About OpenKnowledge@NAU | For NAU Authors

Ground-dwelling arthropod responses to succession in a pinyon-juniper woodland

Higgins, Jacob W. and Cobb, Neil S. and Sommer, Stefan and Delph, Robert J. and Brantley, Sandra L. (2014) Ground-dwelling arthropod responses to succession in a pinyon-juniper woodland. Ecosphere, 5 (1). ISSN 2150-8925


Download (3MB) | Preview
Publisher’s or external URL: http://www.esajournals.org/loi/ecsp


Stand-replacing wildfire is an infrequent but important disturbance in southwestern pinyon-juniper woodlands. A typical successional cycle in these woodlands is approximately 300 years or more after a stand-replacing fire. Arthropods, especially ground-dwelling taxa, are one of the most abundant and diverse fauna in terrestrial ecosystems and are typically responsive to microhabitat change. Little is known regarding community responses of ground-dwelling arthropods to changes in woodland successional stages from early ecosystems dominated by grasses, herbaceous plants, and fire adapted shrubs to tree-dominated old-growth ecosystems. In 2007 and 2008, within Mesa Verde National Park, Colorado, we compared the community composition of ground-dwelling arthropods between old-growth pinyon-juniper stands that were 300–400 years old and early successional areas recovering from a stand-replacing fire in 2002. The 2002 fire eliminated the dominant woody vegetation, which was replaced by increased herbaceous vegetation and bare ground. The early successional arthropod community showed a significantly higher abundance in major arthropod taxonomic groups, except spiders, compared to old-growth woodland. Old-growth species richness was greater in late August–September, 2007 and greater in early successional habitats during April–July, 2008. Spatial variability of the habitat was much greater in the recently burned early successional plots than the old-growth late successional plots. The differences in habitat were strongly correlated with arthropod community composition, suggesting that ground-dwelling arthropods are very sensitive to habitat changes. Habitat affiliation was strong, with 83% (early succession ruderal) and 91% (old-growth woodland) of the species found primarily or exclusively in one habitat. Many habitat indicator species (defined as species found in significantly greater abundance in one habitat) were found in both burned and old-growth habitats. Several species were found to be strict specialists exclusive to only one of these habitats. Collectively, the results suggest that heightened concern over loss of old-growth woodlands is warranted, given the distinct nature of the ground-dwelling arthropod community in old-growth habitats.

Item Type: Article
Publisher’s Statement: Higgins, J. W., N. S. Cobb, S. Sommer, R. J. Delph, and S. L. Brantley. 2014. Ground-dwelling arthropod responses to succession in a pinyon-juniper woodland. Ecosphere 5(1):5. http://dx.doi.org/10.1890/ES13-00270.1 © 2014 Higgins et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. http://creativecommons.org/licenses/by/3.0/
ID number or DOI: 10.1890/ES13-00270.1
Related URLs:
Subjects: Q Science > QH Natural history > QH301 Biology
NAU Depositing Author Academic Status: Faculty/Staff
Department/Unit: College of Engineering, Forestry, and Natural Science > Biological Sciences
Research Centers > Merriam-Powell Center for Environmental Research
Date Deposited: 18 Sep 2015 16:45
URI: http://openknowledge.nau.edu/id/eprint/1082

Actions (login required)

IR Staff Record View IR Staff Record View


Downloads per month over past year