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Abstract 
The technique of using vibration sensors to monitor pavement roughness has been expanding 
in pavement engineering. The primary objective of this study is to implement cost-effective 
vibration sensors to predict asphalt roughness and identify critical cracking locations. It has 
been an increasing discussion in industry whether temperature changes due to climate change 
will have considerable influence on infrastructure resilience and sustainability. The method 
presented here uses vehicle-based sensors to assess pavement roughness during extreme hot 
and cold temperatures in Phoenix, AZ. This project consisted of developing vehicle-based 
accelerometers and taking monthly road surveys for a year. Five sensors were mounted to a 
vehicle, four on the tires and one inside the car, as well a sixth smartphone sensor inside the 
car. This project covers collecting data at pavement temperatures from 40ºF - 150ºF. The 
analysis consists of converting accelerometer data into international roughness index values 
using Fourier transforms and using statistical analysis to verify a relationship between 
pavement temperature and accelerometer vibration. The results show that hot asphalt 
concrete temperatures increase the amount of observable accelerometer vibration from a 
vehicle. Sensors mounted near the tires showed to be more reliable than sensors inside the 
vehicle. This project demonstrates that accelerometer sensing technology is a cost-effective 
way to advance the day-to-day operations in highway pavement maintenance and 
management.  
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1.0 Introduction: 

A roads roughness has important contributions to road-user costs, vehicle delay costs, crash 

costs, and noise pollution. When a road becomes rougher, the vehicles driving over it will 

experience increased vibration that contributes to faster deterioration of a pavement structure. 

These significant consequences have led highway agencies to pay more attention to the 

roughness levels of their pavements.  

Current methods of evaluating road roughness can be costly using sophisticated sensing 

equipment. When a highway engineer is deciding when/where to commence pavement 

rehabilitation, it is ideal to know the condition of all nearby roads as to prioritize which 

rehabilitation should come first. The primary objective of this study is to develop a cost-

effective sensing technology that highway agencies can use to quantify pavement roughness 

while providing locations of critical fatigue cracking and rutting. It is in popular discussion that 

global warming with contribute to unexpected temperatures over the next decades. This data 

will assess a range of temperatures and determine whether temperature plays a role in 

roughness quantification. 

The scope of this project contains devising vehicle-based vibration sensors, collecting data 

based on temperature variations, identifying severe and moderate cracks, converting to a 

roughness index that highway agencies can use, and predicting pavement behavior under a 

range of temperatures. Sensors were tested on bicycles to determine the accuracy of the 

accelerometer sensors. Other concurrent data collection included controlling tire pressure to 

see the effects of tire pressure on vibration. The same vehicle was used throughout the data 



2 
 

collection process, a 2016 Honda Accord. Tire pressures were recorded each test with a tire 

pressure gauge and pavement surface temperatures were measured with an infrared 

thermometer. 

1.1 Research Questions 

The questions asked throughout this research are: 

1. Can accelerometers accurately predict highway pavement roughness conditions? 

2. Does pavement temperature have a significant effect on accelerometer sensing?  

3. What can accelerometer sensors predict that is different from the current state-of-art 

method of evaluating pavement conditions?  

The broader question is what effect does extreme temperatures have on asphalt?  

2.0 Background 

The “roughness” level of a pavement network is useful for highway agencies to monitor their 

pavement health. The first International Road Roughness experiment in 1986 [14] defines 

“roughness” as the variation in surface elevation that induces vibrations in traversing vehicles. 

A standardized roughness scale, the International Roughness Index (IRI), was created in 1986 by 

the World Bank and is used to define a characteristic of the longitudinal profile of a traveled 

wheel track [13] More precisely, the IRI is a longitudinal measure of how the surface of a 

pavement deviates over a specified distance, also known as the average rectified slope (ARS) 

with units of in/mi, m/km, etc... The IRI is a ratio of suspension motion over distance traveled 

based on a simulation of a car going 50-mph. The higher the IRI value, the higher the roughness 

level of a road. Besides for routine monitoring, the initial roughness after construction is 
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Figure 2: Left: ADOT road profiler. Profiler is the gray box mounted on the front. Right: South 
Dakota road profiler with lasers sensors mounted on top. [15] 

measured and is a key factor in providing long-term performance. The smoother a pavement is 

built, the smoother it stays over time [6].  

According to the World Bank [13], there are four common techniques for measuring roughness, 

listed from most expensive to least expensive: 1) Direct profile measurements using lasers to 

survey the road while driving. 2) Indirect profile measurements using manual methods of level 

and rod surveying. 3) Response type road roughness measurement systems (RTRRMSs) using 

sensors to measure the response of a vehicle driving over a pavement. 4) Subjective rating 

panels using judges to inspect a road and rate it based on intuition and experience. All 

techniques can be converted into IRI values. This project uses RTRRMS techniques. 

The more common IRI measuring systems used today are installed on vans or trucks and 

contain microcomputers and data processing instruments which measure differences in 

ultrasonic or light profiles. For example, a hybridized South Dakota road profiler, Figure 1, 

combines three ultrasonic sensors with two laser sensors, one for each wheel path, and 

combines both sensing techniques and resultant IRI calculations [11].   

 

 

 

 

 

 

 



4 
 

Accelerometers 

located here for 

this project. 

IRI is measured in certain wheel paths. A quarter-car model is used to calculate IRI and is shown 

in Figure 2. The model summarizes how roughness causes vibrations of the car. It includes tire 

compliance suspension stiffness and dampening. 

 

Figure 3: Quarter-car model. [15] 

Newton’s second law of motion states that the acceleration of an object as produced by a net 

force is directly proportional to the magnitude of the net force. Therefore, when drawing a free 

body diagram the following differential equations are obtained [19]: 

𝑚𝑠�̈�𝑠 + 𝐶𝑠(�̇�𝑠 − �̇�𝑢) + 𝐾𝑠(𝑍𝑠 − 𝑍𝑢) = 0  

𝑚𝑠�̈�𝑢 + 𝐶𝑠(�̇�𝑢 − �̇�𝑠) + 𝐾𝑠(𝑍𝑢 − 𝑍𝑠) = 𝐾𝑡(𝑍𝑝 − 𝑍𝑢)     

𝑍𝑝 = the input: wheel track elevation as a 

function of time. 

ms and mu = sprung and unsprung masses 

respectively.  

Ks = linear spring stiffness of the suspension 

system.  

Cs = dampening rate of the suspension 

system. 

Kt = linear spring stiffness model of tire. 
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𝑍𝑢= vertical displacement of unsprung mass 𝑍𝑠= vertical displacement of spring mass 

After removing the masses from the equations and solving, the response of the quarter-car 

model traveling at 50-mph can be calculated for each point, x, along a distance of travel, L. 

 The IRI is: 

𝐼𝑅𝐼 =  
1

𝐿
∫ |𝑍𝑠 − 𝑍𝑢|

𝐿

0

𝑑𝑥 

The quarter-car model analyzes road conditions for a single wheel track. This study analyzes 

road conditions using two traveled wheel tracks also known as a half-car model, Figure 3, and 

therefore calculates a half-car roughness index (HRI). Sayers [15] has shown that the average of 

the IRIs from the two traveled wheel tracks are always lower than the average of the IRIs from 

one traveled wheel track and recommends this equation: 

𝐻𝑅𝐼 = 0.8𝐼𝑅𝐼 

 

 

 

 

 

 

 

 

 

Figure 4: Half-car Model. [15] 
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Decisions on which type of model to use depends on practical considerations. Sayers [15] warns 

that there has been confusion between the two methods and data is being reported without 

specifying which method is being used. 

Recent studies [4], [5] have shown that using inexpensive accelerometers can be converted into 

IRI data. This research project differs from other accelerometer methods by placing 

accelerometers on each wheel of a vehicle and inside the vehicle to be compared with a 

smartphone sensor. Also, instead of using only the z-axis responses for IRI conversion, the total 

magnitude of the x, y, and z directional responses are used. 

 Smartphone accelerometers has become a growing technique in evaluating pavement 

roughness using RTRRMS methods. Because of the convenience of smartphones with built-in 

accelerometers, vibration applications have been a topic of research for advancing pavement 

monitoring systems. Recent studies [2], [3], [8] showed that acceleration vibration magnitude 

has a linear relationship with road roughness conditions and IRI values measured by 

smartphone application are very close to IRI values measured by highway agencies when 

pavement conditions are “good” to “fair” in terms of roughness.  

Studies [10], [12] have shown that Geographic Information Systems (GIS) is useful in combining 

layers of roadway information to benefit decision-making processes of road intervention. Using 

a tool like GIS can combine crash hotspots with a roughness index to determine where road 

intervention should occur. Accelerometers have been paired with GIS platforms and shown 

effectiveness [8]. Other studies [9] have shown GPS data refinement methods need to be 

implemented to improve accuracy.  
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 Figure 5: Conceptual framework 

Tire pressure and dampening systems are known to play a key role in how a vehicle responds to 

a roads roughness. Studies [7], [17] have shown that tire pressure has significant effect on 

RTRRMSs. Tire size, tire construction, inflation pressure, and operating conditions also influence 

the vibration experienced by a vehicle. 

3.0 Methodology 

Vehicle-based accelerometers were developed in lab and used in conjunction with a 

smartphone accelerometer sensor application. Data is collected while driving at highway 

speeds and transmitted to a laptop inside the vehicle using a WiFi router with local access. Five 

accelerometer sensors were mounted to the vehicle, one on each wheel’s control arm (M1-

M4), one inside cab of the vehicle (M5), and a sixth iPhone sensor mounted inside the cab of 

the vehicle. The conceptual framework of the system is shown in Figure 4. Accelerometers 

located by each wheel transmits data wirelessly through a router to an on-board computer. GPS 

is linked to each accelerometer for data to be georeferenced. Smartphone data and video data 

are transmitted separately from the accelerometer sensors. 

 

 

 

 

 

 

 

 

Front of Car 
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Figure 6: Top: ADXL 335 accelerometer. Bottom: Adafruit GPS. Right: TP-LINK 3G router. 

3.1 System Components 

ADXL 335 triple-axis accelerometers were developed with Arduino MKR1000 computer boards. 

Components were soldered together in NAU’s technology lab. The sensors communicate three-

dimensional vibration data to a laptop using WiFi. The sensors are attached to each wheel’s 

control arm using project boxes with Velcro. Velcro is meant to limit the movement of the 

sensors on the control arm and only catch the movement of the control arm itself. Foam is used 

inside the project boxes as to limit sensor movement during the ride. The fifth ADXL 335 sensor 

is located inside the vehicle next to an iPhone sensor, taped to the center console. An Adafruit 

Ultimate GPS is also connected to an Arduino MKR1000 computer board and used in 

conjunction with the ADXL 335 accelerometers. The accelerometer, GPS, and WiFi router is 

shown in Figure 5. 

 

 

 

 

 

 

The cost of one unit of the ADXL 335 triple-axis accelerometer, Arduino MKR1000, and Adafruit 

Ultimate GPS is $10.00, $40.00, and $35.00 respectively. The wireless router that was used was 

a Unicom 3G router with a cost of $120.00. The project enclosures and foam are roughly $5.00. 
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Figure 7: All sensors and GPS used in system. 

 

 

 

 

 

 

 

 

 

 

 

All sensors and GPS devices are shown in Figure 6. The team visited the transportation fleet 

center at NAU to acquire a testing vehicle and discuss where the best placement for the sensors 

were. A 2016 Honda Accord from NAU’s fleet was best suited for the experiment. To determine 

where to place the sensors, the team discussed ideas with the technicians while the vehicle was 

lifted in the air.  The objective was adequate placement as to catch suspension motion, level 

surface for sensors to sit, and easy install so this could be done quickly in the field without 

having to jack up the vehicle. The control arms were chosen as they are responsible for 

connecting a vehicles suspension to its frame and provide a flat surface to mount sensors. 
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Figure 8: Accelerometer placement on vehicle. 

 

 

 

  

 

 

 

 

 

The sensors had to be able to be removed from the vehicle when the team was not testing. 

During a field test, the sensors could be mounted in the front by turning the steering wheel all 

the way to one direction, reaching in, and placing project enclosure on a Velcro sticker. Sensors 



11 
 

were mounted in the back by laying down on the ground and reaching up to the rear control 

arms. Sensor placement on the testing vehicle is shown in Figure 7. 

A graphical user interface (GUI) laptop application was developed to display the real-time data 

and to store the data in .csv files with a start/stop function. The blue, green, and red colors 

represent the x, y, and z-axis respectively. There are five displays for the five sensors mounted 

on the vehicle. The top four displays are for the sensors located on front driver-side tire, front 

passenger-side tire, back driver-side tire, and back passenger-side tire respectively. The bottom 

right corner of the GUI is the sensor mounted inside the vehicle. Notice how the overall 

magnitude of the sensor inside the vehicle is less than the magnitude of the sensors located on 

the tires due to the vehicles suspension system. The GUI shows latitude, longitude, and speed. 

It also allows you to view the scatter plots at different speeds and adjust the frequency of how 

milliseconds per point. After experimenting with the frequency, approximately 30 data points 

per second are collected during a field test. 

Road tests were conducted with two people, the driver and the passenger. The driver is 

responsible for maintaining a constant test speed while driving safely and smoothly. The 

passenger of the vehicle is responsible for running the laptop and controlling the GUI, so the 

driver is not distracted. The passenger oversees starting/stopping data collection, renaming 

each test run, note keeping of road conditions, and keeping an extra eye on the road to help 

the driver. 

The GUI is shown below. Figure 8 is an example of data collection traveling at 60-mph. Figure 9 

is when the vehicle is still. If the sensor was at perfectly level position, the blue, green, and red, 
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Figure 9: GUI during road test traveling at 60-mph. 

Figure 10: GUI during road test traveling at 0-mph. 

colors would show up on top of each-other. The slight degree of off-level position is due to the 

control arms not being completely flat and the accelerometers not sitting perfectly flat in the 

foam in the project boxes. 
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Figure 11: GoPro Hero5 display. 

A GoPro Hero5 is used to confirm pavement distresses and filter out false calls such as 

construction joints. The GoPro Hero5 also has a built in GPS, speed tracker, and gyroscope that 

can be used to confirm the data that was collected with the vehicle-based sensors. When 

mapping severe and moderate cracking locations, a picture of the actual crack is provided from 

the GoPro. That way, highway agencies receive visual confirmation of the individual pavement 

distresses that were detected with the accelerometers. The picture shown in Figure 10 was shot 

at the data collection speed of 60-mph. The GoPro was mounted on the rear bumper as to 

capture the pavement distress right after it has been hit. When testing at night, there is not 

enough light to capture the frames per second. Therefore, GoPro footage is captured during the 

day and then the GPS metadata from the GoPro can be extracted and compared to the Adafruit 

Ultimate GPS component. The cost of a GoPro Hero5 is currently $200.00. 
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3.2 Study Location 

Two study corridors, Figure 11, were chosen in Phoenix, Arizona. Interstate 10 in Phoenix, AZ 

was ultimately chosen because this project was funded by ABOR as part of a tri-university 

project where the entire team focused their transportation research to the freight corridor of 

Interstate 10. However, this site was also chosen because of the hot temperatures the region 

receives. The terrain experiences the urban heat island effect and is covered by asphalt 

concrete with flat grades and an elevation of 1086-ft. The two sites on Interstate 10 were 

chosen based on traffic volume, differing pavement roughness, and relatively straight travel 

paths. The first corridor, 27th Avenue through 51st Avenue, and the second, Baseline Road 

through Chandler Boulevard. In 2016, the average annual daily traffic (AADT) including both 

east and west bound directions were approximately 186,000 vehicles per day for the Baseline 

Ave. – Chandler Blvd. section and 230,000 vehicles per day for the 27th Ave. – 51st Ave. section.  

The 1st and 2nd right lanes were surveyed going east and west bound directions for a total of 

four tests per study corridor. The target testing speed was 60-mph as to remain within a safe 

speed while testing. Also, it has been recommended in the past that testing speeds should be 

selected such that the roughness measurement reflects that seen by normal traffic [7]. Because 

traffic congestion was an issue in these areas, tests were mostly conducted around midnight. 12 

months of data was collected from February 2017 through February 2018 recording pavement 

conditions from a temperature range of 40ºF - 150ºF. The goal is to find a correlation between 

pavement roughness and pavement temperature that can be detected with vibration sensors. 
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Figure 11: Road test site. Phoenix, AZ. 27th Ave. - 51st Ave. and Baseline Rd. - Chandler Blvd. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.0 Results 

The data output is in acceleration of gravity in the x, y, and z-directions. The z-direction 

corresponds to the vertical motion of the wheel caused by a bump or change in slope of the 

road, the x-direction corresponds to the vehicle accelerating and braking, and the y-direction 

corresponds to the vehicle turning left or right. However, when a car passes over rough 

pavement the sensor on the wheel’s control arm can shake in all directions, not just in the z-

direction. While most studies only examined the forces in the z-direction, this experiment 

examined the total magnitude, M. of all forces for each sensor on all tests. 

 𝑀 = √𝑥2 + 𝑦2 + 𝑧2 , 

The x and y forces could be included because the vehicle speed was set to cruise control at 60-

mph and the test sections were relatively straight, so the vehicle was not making drastic left or 
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right turns. This is also helpful in determining the size of an individual crack as when looking at 

the results from the z – direction there is both a positive and negative feedback from a bump.  

The results showed that pavement distresses could be successfully observed by the sensors. 

There are spikes in the graphs where major cracks appear and the overall noise in-between the 

spikes give an idea of general roughness. Depending on how big the spikes are in the graph are, 

pavement deficiencies could be classified, linked with GPS, and later georeferenced onto a map. 

The effects of temperature were noticed by sensors on the wheels, but not so much by the 

sensors inside the vehicle. This could be because of tire pressure changes and the suspension 

system of the vehicle. 

4.1 Threshold method 

This project aimed to create a system that identifies individual cracks that could hold significant 

weight in determination of IRI. To do this, it was necessary to classify individual pavement 

distresses as moderate or severe based on examination of the data outputs. After examining 

the raw data, threshold values for severe and moderate cracking were chosen and monitored 

over the length of the experiment. Values above this threshold were filtered and graphed 

against temperature as well as mapped in ArcGIS.  

An example of choosing threshold based on the raw data is shown in Figure 12. Moderate 

cracks were said to have a threshold of 1.5 times the force of gravity while severe cracks were 

above 2.5 times the force of gravity. These values were chosen based on engineering 

judgement.  
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Figure 12: Using the Threshold method on raw data. 

M1, M2, M3, M4, and M5 correspond to the magnitude of each sensor, M5 being the sensor 

inside the vehicle. The threshold can be switched depending on which sensor is being observed. 

For example, the M5 sensor would require lower threshold values to identify severe cracks. 

Also, sensors M1-M4 can be averaged, i.e. M(1-4)avg. and the threshold can be adjusted 

according to engineering judgement.  

The following Figures 13 & 14 were produced using a threshold value of 1.0g to show a 

relationship between temperature and vibration. This threshold was chosen to observe the 

overall noise of the road and not just the severe and moderate cracks. The temperature vs. 

gravity graphs are a compilation of all eight road tests and all five accelerometers. A trend is 

shown that as temperature increases, vibration increases. The iPhone sensor, as well as the 

accelerometer inside the vehicle, did not show this trend.  
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Figure 14: Threshold method showing how vibration increases with temperature. 

Figure 14: Threshold method – smartphone sensor does not sense change in temperature. 
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These results are startling at first because one would expect smoother conditions at hot 

temperatures. When an asphalt pavement is subject to hot temperatures, it acts more like a 

liquid then at cool temperatures. Since the pavement is more likely to deform at hotter 

temperatures it makes intuitive sense that there would be more vibration. The tires air pressure 

is also a suspect for this trend. Tire pressure changes with temperature and could be the reason 

that this trend is observed. This phenomenon of tire pressure is explored later in this 

document. Figures 13 & 14 only look at data collected for half of a year as to exclude increased 

vibration due to pavement deterioration. 

To observe how vibration changes due to temperature variation and deterioration over a full 

year, Figures 15 - 22 were created with a secondary axis of pavement temperature. The 

following figures are the eight test sections with the magnitude of each sensor graphed against 

pavement temperature and corresponding month. The blue area chart represents the 

pavement temperatures during the tests while the line charts represent each sensor. The 

pavement temperature is on the right vertical axis while the vibration is expressed on the left 

vertical axis. There are some gaps in the data due to technical difficuilties during testing such as 

poor connections with WiFi. After observing all the graphs using this threshold method, a trend 

was noticed but it didn’t always fit perfectly. It appeared that there were spikes in the line 

charts corresponding to higher temperatures but the team was unable to be sure without 

performing statistical analysis. 
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Figure 155: Threshold method over a year. 27th Ave. - 51st Ave. East Bound Lane 1. 

 

 

Figure 16: Threshold method over a year. 27th Ave. - 51st Ave. East Bound Lane 2. 
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Figure 167: Threshold method over a year. 27th Ave. - 51st Ave. West Bound Lane 1. 

 

 

Figure 18: Threshold method over a year. 27th Ave. - 51st Ave. West Bound Lane 2. 
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Figure 179: Threshold method over a year. Baseline Rd. - Chandler Blvd. East Bound Lane 1. 

 

 

Figure 180: Threshold method over a year Baseline Rd. - Chandler Blvd. East Bound Lane 2. 

 

0

20

40

60

80

100

120

140

160

0

200

400

600

800

1000

1200

fe
b

m
ar

ap
r

m
ay ju
n ju
l

au
g

se
p

o
ct

n
o

v

d
ec ja
n

fe
b

Pa
ve

m
e

n
t 

Te
m

p
er

at
u

re
 º

F

# 
o

f 
V

al
u

es
 A

b
o

ve
 T

h
re

sh
o

ld

Baseline Rd. - Chandler Blvd. East Bound Lane 1

temp M1 M2 M3 M4 M5 iPhone

0

20

40

60

80

100

120

140

160

0

200

400

600

800

1000

1200

fe
b

m
ar

ap
r

m
ay ju
n ju
l

au
g

se
p

o
ct

n
o

v

d
ec ja
n

fe
b

Pa
ve

m
e

n
t 

Te
m

p
er

at
u

re
 º

F

# 
o

f 
V

al
u

es
 A

b
o

ve
 T

h
re

sh
o

ld

Baseline Rd. - Chandler Blvd. East Bound Lane 2

temp M1 M2 M3 M4 M5 iPhone



23 
 

 

Figure 21: Threshold method over a year. Baseline Rd. - Chandler Blvd. West Bound Lane 1. 

 

 

Figure 192: Threshold method over a year. Baseline Rd. - Chandler Blvd. West Bound Lane 2. 
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4.2 Average Method 

Another method was used to observe if temperature has significant effect on vibration. The 

average method was performed by taking the overall average of each sensors and graphing 

them against temperature. Each sensor’s magnitude was averaged over the complete time 

duration of each of the eight testing sections. The following Figures 23-30 show the average 

method for each of the eight test sections. The average of each sensor was graphed against 

pavement temperature and corresponding month. The graphs can be read the same way as the 

threshold method, with the pavement temperature as the area chart and the individual sensors 

as the line charts. The average method again showed a suspicious interaction between 

temperature and vibration, but the relationship was not as prevalent as the threshold above. 

The iPhone sensors average especially did not show any signs of relationship with temperature 

and vibration but the sensor inside the vehicle appeared to go back and forth in no significant 

pattern. 

 

Figure 23: Average method over a year. 27th Ave. - 51st Ave. East Bound Lane 1. 
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Figure 204: Average method over a year. 27th Ave. - 51st Ave. East Bound Lane 2. 

 

 

Figure 215: Average method over a year. 27th Ave. - 51st Ave. West Bound Lane 1. 
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Figure 226: Average method over a year. 27th Ave. - 51st Ave. West Bound Lane 2. 

 

 

Figure 237: Average method over a year. Baseline Rd. - Chandler Blvd. East Bound Lane 1. 
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Figure 28: Average method over a year. Baseline Rd. - Chandler Blvd. East Bound Lane 2. 

 

 

Figure 29: Average method over a year. Baseline Rd. - Chandler Blvd. West Bound Lane 1. 
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Figure 30: Average method over a year. Baseline Rd. - Chandler Blvd. West Bound Lane 2. 

4.3 GIS Mapping 

Using ArcGIS, data was georeferenced into a useable format for highway agencies. The average 

of all four wheel sensors were mapped, M(1-4)avg. From inspecting the M(1-4)avg values, 

severe and moderate cracks were graphed based on acceleration of gravity above 0.8g and 1.0g 

respectively. The following maps in Figures 31-32 show the transition throughout the year by 

showing the months of March, June, September, and December. The results show that when 

temperature was hotter, there appears to be a greater increase in cracking. Some cracks that 

appeared as moderate in the cold, appear as severe in the heat, and the frequency of moderate 

cracks increases with temperature. These results were expected as the temperature-vibration 

trend was noticed from the raw data, but it makes it difficult to trust which is the real 

representation of the road and difficult to decide what is the ideal temperature for testing road 

roughness. 27th Ave. - 51st Ave. is shown first followed by Baseline Rd. – Chandler Blvd. 
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Figure 31: 27th Ave. – 51st Ave. Top to bottom: severe and moderate cracks for east and west 
bound lane 1 in March, June, September, and December. 

The hottest month of the four months, June, has the most cracking and coolest month, 

December, has the least even though December was one of the latest months in the year long 

study. The Baseline Rd. – Chandler Blvd. maps are shown below enlarged to observe the detail. 

March, Pavement Temp. 65°F 

Not to scale. 

June, Pavement Temp. 95°F 

Not to scale. 

 

September, Pavement Temp. 80°F 

Not to scale. 

 

December, Pavement Temp. 55°F 

Not to scale. 
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Scale = 1:20,000 
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June, Pavement 
Temp. 95°F 

Scale = 1:20,000 
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September, Pavement 
Temp. 95°F 

Scale = 1:20,000 
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December, Pavement 
Temp. 55°F 

Scale = 1:20,000 
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Figure 32: Baseline Rd. – Chandler Blvd. Top to bottom: severe and moderate cracks for east 
and west bound lane 1 in March, June, September, and December. Figure is broken up into north 

and south segments for each month to view the detail. 
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Figure 33: ADOT IRI values mapped with individual cracks located from the accelerometers. 

It is useful to compare IRI values from ADOT with the accelerometer data. Figure 33 shows 

ADOT IRI segment values graphed underneath the accelerometer sensors. Because IRI values 

are in segments, individual pavement deficiencies are not identified. By overlaying these two 

methods on top of each other, highway agencies can determine if certain severe cracks are 

holding significant weight in the reported IRI. Ideally, all this information would get mapped 

with picture links for each severe or moderate crack. However, depending on temperature the 

amount of cracking could go up or down. ADOT does not report temperatures at which IRI 

values were recorded. Therefore, it is recommended to use accelerometer vehicle-based 

sensors during the average temperature that the region receives. This data could be made 

public on a website for travelers to be prepared for the type of roughness their vehicles are 

going to encounter.  
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5.0 Analysis 

After reviewing the results from the threshold method, average method, and GIS mapping, the 

team wanted to look more in-depth between the relationship between temperature and 

vibration. The following section looks at tire pressure effects, converting vehicle-based 

accelerometer data into IRI values and comparing them with ADOT’s IRI values, and using 

statistical analysis.  

5.1 Tire Pressure 

It is known that tire pressure increases roughly 1-psi for every 10ºF. Throughout the year of 

data collection, the outside air temperature changed by about 80ºF from winter to summer. 

The question is whether an 8-psi difference effect the vibration during testing. A test was 

conducted that held tire pressure at 34-psi then more tests were conducted after holding the 

tire pressure to 44-psi. 44-psi was the maximum air pressure that the tire brand recommended. 

This procedure was conducted by filling and releasing air at the nearest gas station and using a 

tire pressure gauge to achieve the desired psi. 

The following Figures 34 & 35 show how an increase of tire pressure does increase the vibration 

experienced by the vehicle. Therefore, in warmer temperatures, vehicle tires will impact 

pavement deficiencies at a harder rate and ware down the road faster than at cold 

temperatures. Controlling tire pressure during a road roughness test would be a challenging 

task. Tire pressure is constantly adapting to the outside temperature and road conditions. 

When a tire hits a crack, along with the built-up friction from the road, the tire pressure will 

fluctuate and stabilize quicker. If tire pressure is trying to be controlled, then the pressure 
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would have to be reset every couple of minutes which is not ideal from conducting a quick and 

easy test. 

 

Figure 34: Threshold method - effects of tire pressure. 

 

Figure 35: Average method - effects of tire pressure. 
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5.2 IRI Conversion 

IRI values are measurements of the averages of pavement distress over segments of road. 

ADOT provides IRI values in 0.1-mile segments. Therefore, one major crack in a segment of road 

can cause the IRI of that segment to appear rougher than it really is. This system differs by 

providing 0.1-mile segment IRI values as well as individual critical crack locations.   

The national average of IRI thresholds provided by the Federal Highway Administration are as 

follows: less than 95-in/mi = good, 96-in/mi – 170-in/mi = acceptable, greater than 170-in/mi = 

bad. However, this is a comprehensive scale for all roads across the nation and may not be 

accurate for the general perception of road users in a certain region. These values do not reflect 

the perception of ride smoothness of motorists in a dense urban environment such as Phoenix 

[6]. States are now developing their maintenance strategies and IRI perception based on their 

personal needs. Based on recent data from Arizona’s Highway Performance Monitoring System 

(HPMS), 86% of Arizona’s urban Interstate lane miles have an IRI of 95 or better [18]. The test 

sections of this project are considered to have “good” IRI values. Based on ADOT’s 2016 IRI 

data, the Baseline Rd. - Chandler Blvd. section is comfortably under the “good” threshold while 

27th Ave. – 51st. Ave. is “good” but approaching the “fair” threshold as shown below. 

Studies have shown [16], [19] that the power spectral density (PSD) method has a linear 

relationship with IRI. The PSD describes how the power of a signal is distributed over time and 

is usually used for random vibration analysis. The spectral content of the signal can be 

estimated when the PSD is taken as a mean squared magnitude, or a discrete Fourier transform 

(DFT), The equation is derived by using Laplace transforms. 



42 
 

𝐼𝑅𝐼 = 𝐶 ∗ 𝜑𝑍 = 𝐶 ∗ √∫ |𝐻𝑍𝑌(𝜔)|2 (
𝑣

𝜔
)

4

𝑆𝑎(𝜔)𝑑𝜔
∞

−∞
                         Where, 

𝜑𝑍 = mean square value of acceleration spectra 

C = linear coefficient determined by field tests. 

𝑣 = measuring speed. 

𝜔 = angular frequency. 

𝐻𝑍𝑌(𝜔) = frequency response function of 𝑍𝑠 − 𝑍𝑢. 

𝑆𝑎(𝜔) = acceleration spectra. 

To convert accelerometer data into IRI data, the DFT was performed in Microsoft Excel using an 

add-in called NumXl. The DFT function can be thought as a moving average of the vibration 

frequency and is shown in Figure 36. IRI values were converted by taking the average of the 

four sensors on each wheel. After the raw acceleration data was broken up into 0.1-mi 

segments, the amplitudes of the DFT function correspond to the averages of each 0.1-mile 

segment. The amplitudes of the moving average can be converted into IRI values. Each segment 

was converted to an IRI value and compared with ADOT IRI values from 2016, Figures 37 - 40. 

The effects of pavement temperature earlier in this report were shown to hold weight in the 

observable vibration and therefore influence the IRI calculation. This report proposes that the 

equation be modified to account for temperature variation and the corresponding tire pressure 

variation.  

𝐼𝑅𝐼 = 𝐶 ∗ 𝜑𝑍 ∗ (𝑇𝑝 ∗ 𝐶𝑇) 
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DFTx = discrete Fourier transform power signal at a certain segment, x. 

TP = pavement temperature. 

CT = linear coefficient of tire pressure determined by field tests. 

 

Figure 36: Discrete Fourier transform moving through raw data. 

 

Figure 37: IRI comparison. 27th Ave. - 51st. Ave. east bound. 
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Figure 38: IRI comparison. 27th Ave. - 51st. Ave. west bound. 

 

 

Figure 39: IRI comparison. Baseline Rd. - Chandler Blvd. east bound. 
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Figure 40: IRI comparison. Baseline Rd. - Chandler Blvd. west bound. 

 

5.3 Statistical Significance 

The three types of statistical tests performed were T-tests, ANOVA, and Linear Regression using 

the statistical program jamovi. First, the team wanted to determine whether if vibration is 

dependent on temperature as noticed in the results using the threshold and average method 

above. The results indicated that both methods showed significant agreement that vibration 

changes with temperature with a p-value of less than 0.05. The Threshold method showed 

more significance having a higher F statistic but both methods were satisfactory in determine 

the relationship between temperature and vibration. The following ANOVA tests, Figures 41 & 

42 show the threshold method followed by the average method. 
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Figure 41: ANOVA test. Threshold method. Temperature vs. vibration. 

 

Figure 42: ANOVA test. Average method. Temperature vs. vibration 

Next, the team wanted to know if the IRI data from ADOT matched the IRI data calculated from 

the accelerometers. This was done by using a paired sample T-test to compare the distribution 

of the two data sets. The results show that the distribution of the ADOT IRI is statistically similar 

to the distribution of the accelerometer IRI data having a p-value of less than 0.05. The 

following tests, Figures 43 – 46, are from the 27th Ave. – 51st Ave. East Bound Average, 27th Ave. 

– 51st Ave. West Bound Average, Baseline Rd. – Chandler Blvd. East Bound Average, and 

Baseline Rd. – Chandler Blvd. West Bound Average respectively. 
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Figure 43: T-test IRI comparison. 27th Ave. - 51st. Ave. east bound. 

 

Figure 44: T-test IRI comparison. 27th Ave. - 51st. Ave. west bound. 

 

Figure 45: T-test IRI comparison. Baseline Rd. – Chandler Blvd. east bound. 

 

Figure 46: T-test IRI comparison. Baseline Rd. – Chandler Blvd. west bound. 
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The team hypothesized that the sensor inside the vehicle (M5) was sensing a function of the 

four sensors mounted on the wheels (M1-M4). To develop a model that could prove 

significance, linear regression was used, Figure 47. The equation would look like this: 

 𝑀5 = 𝛼1𝑀1 + 𝛼2𝑀2 + 𝛼3𝑀3 + 𝛼4𝑀4 + 𝛼5 

 

Figure 47: Sensor M5 inside the vehicle is a linear function of all tires M1-M4. 

The R2 value of 0.51 is not ideal but is still enough evidence to say the model exists. The 

negative values in the estimated alpha values are likely due to the orientation of M1 and M2 

being in front of M5, on the front tires, while M3 and M4 are on the rear tires. 

6.0 Conclusions: 

This study shows that temperatures have a significant effect on vehicle-based accelerometer 

sensors. When comparing temperature to vibration, vibration increased as temperature 

increased in an exponential way. Tire pressure was proven to have a role in this relationship. 
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This report proposes that a temperature/tire pressure coefficient be applied to the IRI 

conversion formula.  

It is shown that combining IRI datasets with severe and moderate crack locations, with pictures 

of the individual cracks, can be successful in providing a more precise evaluation of the road. As 

temperature is not usually considered a factor in determining IRI, this report proposes that 

highway agencies should pay more attention to which temperatures they are testing at with 

their instrumented vehicles. 

The vehicle-based sensors were shown to have more consistency than smartphone sensors 

located inside the car. Limitations include orientation of the sensors. Using the method prosed 

in this project, the sensors were placed in the same project enclosures, same foam insulation, 

and same location every test run. However, exact placement could not be achieved for every 

road test. This should be perfected in the future for calibration consistency. Benefits of vehicle-

based sensors over smart phone sensors include longer travel storage, more communication 

options, wider range of application, and deterioration detection of both sides of a lane.  

Future work involves further testing to determine what degree accelerometer sensors are 

influenced by potential sources of error such as type of vehicle, variable speeds, wear of 

vehicle, wear of tires, tire pressure, suspension and dampening systems. The development of 

the proposed temperature coefficient could be determined by keeping track of tire life and 

mileage put on the vehicle. A constant vehicle with the same driver should be used for this as 

the vehicle used in this report was a NAU vehicle that was rented out every week to different 

drivers where unknown wear and tear was accumulated. Because crack classification varies 
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with temperature changes, a database of temperature coefficients would need to be created to 

determine how severe a crack is when detected under a given temperature. 

6.1 Recommendations 

The increased tire pressure resulting from the warmer temperatures will produce larger 

roughness values.  It is recommended to not test during hot temperatures unless specifically 

looking for pavement distress due to temperature. Testing with vehicle-based accelerometers 

should be conducted at the average temperature that the region receives. It is not 

recommended to attempt to control tire pressure as the tire pressure will be constantly 

stabilizing throughout the test. Instead, a coefficient should be applied to account for pavement 

temperature and pavement temperatures should be measured frequently. It is unclear what 

temperatures current highway agencies test for IRI values or if tire pressures are controlled or 

accounted for. This report poses suspicion that profilers used by highway agencies could be 

affected by temperature and the resulting tire pressure differences. Pavement temperatures 

should be reported along with the IRI. 

Tire pressure is the major contributing factor to increased vibration seen in this project. 

However, the nature of asphalt viscosity and the phenomenon of cracks and construction joints 

expanding and contracting throughout the day during different temperatures and loading could 

also be a contributing factor to the increased vibration seen in this experiment. 
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