cloud of each of the surveyed areas. The MultiSpec 4C sensor 

captures images in four bands through four separate cameras. The Pix4D software effectively 

coregisters and merges these images together to create an orthomosaic for each band. These four 

orthomosaics were then spectrally stacked with ENVI 5.3 (Harris Geospatial Solutions) to 

produce one four-band orthomosaic for each flight area. The edges of the resulting orthomosaic 

images were heavily distorted due to lack of image overlap. Therefore, the original flight 

polygons were used to spatially subset the orthomosaic images and remove the distorted areas. 

The resulting orthomosaic images for both flight areas were 15 cm in spatial resolution and 

contained four separate bands (green, red, red edge, and NIR). 

 Similar to the orthomosaic images, the Pix4D software creates lidar-like, 3D point cloud 

data for each spectral band via the photogrammetric method known as Structure-from-Motion 

(SfM). These point clouds were merged using CloudCompare to create a single point cloud file 

with a high point density for each flight area. The point cloud data were then spatially subset to 

the same area as the orthomosaic images. The point cloud for Flight 2 contained a few areas with 

spurious points that were well below the ground. The Statistical Outlier Removal tool in 

CloudCompare was used to remove outliers that were outside one standard deviation from any 

group of six points. This process effectively removed extraneous points below the ground 
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without removing desirable points. The average point densities for the point clouds were 32 

points/m2 and 56 points/m2 for Flights 1 and 2, respectively. 

Deriving Forest Measurements 

Canopy Cover from UAV imagery 

UAV canopy cover was primarily derived using the orthomosaic images and a normalized 

difference vegetation index (NDVI)-based segmentation method. The orthomosaic image for 

each flight were used in ENVI 5.3 software where the Band Math tool was used to create an 

NDVI raster with the following equation (eq. 6): 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝑒𝑑 𝐸𝑑𝑔𝑒)

(𝑁𝐼𝑅+𝑅𝑒𝑑 𝐸𝑑𝑔𝑒)
     (eq. 6) 

Preliminary testing showed that using the NIR & Red Edge band combination generated 

a better NDVI raster than the NIR & Red band combination. Additionally, all values were 

converted to a floating point data type for the band math operation. After the NDVI raster was 

generated, the Segmentation Image tool was used to classify canopy pixels by setting a minimum 

and maximum NDVI value threshold, and a population minimum. These parameters define the 

criteria for the canopy classification (Table 4). A pixel that meets the minimum and maximum 

thresholds, and has enough qualifying pixels surrounding it to meet the population minimum 

were classified as areas of crown. 
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Table 4: Parameters used in the ENVI Image Segmentation tool for UAV and NAIP canopy 

cover estimates. The minimum population used for NAIP data was significantly less than UAV 

due to the large (1 m) resolution relative to the UAV data (15 cm). 

Parameter name UAV Flight 1 UAV Flight 2 NAIP 

Minimum 

Threshold: 
0.1 0.1 0.15 

Maximum 

Threshold: 
1 1 1 

Population 

Minimum: 
100 100 4 

Neighbor Rule: 8 8 8 

 

The resulting raster classified areas of tree canopy and assigned them with unique object 

ID numbers. A band math equation was then applied to create a binary canopy raster in which all 

trees were assigned a value of 1, whereas all other pixels had a value of 0. This raster was then 

exported from ENVI as a .tif file and imported in R software. The binary canopy raster was 

overlaid on a canopy height model raster to remove all canopy pixels with a tree canopy height 

of less than 1.37 m. Within R (R Development Core Team 2008), and using the raster package, 

the point cloud for each flight was imported and canopy height models were produced. This 

canopy height model (CHM) was then used to create a raster to identify all values less than 1.37 

m. This process effectively removed areas of high NDVI and low canopy height (eg. herbaceous 

vegetation) to produce a canopy raster more representative of only tree canopy. This raster was 

then resampled to 20 cm resolution, for an even fit into a 10 m cell, and imported to ArcMap 

10.4 where it was converted from a binary canopy raster into a 10 m percent canopy cover 

feature (Figure 8). 



 

33 

 

 

Figure 8: Canopy cover processing workflow. Process used to convert the binary canopy raster 

to summarize canopy percent cover in a 10 m cell. 

To summarize the binary canopy cover raster to tree canopy percent cover estimates in 10 

m cells, the input raster was first snapped to match the desired 10 m grid. The zonal statistics tool 

was then run to summarize the number of canopy pixels within every 10 m grid cell. This sum 

was then converted to a percent by dividing by the total number of input raster cells (N=2,500) in 

the 10 m grid. The resulting raster was converted to a polygon for comparison with the other data 

types. The same process for both the UAV and National Agriculture Imagery Program (NAIP) 

data was used to convert the canopy raster into a 10 m canopy cover feature. However, the total 

number of raster cells in a 10 m grid cell was 100 to reflect the resolution of the NAIP imagery 

(1 m). 

Canopy Cover Estimate Validation 

The UAV image-derived canopy cover estimates were validated using two different independent 

image sources and field-based canopy cover estimation. First, the National Agriculture Imagery 

Program (NAIP) image was used for validating the UAV-derived canopy cover estimates in 10 

m cells. NAIP is a program through the United States Department of Agriculture (USDA) Farm 

Service Agency that acquires aerial imagery every 3-5 years. NAIP imagery has a spatial 

resolution of 1 m and four spectral bands (R, G, B, NIR). For this study, NAIP imagery was 

acquired by accessing the NAIP server through ArcMap 10.4. Tiles overlapping the study area 

were selected and then spatially subset to the general study area vicinity. 
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A similar workflow to the UAV processing was used to estimate canopy cover from 

NAIP imagery. An NDVI-based segmentation image was created in ENVI 5.3 with the 

parameters in Table 4 and used create a binary canopy raster. The binary raster was then 

summarized into tree canopy percent cover estimates in 10 m grids. A pixel-wise regression 

analysis was used to compare the tree canopy cover estimates from the UAV image classification 

and NAIP data. 

In 2014, the USDA Farm Service Agency acquired imagery similar to NAIP in an area 

that included our study area. This imagery was acquired using higher specifications than 

traditional NAIP imagery that resulted in 0.3 m spatial resolution imagery, with four spectral 

bands (R, G, B, NIR), across a 495,699 ha area of the Coconino and Kaibab National Forests in 

northern Arizona. Zachmann and Dickson (2017) used this imagery to classify tree canopy at a 

0.3 m spatial resolution. During their model evaluation using 621 test samples, the canopy 

classification had a 98% producer’s accuracy (Zachmann & Dickson, 2017). For this study, the 

Zachmann and Dickson (2017) canopy data provided a relatively high resolution canopy cover 

raster for comparison and was used as a second validation source. The Zachmann and Dickson 

(2017) canopy raster was first resampled to 25 cm, using nearest neighbor resampling, to ensure 

a “perfect fit” into the 10 m grid cells. A pixel-wise regression analysis was conducted between 

the 10 m canopy cover from the UAV image classification and Zachmann and Dickson (2017) 

data sources. 

 Field measurements for canopy diameter were used to calculate an average canopy 

radius. This canopy radius was then used to create a buffer around each field measured tree 

location. All field-based tree canopies were combined in ArcMap to estimate canopy cover 

within each field plot and compared to UAV image-derived estimates. 
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The primary statistics from the canopy cover regression analyses that were used to assess 

the correlation between datasets was the adjusted R2 correlation coefficient and the root mean 

squared error (RMSE). In order to compare datasets of varying scales, a normalization procedure 

can be applied to the RMSE by utilizing differences in overall dataset ranges, interquartile 

ranges, or the coefficient of variation within datasets. However, since all canopy cover data were 

resampled to percent canopy cover within a 10 x 10 m cell, the datasets shared a common spatial 

scale and this procedure was not required to make a valid statistical comparison. 

UAV image-derived Tree Density Estimates 

Tree density estimate was derived by summarizing the number of trees mapped within each field 

plot. Due to the stratification scheme in field sampling, tree density ranged from 1 to 7 trees per 

100 m2 plot (Table 3). To estimate tree density in the UAV image, the UAV-derived canopy 

cover estimates for each plot were first used to examine the relationship between canopy and tree 

density and determine whether tree canopy cover can be used as a predictor variable for tree 

density estimates. This relationship was analyzed using an ANOVA test with multiple pairwise 

comparisons, in which the plots were binned into tree density classes along with their 

corresponding canopy cover values. Statistically significant differences in canopy cover values 

among the density classes, if observed, might be used as indicators of tree density classes. 

Landscape metrics from UAV Canopy Cover 

The binary canopy and non-canopy raster (20 cm resolution) from the UAV data was first edited 

to change the value of all non-canopy pixels from 0 to NA. This effectively gives the canopy 

raster a single class of “canopy.” This raster was then used as an input to FRAGSTATS 4 

software (McGarigal, 2012) to calculate the following landscape metrics: number of patches, 

largest patch index, mean area of a patch, and standard deviation of patch area. All metrics were 
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calculated using an 8 neighbor rule. The number of patches is simply the number of individual 

patches that were identified using the 8 neighbor rule. Largest patch index is percentage of the 

total landscape that is occupied by the largest identified patch. Mean area of a patch is the 

average area of all patches (reported in square meters). Standard deviation of patch area is the 

standard deviation between all patch areas (reported in square meters). 

Individual Tree Segmentation 

Point cloud processing and individual tree segmentation was performed using the lidR package 

in R statistical analysis software, which contains functions that implement various point cloud 

processing methods for forestry applications. A progressive morphological filter (Zhang et al 

2003) was first used to classify ground points in the point clouds. A digital terrain model (DTM) 

was then created using the points classified as ground. The DTM values were then subtracted 

from the point cloud Z values to create a normalized point cloud that effectively converts Z 

values from meters above sea level to meters above ground. This point cloud normalization is a 

common pre-processing procedure for individual tree segmentation with point cloud data (W. Li 

et al., 2012; Wallace, Musk et al., 2014; Wallace, Lucieer et al., 2014; Puliti et al., 2015; Iizuka 

et al., 2018). The UAV SfM-derived point clouds contained an abnormal amount of “noise” 

points that were a few meters above the ground surface, but represented neither ground nor 

vegetation. To remove these points and avoid falsely classified points as trees, two novel 

methods were used. First, by applying a second progressive morphological ground filter with a 

higher maximum threshold height (4 m), a larger number of these points were classified as 

ground points and therefore excluded during tree segmentation. Second, the point clouds were 

colorized using the NDVI raster generated from the orthomosaic images. This allowed all points 

with a NDVI value less than 0 to be filtered and ignored during tree segmentation. Applying 
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these steps generated a point cloud that best represented only tree points which were then used in 

the tree segmentation algorithm (Figure 9). 

 

Figure 9: Point cloud preparation for tree segmentation. Side profile views of the same point 

cloud subset at different stages of processing. Point cloud with initial ground classification 

(Panel A). The ground points are displayed in red and were used to create a digital terrain model 

(DTM). Point cloud that has been normalized and ground points removed (Panel B). However, 

some non-tree points still remain. Point cloud after the second ground filtering and NDVI 
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threshold have been applied (Panel C). The final point cloud was deemed the most representative 

of tree-only points and was then used in the tree segmentation algorithm. 

The lidR package in R contains several tree segmentation algorithms, most of which are 

based on canopy height models (CHM). Three of these algorithms were used during preliminary 

testing: watershed method (Oles et al., 2018), Dalponte method (Dalponte and Coomes, 2016), 

and Li method (Li et al., 2012). Both the watershed and Dalponte methods are CHM-based, 

where the user generates a CHM and the tree segmentation is implemented on the CHM raster. 

The resulting output is used to overlay on the point cloud and assign unique tree identifications 

to each segmented tree. The watershed method inverts the CHM surface and performs a 

watershed analysis to determine catchment areas that are then segmented as individual trees 

(Oles et al., 2018). The Dalponte method uses the CHM and utilizes a decision tree method to 

grow trees around local maxima in the point cloud (Dalponte and Coomes, 2016). The Li method 

is the only point-based method implemented by lidR. This method segments trees by analyzing 

points from tree top to bottom and using the horizontal distance between points to determine if 

they are part of the tree (Li et al., 2012). During preliminary testing of these three methods, the 

Li method was chosen as the most effective method for detecting individual trees without over-

segmentation. 

The Li segmentation used in this study relies on four parameters that are user defined. 

First, the minimum height of a tree (measured in meters) is set as “hmin,” and the maximum 

crown radius (also measured in meters) is defined as “R.” Last, two numeric distance (measured 

in meters) thresholds are set as “dt1” and “dt2.” The function of dt1 and dt2 are to provide a 

horizontal distance threshold between points for all points above 15 m in height, and below 15 m 

in height, respectively. 
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For this study, a minimum tree height of 2 m, and a maximum canopy diameter of 7 m, 

were deemed appropriate by examining the field-based tree measurements. There were no trees 

below 2 m in height and no canopies greater than 7 m in diameter in the field data. Although 

both dt1 and dt2 are used in the Li algorithm, in order to isolate the effects of dt1 and dt2 

differences, and limit the possible combinations and iterations in this study, these parameters 

were run with equal values during each iteration. Both dt1 and dt2 are, hereafter, referred to as 

“DT”. In general, a low DT value results in over-segmentation with many additional trees 

identified in the point cloud, whereas a high DT value causes under-segmentation, where many 

tree canopies are merged together into single large canopies. The DT value is site specific and 

should be defined by the user to best suit their area (Li et al., 2012). In this study, 16 different 

iterations of the Li segmentation were run with varying DT values. 

Tree Detection and Density Estimate Validation 

Following the tree segmentation, a shapefile was created that contained the locations of the 

center of each individual tree. The UAV SfM point cloud-derived trees were first overlaid with 

the 10x10 m grid to count all trees detected within each cell and then compared to the field-

mapped trees to validate and assess the accuracy of the tree segmentation and rates of tree 

detection. The UAV-derived trees were first spatially joined to the field-mapped tree points. 

Joining rules were then used to ensure only one-to-one joins. Joining rules were as follows: 1) a 

join can only occur if the UAV-derived tree is within the crown radius of the field tree; and 2) if 

there is more than one UAV-derived tree within the crown radius of the field-mapped tree, the 

closer point maintains the join. This tree detection scheme was used to quantify true positive 

detection and false negatives (omissions). False positives (commissions) were calculated by 
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summing the number of UAV point cloud-derived trees within the 10x10m plots that were not 

matched and joined to a field-mapped tree. 

 Tree segmentation using the Li method with constant parameters across the entire study 

area yields different results in areas of higher tree density versus areas of lower tree density. 

Assuming a linear relationship between tree density and canopy cover, an “optimized” version of 

the Li segmentation was developed by using tree points from different segmentation iterations 

based on the above described estimates of canopy cover distribution across my study area. Using 

the tree canopy cover estimates, I classified my study area into sections of high canopy cover and 

low canopy cover. In areas of >50% canopy cover, the tree points from a lower DT value 

iteration were used, and in areas of < 50% canopy cover the tree points from a higher DT value 

iteration were used. 

The combination of true positive, false negatives, and false positives were used to assess 

each tree segmentation iteration. Validation metrics included recall (r), precision (p), and F-score 

(F) which were calculated using the following equations (eq. 5, 6, and 7) (Goutte and Gaussier, 

2005, Li et al., 2012): 

𝑟 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
   (eq. 5) 

𝑝 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
   (eq. 6) 

𝐹 =  2 ×
(𝑟×𝑝)

(𝑟+𝑝)
     (eq. 7) 

The iteration yielding the highest scores represents the best UAV-derived estimate of tree density 

in this study and was, therefore, used as the final model. This analysis was completed on the 
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entire study area, and also by grouping plots by their density classes, to determine the effect of 

tree density on tree detection. 

Additionally, ANOVA analysis with multiple comparisons was conducted to compare the 

UAV point cloud-derived trees with the field-mapped trees to determine if a statistically 

significant different number of trees were detected between the UAV point cloud data and field-

based measurements within each density class. 

Individual Tree Metrics 

The individual tree measurements derived from the UAV data included the following metrics 

derived from the point cloud data: total points, tree top coordinates, canopy diameter (north-to-

south), canopy diameter (east to west), height max, height min, height mean, height median, 

height mode, height variance, height standard deviation, height coefficient of variation, height 

kurtosis, height skewness, and percentile heights (ranging from 5 to 99 in 5 meter increments). 

Some of these metrics were then used to estimate the final set of individual tree measurements: 

location, canopy height, canopy base height, and canopy bulk density. These tree metrics were 

compared to the corresponding field-mapped tree and its associated field measurements for 

validation: tree height, base height, and canopy bulk density. To estimate canopy base height and 

canopy bulk density, I explored several possible UAV-derived predictor variables. For canopy 

base height, these predictor variables included the height percentiles of each segmented tree, as 

well as the height to crown diameter ratio. Estimates for canopy bulk density involved first 

establishing a tree height to diameter at breast height (DBH) relationship. This relationship was 

used to predict tree DBH with the UAV-derived tree height. The predicted DBHs were then used 

in northern Arizona-specific allometric equations (eq. 1, 2, 3) for ponderosa pine (Kaye et al., 

2005) to estimate the canopy mass of each tree. The UAV-derived overall tree height, average 
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canopy radius, and canopy base height were then used to estimate canopy volume assuming a 

cylindrical canopy model. Canopy mass was then divided by canopy volume to estimate the 

canopy bulk density. This process for estimating canopy bulk density directly mirrors the steps 

used with the field measurements to estimate bulk density. Linear regression models then were 

used to examine the relationships between the UAV-derived and field-measured variables. A 

bootstrap resampling analysis (subsample= 100; iterations= 100,000) was conducted with the 

UAV tree height measurement errors to determine the mean error with a 90% confidence 

interval. 

Fire Behavior Modeling 

The Landscape Fire and Resource Management Planning Tools (LANDFIRE) is a multi-agency 

program with the goal to provide seamless geospatial data products across the entire United 

States. LANDFIRE provides 27 different data products across 7 categories which include: 

reference, disturbance, vegetation, fuel, fire regime, topographic, and seasonal. The purpose of 

these products are to support interagency planning, management, and operations (LANDFIRE 

n.d.). For this study, only the fuel and topography data were used. 

The LANDFIRE spatial fuels data products include total percent canopy cover in 30 m 

cells, the mean canopy height, the mean canopy base height, total canopy bulk density, mean 

topographic elevation, mean topographic slope and aspect, and total fuel model. These products 

are derived using three categories of spatial data: satellite imagery, biophysical gradients, and 

vegetation structure and composition. Within these categories, 40 different predictor variables 

are used to derive spatial fuels data in 30 m spatial resolution (Appendix A). These predictor 

variables include biophysical gradient data such as annual precipitation, temperature, 

evaporation, evapotranspiration, and others. Vegetation type data are also used in LANDFIRE as 
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predictor variables for fuels products. Other predictor variables used by LANDFIRE include 

multispectral imagery from Landsat ETM.  

Land managers typically use spatial fuels data from LANDFIRE with FlamMap 5 

software (Finney, 2006) to model potential fire behavior in an area of interest. In this study, I 

used the UAV data to generate inputs to FlamMap and model crown fire behavior to determine if 

a different image source and resulting input rasters produce substantially different fire behavior 

models. If the resulting fire behavior model is substantially different than the LANDFIRE-

derived model and if many of the input raster layers can be more accurately generated from UAV 

sensors, land managers might consider UAV platforms as a viable alternative image source.  

The UAV data also included the SfM-derived 3D data, whereas the LANDFIRE models 

currently do not include a 3D predictor variable. The UAV-based canopy height raster was 

generated by creating a 0.25 m canopy height model across the study area that was then 

resampled to 10 m resolution by calculating the mean height value and classified into 10 m 

height classes, similar to LANDFIRE. A canopy base height raster was created by using the 

percentile height of points within each 10 m cell that was the best indicator of field-measured 

canopy base heights, and reclassified to units used in LANDFIRE (base height in meters x 10). A 

10 m resolution UAV-based canopy cover raster was already created during earlier canopy cover 

processing (see “Deriving Forest Measurements – Canopy Cover from UAV images”) and used 

as an input to FlamMap. The elevation, slope, and aspect rasters were created by first generating 

a DEM in ENVI LiDAR 5.3. The DEM was generated at a 1 m resolution, which was used to 

create the slope and aspect rasters in ArcMap 10.4. It is important to note that the accuracy of 

topographic data layers were not assessed during this study. However, a previous study assessed 

the accuracies from the same UAV platform and sensor in a similar area (Sankey et al., 2017) 
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and reported that UAV SfM derived DEMs were well correlated to those derived from both 

terrestrial and UAV-based laser scanning (R2 = 0.71 and 0.73, RMSE = 0.17 m and 0.5 m, 

respectively). After creating a DEM for the study area, all three topographic raster layers were 

resampled to 10 m resolution to match all other raster layers. Canopy bulk density was estimated 

with UAV data, however these estimates showed poor relationships to field estimates from field 

data thus the bulk density raster was used directly from the LANDFIRE database for crown fire 

modeling. Additionally, the fuel model raster was not measured using UAV data and was also 

used directly from the LANDFIRE database. 

Crown fire behavior models were then performed using various combinations of 

LANDFIRE (2012 version) and UAV data (Table 5). Additional parameters in FlamMap for 

modeling crown fire behavior include a fuel moisture file, wind speed, and wind direction. These 

additional parameters remained constant across all iterations (Table 6). A sensitivity analysis was 

conducted by substituting one LANDFIRE raster input at a time with a single UAV-derived 

raster for each iteration to determine the effects of using UAV-derived layers for each input. All 

FlamMap iterations were conducted using 10 m resolution input raster layers. Since LANDFIRE 

data is in 30 m resolution, they were resampled to 10 m to be compatible with the UAV data.  
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Table 5: Inputs used in FlamMap to model crown fire behavior. The outputs from these 

iterations were then compared to assess the differences in fire behavior models with the UAV-

derived inputs (UAV) versus LANDFIRE-derived inputs (LF). All LANDFIRE data used were 

from the 2012 version. All raster input files were either resampled from LANDFIRE 30 m, or 

resampled from original UAV data resolution, to a matching resolution of 10 m. Iteration 0 

modeled crown fire behavior using 30 m LANDFIRE data, Iteration 1 used LANDFIRE data 

resampled to 10 m. Iterations 2 to 5 tested UAV-derived rasters for topography, canopy cover, 

canopy height, and canopy base height. Iteration 6 used all available UAV-derived rasters. 

Input Raster 

Data Source for Each Iteration 

Iteration 

1 

Iteration 

2 

Iteration 

3 

Iteration 

4 

Iteration 

5 

Iteration 

6 

Iteration 

7 

Elevation LF LF UAV LF LF LF UAV 

Slope LF LF UAV LF LF LF UAV 

Aspect LF LF UAV LF LF LF UAV 

Canopy Cover LF LF LF UAV LF LF UAV 

Canopy 

Height LF LF LF LF UAV LF UAV 

Canopy Base 

Height LF LF LF LF LF UAV UAV 

Canopy Bulk 

Density LF LF LF LF LF LF LF 

Fuel Model LF LF LF LF LF LF LF 
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Table 6: FlamMap parameters that remained constant through all crown fire behavior iterations. 

Constants used were those observed during the Schultz Fire of 2010. Fuel moisture refers to the 

percent of dry weight of the fuel type. 1 hour fuels are dead fuels 0.66 to 2.5 cm in diameter, 10 

hour fuels are 2.5 to 7.6 cm in diameter, and 100 hour fuels are 7.6 to 20.3 cm in diameter. The 

crown fire calculation method refers to the particular method used to calculate the potential for 

surface, passive, or active crown fire. 

Fuel Moisture Winds 
Canopy 

Characteristics Crown Fire 

Calculation 

Method 

1 

hour 

fuel 

10 

hour 

fuel 

100 

hour 

fuel 

Live 

Herbac

eous 

Live 

Woody 
Azimuth Speed 

Foliar Moisture 

Content 

2% 2% 6% 65% 65% 
215 

degrees 

25 

MPH 

@ 20' 

100% 

Scott/ 

Reinhardt 

(2001) 
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Chapter 3 Results 

UAV images and Field Data 

The fixed-wing UAV image orthomosaic from Flight 1 covered 6.7 ha area, when all 960 images 

were mosaicked together and subset to the area of interest. Flight 2 also covered 6.7 ha area in 

the final orthomosaic image subset. Both Flight 1 and Flight 2 also had corresponding 3D point 

cloud data with an average of 32 and 56 points/m2, respectively. The final field dataset collected 

for validation purposes included 192 individual trees that were mapped and measured in a total 

of 57 plots distributed across the study area with the two flights. 

Canopy Cover Estimates 

An equal number of UAV- and NAIP-derived percent canopy cover pixels (N=1,371) were 

analyzed using a pixel-wise regression covering the entire areas imaged by the two UAV flights. 

The regression model resulted in adjusted R2 of 0.72. As indicated by the regression coefficients, 

the NAIP-derived canopy cover estimates are higher than UAV-derived estimates, especially in 

areas of high canopy cover (Figure 10). 
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Figure 10: Pixel-wise regression between UAV- and NAIP-derived canopy cover estimates in 

10 m resolution. The dashed line represents the 1:1 line, and the solid line is the fitted linear 

regression line. 

 The UAV image-derived canopy cover estimates were also compared with the Zachmann 

and Dickson (2017) canopy cover data summarized in 10 m cells via pixel-wise regression 

analysis using all pixels (N = 1,371). The regression model indicated a strong agreement between 

the two estimates with an adjusted R2 of 0.82 and RMSE of 8.9% canopy cover. The regression 

model also indicated that the UAV data slightly underestimated canopy cover in greater canopy 

cover areas compared to the Zachmann and Dickson estimates (Figure 11). 
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Figure 11: Pixel-wise regression between the UAV image-derived canopy cover estimates and 

Zachmann and Dickson (2017) canopy cover estimates summarized in 10 m cells. The dashed 

line represents the 1:1 line and the solid line is the fitted linear regression line from the data. 

 UAV image-derived canopy cover estimates were also compared to field-based estimates 

using a pixel-wise regression analysis. This analysis was conducted using field plots (N = 57) 

and showed a positive correlation (R2 = 0.67, RMSE = 11.87% Canopy Cover). When compared 

to field-based estimates, the UAV image-derived estimates tend to underestimate canopy cover, 

especially in areas of high canopy cover (Figure 12). 
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Figure 12: Pixel-wise regression between UAV-image derived canopy cover estimates and 

Field-based canopy cover estimates. Canopy cover estimates are summarized in 10 m cells for all 

field plot locations (N=57). The solid line represents the fitted regression line and the dashed line 

is a 1:1 line for reference. 

Relationship between UAV-derived Canopy Cover and Tree Density 

Since tree density data were only available for the field plot areas, the analysis between UAV-

derived canopy cover and tree density only included those areas in 10 m cells (N = 57). Tree 

density classes ranged from 1 to 7 trees per 10 m plot. Mean canopy cover between the density 

classes increases steadily from class 1 to class 4. The increase in canopy cover becomes less 

apparent between classes 4 to 7 (Figure 13). An ANOVA test with Tukey’s multiple pairwise 

comparisons indicated that the mean canopy cover for a density class of 1 (1 tree per 10 m plot) 

was not significantly different than the mean canopy cover for a density class of 2 (2 trees per 10 

m plot). However, the mean canopy cover for a 1 tree plot was significantly different from the 
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mean canopy cover of all other density classes above 2. The mean canopy cover for a density 

class of 2 was significantly different than density classes 4, 6, and 7. Canopy cover for density 

classes 3 through 7 were not significantly different. Across all density classes, no two adjacent 

classes contained significantly different mean canopy cover (Figure 13). Canopy cover for 

density classes 1 through 3 could potentially be used as indicators for density. However, density 

classes 4 through 7 are likely to have similar canopy cover estimates and thus difficult to detect 

tree density differences between 4 to 7 trees per 10x10 m cell. 

 

Figure 13: Mean canopy cover (%) for each density class (trees per 10 m plot). The compact 

letter display for significant differences using the multiple comparisons ANOVA test is shown 

above each boxplot. Density class 1 is significantly different than class 3 through 7. Density 

class 2 is significantly different from class 4, 6, and 7. Density classes 4 through 7 are not 

significantly different. No two adjacent density classes are significantly different. Canopy can 

potentially be used as an indicator for density in 1, 2, and 3 tree classes. Density classes 4 

through 7 will likely show similar values for canopy cover. 
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Landscape Metrics from UAV Canopy Cover 

A total of 1,865 individual patches were identified throughout the study area. Of these, 

approximately 155 and 167 patches appear to be a single tree canopies in Flight 1 and Flight 2 

respectively. The largest patch index was 3.85%, indicating that the largest patch in the study 

area occupies 3.85% of the total area, which is approximately 1,698 m2. The mean area of a 

patch was 24 m2, with a standard deviation of 75 m2 indicating a large variability in the size of 

patches in the study area. Patch identification can be visualized in Figure 14. 
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Figure 14: Patch metrics computed by FRAGSTATS with UAV-derived canopy cover 

classification. Patches were identified using an 8-neighbor rule and colored by their unique patch 

ID. A total of 1,865 individual patches were identified across both Flight 1 area (Panel A) and 

Flight 2 (Panel B). 
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Individual Tree Segmentation 

Results from 17 different iterations of the tree segmentation by the Li (2012) algorithm 

implemented by the lidR package within R were analyzed. In these iterations, the DT parameter 

ranged from 1.0 to 2.5 meters. In addition, an “optimized” version was tested using results from 

two different DT iterations based on percent canopy cover across a 10 m grid. Detection was 

assessed for each iteration using positively detected trees, omission trees, and commission trees 

(Table 7). The iteration using the smallest DT value had the highest detection of 88%. A total of 

159 of the 192 field-mapped trees were accurately detected and segmented. This also produced 

the highest commission error with 132 additional trees. The iteration using the largest DT value 

had the lowest detection (109 of 192 trees), but also the lowest commission error (8 trees). 

 Results from the recall (r), precision (p), and F-score (F) indicated that the lowest DT 

value iteration had the lowest recall and the highest precision, whereas the highest DT value 

iteration resulted in highest recall and lowest precision (Table 7). The F-score is a composite 

measure of both recall and precision. The highest F-scores occurred in the iterations that used a 

mid-to-high range of DT values. Iterations with a DT value of 1.4 m and 1.7 m had the highest F-

score (0.78). Additionally, the optimized iteration also contained a high F-score of 0.78. 

Detection, omission, and commission error rates were also analyzed for each density 

class, and for each tree segmentation iteration. Tree detection was maximized across all densities 

by using a low DT value in the Li (2012) segmentation algorithm. However, a low DT value also 

maximized mean commission error, especially in plots with lower tree densities. The iteration 

using the lowest DT value (1.0 m) resulted in a mean detection of over 80% in all plots except 

density classes 6 and 7. The low DT value (1.0 m) iteration had a commission error of over 

100% (twice as many trees) in both the 1 and 2 density classes. Although the commission error 
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decreased with an increase in tree density, this error remained over 25% for all density classes 

except class 7. On the contrary, a high DT value resulted in less detected trees, particularly in the 

higher density plots. A high DT value also minimized the amount of commission error across all 

plots. The iteration using the highest DT value (2.5 m) resulted in an average detection of 75% 

for 1 and 2 tree plots. In general, the detection rate decreased as the plot density increased with 

lowest detection rates of less than 50% in density classes 5, 6, and 7. When using the optimized 

DT values of 1.4-1.7 that were based on canopy cover, a balance of omission error and 

commission error was achieved for lower density classes and higher density classes. The 

optimized DT iteration achieved this balance across all density classes better than any other 

iteration using a single DT value (Table 7). 
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Table 7: Individual tree detection results for each iteration. A total of 192 trees were detected. 

The DT value was changed by 0.1 m for each iteration to determine the effects of the parameter. 

The optimized iteration contains two DT values: 1.4 m for areas with >50% canopy cover, and 

1.7 m for areas of ≤50% canopy cover. Recall (r), precision (p), and F-score (F) are standardized 

measures of detection, omission, and commission, respectively (eq. 2, 3, 4). 

 

  

 

 

 

 

 

 

 

 

In addition to analyzing the study area as a whole, separate analyses were also conducted 

by grouping the plots into density classes. First, the mean number of segmented trees were 

compared between each density class with each iteration (Figure 15). The mean number of 

segmented trees for plots with 1, 2, and 3 trees closely matched the number of trees mapped in 

the field plots. However, plots with 5, 6, and 7 trees also show a greater variance around their 

DT value 
Detected 

Trees (%) 

Omitted 

Trees (%) 

Commission 

Error (%) 
r p F 

1 83 17 69 0.83 0.55 0.66 

1.1 79 21 38 0.79 0.68 0.73 

1.2 77 23 32 0.77 0.71 0.74 

1.3 76 24 21 0.76 0.78 0.77 

1.4 73 27 15 0.73 0.83 0.78 

1.5 71 29 14 0.71 0.84 0.77 

1.6 69 31 11 0.69 0.86 0.77 

1.7 68 32 7 0.68 0.9 0.78 

1.8 66 34 7 0.66 0.91 0.77 

1.9 66 34 7 0.66 0.91 0.76 

2 61 39 6 0.61 0.91 0.73 

2.1 59 41 5 0.59 0.93 0.72 

2.2 61 39 3 0.61 0.96 0.75 

2.3 56 44 5 0.56 0.92 0.7 

2.4 57 43 5 0.57 0.92 0.71 

2.5 57 43 4 0.57 0.93 0.71 

Optimized 

(1.4/1.7) 
74 26 16 0.74 0.83 0.78 
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means, making the density classification challenging based on the tree segmentation output. An 

ANOVA test with multiple pairwise comparisons was also conducted to test for significant 

differences among the mean segmented trees between all density classes. Using an alpha of 0.05, 

confidence level of 95%, and all p-values adjusted using Tukey’s adjustment for family of 7, 

there was no significant difference in the mean number of segmented trees between any adjacent 

density classes. However, density class 1 contained a significantly different mean number of 

segmented trees than density class 3, 4, 5, 6, and 7. Density class 2 had significantly different 

mean number of segmented trees compared to density class 6 and 7. Mean segmented trees are 

not significantly different between density classes 2, 3, 4, and 5. Additionally, density classes 3 

to 7 are not significantly different (Figure 16). 

 

Figure 15: Tree detection and commission error by density class. Each line represents a separate 

tree segmentation iteration and is colored according to the DT value used (see legend). Mean 
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percentage of trees detected decreases with increasing density and higher DT value (Panel A). 

Mean percent of false positives (commission error) also decreases with increasing density and 

higher DT value (Panel B). 

 

Figure 16: Mean number of segmented trees per each density class. Density class represents the 

number of trees within each 10 x 10 m plot. Error bars represent the standard error of the means 

for each class. The compact letter display for significant differences using the multiple 

comparisons ANOVA test is shown above each bar. The mean number of segmented trees in 

density class 1 is not significantly different than density class 2, however it is significantly 

different than density class 3, 4, 5, 6, and 7. Density class 2 contains a significantly different 

mean number of segmented trees than density class 6 and 7. Density classes 3, 4, 5, 6, and 7 do 

not contain a significantly different mean number of segmented trees. 

Individual Tree Metrics 

A comparison of UAV-derived and field-based individual tree metrics was conducted to evaluate 

the accuracy of the UAV measurements. This analysis was only completed using the trees that 

were positively detected with the optimized DT iteration (N = 142) since this validation required 
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field measurements for every UAV-derived tree, and only the detected trees had both 

measurements to compare. 

 A regression model of UAV-derived tree height and field-measured tree heights indicated 

a positive correlation with an adjusted R2 of 0.71 (RMSE = 1.83 m) (Figure 17). 

 

Figure 17: Linear regression model between UAV-derived tree heights and field measurements. 

The solid line represents the fitted regression line and the dashed line is a 1:1 line for reference. 

 A bootstrap resampling analysis was then conducted to determine the mean error between 

UAV-derived tree height and field measurements. A subsample of 100 error rates was taken to 

calculate a mean height error. This occurred over 10,000 iterations to determine a 90% 

confidence interval of mean error rates. The mean error rate of the UAV-derived tree height was 

5.29% of the field measured heights. The lower end of the 90% confidence interval was 2.79%, 

whereas the upper end was 8.32%. 
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 To determine a predictor for canopy base height, a regression analysis was conducted 

using the field measured base heights compared to UAV-derived predictor variables. These 

included all height percentile estimates and the height to canopy diameter ratio from the UAV-

derived crown metrics for each tree. All height percentiles had a positive correlation to canopy 

base height with adjusted R2 values ranging from 0.25 to 0.40, and RMSE ranging from 1.67 to 

2.88 m. In comparison, LANDFIRE base height estimates have an average R2 value of 0.09 

(Reeves et al., 2009). However, no single height percentile was a clear best predictor of base 

height. Height to canopy diameter ratio did not have any statistically significant correlation with 

field-measured canopy base heights (Table 8). 
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Table 8: Results from regression analyses using each UAV-derived height percentile and height 

to canopy diameter compared to field-measured base heights. 

UAV-derived 

predictor 

variable 

Correlation to 

Base Height 

(adj R2) 

RMSE 

(m) 

Intercept 

(m) 
Slope p-value 

5th 0.34 2.52 4.70 0.62 2.63E-14 

10th 0.35 2.55 5.36 0.65 4.03E-15 

15th 0.38 2.50 5.81 0.69 1.16E-16 

20th 0.38 2.49 6.51 0.68 1.39E-16 

25th 0.39 2.52 6.99 0.69 9.73E-17 

30th 0.39 2.53 7.44 0.70 8.61E-17 

35th 0.39 2.52 7.84 0.70 8.52E-17 

40th 0.39 2.52 8.27 0.69 1.04E-16 

45th 0.39 2.48 8.66 0.69 3.61E-17 

50th 0.40 2.47 9.00 0.69 3.07E-17 

55th 0.39 2.48 9.38 0.69 5.56E-17 

60th 0.37 2.50 9.85 0.67 3.49E-16 

65th 0.36 2.53 10.35 0.65 3.00E-15 

70th 0.34 2.57 10.81 0.64 2.27E-14 

75th 0.32 2.61 11.22 0.62 1.17E-13 

80th 0.28 2.73 12.20 0.59 7.51E-12 

90th 0.26 2.79 12.67 0.58 3.65E-11 

95th 0.25 2.84 13.13 0.58 8.95E-11 

99th 0.25 2.88 13.78 0.57 2.03E-10 

Height to 

Canopy 

Diameter ratio 

0.00 1.67 3.22 0.04 3.57E-01 

 

Since many of the UAV-derived height percentiles were correlated to canopy base height, 

and no single variable was the clear “best” predictor, another analysis was completed to 

determine which predictor variable had the closest to a 1:1 relationship with canopy base height. 
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The analysis completed was a qualitative assessment of the predictor variable and a 1:1 

relationship with field measured canopy base height (Figure 18). Using this assessment, it was 

determined that the 5th height percentile had the closest to a 1:1 relationship with field measured 

canopy base height compared to all other predictor variables. Also, as the height percentile 

increased, the relationship between predictor variable and field measured canopy base height 

migrated further from the 1:1 line. The height to canopy diameter ratio did not show a 1:1 

relationship with field measured canopy base height. 

 

Figure 18: UAV-derived predictor variables and the field measured canopy base heights of all 

detected trees. The dashed line represents a 1:1 line relationship. 

 Using the UAV image-derived 5th percentile height as a predictor for canopy base height, 

a bootstrap resampling analysis was conducted to determine the mean error of the UAV estimate 

compared to the field measurement. A subsample of 100 error rates was taken to calculate a 

mean base height error. This occurred over 10,000 iterations to determine a 90% confidence 
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interval of mean error rates. On average, the error between the UAV-derived estimates were 

32.29% of the field measured base height. At the 90% confidence level, the mean canopy base 

height error rate was 22.03% to 45.54%. 

 Canopy bulk density was estimated by first estimating the canopy mass and volume of 

each detected tree. Canopy mass was estimated using a tree height to DBH relationship that was 

established using the field data and used to predict the DBH of individual trees given their UAV-

derived tree height. The UAV-derived DBH predictions ranged from 12.34 to 51.15 cm, with a 

mean of 38.22 cm. UAV-derived DBH had an adjusted R2 of 0.38 with an RMSE of 4.82 cm 

when compared to field measurements. The UAV-derived DBH predictions were then used to 

estimate the canopy mass of each tree using allometric equations from Kaye et al (2005). These 

UAV-derived estimates of canopy mass ranged from 7.6 to 283.1 kg, with a mean of 138.8 kg, 

and were then compared to estimates using field measurements which produced an adjusted R2 of 

0.39 with an RMSE of 39.25 kg. To estimate the canopy volume of each tree, three UAV-derived 

canopy measurements were used: tree height, canopy base height, and average canopy radius. 

Comparisons between UAV-derived and field measured tree heights and canopy base heights 

were conducted in previous analyses. UAV-derived average canopy radius ranged from 0.49 to 

5.42 m, with a mean radius of 2.97 m. When compared to field measured canopy radius, the 

UAV-derived radius had an adjusted R2 of 0.26 and an RMSE of 0.88 m. The resulting UAV-

derived canopy volume estimates ranged from 4.08 to 1651.15 m3 with a mean volume of 323.15 

m3. UAV-derived canopy volume had an adjusted R2 of 0.33 and an RMSE of 246.13 m3. The 

UAV-derived mass and volume estimates were then combined to estimate canopy bulk density. 

The relationship between UAV and field estimates for canopy bulk density was not correlated 

(adj. R2 = 0.0005, RMSE = 0.30 kg/m3). 
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Fire Behavior Modeling 

A baseline model was first established by using only LANDFIRE data layers in 30 m resolution 

to model crown fire behavior for the study area. After establishing the baseline, the LANDFIRE 

raster layers were resampled to 10 m resolution for comparison with the UAV-derived raster 

layers. To analyze the effects of resolution on crown fire behavior, the 10 m LANDFIRE data 

were used to model crown fire and compare to the 30 m LANDFIRE output. Crown fire behavior 

outputs for both the 30 m and 10 m LANDFIRE datasets were equal with 0% surface fire, 14% 

passive crown fire, and 86% active crown fire predicted for the study area (Table 9: Iteration 1, 

Iteration 2). 

A reliable estimate of canopy bulk density could not be produced from the UAV images, 

given the relatively low correlation coefficients. However, UAV-derived estimates for the 

critical variables had similar accuracies to the LANDFIRE-derived variables. Therefore, UAV-

derived estimates for elevation, slope, aspect, canopy cover, and canopy base height were 

produced in 10 m resolution for use in FlamMap. These data represented the mean of each 

variable for the 10 m grid cell. These variables were then used to supplement LANDFIRE data 

and model crown fire behavior for the study area.  

A sensitivity analysis was completed by substituting each UAV-derived layer 

individually, except topographic variables which were used as a group, and comparing the 

resulting outputs from each iteration for crown fire behavior across the study area. First, the 

UAV-derived topographic variables (elevation, slope, and aspect) were substituted to model 

crown fire (Table 9: Iteration 3). This resulted in a reduction of active crown fire with an 

increase of passive crown fire. Crown fire behavior across the study area with the UAV-derived 
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topographic variables resulted in 0% surface fire, a larger passive crown fire of 23%, and a lower 

active crown fire of 77% compared to the LANDFIRE outputs.  

The next iteration substituted LANDFIRE-derived canopy cover with the UAV-derived 

canopy cover estimates (Table 9: Iteration 4). This resulted in a slight reduction in active crown 

fire and passive crown fire. These reductions resulted in a slight increase in the surface fire 

category. Crown fire behavior with the UAV-derived canopy cover layer resulted in 3% surface 

fire, 13% passive crown fire, and 84% active crown fire across the study area. UAV-derived 

canopy height was then substituted into the crown fire behavior model (Table 9: Iteration 5). The 

UAV-derived canopy height layer had a larger effect than either topography or canopy cover. 

Active crown fire was reduced from 86% in the LANDFIRE-only models to 44% with the UAV 

image-derived canopy height. Additionally, surface fire increased from 0 to 49% and passive 

crown fire decreased from 14 to 7%.  

Canopy base height was the next variable that was substituted for the sensitivity analysis 

(Table 9: Iteration 6). The inclusion of the UAV-derived canopy base height layer caused an 

extreme reduction of active crown fire and a drastic increase of surface fire. Active crown fire 

was reduced to 2%, passive crown fire to 0%, and surface fire increased to 98%. Lastly, crown 

fire was modeled using all the available UAV-derived variables including topography, canopy 

cover, canopy height, and canopy base height (Table 9: Iteration 7). Crown fire behavior was 

modeled as 100% surface fire, 0% passive crown fire, and 0% active crown fire. 

Overall, when modeling crown fire behavior with only LANDFIRE data, the 30 m 

resolution and resampled 10 m resolution produced the same results. Substituting UAV-derived 

canopy cover showed a slight reduction in active crown fire and an increase in surface fire. In 

increasing order, UAV-derived topography, canopy height, and base height had substantial 
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impacts on the crown fire behavior model by reducing the percentage of active crown fire and 

increasing surface fire. The UAV-derived crown base height layer almost eliminated crown fire 

initiation completely with only 2% active crown fire and 98% surface fire. When all UAV-

derived variables were used, crown fire initiation was completely reduced to 0% active crown 

fire and 0% passive crown fire with 100% of the study area being modeled as surface fire. 
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Table 9: Crown fire behavior model outputs for each iteration. Inputs for Iteration 1 included the 

original data layers from the LANDFIRE database in 30 m resolution. Iteration 2 utilized the 

resampled LANDFIRE data in 10 m resolution. Iteration 3 used UAV-derived elevation, slope, 

and aspect rasters with LANDFIRE data as other inputs. Iteration 4 substituted UAV-derived 

canopy cover with LANDFIRE data for all other inputs. Iteration 5 included the UAV-derived 

canopy height estimate with LANDFIRE data for other inputs. Iteration 6 used the UAV-derived 

canopy base height estimate along with all other LANDFIRE data inputs. Iteration 7 included 

UAV-derived topography, canopy cover, canopy height, and canopy base height. 

 Percent of Fire Type (%) 

 Iteration 1 & 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7 

Fire Type LANDFIRE UAV Topo UAV CC UAV CH UAV CBH UAV all 

Surface 0 0 3 49 98 100 

Passive Crown 14 23 13 7 0 0 

Active Crown 86 77 84 44 2 0 

 

  



 

68 

 

Chapter 4 Discussion 

Canopy Cover and Data Sources 

The UAV-derived canopy cover estimates were very high in spatial resolution originating from 

15 cm resolution data. The accuracy of the UAV-derived canopy cover estimates was relatively 

high, when compared with two different data sources used to estimate canopy cover: NAIP 

imagery and a canopy cover classification dataset from Zachmann and Dickson (2017), which 

was derived from aerial imagery. The original resolution from each of these data sources was 1 

m for NAIP imagery and 30 cm for the Zachmann and Dickson (2017) canopy classification. 

Each data source was then resampled to a 10 m canopy cover percent raster to directly compare 

among the three image sources (N=1,371). 

 The UAV-derived canopy cover estimate was positively correlated with the NAIP-

derived canopy cover estimate (R2=0.72, RMSE= 10.9% canopy cover). In this comparison, 

there were several occurrences of the NAIP-derived estimate both over- and under-estimating 

canopy cover compared to the UAV-derived estimate. However, in general the NAIP-derived 

estimate tends to overestimate canopy cover across the study area, especially in areas of high 

canopy cover. This was evident when examining the intercept and slope of the fitted regression 

line (intercept= 0.18% canopy cover, slope= 0.79). Canopy cover estimates from NAIP data 

become increasingly greater than UAV estimates as canopy cover increases. This difference can 

be largely explained by the difference in spatial resolution between the original datasets. Canopy 

cover for the UAV imagery was being derived from an original image resolution of 15 cm, 

whereas the NAIP imagery was in 1 m resolution. Finer resolution imagery is able to detect 

variation in the data that would otherwise be undetected using coarser resolution imagery 

(Woodcock & Strahler, 1987). Therefore, the UAV imagery may be able to detect areas of no-
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canopy, or sparse canopy, within a 1 m area that the NAIP imagery cannot leading to an 

overestimation of canopy cover with the NAIP estimate. Another possible source of this 

discrepancy could be from the date of UAV image acquisition in the Flight 2 area. This flight 

was conducted during the month of November during leaf-off season. Since canopy cover was 

derived using an NDVI-based procedure, canopies without leaves, such as oaks, would not have 

been detected. Although there are few deciduous tree species in the Flight 2 Area, this could 

have also lead to an underestimation of canopy cover with the UAV imagery. 

 A comparison between UAV-derived canopy cover and the Zachmann and Dickson 

(2017) canopy classification was completed to compare these estimates with more similar spatial 

resolution. Original resolution of UAV imagery was 15 cm, and the Zachmann and Dickson 

classification was 30 cm, which were both resampled to 10 m percent canopy cover estimates for 

comparison. The pixel-wise regression between the UAV-derived and Zachmann and Dickson 

estimates showed a positive correlation stronger than the UAV vs NAIP comparison. The R2 

value between UAV and Zachmann and Dickson percent canopy cover was 0.82, with an RMSE 

of 8.77% canopy cover. Additionally, the fitted linear regression equation between the UAV and 

Zachmann and Dickson canopy cover estimates had an intercept of 2.1% canopy cover, and a 

slope of 0.88, indicating a relationship closer to 1:1, when compared to the UAV vs NAIP 

relationship. Overall, the UAV and Zachmann and Dickson comparison showed a stronger 

relationship than UAV versus NAIP. One possible reason is that the spatial resolution of the 

Zachmann and Dickson classification (30 cm) was much closer to the UAV imagery (15 cm) 

than the NAIP imagery (1 m). 

 In addition to comparing UAV-derived canopy cover with remotely sensed data sources, 

we also compared these estimates to field-based estimates. In this comparison, UAV-derived 
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canopy cover estimates were positively correlated to field-based estimates (R2 = 0.67, RMSE = 

11.87% canopy cover). Sankey et al. (2017) found a similar, though slightly stronger, 

relationship between UAV-derived canopy cover and field-based estimates (R2 = 0.74, RMSE = 

8.5% canopy cover) in a comparable study site. When comparing our UAV-derived canopy 

cover estimates to field-based estimates, we found that UAV methods tend to underestimate, 

especially in areas of high canopy cover. An underestimation of canopy cover using UAV 

imagery was also found in a study conducted by Wallace et al (2016). UAV-derived canopy 

cover estimates are capable of fully representing the unevenness of tree crowns, whereas the 

field-based estimates used in our study rely on average crown radii that are used to assume an 

even, circular, crown around each tree. Additionally, UAV-derived canopy cover estimates are 

able to represent small gaps within a single crown, whereas field-based estimates assume 

continuous, gapless, crowns. These assumptions could account for the general underestimation of 

canopy cover when comparing UAV-derived estimates to those calculated from field 

measurements. 

 The positive correlation between UAV-derived canopy cover to both NAIP and 

Zachmann and Dickson estimates shows that the UAV canopy cover estimates have similar uses 

and implications to both NAIP and Zachmann and Dickson. Additionally, UAV data has the 

added benefit of temporal resolution that can, to a certain extent, be defined by the user. This 

characteristic make UAV surveys particularly useful for applications requiring fine temporal 

resolution that can be difficult and costly to acquire with aerial imagery. 

Canopy Cover and Tree Density Relationship 

The relationship between canopy cover and tree density was explored using the UAV-derived 10 

m percent canopy cover estimate and the field measurements from varying tree densities. Tree 
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density was defined in 7 classes that represent the number of trees within a 10 x 10 m plot. These 

density classes ranged from 1 to 7 trees per plot. Mean canopy cover varied statistically 

significantly and had a steady increase between 1 to 4 tree density classes. However, when 

examining the mean canopy cover between 4 to 7 trees per plot, this difference becomes less 

pronounced. An ANOVA test with multiple pairwise comparisons indicated that the 1 tree 

density class was significantly different than all classes from 3 to 7 trees. Additionally, the 2 tree 

density class was significantly different than the 4, 6, and 7 tree density classes. Overall, no two 

adjacent density classes showed significantly different mean canopy cover. Therefore, canopy 

cover cannot be used to predict tree density of 1 versus 2. However, it may be used to separate 

areas of very low density from areas of high density. 

 The findings from the canopy cover and tree density analysis could be explained by the 

varying widths of tree canopies across the study area. An open-grown single tree may occupy the 

same amount of horizontal space as a few trees growing close together. The difference between 

single, large and several small canopies could not be detected with the UAV-derived canopy 

cover alone. Additionally, this analysis also only included 10 m plots, which can inherently reach 

a point of canopy closure regardless of how many individual trees are present (eg. 4, 5, 6, or 7 

trees can fill a 10 x 10 m space with canopy). Interestingly, mean canopy cover across all field 

plots seems to reach a maximum around 65-70% suggesting it becomes less common for tree 

canopies to reach closure beyond that amount in the study area. However, it’s also important to 

consider the sampling method was random and stratified by density, and therefore not an even 

representation of the entire study area. 
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Landscape Metrics with Canopy Cover 

FRAGSTATS software computes landscape metrics using an input raster that has been classified 

by the user. This study used the 15 cm canopy cover classification raster derived from the UAV 

data. The software can handle images that contain several classifications. However, the data used 

in this study only contained a binary classification of tree canopy and no-tree canopy. An 8 

neighbor rule was used in this study to aggregate adjacent canopy pixels into patches. The 8 

neighbor rule aggregates pixels into a “patch” if they share adjacent sides or adjacent corners. In 

general, an 8 neighbor rule allows more aggregation of pixels into a single patch thus creating 

larger, but fewer, total patches, when using coarse spatial resolution data. Since the UAV images 

had 15 cm resolution, the FRAGSTATS application did not encounter this limitation and 

identified many small patches.  

 A total of 1,865 patches were identified across the study area. The largest patch index 

was 3.85%, meaning the largest patch occupied 3.85% of the total landscape (1,698 m2). 

Additionally, the mean area of a patch was 24 m2, with a standard deviation of 75 m2. The large 

standard deviation relative to the mean suggests that patch sizes are highly variable across the 

study area. However, further interpretations from these metrics alone are limited. The utility of 

such metrics becomes greater with more datasets. A UAV survey of the study area after 

restoration treatment could be used to answer questions about the change of these metrics such 

as: Has the landscape become more fragmented? How has the average patch size changed? How 

has the variability in patch sizes changed? Additionally, similar procedures could be used to 

answer these questions when comparing multiple landscapes in different areas. 
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Future Considerations for Canopy Cover 

The UAV imagery used in this study to derive canopy cover data was relatively high in spatial 

resolution (15 cm). A comparable high resolution dataset, that has been independently validated, 

was not available for comparison. Instead, a comparison of NAIP imagery and a third-party 

canopy cover classification (Zachmann and Dickson, 2017) was conducted to assess the accuracy 

of UAV-derived canopy cover. Results from these comparisons supported the hypothesis that 

UAV-derived estimates of canopy cover can be accurate. Future research might consider more 

high-resolution validation datasets to estimate UAV canopy cover accuracy. Seasonality of the 

data acquisitions being used should also be considered. Factors such as sun-angle and leaf-on vs 

leaf-off conditions can potentially effect canopy cover estimates that are derived from NDVI. 

A problem that was encountered when processing UAV imagery to produce a canopy 

cover estimate was that the UAV imagery often contained areas of high NDVI between tree 

canopies. Aside from true areas of high NDVI (low vegetation: grass, forbs, shrubs), there were 

also areas of image distortion likely from misalignment during the orthomosaic building process. 

However, the UAV data estimates have the benefit of including a 3D SfM point cloud which can 

be used to provide height attributes to the UAV imagery. A novel method was used to leverage 

this height information to create a height mask and apply it to the canopy cover classification and 

eliminate areas classified as canopy that were below a certain height (1.37 m). This produced a 

canopy cover estimate that was more representative of only tree canopy. This method could be 

explored more in-depth with not only UAV data, but also using aerial imagery and lidar. 

 Potential applications of UAV-derived canopy cover estimation include conducting 

change detections to estimate mortality and regeneration. A process similar to the one used in 

this study could be conducted at several timesteps to conduct a canopy cover change detection. 
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Tree mortality could be estimated by examining areas of canopy that decrease over time. 

Additionally, the same process could be used to estimate post-disturbance regeneration by 

examining the areas of increasing canopy cover. Albeit each of these, applications would require 

customization of the parameters used to address site-specific changes. Additionally, this study 

did not attempt to conduct a spectral classification of different cover types or species, since the 

study are was dominated by ponderosa pine. By including such classification, information 

regarding the composition and configuration of various cover types, or species, could be 

conducted. 

Additionally, information such as canopy cover that can be derived from UAV imagery 

can have far reaching implications in forest ecology. Forest canopy cover has been shown to be 

directly related to wildfire behavior and fuel loading (Fule et al., 2004; Lydersen et al., 2013). 

Increased canopy cover causes higher susceptibility to insect outbreak and forest pathogens 

(Covington & Moore, 1994a; Covington et al., 1997; Feeney et al., 1998). Diversity in forest 

canopy cover can provide habitat and forage areas for Mexican spotted owl (Strix occidentalis) 

(Ganey et al., 1999; Prather et al., 2008). Changes in canopy cover due to restoration treatments 

have been shown to have implications towards water yield and nutrient outflow (Kaye et al., 

2002; Simonin et al., 2007). Understory species that provide species biodiversity and forage for 

wildlife have an inverse relationship with forest canopy cover (Jameson, 1967; Covington et al., 

1997; Laughlin et al., 2006; Moore et al., 2006). UAV surveys offer scientists and land managers 

a way to further examine these ecosystem responses by providing spatial canopy cover 

information across user-defined areas and frequency.  
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Individual Tree Segmentation and Subsequent Density Estimates 

This study implemented tree segmentation algorithms, originally intended for use with lidar 

point cloud data, to identify individual trees from a SfM-derived point cloud. Depending on the 

parameters used in the algorithm, varying levels of detection, and omission and commission rates 

were achieved. When maximizing the F-score of tree detection, the tree segmentation algorithms 

detected 74% of trees with an F-score of 0.78. This detection rate was consistent with a study 

that used SfM point clouds to segment individual trees in Australian savannas (Goldbergs et al., 

2018), which had a detection rate of 70% and an F-score of 0.71. However, this study achieved a 

lower rate than the 85% detection rate documented in open canopy mixed conifer forest (Mohan 

et al., 2017). Similar to findings by Goldbergs et al. (2018), the detection rates in this study 

declined with increasing tree density. This finding supported the hypothesis that detection of 

individual trees using the UAV SfM method would decrease with increasing tree density. 

 The parameters used in a given tree segmentation algorithm must be “tuned” to match the 

specific site and user’s needs. The parameters used in this study should not be used in another 

location without verification and fine-tuning. This study utilized a point-based algorithm (W. Li 

et al., 2012) to segment individual trees from the point cloud. The main parameter that affected 

the segmentation was the DT parameter- a distance threshold between points that determined 

whether a point was, or was not, part of a particular tree. Within the Li (2012) segmentation 

algorithm, there are two different DT values. DT 1 is the distance threshold above 15 m, and DT 

2 is the distance threshold below 15 m. For this study, both of these thresholds were set equal. In 

future studies, these values can be set differently to potentially achieve better segmentation 

results. 
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 This study explored an optimization of SfM tree segmentation by taking advantage of the 

multispectral orthomosaic image from the UAV in addition to the point cloud. The availability of 

both orthomosaic image and SfM point cloud offered the opportunity to leverage the 2D canopy 

cover information with 3D point cloud data. After running the segmentation using various DT 

parameters, grid cells of higher canopy cover (> 50%) used trees that were segmented with 

parameters designed to detect more trees, whereas grid cells of low canopy cover (≤ 50%) used 

trees that were segmented with parameters that minimized commission error and found less trees. 

This optimization proved to be successful at detecting marginally more trees with less 

commission error. 

 The results from the optimized tree segmentation were then used to explore a relationship 

between the mean number of trees detected per plot across each density class (trees per 10 x 10 

m plot). In this analysis, a perfect segmentation would result in the number of trees segmented 

being equal to the density class of the particular plot. Mean numbers of segmented trees follow 

this trend within the 1, 2, 3, and 4 tree density classes. However, the 5, 6, and 7 tree density 

classes no longer show this trend. The tree segmentation used in this study rarely detects more 

than 5 trees in any of the study plots. An ANOVA test indicated that the variance in the number 

of trees segmented for each density class was relatively high creating no significant difference in 

mean values between any adjacent density class. However, the 1 tree class was significantly 

different than classes 3 through 7, and the 2 tree class was significantly different than class 6 and 

7. 

 Other studies using UAV-SfM for individual tree segmentation have had varying results. 

In a spruce forest in southeast Norway, Puliti et al (2015) estimated stem numbers of trees with 

an R2 of 0.60. Although specific values for tree density and canopy cover are not given, the 
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example imagery appears to show a much denser forest relative to our ponderosa pine study area. 

This study utilized similar UAV-SfM methods as our study, however they supplemented their 

data with aerial lidar data for ground points, which may have increased their accuracies 

compared to using only UAV-derived data. In the Northern Territory of Australia, similar UAV-

SfM methods were used by Goldbergs et al (2018) to segment trees in a eucalyptus forest that 

had >30% canopy cover. In this study, UAV-derived estimates detected 70% of dominant and 

co-dominant trees, and 35% of suppressed trees. In a ponderosa pine forest in northern Arizona 

that had an average canopy cover of 37%, Sankey et al (2017) segmented individual trees with 

UAV-SfM methods and had a positive, albeit weaker, correlation to field tree counts (R2 = 0.53). 

In comparison to these studies, our study area had an average canopy cover of 36% (SD = 

20.8%) as measured with the UAV imagery. Therefore, the most comparable study sites would 

be the eucalyptus forest in Australia (Goldbergs et al., 2018), and the ponderosa pine forest in 

northern Arizona (Sankey et al., 2017). In our study, we had marginally higher detection rates 

with a positive detection of 74% of our field-measured trees with a 16% commission error. 

In this study, changing the DT value resulted in changes in tree detection rates, as well as 

commission error. When the parameter was set to detect more trees, the commission error 

increased. Although the F-score is a composite score between true detections and commission 

error, this score does not necessarily indicate the “best” segmentation. The evaluation of tree 

segmentation and detection rates should be conducted by the user for a given objective. For 

example, some situations might prefer over-segmentation of trees, which would allow 

overestimates of tree density that can then be filtered with another variable. The objective of the 

survey, or study, should be the primary driver behind choosing tree segmentation parameters. 
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Individual Tree Metrics 

After individual trees were segmented from the point cloud, crown metrics were calculated for 

each tree. These metrics included tree center coordinates, canopy diameter, canopy height, and 

percentile heights that represent the meters above ground for different percentiles of points. 

These metrics were then used to estimate the height, canopy base height, and canopy bulk 

density for each tree. These measurements were compared to field data for validation (N = 142). 

 Using the segmented point cloud, the highest point for a given tree was considered the 

overall tree height. A positive correlation was found when comparing these values to field 

measurements for tree height (R2 = 0.71, RMSE = 1.83 m), which supported the hypothesis that 

UAV estimates for tree height would be accurate when compared to field measurements. 

 Several other studies have estimated tree heights with UAV-derived data. The results 

from these studies generally show a strong relationship between UAV-derived tree height 

estimates and field-based measurements. Dandois et al (2015) found a strong correlation between 

UAV-derived and field-based tree height estimates (R2 = 0.86, RMSE = 3.6 m) in a mixed age 

deciduous forest in Maryland. Wallace et al (2016) showed a weaker correlation (R2 = 0.68, 

RMSE 1.3 m) in a dry sclerophyll eucalypt forest in Australia. Puliti et al (2015) had a strong 

correlation when comparing the Lorey’s mean tree height metric derived from UAV data and 

field measurements (R2 = 0.71, RMSE = 1.4 m) in a spruce forest in southeast Norway, however 

they supplemented the UAV data with aerial lidar data which likely increased the accuracy of 

their estimates. Sankey et al (2017) showed a positive correlation (R2 = 0.64, RMSE = 2.9 m) 

when comparing UAV and field-based tree height estimates in a ponderosa pine forest. Although 

these studies were conducted across a wide range of vegetation types, the tree height estimate 
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accuracies found in our study (R2 = 0.71, RMSE = 1.83 m) are generally consistent with previous 

studies. 

When examining UAV-derived tree heights compared to field measurements, some 

outliers were apparent. During field data collection, canopies that were “significantly 

overlapping” were noted in the comments field for trees that appeared to have overlapping 

canopies. This attribute was used to designate trees as “clumped” which was then used to remove 

38 trees from the dataset. The tree height regression was then re-performed without the clumped 

trees to determine if the relationship changed. This analysis showed that removing clumped trees 

strengthens the relationship between UAV-derived tree heights and field measured heights (R2 = 

0.82, RMSE = 1.6 m) suggesting that the overlapping canopies may contribute more error in 

UAV tree height measurements (Figure 19). Similar results were found by Goldbergs et al 

(2017) where tree detections were much higher for dominant and co-dominant trees (70%), than 

they were for suppressed trees (35%) that may have been crowded by other trees leading to 

suppressed growth. In addition to overlapping canopies, during preliminary data analysis, 

Gambel oak (Quercus gambelii) often posed problems for UAV height estimates due to 

relatively low height and clumpy nature. However, only five Gambel oak trees were within field 

plots across the entire study area and only 1 was positively detected during tree segmentation. In 

the height regression omitting clumped trees, the detected Gambel oak tree was removed due to 

its clumped designation. 
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Figure 19: Regression relationships between UAV-derived tree heights and field measurements, 

with clumped and non-clumped trees. The fitted regression line for all trees is shown in red, the 

fitted regression line for only non-clumped trees is shown in blue, and the 1:1 line is shown as a 

black dotted line. By removing the clumped trees, the tree heights regression improved from an 

R2 of 0.71 (RMSE = 1.83 m) to an R2 of 0.82 (RMSE = 1.6 m) and showed a relationship that 

was generally closer to 1:1 than the relationship between all trees. 

 Canopy base height was estimated with UAV data by examining the relationship between 

field measured canopy base heights and the height percentiles of points within the point cloud for 

each tree. It was believed that the height percentiles could potentially provide a good predictor 

for canopy base height. When tested, several height percentiles showed a positive correlation 

with field measured canopy base height. However, there was no clear “best” predictor found. 

Several height percentiles had a correlation coefficient (R2) ranging from 0.38 to 0.40. When 
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deciding on a height percentile to use as a predictor of canopy base height, rather than choosing 

the variable with the strongest correlation coefficient, an additional analysis was conducted to 

decide which variable resulted in a regression line closest to the 1:1 line with field measured base 

height. The 5th height percentile had a regression line closest to the 1:1 line with an R2 of 0.34 

and RMSE of 2.52 m. In addition, the tree height to canopy diameter relationship was also tested 

assuming that a tall tree with small canopy diameter would have a high base height. However, 

this relationship did not hold true when compared against field measurements. This discrepancy 

was mostly caused by the inaccurate measurement of canopy diameter with UAV-based 

methods. 

 Although the relationship between field-measured canopy base height and UAV-derived 

5th percentile height was somewhat low, the current standard of remotely sensed canopy base 

height data for use in modeling crown fire potential is based on the LANDFIRE database. 

Canopy base height data from LANDFIRE has been shown to have poor, and highly variable 

relationships with actual field observations. Correlation coefficients between LANDFIRE base 

height and field measurements were highly variable between an R2 of 0 to 0.93, with a mean of 

0.09 across 12 sites (Reeves et al., 2009). For this reason, the 5th percentile estimate derived from 

the UAV data was believed to be sufficient as a predictor for base height in this study and, 

therefore, used as an input layer in FlamMap to model potential crown fire behavior. 

 At the time of this study, no other studies were found that attempted to estimate canopy 

base height using similar UAV-derived methods. However, canopy base height has been 

accurately measured using aerial lidar. In a western Washington douglas-fir forest, Andersen et 

al (2005) found aerial lidar estimates for canopy base height that were positively correlated to 

field measurements (R2 = 0.77). Additionally, a separate study in a ponderosa pine dominated 



 

82 

 

forest in eastern Washington also showed a positive correlation between aerial lidar-derived and 

field-based measurements for canopy base heights (R2 = 0.78) (Erdody & Moskal, 2010). 

 Canopy bulk density relies on estimates of both canopy mass and canopy volume. Using 

field measurements, canopy mass was estimated using the tree DBH and allometric equations for 

local ponderosa pine (Kaye et al., 2005). Canopy volume was estimated by determining the 

canopy height and average canopy radius to estimate the cylindrical volume of the canopy. Mass 

was divided by volume to estimate the overall canopy bulk density in kg/m3. I attempted to 

mirror this process with UAV data, however there was no reliable estimate of DBH to use to 

estimate canopy mass. To overcome this, I established a tree height to DBH relationship which 

was used to predict the DBH of a tree given the overall height. This provided DBH estimates for 

each tree that was based on the UAV-derived tree height, and subsequently canopy mass was 

estimated for each tree. UAV-derived canopy volume was predicted similarly to field data. First, 

the canopy base height estimate was subtracted from the overall tree height to estimate the 

overall height of the canopy. Then, canopy diameters were used to calculate the average canopy 

diameters. The canopy height and diameter were then used to estimate canopy volume assuming 

a cylindrical canopy model. UAV-derived canopy mass and volume were then used to estimate 

the canopy bulk density of each tree. 

 The UAV-derived estimates of canopy bulk density showed a weak relationship with the 

field-based bulk density estimates. Differences between UAV-derived and field-derived 

estimates of canopy bulk density may have been caused by several factors. Rather than directly 

measuring DBH directly with UAV data, the UAV-derived estimates of canopy mass were based 

on DBH predicted from the tree height to DBH relationship created with field data. A 

logarithmic relationship was established between tree heights and DBH with an R2 of 0.48 and p-
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value of 3.11e-6. The UAV-derived tree height was used as an input to this model to predict a 

UAV-derived DBH. The UAV-derived DBH in this study was positively correlated with field-

measured DBH, but the relationship was fairly weak (R2= 0.38, RMSE= 4.82 cm). The DBH 

predictions were then used to estimate the canopy mass of each tree. When comparing canopy 

mass derived from the UAV data, and the canopy mass derived from field data, the relationship 

was also poor (R2= 0.39, RMSE= 39.25 kg) (Figure 20). 
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Figure 20: Regression relationships of data used to predict canopy mass. Logarithmic 

relationship between tree height and DBH that was used to predict DBH from UAV data (Panel 

A). The relationship of the UAV predicted DBH and field measured DBH (Panel B). Final 

canopy mass derived from UAV estimates and field measurements (Panel C). Solid lines 

A. 

B. 

C. 
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represent fitted regression lines for all graphs. Dashed line represents the 1:1 fitted line for linear 

regressions. 

 Additional error in canopy bulk density estimates also came from UAV-derived volume 

estimates. In order to estimate volume, three UAV-derived metrics were used: tree height, base 

height, and average canopy radius. Overall, UAV-derived tree heights were found to be 

reasonably accurate (R2= 0.71, RMSE= 1.83 m). UAV-derived canopy base height was 

positively correlated to field measurements, but the relationship was relatively weak (R2= 0.34, 

p-value = 2.63e-14, RMSE= 2.52 m). When UAV-derived canopy radius was compared to field 

measurements, the relationship was fairly poor (R2= 0.26, RMSE= 0.88 m). A comparison of the 

UAV-derived canopy volume to the canopy volume estimated from field measurements showed 

that the overall volume estimated using each method was highly variable and contained a poor 

relationship (R2= 0.33, p-value= 3.46e-14, RMSE= 246.13 m3) (Figure 21).  
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Figure 21: Regression relationships of data used to predict canopy volume. Comparison between 

UAV-derived and field-measured canopy radii (Panel A). Relationship of final canopy volume 

estimated from the UAV data and field measurements (Panel B). Solid lines represent fitted 

regression lines on both graphs. Dashed lines represent 1:1 lines for reference. 

 The compounding error in both the mass and volume estimates can explain the poor 

relationship found when comparing canopy bulk density estimates from UAV-derived and field-

based measurements. The UAV-derived canopy bulk density and the canopy bulk density 

estimated from field measurements were not statistically correlated (R2= 0.00, p-value= 0.34, 

RMSE= 0.3 kg/m3). 

 When attempting to derive canopy bulk density estimates from UAV data, some 

limitations in the data were highlighted. Due to the fact that slight changes in volume and/or 

A. 

B. 
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mass could lead to large changes in canopy bulk density, the method used to estimate canopy 

bulk density from UAV data was unsuccessful at producing meaningful results. This could be 

attributed to the nature of UAV data and the impact of visual occlusion on measurements that 

may be below the canopy. For example, it proved to be difficult to measure both canopy base 

height, canopy diameter, and canopy bulk density possibly due to the UAV imagery not having a 

visual line-of-sight of the bottoms and edges of tree canopies- which may oftentimes be 

overlapping. In general, this is a potential limitation for UAV imagery being used in areas of 

high canopy cover and attempting to make measurements of objects that may be obstructed by 

tree canopy (Dandois & Ellis, 2013; Wallace et al., 2016; Goldbergs et al., 2018). 

Although, difficult to do with the UAV image-based methods used our study, canopy 

bulk density has been accurately estimated using aerial lidar. Both Andersen et al (2005) and 

Erdody and Moskal (2010) estimated canopy bulk density specifically as a canopy fuel metric. 

Both of these studies were conducted in Washington State, however Andersen et al (2005) 

estimated canopy fuels in a Douglas-fir dominated forest, and the study by Erdody and Moskal 

(2010) was conducted in ponderosa pine forest. High correlations between lidar-derived canopy 

bulk density estimates to those based on field measurements were found by both Anderson et al 

(2005) and Erdody and Moskal (2010) (R2 = 0.86, R2 = 0.83 respectively). 

Future Considerations for Tree Segmentation 

Due to the stratified sampling design that was specifically aimed at collecting data from areas of 

varying density, plot data could not be used to interpret overall tree density across the area. In 

future studies, tree density information could help target the segmentation algorithm to have the 

best detection rates in areas that are most representative of the survey location as a whole. For 
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example, if 70% of the study area has density class 2, the segmentation model could compensate 

accordingly. 

In this study, individual tree segmentation algorithms performed differently in areas of 

low or high tree density. This characteristic of segmenting individual trees from point cloud data 

makes it difficult to balance under- and over-segmentation in areas of variable tree density. To 

help overcome this, assuming that canopy cover informs tree density estimates, this study 

utilized an optimized tree segmentation that adapted the segmentation according to areas of 

different canopy cover. Two classes, high (> 50%) and low (≤ 50%), of canopy cover were used 

to select either of two different tree segmentation parameters. It is important to note that both 

tree segmentation algorithms were used across the entire study area, and the canopy cover 

classes were only used to select the segmentation outputs accordingly. This study only utilized 

two canopy cover classes, but more classes could have been used. Overall, the ability to adapt 

the parameters being used in a tree segmentation algorithm based on other available information 

(canopy cover, spectral data, etc) could help address the issue of over- and under-segmentation 

of trees in areas of variable tree density. This concept should be explored more to produce 

accurate tree segmentations. 

 Prior to the implementation of the tree segmentation algorithms on the UAV point cloud 

data, a NDVI raster created from the orthomosaic was used to “colorize” the point cloud points 

which added a NDVI value to each point. An NDVI threshold was then used to remove all points 

that did not resemble vegetation. This process was effective at creating a subset point cloud that 

represented only tree points which was then used in the tree segmentation algorithm. The Li 

(2012) algorithm used in this study then analyzes each point of the point cloud to aggregate and 

identify individual trees. However, this process was strictly based on the coordinate location (X, 
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Y, Z) of each point. Future research may consider incorporating spectral data, such as NDVI, 

RGB, or others, within the actual decision-making process of the tree segmentation algorithm. 

Although preliminary analysis of three different tree segmentation algorithms (W. Li et al., 2012; 

Dalponte et al., 2016; Oles et al., 2018) was conducted as part of this study, other tree 

segmentation algorithms (Silva et al., 2016; Ayrey et al., 2017) may yield different results and 

should be tested. 

 This study performed individual tree segmentation and subsequent measurement of tree 

attributes using SfM-derived point cloud data and multispectral imagery. This method offers a 

lower-cost alternative to aerial lidar surveys, but also has associated tradeoffs. Although UAV 

imagery can be less expensive to acquire than aerial lidar surveys, aerial lidar can cover a 

considerably larger area than a single, or even several, UAV surveys. Since lidar is an active 

remote sensing method, lighting conditions and shadows are less of a concern. Additionally, 

options such as multiple return and full waveform lidar can penetrate tree canopies and perhaps 

be less affected by visual occlusion and provide better measurements of canopy base height than 

UAV imagery. There are also some operational restrictions such as takeoff/landing areas that, 

depending on the area, may be less of a concern with aerial lidar. On the other hand, the lower 

cost of UAV imaging equipment compared to aerial lidar makes it easier for landowners, or 

agencies, to purchase equipment and conduct surveys in-house. This option allows a much more 

flexible temporal frequency of UAV image acquisitions to be defined by the user. Depending on 

the user’s need and objectives, both aerial lidar and UAV imagery may be viable options. 
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Fire Behavior Modeling 

Using UAV data for Modeling Fire Behavior 

The LANDFIRE database has traditionally been the major source of data used to model potential 

crown fire behavior. In this study, UAV data were used as inputs to FlamMap for modeling 

potential crown fire behavior. The overall effects of using UAV data from the study area was a 

drastic reduction in the amount of area that was modeled as active and passive crown fire. In the 

sensitivity analysis conducted in this study, the UAV-derived canopy base height was the single 

largest influence of this reduction in crown fire area. Canopy base height is the primary factor 

that determines the transition from surface fire to crown fire. A low canopy base height makes 

this transition more likely to occur, whereas a high canopy base height reduces the likelihood of 

crown fire initiation (Cruz et al., 2002; Scott, 2006). When comparing the canopy base height 

estimates, the UAV estimate showed an average canopy base height between 4-5 m, whereas 

LANDFIRE data had a mean canopy base height of less than 1 m. Field data were distributed by 

stratified random sampling, thus not entirely representative of the study area. However, the mean 

canopy base height from field data was 7.7 m, which may potentially indicate a substantial 

underestimation from the LANDFIRE data. This difference could explain the discrepancy in the 

amount of crown fire modeled using each data source. The primary hypothesis regarding UAV-

derived crown fire behavior models was that these models would show more variation than 

LANDFIRE-derived models. The hypothesis was supported by an increased variation in the 

UAV-derived models, however the dramatic decrease of potential crown fire activity in general 

was unexpected. 

 LANDFIRE data used to model crown fire behavior is only available in 30 m resolution, 

whereas UAV-derived data were estimated from sub-meter data and resampled to 10 m 
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resolution. This difference in spatial resolution may also be responsible for the differences in 

data values and the subsequent crown fire models. In general, the UAV data accurately depicted 

areas of less canopy cover and decreased canopy height. The fine resolution of UAV data 

relative to LANDFIRE data may be more effective at detecting these areas that were often less 

than the size of a single LANDFIRE data pixel (30 m). The effects of data resolution may have 

also lead to the differences in crown fire models from UAV and LANDFIRE data. For example, 

there were areas where minimal tree cover was present due to small roads, trails, and gaps 

between trees. Within the UAV imagery, these areas caused decreased estimates for canopy 

cover and canopy height due to the absence of trees. However, these gaps were often not 

represented in the LANDFIRE data due to the coarse spatial resolution (Figure 22). 
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Figure 22: Canopy cover estimates of the same 30 x 30 m area from UAV-derived and 

LANDFIRE data. Due to the high resolution of UAV data, the UAV canopy cover estimates are 

able to represent variability from roads and gaps that are not shown in the LANDFIRE data. 

When modeling crown fire potential with UAV data, these areas tended to model less crown fire 

causing less crown fire potential across the entire study area in general relative to LANDFIRE-

based models. 

A limitation of this study was the coarse estimation of base height, and the inability to 

estimate canopy bulk density. Both of these measurements rely on accurate depictions of canopy 

edges and bottoms, both of which were difficult to estimate with the UAV data used in this 

study. However, in future studies, the integration of lidar data may produce better estimates of 

both of these variables. Additionally, the fire behavior fuel models used by FlamMap to model 

fire behavior were not estimated in this study. Future advances in remote sensing capabilities and 
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modeling may provide a means to estimate fire behavior fuel models with reliable accuracy, thus 

leading to more effective modeling of potential wildfire behavior. 

Future Consideration for Modeling Fire Behavior with UAV data 

LANDFIRE fuels data is known to have spatially variables accuracies, in which some are very 

low (Reeves et al., 2009). An analysis of the LANDFIRE spatial fuels variables was conducted 

by Reeves et al. (2009) by performing an accuracy assessment of the LANDFIRE fuels products 

by comparing them to Forest Inventory and Analysis (FIA) plot level data. Overall, canopy cover 

was found to be overestimated. In their study area, the LANDFIRE canopy cover ranged up to 

85%, whereas most field-observed stands in the area showed canopy cover ranging from 25 to 

55%. Estimates of canopy base height in LANDFIRE were shown to have relatively poor 

relationships with field-measured base heights with an average R2 value of 0.09 that was highly 

variable with ranges between 0 and 0.93 across 12 sites. Canopy bulk density had a better 

relationship to field estimates with an average R2 value of 0.58 which ranged from 0.45 to 0.85 

across 12 sites.  

An accuracy assessment of fuel models was not conducted due to no existing independent 

data source. Reeves et al. (2009) additionally state that fuel models are difficult to assess due to 

the lack of instruments and inventory techniques for measuring fuel model, which makes this 

measurement highly subjective. Additionally, when comparing predicted fire behavior models to 

those observed after an actual wildfire event, the addition of local data adjustments has shown to 

more accurately simulate model outcomes (Krasnow et al., 2009). Other studies have shown that 

LANDFIRE data accuracies should be verified and data adjusted accordingly by the user 

(Reeves et al., 2006; Rollins, 2009) before attempting to use for making management decisions. 

The sensitivity analysis conducted in this study showed that the input layers in FlamMap had a 
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great impact on the potential crown fire modeled across the study area. UAV surveys offer a 

potential method of providing correction and/or replacing portions of LANDFIRE fuels data with 

information that can be more representative of local conditions. 

The ability for land managers to use UAV data to supplement LANDFIRE data for 

modeling potential crown fire behavior has applications for both planning and monitoring of 

forest fuels reduction treatments. For planning purposes, UAV data may provide managers with 

a tool for treatment prioritization, which may be particularly useful in situations of limited 

resource availability for fuels reduction treatments. Additionally, the high spatial and temporal 

resolutions of UAV data could potentially be very useful for monitoring fuels reduction 

treatments. Rapid feedback from UAV surveys could allow opportunities for adaptive 

management and treatment calibration that may otherwise be difficult. The precise planning and 

monitoring made possible with UAV data may be especially beneficial in sensitive management 

areas such as the wildland urban interface and wildlife habitat. 
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Chapter 5 Conclusion 

This study tested the feasibility of using a fixed-wing UAV with multispectral sensor for 

estimating forest canopy fuels and structure in a southwestern ponderosa pine forest. The results 

indicate that UAV surveys can be used to produce accurate estimates for forest characteristics 

that can be visualized from above the canopy such as: canopy cover, canopy height, and tree 

density. Canopy cover and canopy height proved to be the most reliable estimates. Tree density 

estimates are directly related to the accuracy of individual tree segmentation, which tends to 

underperform in areas of increased tree density. However, tree segmentation can be improved by 

utilizing adaptive algorithm parameters that adjust according to canopy cover. Accuracy of 

canopy base height estimates was low, however reasonably comparable to LANDFIRE 

estimates. Canopy bulk density proved to be the most difficult metric to estimate using the UAV 

methods in our study, and showed no correlation to estimates using field measurements. As part 

of this study, forest canopy fuels estimates from UAV data were used to supplement LANDFIRE 

data and model crown fire behavior across the study area. Crown fire behavior outputs using 

UAV data yielded a drastic reduction in the total amount of potential crown fire. It is important 

to note that although the crown fire behavior outputs were very different between LANDFIRE 

and UAV data, this study did not seek to estimate which models were most accurate to real-life 

crown fire behavior. However, the sensitivity analysis showed that the input data in FlamMap 

can have a drastic effect on the crown fire potential modeled in an area. Managers should 

consider the source and accuracies of the input data when modeling fire behavior and making 

management decisions. Overall, results from this study show that UAV surveys could be used to 

estimate forest canopy fuels and structure with reasonable accuracy. These estimates could then 

be used to adjust, or used in conjunction with, other data such as LANDFIRE making it a 
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potentially useful tool for forest managers. In general, UAV surveys offer more control of 

temporal resolution in data collection making it a useful tool for rapid assessments and adaptive 

management. Although typically more costly and less flexible than UAV surveys, aerial lidar 

surveys may provide better estimates for the metrics that were difficult to measure using UAV 

imagery. Future studies should explore the use of both technologies in combination to measure 

forest canopy fuels and structure. Aerial lidar surveys may be used to develop baseline data for 

planning, and UAV surveys could be used as a cost-effective intermittent data collection for 

monitoring purposes. With the increasing need for the management of forest fuels, the 

combination of these technologies may provide land managers with an effective way of planning 

and monitoring fuels treatments.  



 

97 

 

References 

Agee, J.K., & Skinner, C.N. (2005). Basic principles of forest fuel reduction treatments. Forest 

Ecology and Management, 211, 83-96 

Allen, C.D., Savage, M., Falk, D.A., Suckling, K.F., Swetnam, T.W., Schulke, T., et al. (2002). 

Ecological restoration of southwestern ponderosa pine ecosystems: a broad perspective. 

Ecological Applications, 12, 1418-1433 

Allred, S. (2015). Ponderosa; Big Pine of the Southwest. : University of Arizona Press 

Andersen, H.E., McGaughey, R.J., & Reutebuch, S.E. (2005). Estimating forest canopy fuel 

parameters using LIDAR data. Remote Sensing of Environment, 94, 441-449 

Anderson, H.E. (1982). Aids to determining fuel models for estimating fire behavior. The Bark 

Beetles, Fuels, and Fire Bibliography, 143 

Ayrey, E., Fraver, S., Kershaw, J.A., Kenefic, L.S., Hayes, D., Weiskittel, A.R., et al. (2017). 

Layer Stacking: A Novel Algorithm for Individual Forest Tree Segmentation from LiDAR Point 

Clouds. Canadian Journal of Remote Sensing, 43, 16-27 

Baker, M.B. (1986). Effects of ponderosa pine treatments on water yield in Arizona. Water 

Resources Research, 22, 67-73 

Coconino National Forest. (2015). Final Environmental Impact Statement for the Flagstaff 

Watershed Protection Project. USDA Forest Service Southwest Region, MB-R3-04-27 

Coconino National Forest. (n.d.a). Pipeline Trail No. 42. 

https://www.fs.usda.gov/recarea/coconino/recarea/?recid=55152 Date Accessed: 11/21/2017. 

Coconino National Forest. (n.d.b). Coconino National Forest GIS Data. 

https://www.fs.usda.gov/detail/r3/landmanagement/gis/?cid=stelprdb5209303 Date Accessed: 

02/01/2017. 

Combrink, T., Cothran, C., Fox, W., Peterson, J., & Snider, G.B. (2013). Issues in Forest 

Restoration: Full Cost Accounting of the 2010 Schultz Fire. ERI White Paper–Issues in Forest 

Restoration 

Cooper, C.F. (1960). Changes in vegetation, structure, and growth of southwestern pine forests 

since white settlement. Ecological Monographs, 30, 129-164 

Covington, W.W., & Moore, M.M. (1994a). Postsettlement changes in natural fire regimes and 

forest structure: ecological restoration of old-growth ponderosa pine forests. Journal of 

Sustainable Forestry, 2, 153-181 



 

98 

 

Covington, W.W., & Moore, M.M. (1994b). Southwestern Ponderosa Forest Structure - Changes 

since Euro-American Settlement. Journal of Forestry, 92, 39-47 

Covington, W.W., Fule, P.Z., Moore, M.M., Hart, S.C., Kolb, T.E., Mast, J.N., et al. (1997). 

Restoring ecosystem health in ponderosa pine forests of the Southwest. Journal of Forestry, 95, 

23-29 

Covington, W.W., Fule, P.Z., Hart, S.C., & Weaver, R.P. (2001). Modeling ecological 

restoration effects on ponderosa pine forest structure. Restoration Ecology, 9, 421-431 

Cruz, M.G., Alexander, M.E., & Wakimoto, R.H. (2002). Predicting crown fire behavior to 

support forest fire management decision-making.  

Dalponte, M., Coomes, D.A., & Murrell, D. (2016). Tree‐ centric mapping of forest carbon 

density from airborne laser scanning and hyperspectral data. Methods in Ecology and Evolution, 

7, 1236-1245 

Dandois, J.P., & Ellis, E.C. (2013). High spatial resolution three-dimensional mapping of 

vegetation spectral dynamics using computer vision. Remote Sensing of Environment, 136, 259-

276 

Dandois, J.P., Olano, M., & Ellis, E.C. (2015). Optimal altitude, overlap, and weather conditions 

for computer vision UAV estimates of forest structure. Remote Sensing, 7, 13895-13920 

Dunford, R., Michel, K., Gagnage, M., Piegay, H., & Tremelo, M. (2009). Potential and 

constraints of Unmanned Aerial Vehicle technology for the characterization of Mediterranean 

riparian forest. International Journal of Remote Sensing, 30, 4915-4935 

Edson, C., & Wing, M.G. (2011). Airborne Light Detection and Ranging (LiDAR) for Individual 

Tree Stem Location, Height, and Biomass Measurements. Remote Sensing, 3, 2494-2528 

Erdody, T.L., & Moskal, L.M. (2010). Fusion of LiDAR and imagery for estimating forest 

canopy fuels. Remote Sensing of Environment, 114, 725-737 

ESRI. (2015). ArcGIS for Desktop. , 10.4.1.5686 

Feeney, S.R., Kolb, T.E., Covington, W.W., & Wagner, M.R. (1998). Influence of thinning and 

burning restoration treatments on presettlement ponderosa pines at the Gus Pearson Natural 

Area. Canadian Journal of Forest Research, 28, 1295-1306 

Finney, M.A. (2006). An Overview of FlamMap Fire Modeling Capabilities. USDA Forest 

Service Proceedings, RMRS-P-41 

Fitzgerald, S.A. (2005). Fire ecology of ponderosa pine and the rebuilding of fire-resilient 

ponderosa pine ecoystems. USDA Forest Service, Pacific Southwest Research Station, General 

Technical Report PSW-GTR-198 



 

99 

 

Franklin, S.E., Hall, R.J., Moskal, L.M., Maudie, A.J., & Lavigne, M.B. (2000). Incorporating 

texture into classification of forest species composition from airborne multispectral images. 

International Journal of Remote Sensing, 21, 61-79 

Fule, P.Z., Crouse, J.E., Cocke, A.E., Moore, M.M., & Covington, W.W. (2004). Changes in 

canopy fuels and potential fire behavior 1880–2040: Grand Canyon, Arizona. Ecological 

Modelling, 175, 231-248 

Ganey, J.L., Block, W.M., Jenness, J.S., & Wilson, R.A. (1999). Mexican Spotted Owl Home 

Range and Habitat Use in Pine-Oak Forest: Implications for Forest Management. Forest Science, 

45, 127-135 

Getzin, S., Wiegand, K., & Schöning, I. (2012). Assessing biodiversity in forests using very 

high‐ resolution images and unmanned aerial vehicles. Methods in Ecology and Evolution, 3, 

397-404 

Goldbergs, G., Maier, S.W., Levick, S.R., & Edwards, A. (2018). Efficiency of Individual Tree 

Detection Approaches Based on Light-Weight and Low-Cost UAS Imagery in Australian 

Savannas. Remote Sensing, 10, 161 

Graham, R.T., McCaffrey, S., & Jain, T.B. (2004). Science basis for changing forest structure to 

modify wildfire behavior and severity. USDA Forest Service Rocky Mountain Research Station, 

General Technical Report RMRS-GTR-120 

Homer, C., Huang, C.Q., Yang, L.M., Wylie, B., & Coan, M. (2004). Development of a 2001 

National Land-Cover Database for the United States. Photogrammetric Engineering and Remote 

Sensing, 70, 829-840 

Hummel, S., Hudak, A.T., Uebler, E.H., Falkowski, M.J., & Megown, K.A. (2011). A 

comparison of accuracy and cost of LiDAR versus stand exam data for landscape management 

on the Malheur National Forest. Journal of Forestry, 109, 267-273 

Hyde, P., Dubayah, R., Walker, W., Blair, J.B., Hofton, M., & Hunsaker, C. (2006). Mapping 

forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM , 

Quickbird) synergy. Remote Sensing of Environment, 102, 63-73 

Iizuka, K., Yonehara, T., Itoh, M., & Kosugi, Y. (2018). Estimating tree height and diameter at 

breast height (DBH) from digital surface models and orthophotos obtained with an unmanned 

aerial system for a Japanese cypress (Chamaecyparis obtusa) forest. Remote Sensing, 10, 13 

Jameson, D.A. (1967). The relationship of tree overstory and herbaceous understory vegetation. 

Journal of Range Management, 20, 247-249 

Jensen, J.L.R., & Mathews, A.J. (2016). Assessment of image-based point cloud products to 

generate a bare earth surface and estimate canopy heights in a woodland ecosystem. Remote 

Sensing, 8, 50 



 

100 

 

Kaye, J.P., Hart, S.C., Fule, F.Z., Covington, W.W., Moore, M.W., & Kaye, M.W. (2005). Initial 

carbon, nitrogen, and phosphorous fluxes following ponderosa pine restoration treatments. 

Ecological Applications, 15, 1581-1593 

Kaye, J.P., Hart, S.C., Cobb, R.C., & Stone, J.E. (2002). Water and nutrient outflow following 

the ecological restoration of a ponderosa pine‐ bunchgrass ecosystem. Restoration Ecology, 7, 

252-261 

Keane, R.E., Holsinger, L.M., & Pratt, S.D. (2006). Simulating historical landscape dynamics 

using the landscape fire succession model LANDSUM version 4.0. : US Department of 

Agriculture, Forest Service, Rocky Mountain Research Station 

Keane, R.E., Reinhardt, E.D., Scott, J., Gray, K., & Reardon, J. (2005). Estimating forest canopy 

bulk density using six indirect methods. Canadian Journal of forest research, 35, 724-739 

Key, T., Warner, T.A., McGraw, J.B., & Fajvan, M.A. (2001). A comparison of multispectral 

and multitemporal information in high spatial resolution imagery for classification of individual 

tree species in a temperate hardwood forest. Remote Sensing of Environment, 75, 100-112 

Kolb, T.E., Holmberg, K.M., Wagner, M.R., & Stone, J.E. (1998). Regulation of ponderosa pine 

foliar physiology and insect resistance mechanisms by basal area treatments. Tree physiology, 

18, 375-381 

Krasnow, K., Schoennagel, T., & Veblen, T.T. (2009). Forest fuel mapping and evaluation of 

LANDFIRE fuel maps in Boulder County, Colorado, USA. Forest Ecology and Management, 

257, 1603-1612 

Lackey, R.T. (1998). Seven pillars of ecosystem management. Landscape and Urban Planning, 

40, 21-30 

Landres, P.B., Morgan, P., & Swanson, F.J. (1999). Overview of the use of natural variability 

concepts in managing ecological systems. Ecological Applications, 9, 1179-1188 

Larson, A.J., & Churchill, D. (2012). Tree spatial patterns in fire-frequent forests of western 

North America, including mechanisms of pattern formation and implications for designing fuel 

reduction and restoration treatments. Forest Ecology and Management, 267, 74-92 

Laughlin, D.C., Moore, M.M., Bakker, J.D., Casey, C.A., Springer, J.D., Fulé, P.Z., et al. (2006). 

Assessing targets for the restoration of herbaceous vegetation in ponderosa pine forests. 

Restoration Ecology, 14, 548-560 

Li, W., Guo, Q., Jakubowski, M.K., & Kelly, M. (2012). A New Method for Segmenting 

Individual Trees from the Lidar Point Cloud. Photogrammetric Engineering and Remote 

Sensing, 78, 75-84 



 

101 

 

Li, X., & Strahler, A.H. (1985). Geometric-optical modeling of a conifer forest canopy. IEEE 

Transactions on Geoscience and Remote Sensing, 705-721 

Lydersen, J.M., North, M.P., Knapp, E.E., & Collins, B.M. (2013). Quantifying spatial patterns 

of tree groups and gaps in mixed-conifer forests: Reference conditions and long-term changes 

following fire suppression and logging. Forest Ecology and Management, 304, 370-382 

Makynen, J., Holmlund, C., Saari, H., Ojala, K., & Antila, T. (2011). Unmanned aerial vehicle 

(UAV) operated megapixel spectral camera. , 8186, 81860Y 

Mast, J.N., Fule, P.Z., Moore, M.M., Covington, W.W., & Waltz, A.E. (1999). Restoration of 

presettlement age structure of an Arizona ponderosa pine forest. Ecological Applications, 9, 228-

239 

Miller, J.D., Safford, H.D., Crimmins, M., & Thode, A.E. (2009). Quantitative evidence for 

increasing forest fire severity in the Sierra Nevada and southern Cascade Mountains, California 

and Nevada, USA. Ecosystems, 12, 16-32 

Mohan, M., Silva, C.A., Klauberg, C., Jat, P., Catts, G., Cardil, A., et al. (2017). Individual Tree 

Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open 

Canopy Mixed Conifer Forest. Forests, 8, 340 

Moore, M.M., Huffman, D.W., Fule, P.Z., Covington, W.W., & Crouse, J.E. (2004). Comparison 

of historical and contemporary forest structure and composition on permanent plots in 

southwestern ponderosa pine forests. Forest Science, 50, 162-176 

Moore, M.M., Casey, C.A., Bakker, J.D., Springer, J.D., Fule, P.Z., Covington, W.W., et al. 

(2006). Herbaceous vegetation responses (1992–2004) to restoration treatments in a ponderosa 

pine forest. Rangeland Ecology & Management, 59, 135-144 

Morgenroth, J., & Gomez, C. (2014). Assessment of tree structure using a 3D image analysis 

technique—A proof of concept. Urban Forestry & Urban Greening, 13, 198-203 

Mottek Lucas, A. (2015). Flagstaff watershed protection project: creating solutions through 

community partnerships. Flagstaff, AZ: Ecological Restoration Institute, Northern Arizona 

University, ERI White Paper- Issues in Forest Restoration 

Mueller, J.M., Swaffar, W., Nielsen, E.A., Springer, A.E., & Lopez, S.M. (2013). Estimating the 

value of watershed services following forest restoration. Water Resources Research, 49, 1773-

1781 

Naesset, E., & Bjerknes, K.O. (2001). Estimating tree heights and number of stems in young 

forest stands using airborne laser scanner data. Remote Sensing of Environment, 78, 328-340 

National Oceanic and Atmospheric Administration. (n.d.). Data Tools: 1981-2010 Normals. 

https://www.ncdc.noaa.gov/cdo-web/datatools/normals Date Accessed: 11/21/2017. 



 

102 

 

Natural Resources Conservation Service. (2017). Web Soil Survey. 

https://websoilsurvey.nrcs.usda.gov/app/ Date Accessed: 11/24/2017. 

Noss, R.F., Beier, P., Wallace Covington, W., Edward Grumbine, R., Lindenmayer, D.B., 

Prather, J.W., et al. (2006). Recommendations for integrating restoration ecology and 

conservation biology in ponderosa pine forests of the southwestern United States. Restoration 

Ecology, 14, 4-10 

Oles, A., Pau, G., Skylar, O., & Huber, W. (2018). Introduction to EBImage: Image processing 

and analysis.  

Ozdemir, I., & Karnieli, A. (2011). Predicting forest structural parameters using the image 

texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel. 

International Journal of Applied Earth Observation and Geoinformation, 13, 701-710 

Patton, D.R., & Severson, K.E. (1989). WILDHARE: a wildlife habitat relationships data model 

for southwestern ponderosa pine. General technical report RM-Rocky Mountain Forest and 

Range Experiment Station, US Department of Agriculture, Forest Service (USA) 

Popescu, S.C., & Zhao, K. (2008). A voxel-based lidar method for estimating crown base height 

for deciduous and pine trees. Remote Sensing of Environment, 112, 767-781 

Prather, J.W., Noss, R.F., & Sisk, T.D. (2008). Real versus perceived conflicts between 

restoration of ponderosa pine forests and conservation of the Mexican spotted owl. Forest Policy 

and Economics, 10, 140-150 

Puliti, S., Orka, H.O., Gobakken, T., & Nasset, E. (2015). Inventory of small forest areas using 

an unmanned aerial system. Remote Sensing, 7, 9632-9654 

Reeves, M.C., Ryan, K.C., Rollins, M.G., & Thompson, T.G. (2009). Spatial fuel data products 

of the LANDFIRE Project. International Journal of Wildland Fire, 18, 250-267 

Reeves, M.C., Kost, J.R., & Ryan, K.C. (2006). Fuel Products of the LANDFIRE Project. USDA 

Forest Service Proceedings, RMRS-P-41 

Reynolds, R.T., Meador, A.J.S., Youtz, J.A., Nicolet, T., Matonis, M.S., Jackson, P.L., et al. 

(2013). Restoring composition and structure in Southwestern frequent-fire forests: A science-

based framework for improving ecosystem resiliency. USDA Forest Service Rocky Mountain 

Research Station, General Technical Report RMRS-GTR-310 

Roberts, D.A., Ustin, S.L., Ogunjemiyo, S., Greenberg, J., Dobrowski, S.Z., Chen, J., et al. 

(2004). Spectral and structural measures of northwest forest vegetation at leaf to landscape 

scales. Ecosystems, 7, 545-562 

Rollins, M.G. (2009). LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel 

assessment. International Journal of Wildland Fire, 18, 235-249 



 

103 

 

Rothermel, R.C. (1972). A mathematical model for predicting fire spread in wildland fuels. 

USDA Forest Service Intermountain Forest and Range Experiment Station, Research Paper INT-

115 

Saari, H., Pellikka, I., Pesonen, L., Tuominen, S., Heikkila, J., Holmlund, C., et al. (2011). 

Unmanned Aerial Vehicle (UAV) operated spectral camera system for forest and agriculture 

applications. , 8174, 81740H 

Sankey, T., Donald, J., McVay, J., & Sankey, J. (2017). UAV lidar and hyperspectral fusion for 

forest monitoring in the southwestern USA. Remote Sensing of Environment, 195, 30-43 

Savage, M., Brown, P.M., & Feddema, J. (1996). The role of climate in a pine forest 

regeneration pulse in the southwestern United States. Ecoscience, 3, 310-318 

Scott, J.H. (2006). Comparison of Crown Fire Modeling Systems Used in Three Fire 

Management Applications. USDA Forest Service Research Paper, RMRS-RP-58 

Scott, J.H., & Burgan, R.E. (2005). Standard Fire Behavior Fuel Models: A Comprehensive Set 

for Use with Rothermel's Surface Fire Spread Model. USDA Forest Service Rocky Mountain 

Research Station, General Technical Report RMRS-GTR-153 

Scott, J.H., & Reinhardt, E.D. (2001). Assessing crown fire potential by linking models of 

surface and crown fire behavior. USDA Forest Service Research Paper, 1 

SenseFly. (n.d.a). eBee SenseFly. 

https://www.sensefly.com/fileadmin/user_upload/sensefly/documents/brochures/eBee_en.pdf 

Date Accessed: 02/01/2017. 

SenseFly. (n.d.b). eMotion 2. https://www.sensefly.com/software/emotion-2/ 

Silva, C.A., Hudak, A.T., Vierling, L.A., Loudermilk, E.L., O’Brien, J.J., Hiers, J.K., et al. 

(2016). Imputation of Individual Longleaf Pine (Pinus palustris Mill.) Tree Attributes from Field 

and LiDAR Data. Canadian Journal of Remote Sensing, 42, 554-573 

Simonin, K., Kolb, T.E., Montes-Helu, M., & Koch, G.W. (2007). The influence of thinning on 

components of stand water balance in a ponderosa pine forest stand during and after extreme 

drought. Agricultural and Forest Meteorology, 143, 266-276 

Stephens, S.L., Agee, J.K., Fule, P.Z., North, M.P., Romme, W.H., Swetnam, T.W., et al. (2013). 

Managing forests and fire in changing climates. Science, 342, 41-42 

Stoddard, M.T., Meador, A.S., Fule, P.Z., & Korb, J.E. (2015). Five-year post-restoration 

conditions and simulated climate-change trajectories in a warm/dry mixed-conifer forest, 

southwestern Colorado, USA. Forest Ecology and Management, 356, 253-261 



 

104 

 

Stratton, R.D. (2004). Assessing the effectiveness of landscape fuel treatments on fire growth 

and behavior. Journal of Forestry, 102, 32-40 

Stratton, R.D. (2009). Guidebook on LANDFIRE Fuels Data Acquisition, Critique, 

Modification, Maintenance, and Model Calibration. USDA Forest Service Rocky Mountain 

Research Station, General Technical Report RMRS-GTR-220 

Stratton, R.D. (2006). Guidance on Spatial Wildland Fire Analysis: Models, Tools, and 

Techniques. USDA Forest Service Rocky Mountain Research Station, General Technical Report 

RMRS-GTR-183 

Thornton, P.E., Running, S.W., & White, M.A. (1997). Generating surfaces of daily 

meteorological variables over large regions of complex terrain. Journal of Hydrology, 190, 214-

251 

Tucker, C.J. (1979). Red and Photographic Infrared Linear Combinations for Monitoring 

Vegetation. Remote Sensing of Environment, 8, 127-150 

USGS. (2008). Elevation derivatives for national applications. US Geological Survey online 

database. http://edna.usgs.gov/ 

Van Mantgem, P.J., Stephenson, N.L., Byrne, J.C., Daniels, L.D., Franklin, J.F., Fule, P.Z., et al. 

(2009). Widespread increase of tree mortality rates in the western United States. Science, 323, 

521-524 

Wagner, C.V. (1977). Conditions for the start and spread of crown fire. Canadian Journal of 

Forest Research, 7, 23-34 

Wallace, L., Musk, R., & Lucieer, A. (2014). An assessment of the repeatability of automatic 

forest inventory metrics derived from UAV-borne laser scanning data. IEEE Transactions on 

Geoscience and Remote Sensing, 52, 7160-7169 

Wallace, L., Lucieer, A., & Watson, C.S. (2014). Evaluating tree detection and segmentation 

routines on very high resolution UAV LiDAR data. IEEE Transactions on Geoscience and 

Remote Sensing, 52, 7619-7628 

Wallace, L., Lucieer, A., Malenovsky, Z., Turner, D., & Vopenka, P. (2016). Assessment of 

Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and 

Structure from Motion (SfM) Point Clouds. Forests, 7 

Westerling, A.L., Hidalgo, H.G., Cayan, D.R., & Swetnam, T.W. (2006). Warming and earlier 

spring increase western US forest wildfire activity. Science, 313, 940-943 

Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., & Reynolds, J.M. (2012). 

‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. 

Geomorphology, 179, 300-314 



 

105 

 

Woodcock, C.E., & Strahler, A.H. (1987). The factor of scale in remote sensing. Remote Sensing 

of Environment, 21, 311-332 

Wulder, M.A., White, J.C., Alvarez, F., Han, T., Rogan, J., & Hawkes, B. (2009). Characterizing 

boreal forest wildfire with multi-temporal Landsat and LIDAR data. Remote Sensing of 

Environment, 113, 1540-1555 

Zachmann, L.J., & Dickson, B.G. (2017). Four Forest Restoration Initiative- Landscape Pattern 

Analysis.  

Zhu, Z., Vogelmann, J., Ohlen, D., Kost, J., Chen, X., & Tolk, B. (2006). Mapping existing 

vegetation composition and structure for the LANDFIRE prototype project.  

  

  



 

106 

 

Appendix A. 

Table of predictor variables used to derive canopy fuels data for LANDFIRE (Reeves et al., 

2009). MRLC is the Multi-Resolution Land Characteristic Consortium. DAYMET is a 

meteorological database. Wx Fire is a fire weather simulation model (Homer et al., 2004; Keane 

et al., 2006; Rollins, 2009; Thornton et al., 1997; Tucker, 1979; USGS, 2008; Zhu et al., 2006). 

Variable Source; Citation Units 

Satellite Imagery    

Landsat ETM band 1 MRLC; Homer et al (2004) 0.45-0.52 µm 

Landsat ETM band 2 MRLC; Homer et al (2004) 0.52-0.60 µm 

Landsat ETM band 3 MRLC; Homer et al (2004) 0.63-0.69 µm 

Landsat ETM band 4 MRLC; Homer et al (2004) 0.76-0.90 µm 

Landsat ETM band 5 MRLC; Homer et al (2004) 1.55-1.75 µm 

Landsat ETM band 7 MRLC; Homer et al (2004) 2.08-2.35 µm 

Landsat ETM tasseled-cap transformation MRLC; Homer et al (2004) unitless 

Landsat ETM NDVI MRLC; Tucker (1979) unitless 

Biophysical Gradients    

Average annual shortwave radiation DAYMET; Thornton et al (1997) W m^2 

Average annual minimum daily temperature DAYMET; Thornton et al (1997) ◦C 

Average annual maximum daily temperature DAYMET; Thornton et al (1997) ◦C 

Average annual precipitation DAYMET; Thornton et al (1997) mm 

Average annual vapor pressure deficit DAYMET; Thornton et al (1997) mbar 

Average annual day length DAYMET; Thornton et al (1997) minutes 

Average annual relative humidity DAYMET; Thornton et al (1997) % 

Average annual snowfall Wx Fire; Keane et al (2006) cm 

Average annual dewpoint temperature Wx Fire; Keane et al (2006) ◦C 

Average annual soil temperature Wx Fire; Keane et al (2006) ◦C 

Soil water transpired by canopy Wx Fire; Keane et al (2006) kg m^-2 day^-1 

Volumetric water content Wx Fire; Keane et al (2006) unitless 

Actual evapotranspiration Wx Fire; Keane et al (2006) kg h2o year^-1 

Degree-days Wx Fire; Keane et al (2006) ◦C 

Days since last rain Wx Fire; Keane et al (2006) days 

Evaporation Wx Fire; Keane et al (2006) kg h2o m^-2 day^-1 

Canopy conductance to sensible heat Wx Fire; Keane et al (2006) s m^-1 

Soil water lost to runoff and ground Wx Fire; Keane et al (2006) kg m^-2 day^-1 

Potential evapotranspiration Wx Fire; Keane et al (2006) kg m^-2 year^-1 

Photon flux density Wx Fire; Keane et al (2006) µmol m−2 

Precipitation Wx Fire; Keane et al (2006) cm 

Water potential of soil and leaves Wx Fire; Keane et al (2006) Mpa 

Amount of snowfall Wx Fire; Keane et al (2006) cm 

Soil water fraction Wx Fire; Keane et al (2006) % 

Elevation USGS (2008) m 

Aspect USGS (2008) azimuth 

Slope USGS (2008) % 

Vegetation attributes from LANDFIRE    

Existing vegetation type Zhu et al (2006) map class 

Existing vegetation height Zhu et al (2006) map class 

Existing vegetation cover Zhu et al (2006) map class 

Environmental site potential Rollins (2009) map class 

 


