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ABSTRACT

UNMANNED AERIAL VEHICLES FORESTIMATING FORESTCANOPY
FUELS IN PONDEROSA PINE FOREST

BY PATRICK C. SHIN

Forests in theauthwesernUnited States are becoming increasingly susceptible to large
wildfires with significantenvironmentabnd economial impacts. As a result, forest land
managers are planning and conducting forest fuel reduction treatmentschspatial fores
fuels and structure informatiare necessary, but currentigve coarse spatial resolutiand
limited accuraciesThis study tested the feasibility of using @anmanned aerial vehicl&JAV)
with amultispectral sensor for estimating forest canopy faets structure in a southwest
ponderosa pine foresthe UAV -derived2D multispectral orthomosaimagesand 3D
Structurefrom-Motion pointcloudswere used t@stimaé canopy cover, canopy height, tree
density, canopy base height, and canopy bulk terdie estimates were validated wiidld
measurements within/Jlots, 10 x 10 min dimension and commonly used aerial photography
from the National Aerial Imaging Program with 1 m spatial resolufitve. results indicate that
the 15 cm resolutioAV imagescan be used taccuratelyestimateforestcanopy covem 10

m cells(R? = 0.82, RMSE = 8.9% canopy covefyee density estimatddom individual tree
segmentatiomutputsresulted in trugositive deteddbn of 74% ofthe fieldmappedrees with a
16% commissio error rateThe individual tee height estimates wesgonglycorrelated to field
measurementdsf = 0.71, RMSE = 1.83 mwhile canopy base height estimateslaweaker

correlatiors with anR? of 0.34 and RMSBf 2.52 m. Estimates of capy bulk density showed



no correlation to estimates derived from field measurem&h&slUAV-derivedcanopy cover,
canopy height, and canopy base height resulted in drastically different estinjadésntitl

crown fire behaviocompared to the coarse regmn LANDFIRE datasetin particular,

estimates from LANDFIRE data showed the study area as 86% active crown fire, 14% passive
crown fire, and 0% surface fire. Whereas, Ud¥rived estimates showed 100% surface fire and
no active or passive crown firéhese results suggest that the spatial resolution of the data can
have a large impact on the estimateown fire behavior and, therefore, on the final forest fuels

reduction treatment prescriptiaand monitoring.



Acknowl edgement s

| would like to thank myhesiscommittee for theisupport and guidance through my research
andgraduatestudies. hanks tomembers of the Remote Sensing and Geoinformatics Lab at
Northern Arizona UniversityspecificallyJonathon Donager and Adam Belmaqtfite sharing
their exgerience and knowledge operating UAV equipmenprocessingpectral angboint
clouddata,and their assistance in conductingdigork for my researchAlso, thanks to
members of the Flagstaff forest management community for their supgortalso graful to
the Wyss Foundation for their financglpportthrough my graduate studidsastly, | would

also like to thank Alexandra Wunsch for all her help throughoustudies and this project



Tabl e of Content s

ACKNOWIEUGEIMENLS. ...ttt e ee ettt eeer e e ettt e e e e e e e e e e e e s ammme e e e e e e eaeeeeaaanns v
TaDIE Of CONTENTS. ... e e e e r e e e s s e e e et e e e e e annr s v
TaDIE Of TADIES. ... s rmmee e e e viii
TaDIE Of FIQUIES ... .o errr s e e e e e e e e e e e e e e e e s aneeeaaaeeeaeeeeeeeesnennnnns X
Chapter 1 INTTOTUCTION. ........uuiiiiiiiiiiiii et ieeett ettt e e e e eeer ettt e e e e e e e e e e e e e e e e s s s ammne e e e e e e e e e eanns 1
ODJECTHIVES. ..ottt eeen et et et e et e e e e e e e e e e ean 20
HYPOTNESES ...t ereee ettt ettt e e e e e e e ammmt e e et e e e e e e e e e e e e e e a e 21
Implications Of RESEAICH..........ccoiiiii e e 21
(@ gF=T o] (=] g2l 1V, =1 i To T =P 22
StUIY ArEa DESCIIPIION....ueeeieiiiiiiieie ettt mmne e e e e e 22
(D= = W 0] =T o 1o A PP PP PPPPPPPPPR 24
SIEE SEIECHONM ...ttt 24
UAV PlatfOrm @nd SENSOL.......ccoiiiiiiiiiiiee et e e eeee e 24
UAV IMage ACUISITION..........ooiiiiiiiiiiiimmme e er s e e e e e e e e e e e e e amanaaas 25
Field Validation Data COlECHOMN.........ccoiiiiiiiiiii e 26
UAV IMage PrePrOCESSING ........uuuiiiiiiiiiiiiiiiieeeiiiiitte ettt e e e e e s et e e e e e e e e e e annne s 30
Deriving FOrest MEaSUIEMENIS.........coiiiiiiiiiiiiiicme e e e e e s 31
Canopy Cover fromM UAY IMAGELY........uuuuuiririiiiiiiiiieeeeeeeeeeteeaaaaaeeae e s s s s smmeaeeaeaeaaeaaaaans 31



Individual Tree SegmeNntatiQN............. e ereer e e e e e eeeeeeeeen 36

Fire Behavior MOAEIING ........coooiiiiii e e e amnnn e 42
Chapter 3 RESUIIS.....oi it e e erre e s s e e e e e e e e e e e e e e eesanaesaeaaeeeeeeeeeennnnes 47
UAV images and Field Data...............uuuuiiiiiiceeeiiiiiee s e e e e s sreness s e e e e e e e e e e e e eeeeasannnes 47
Canopy CoVer ESHMALES...........cooiiiiiiiiiiieeee e e e e e e e e s emnn e 47
Relationship between UWA-derived Canopy Cover and Tree Density.............cc.ceeeee... 50
Landscape Metrics from UAV Canopy COVEL...........uuuuiiieiiiiiieeeiiiiieeeeeeeeeeeaeeeeeeseeenes 52
Individual Tree SEgMENTALION..........uuiiiiiiiiiii e 54
INIVIAUAI TTrEE METIICS. ... . eiiiiie et ettt eeer et e e e e e e e e 58
Fire Behavior MOAEIING .........coooiiiiei e e e e e e e e e amnnnn e e 64
ChhaPter 4 DISCUSSIONL.....cettiiiiiiiiiee ettt me e e e e bbb emens bbb eeee e 68
Canopy Cover and Dat@ SOUMCES........uuuuuiieiiiiiiieeeiieeeie ittt e e e e e rme e e e e e e e 68
Canopy Cover and Tree Density Relationship............oooooiiiieemn e 70
Landscape Metrics With Canopy COMEL.......cceviiiieieeieiiceeeicee e eeeee e 72
Future Considerations for Canopy COVEL..........ccccvviiiiiiiieemeee e ] 3
Individual Tree Segmentation and Subsaat Density Estimates.............ccccceceeeivicmeennnns 75
INAIVIAUAI TrEE METIICS. ...ttt ettt et e e e e e e e e e e e e e e e e rmmne e 78
Future Considerations for Tree SegmentatiQn.................uuveeeemiiiiiiiiiiiieieieeeeee e eeeeee 87
Fire BENAVIOr MOUEING ......uuiuiiiiiiiiiiiiiiis et 90
Using UAV data for Modeling Fire Behavior.............ccoooviiiiiiceeii e, 90

Vi



Chapter SCONCIUSION. .....ceiiiiiiii et ee e 95
RETEIEINCES. ... ittt e e e e e e e e e e enne e e e e e s e e s bbb e b et anneas 97
APPENAIX Attt eeet e e et ettt —————eeeeaa——— s a———————n e aaaaaaaaaees 106

vii



Tabl e of Tabl es

Table 1: Spatial fuel products of LANDFIRE. The spatial fuels products produced by the
LANDFIRE program with associated its;that are binned into different categories. For example,
canopy cover is presented in 10% bins, and canopy height is in 5 m height.bins............ 9

Table 2: Outputs from the crown fire potential médenducted by the Coconino National

Forest during the FWPP Environmental Impact Statement analysis, which estimated the amount
of total area in each fire behavior category (active crown fire, passive crown fire, and surface
fire) for the Dry Lake Hills a@a. The weather conditions used in modelling were those exhibited
during the 2010 Schultz Fire near Flagstaff. By implementing alternatives 2 and 3, the total
active and passive crown fire was reduced by about 83%. See Figure 5 for associated crown fire
POLENTIAL MAPS.. ...ttt et e e e e e e e e n e 11

Table 3: Distribution of the field samples. Field sampling was stratified by tree density to collect
individual tree measurements in areas of varying density. The samplingagptd measure 10
cells with a density of 1, 2, 3, and 4 trees/cell, and 5 cells with a density of 5, 6, and 7 trees/cell.
The sampling goal was met at all deNSITIES.............uuviiiiiiiieeeiiiiiiii e 27

Table 4: Parameters sl in the ENVI Image Segmentation tool for UAV and NAIP canopy
cover estimates. The minimum population used for NAIP data was significantly less than UAV
due to the large (1 m) resolution relative to the UAV data (15.CmM)...........cvveviiiiiiccceeennnns 32

Table 5: Inputs used in FlamMap to model crown fire behavior. The outputs from these
iterations were then compared to assess the differences in fire behavior models with the UAV
derived inputs (UAV) versus LANDFIR8erived nputs (LF). All LANDFIRE data used were
from the 2012 version. All raster input files were either resampled from LANDFIRE 30 m, or
resampled from original UAV data resolution, to a matching resolution of 10 m. Iteration 0
modeled crown fire behavior usid® m LANDFIRE data, Iteration 1 used LANDFIRE data
resampled to 10 m. Iterations 2 to 5 tested Uderived rasters for topography, canopy cover,
canopy height, and canopy base height. Iteration 6 used all availablelediéd rasters.....45

Table 6: FlamMap parameters that remained constant through all crown fire behavior iterations.
Constants used were those observed during the Schultz Fire of 2010. Fuel moisture refers to the
percent of dry weikt of the fuel type. 1 hour fuels are dead fuels 0.66 to 2.5 cm in diameter, 10
hour fuels are 2.5 to 7.6 cm in diameter, and 100 hour fuels are 7.6 to 20.3 cm in diameter. The
crown fire calculation method refers to the particular method used to calitidgietential for

surface, passive, Or aCtive CrOWN fIlB.........coiiiiiiieeiiiieeee et e es 46

Table 7: Individual tree detection results for each iteration. A total of 192 trees were detected.

The DT value was changed by @nlfor each iteration to determine the effects of the parameter.

The optimized iteration contains two DT values: 1.4 m for areas with >50% canopy cover, and
1.7 m for areas of O50% c an o fsgore (Fpaveestandardizedc a | |
measures of detection, omission, and commission, respectively (eq. 2,.3,.4)u.....ccccouu.... 56

Table 8: Results from regression analyses using each ddAkved height percentile and height
to canopy diameter agpared to fieldneasured base heights.................oooiiccciiii e, 61

viii



Table 9: Crown fire behavior model outputs for each iteration. Inputs for Iteration 1 included the
original data layers from the LANDFIRE database®m3resolution. Iteration 2 utilized the
resampled LANDFIRE data in 10 m resolution. Iteration 3 used {d&kved elevation, slope,

and aspect rasters with LANDFIRE data as other inputs. Iteration 4 substitutedériéd

canopy cover with LANDFIRE dataf all other inputs. Iteration 5 included the UAMrived

canopy height estimate with LANDFIRE data for other inputs. Iteration 6 used thedgAxed
canopy base height estimate along with all other LANDFIRE data inputs. Iteration 7 included
UAV -derived bpography, canopy cover, canopy height, and canopy base height.......... 67



Table of Figures

Figure 1: Study area map. The study area is located near Flagstaff, AZ andcieiri@o

National Forest within the state of Arizona (Panels A and B). This study focused on a Phase 1
area of the Flagstaff Watershed Protection Project (FWPP) treatment area (Panel C), which was
scheduled for fuel reduction thinning in Summer and Fall 2Qtffer areas of the FWPP and
associated land ownership by the US Forest Service, City of Flagstaff, and the State of Arizona
are also SNOWN (PANEI C). ..ottt e e e e e e e e e e e annne e e e e e eeaeas 3

Figure 2: Overview of the LANDFIRE datproduction procedure. LANDFIRE mapping

processes begin with the creation of the LANDFIRE reference database, which comprises a set
of all available georeferenced plot information from within each mapping zone. The reference
and spatial databases are used classification and regression tteesed framework for

creating maps of environmental site potential (ESP) and biophysical settings (BpS), existing
vegetation type (EVT) and structure (canopy height, EVH and cover, EVC). These core
vegetation maps fared the foundation for the simulation of historical fire regimes and the
subsequent calculation of current departure from historical vegetation conditions. In addition, the
vegetation maps served as the basis for mapping surface and canopy fuel foiosiratifae

behavior and effects. LANDFIRE fire effects data products include Fuel Loading Models
(FLMs) and Fuel Characterization Classes (FCCS).......uuuiiiiiiiiiiimmeiiieeee e vmeen 6

Figure 3: The LANDFIRE fuels product data@ressing diagram. Spatial data layers and-field
referenced data are used to model fire behavior fuel models (FBFM), canopy height (CH),
canopy cover (CC), canopy base height (CBH), and canopy bulk density (CBD). A subsequent
process using a combinationrabdel output evaluation, and expert opinion, are then used to
develop the final LANDFIRE fuel data productS............ccooeiiiiiiiiieeen e 7

Figure 4: Topographic and spatial fuels variables that comprise the FlamMap dpedde.
These variables are required to model fire behavior with FlamMap. These layers are readily
available as 30 m rasters from the LANDFIRE database............cccccciimaann, 10

Figure 5: Crown fire potential mapir the Dry Lake Hills area of Flagstaff Watershed
Protection Project as illustrated in the Environmental Impact Statement conducted by the
Coconino National Forest. Crown fire potential with the existing forest conditions (Panel A)
contains more area melkéd for potential active crown fire than pastatment conditions (Panel
B). Both models used weather conditions found during the 2010 Schultz Fire. See Table 2 for
acreages by each modeled fire behavior type..........ooooiiiiiiiiccc e 12

Figure 6: The eBee fixedving UAV with the Microsoft Surface tablet used for flight planning

and operation (Panel A) and the spectral bands of the Airinov Multispec 4C sensor used aboard
the UAV (Panel B). Bands 1 through 4 respediiae the green, red, red edge, and near

infrared wavelengths. They have corresponding mean wavelengths of 550 nm, 660 nm, 735 nm,
=g 0 A [0 1 o o RSP 25

Figure 7: Map of study area with field sampgjrpoints.General vicinity of the study area with
the two flight areas and their proximity to the City of Flagstaff (Panel A). Flight 2 Area with a 10



m grid and locations of field measured trees (Panel B). Flight 1 Area with a 10 m grid and
locations of feld measured trees (Panel C)........coooviiiiiiiiiiieeee e 28

Figure 8: Canopy cover processing workflow. Process used to convert the binary canopy raster
to summarize canopy percent coverin a 10 m.cell.........cccoooiiiiiiiiceciiciiii e, 33

Figure 9: Point cloud preparation for tree segmentation. Side profile views of the same point

cloud subset at different stages of processing. Point cloud with initial ground classification

(Panel A). The grund points are displayed in red and were used to create a digital terrain model
(DTM). Point cloud that has been normalized and ground points removed (Panel B). However,
some nortree points still remain. Point cloud after the second ground filteringNand

threshold have been applied (Panel C). The final point cloud was deemed the most representative
of treeonly points and was then used in the tree segmentation algarithm...................... 37

Figure 10: Pixd-wise regression between UA¥INd NAIRderived canopy cover estimates in
10 m resolution. The dashed line represents the 1:1 line, and the solid line is the fitted linear
FEGIESSION lINE. ..o e e e e e e e emeer e e e e e e e e e e eeeeeeesessannnraeaeaaaeeeeeessssnnnnnns 48

Figure 11: Pixelwise regression between the UAV imadgrived canopy cover estimates and
Zachmann and Dickson (2017) canopy cover estimates summarized in 10 m cells. The dashed
line represents the 1:1 line and the solid line is the fitted linear regréssidrom the data.. 49

Figure 12: Pixelwise regression between UAX¥hage derived canopy cover estimates and
Field-based canopy cover estimates. Canopy cover estimates are summarized &ll$Gamatl

field plot locations (N=57). The solid line represents the fitted regression line and the dashed line
ISR I I I [T o (o T g = 1= (= o = PSPPSR 50

Figure 13: Mean canopy cover (%) for each diyslass (trees per 10 m plot). The compact
letter display for significant differences using the multiple comparisons ANOVA test is shown
above each boxplot. Density class 1 is significantly different than class 3 through 7. Density
class 2 is significaty different from class 4, 6, and 7. Density classes 4 through 7 are not
significantly different. No two adjacent density classes are significantly different. Canopy can
potentially be used as an indicator for density in 1, 2, and 3 tree classes. Dasséy d

through 7 will likely show similar values for canopy COVEL........ccooeeiiiiiiiiiiiceeiiiieeeeeeeeee 51

Figure 14: Patch metrics computed by FRAGSTATS with UANrived canopy cover
classification. Patches were identified @san 8neighbor rule and colored by their unique patch
ID. A total of 1,865 individual patches were identified across both Flight 1 area (Panel A) and
[ [To o A o= T =] B = TP 53

Figure 15: Tree de¢ction and commission error by density class. Each line represents a separate
tree segmentation iteration and is colored according to the DT value used (see legend). Mean
percentage of trees detected decreases with increasing density and higher D Tanalu&)(P

Mean percent of false positives (commission error) also decreases with increasing density and
higher DT value (Panel B).........ooooiiiiiiiiiieee ettt et eee e 57

Figure 16: Mean number of segmented trees per each denagy. ©ensity class represents the
number of trees within each 10 x 10 m plot. Error bars represent the standard error of the means

Xi



for each class. The compact letter display for significant differences using the multiple
comparisons ANOVA test is shownale each bar. The mean number of segmented trees in
density class 1 is not significantly different than density class 2, however it is significantly
different than density class 3, 4, 5, 6, and 7. Density class 2 contains a significantly different
mean nurber of segmented trees than density class 6 and 7. Density classes 3, 4, 5, 6, and 7 do
not contain a significantly different mean number of segmented trees.................cccceuee 58

Figure 17: Linear regression medl between UAVderived tree heights and field measurements.
The solid line represents the fitted regression line and the dashed line is a 1:1 line for reference.

Figure 18: UAV -derived preditor variables and the field measured canopy base heights of all
detected trees. The dashed line represents a 1:1 line relationship...........ccccoovieeevennennn. 62

Figure 19: Regression relationships between Udgrived tee heights and field measurements,
with clumped and neolumped trees. The fitted regression line for all trees is shown in red, the
fitted regression line for only neclumped trees is shown in blue, and the 1:1 line is shown as a
black dotted line. Byamoving the clumped trees, the tree heights regression improved from an
R?of 0.71 (RMSE = 1.83 m) to &®f of 0.82 (RMSE = 1.6 m) and showed a relationship that
was generally closer to 1:1 than the relationship between all.trees............cccoovvieeeeeeenn. 80

Figure 20: Regression relationships of data used to predict canopy mass. Logarithmic
relationship between tree height and DBH that was used to predict DBH from UAV data (Panel
A). The relationship of the UAV prediet DBH and field measured DBH (Panel B). Final

canopy mass derived from UAV estimates and field measurements (Panel C). Solid lines
represent fitted regression lines for all graphs. Dashed line represents the 1:1 fitted line for linear
L]0 | £STTS] 0] TSR PPPOPPPPPP 84

Figure 21: Regression relationships of data used to predict canopy volume. Comparison between
UAV -derived and fielemeasured canopy radii (Panel A). Relationship of final canopy volume
estimated fom the UAV data and field measurements (Panel B). Solid lines represent fitted
regression lines on both graphs. Dashed lines represent 1:1 lines for reference............ 86

Figure 22: Canopy cover estintes of the same 30 x 30 m area from UAdtived and

LANDFIRE data. Due to the high resolution of UAV data, the UAV canopy cover estimates are
able to represent variability from roads and gaps that are not shown in the LANDFIRE data.
When modeling crown fe potential with UAV data, these areas tended to model less crown fire
causing less crown fire potential across the entire study area in general relative to LANDFIRE
o= =0 [ 4T T [ SRR 92

Xii



Chapter 1 Introduction

The southwestern US is hento the largest contiguous ponderosa piieus ponderosgforest

in the world(Cooper, 1960; Allred, 2015 The ®uthwesgrnpondersa pine forests serve an
ecologically important role by providing biodiversity, carbon sto@u sequestration functions
(Van Mantgem et al., 2009and wildlife habitat These forsts are home to many plant species
and over 250 species of vertebrgfeatton & Severson, 1989; Laughlin et al., 2006nderosa
pine forestsn the Suthwestalso provideeconomic and social values from wood products,
recreation opportunities, and watershed va(Bedker, 1986; Allen et al., 2002; Noss et al., 2006;
Mueller et al., 2013)Fire suppression, heavy grazing, loggiagd climate changa these
forestshave createdharacteristics that are more susceptible to imgénsity crown fireputting
these valugsand neighboring communities, at rigkooper, 1960; Covington & Moore, 19944a;

Savage et al., 1996; Moore et al., 2004)

Historically, southwesirnforests experienced frequent lomtensity fires that #ectively
thinned younger trees and consumed forest fuels keagdog tree densityEurcAmerican
settlement brought changes in land use and introduced fire suppression which removed this
natural balancing mechanigi@ovington et al., 1997The forests that were naturally maintained
by frequent lowintensity fires are now characterized by an overabundance of forest fuels
(Fitzgerald, 2005; Westerling et al., 2006; Miller et al., 2009; Stephens et al., 2013)
Souhwesterrforests are now densely stocked witheaiwesof small trees making them

increasingly susceptible to hightensity crown firegCovington & Moore, 1994b)

The Schultz Fire of 2@Lwas an example of the disastrous effects of aimigmsity
crown fire just outside of Flagstaff, AZ. The wildfire burned over 6,000 hectares and caused an

estimated $13347 million in damage from the wildfire and subsequent flood e@umsbrink



et al., 2013)Shortly after the Schultz Fire, residents of the City of Flagstaff voted for the
Flagstaff WatersheBrotection Project (FWPP) thallocated a $10 million bond for fuel
reduction teatment in key areas around Flagstaff and its watershgaré1). The FWPP is a
multiple agency partnership with the City of Flagstaff, Arizona Statd,Coconino National
Forest with the goal tprotect the ¢y from wildfire, and subsequent flooding, which could
damage key city infrastructure including its water supply. The FWPP is also the first fuel

reduction treatment in the United States to be funded by a municipa(Mottek Lucas, 2015)
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Figure 1: Study area map. The study area is located Regstaff, AZ and the Coconino
National Forest within the state of Arizo(Ranels A and B)This study focusedroa Phase 1
area ofthe Flagstaff Watershed Protection Projé&V/PP) treatment area (Panel ®hichwas
scheduled for fuel reduction thinning in Summer and Fall 20ter areas of the FWPP and
associated land ownership by the US Forest Service, Chlagétaff, and the State of Arizona
are also shown (Panel C)

Forest fuel reduction treatments, suclhase treatments withitme FWPPpften incude
a combination omechanical, or hand thinning followed by the reintroduction of periodie low
intensiy fire. Forest thinning is designednwanipulate forest structure such as canopy cover,
canopy height, crown base height, and crdwik density, to produce forest conditions within
the natural range of variability aheks susceptible to catastrophicvenofires(Graham et al.,

2004; Agee &Skinner, 2005; Larson & Churchill, 2012; Reynolds et al., 2(R8ntroduction
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of low-intensity fire is used to restore the natural fire regime and mamtmtance of forest
fuels(Landres et al., 1999; Mast et al., 199B)ese techniques can decrease the risk of wildfire,
lessen the impacts of wildfire, reduce outbreaks of insects and disease, and help mitigate the
effects of a changg climate(Savage et al., 1996; Kolb et al., 1998; Covington et al., 2001,

Moore et al., 2004; Van Mantgem et al., 2009; Stoddard et al.,.2015)

Land managers often use detaitgditial forest structure information when planning,
implementing, and monitoring forest fuels treatmenlss information, in addition to data from
field measurementss used to prioritize areas that require treatment and to develop treatment
prescriptions for specific areas. In addition to treatment planning, this information is also used to
monitor forest characteristics and determine the effectiveness of the treatments at accomplishing

desired management objectieackey, 1998; Mueller et al., 2013)

Currently, most fuels treatment projects use spatial fuels information from the Landscape
Fire and Resource Management Planning TooleBr{LANDFIRE) databasd. ANDFIRE is
an interagency partnershpetween the United States Department of Agriculture (USDA) Forest
Service and the United State Department of Interior (DOI). Major partners to the program
include the US Geological Survey (3S), US Bureau of Land Management (BLM), Natural
Resources Conservation Service (NRCS), National Agricultural Statistics Service (NASS),
National Association of State Foresters, Texas Forest Servicthehidture Conservancyhe
LANDFIRE data productiomprocess is designed to be fully repeatableiabdsed on the latest
scienceLANDFIRE utilizes a combination of several geospatial technologies including
biophysical gradient analysis, remote sensing, vegetation modeling, ecological simulation,
landscap distubance and succession modelifigollins, 2009) First, a field-referenced

database is created using field data primarily from the US Forest Service Forest Inventory and



Analysis progren, but also including data from the US Geological Survey Gap Analysis

Program, Bureau of Land Management, &tgencies, and other partnétext, spatial layers

such as topography, satellite imagery, biophysical gradients, and training data frem field
referenced data are used to predict existing vegetation type, vegetation height, and canopy cover.
These data are then used to model fire regime departure from lilstonditions, as well as

current vegetation characteristics.

The feld-reference datapstial layers, and modeled vegetation characteristics are then
used to estimatsurface and canopy fuel components including fire behavior fuel models,
canopy base height, and canopy bulk der{§igeves et al., 2006; Rollins, 2008) overview
of theLANDFIRE data production proced®m Rollins (2009)s shown inFigure2.

Specifically, canopyuelsproductsof LANDFIRE are a function of 40 separate predictor
variableghat are derived from LANDSAT satellite imagdiyomer et al., 2004 DAYMET
meteorological databag&hornton et al., 19971 ANDSUM fire succession mod@Keane et al.,
2006) USGS elevation daf@/SGS, 2008)and previously modeled vegetation characteristics

from LANDFIRE (Zhu et al., 2006)Appendix A).
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Figure 2: Overview of the LANDFIRE data pduction procedure. LANDFIRE mapping

processes begin with the creation of the LANDFIRE reference database, which comprises a set
of all available georeferenced plot information from within each mapping zone. The reference
and spatial databases are usea afassification and regression ttegsed framework for

creating maps of environmental site potential (ESP) and biophysical settings (BpS), existing
vegetation typ€EVT) and structure (canopy height, EVH and cover, EVC). These core
vegetation maps formete foundation for the simulation of historical fire regimes and the
subsequent calculation of current departure from historical vegetation conditions. In addition, the
vegetation maps served as the basis for mapping surface and canopy fuel for simiulaé&on
behavior and effects. LANDFIRE fire effects data products include Fuel Loading Models
(FLMs) and Fuel Characterization Classes (FCCs
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(Reeves et al, 2004

Figure 3: The LANDFIRE fuels product data processing diagr@patial data layers drfield-
referenced data are used to model fire behavior fuel models (FBFM), canopy height (CH),
canopy cover (CC), canopy base height (CBH), and canopy bulk density (€BDbsequent
process using a combination of model output evaluation, and expadrgre then used to
develop the final LANDFIRE fuel data products.
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Data from LANDFIRE is relatively easy to acquire from the federal website
(www.landfire.gov) and ames at no cost to the user. Tdetabase offers nationwide coverage of
spatial forest fals data in 30 m spatial resolution, and is updated evBryears Table 1. The
spatial fuels products produced by the LANDFIRE project include: canopy cover, canopy height,
crown base height, crown bulk density, and fire behavior fuel models. Canagryisthe
percent of horizontal space that is covered by tree canitpy a 30 m grid cellCanopy height
describes thaveragéheight of the forest canopyithin a 30 m grid cel{Reeves eal., 2009)

Crown bulk density is the mass of canopy fuel per canopy volbatevould lurn in a crown

fire (Wagner, 1977; Scott & Reinhardt, 2001; Keane et al., 2@%)wn base height is the

|l owest point at which there is 9(Redvédatalent can
2006) The fire behavior fuel models refer to the 13 Anderson Fire Behavior Fuel Models

(Anderson, 1982and the 40 Scott and Burgan Fire Behavior Fuel Mo@&astt & Burgan,

2005) which describe surface fuel composition and associated fire beliRaibrermel, 1972)

These forest fuels rastergalucts can be useful for prioritizing and plannatg landscape scale

However their accuracy can vary by locatioompared to fielkbased measuremerasd often

need to be adjusted to better represent actuat#eific conditiongRollins, 2009) For

example, in a study conducted by Reeves et al. (2009) across 12 different sites, LANDFIRE

canopy base heights h&dvalues that ranged from 0 to 0.93 when compared to field data.



Table 1: Spatial fuel products of LANDFIRE he spatial fuels products produced by the
LANDFIRE program with associated units that are binned into different categories. For example,
canopy cover is presented in 10% bins, and canopy hsighb m height bins

LANDFIRE Spatial Fuels Products
*All products are in 30 m spatial resolution and updated evéryears

Data Type Units Bin Size

Canopy Cover Percent Cover (%) 10%

Canopy Height Meters (m) 5m

Canopy Base Height Meters (m) 0.1m
Kilograms per cubic meter

Canopy Bulk Density (kg/r) 0.01 kg/n?

Fire Behavior Fuel Model  Fuel Type and Fire Behavior N/A

The spatial fuels data from the LANDFIRE database are formatted for use with fire
behavior modeling software, such as FlamN&gatton, 2006jFigure4). FlamMap is used to
combine forest fuel characteristics, topography, fuel moisture, and weather fachadeidire
behavioroutputs Some of theseutputsinclude: flame length in meters, rate of spread in meters
perminute, and crown fire activityfhese are aljeneratedvith geospatial attributes and can be
analyzed in a spatial environméfinney, 2006)This study used FlamMap to model potential
crown fire activity which uses spatial fuels data to model a particular area as potential surface,
passive crown, or active crown fire. Surface firegfirced as a fire burning through the fuels on
the ground surface. Passive crown fire occurs in an area that exhibits surface fire and contains a
canopy base height low enough to initiate crown fire, however the canopy bulk density is
insufficient to carrythe crown fire. Active crown fire occurs where crown fire initiation is
achieved and canopy bulk density can adequately carry a crow@ifuzet al., 2002; Scoitt,

2006)



Elevation

Slope

Aspect

Fuel Model

Canopy Cover
Canopy Height
Crown Base Height
Crown Bulk Density

(Finney, 2008

Figure 4: Topographic and spatial fuels variables that comprise the FlamMap landscape file.
These variables are required to mdttel behavior with FlamMap. These layers are readily
available a80 m rasters from the LANDFIRE database

By using the spatial fuels products from LANDFIRE with FlamMap fire behavior
software, users can model fire behavior on a landscapeis@alearea of their interedn
planning the FWPP treatment, the Coconino Neid-orest utilized LANDFIRE data, with
supplementary field surveys, as inputs to FlamMap software to spatially model fire hazard and
behavior near Flagstaff, AZ. They were able to use this information to examine the different
alternatives that were anaba in the Environmental Impact Statem@S). During this

analysis, the Coconino National Forest found that the fuel reduction treatment could reduce the
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potential active and passive crown fire area by about 83% in the Dry Lake Hills area of the

project(Table 2.

According to the Bvironmental Impact Statemepitepared by the Coconino National
Forest(Coconino National Forest, 201ty the FWPP, fire behavior analyseas perfomedby
utilizing spatial fuels data from LANDFIRE, that were supplemented with field surveys. These
field surveys were conducted across approximately 50% of the Dry Lake Hills area and were
collected using the US Forest Service Field Sampled Vegetatidfedf protocols
(https://www.fs.fed.us/nrm/fsvegi.ocal weather conditions from those that were exhibited
during the 2010 Schultz Firgere used irmodeling potential fire behavior in FlamMap. By
using FlamMap in conjunction with Forest Vegetation Sinaulé~VS), which is used to model
the growth of forestssimulate management actioasd predict future forest structure, the
Coconino National Forestaff modeled future potential fire behavior for simulated treatments
representing each of the alterna8 that were analyzed during the EIS pro¢€ssonino

National Forest, 2015)

Table 2: Outputs from the crown fire potential model conducted by the Coodvational

Forest during the FWPP Environmental Impact Statement analysis, which estimated the amount
of total area in each fire behavior category (active crown fire, passive crown fire, and surface
fire) for the Dry Lake Hills area. The weather conditiarsed in modelling were those exhibited
during the 2010 Schultz Fire near Flagstaff. By implementing alternatives 2 and 3, the total
active and passive crown fire was reduced by about 83%. See Figure 5 for associated crown fire
potential maps.

Crown FirePotential in the Dry Lake Hills Areas
Modelled in the FWPP EIS kire Coconino National Forest

Existing Crown Fire Posttreatment Crown Fire
Fire Behavior Potential Potential
Active Crown 1,550 hectares 266 hectares
Passive Crown 303 hectares 38 hecares
Surface 1,166 hectares 2,706 hectares
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Figure 5: Crown fire potential maps for the Dry Lake Hills aredtz#gstaff Watershed
Protection Priectas illustrated in the Environmental Impact Statencenducted by the
Coconno National ForesiCrown fire potential with the existinigprestconditions(Panel A)
contains more area modeled for potential active crown fire thartneastnent conditions (Panel
B). Both models used weather conditions found during the 2010 Sclm@tSEeTable 2for
acreages by each modeled fire behavior type.

Although LANDFIRE provides comprehensilkeS. nationwide coverage, the spatial
information from the database is too coarse to represent the variations of forest fuels in an area
smaller tharlandscape scalé&tratton, 2004)In southwestern ponderosa pine forests,daape
scaleis defined as being405 hectares, midcale is 4405 hectaresgnd finescale is <4 hectares
(Reynolds et al., 2013Planning and evaluating fugleatments with LANDFIRE data are
limited to landscape scale applications and often requires supplementary data to make it
applicable ora local leve(Reeves et al., 2006; Stratton, 2Q0®ditionally, the LANDFIRE
database is updated everp Jears making it furthetifficult to use as a timely monitoring tool.

Therefore, land managers often conduct monitoring through traditional field surveys that can be
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time-consuming and costlgften leadingo a lack of comprehensive monitoring and evaluation

of the treatment
Remote Sensing of Foreslharacteristics

Remote sensing offers a valuable method for understanding ¢bigsicteristics and lessens the
need for costly field inventory campaigns. Spectral remote semsafprm of passive remote
sensingmeasures electnaagnetic radiation that is reflected dlyjects of interest, and is
commonly conducted using sateHlieind aeriabased platformdn forestryapplicationsthese
data can be used to estimate canopy cagewell aspecies composition andrrangementX.

Li & Strahler, 1985; Franklin et al., 2000; Keyal., 2001; Ozdemir & Karnieli, 2011)

However passiveremote sensing is less effective at estimating tdmewnsional forest
attributes such as tree heigb@nopy base heightee density, and diameter at breast height

(DBH) (Roberts et al., 2004; Hyde et al., 2006; Wulder et al., 2009)

Light detection and ranging (lidar) is a form of actieeote sensing thamits laser
pulses towards the ground and meastireenergyhatis reflected back to the sensor. The
resulting data is in the form of3D point cloud, where each point represents a surface, or
feature, that reflected a pulse. Theotason of lidar data is measured by point density, or the
number of points per area (point€jm
Manned erial lidar uses a manned aircraft as a platform for a lidar sensor. Ggnerall
when applied taneasuring forest structure, a relatively high poimtdei t y i s-8desired (
points/nf) (Hummel et al., 2011; Edson & Wing, 2010)anned arial lidar has become a
proven method for measuring &st structure across various regions and forest tyeegl lidar
was used to estimate forest canopy fuels in a coniferous forest west of the Cascade Range in

Washington Stateithin the Capitol State Forest managed by the Washington State Department
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of Natural Resources (WA DNRThe study site was primarily composed of Doudgias
(Pseudotsuga menzigsand western hemlocH ¢uga heterophyllawith a small hardwood
component of red aldeAlnus rubrg and bigleaf mapleXcer macrophyllum The study eea

was located within a commercial forest that had varying age and tree density due to harvesting
however specific forest metrics for the study area were not.ghenstudy compared field

based canopy fuel estimates to those derived from lidar dataadrgtrong relationships for
crown bulk densityR2 = 0.86), canopy base heig®(= 0.77), and tree heigh®{ = 0.98)
(Andersen et al., 2005Additionally, a study was also conductedifashington State in the

drier ponderosa pine fests east of the Cascade Range within the AhteBtate Forest managed
by WA DNR. The study site contained mostly ponderosa pine and additional components of
Douglasfir, grand fir (Abies contort® lodgepolepine Pinus contorty, Engelmann spruce

(Picea engalmanjj and western larchLérix occidentali3. Similar to the Capitol Forest site in
Andersen et al (2005), the Ahtanum State forest is an active commercial forest which led to
varying tree ages and &elensity across the study sieeld data from this study showed that the
study area contained an average canopy cover of 49.24% (SD = 18.74%) and average tree
density of 423.98 tree per acre (SD = 344.34). When comparingofisield estimates to lidar
derived estimates, strong positive relationships were shown for tree h&§kts.04), canopy
base height®? = 0.78), and canopy bulk densifg?(= 0.83 (Erdody & Moskal, 2010)Another
study used aerial lidar to measure canopy base hdrgletheight, and crown diametereastern
Texas within the Sam Houston National Forest. The study site was described as pine plantations
of various ages and also contained upland and bottomland hardpecids. However, specific
species and forest metrics for the site are not described. The study compar@ekiicar crown

base heights, tree heights, and crown widths to field measurements. Crown base height was
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positively correlated with aR? of 0.80(0.79 for pines, 0.7#r hardwoodk Tree heights were
positively correlated with aR? of 0.95 (0.96 for pines, 0.90 for hardwoods). Lastly, crown
widths were also positively correlated, although less strongly, wif ah0.53 (0.57 for pines,
0.59 fa hardwoods)Popescu & Zhao, 2008\ study in southwestern Norway used aerial lidar
to estimate tree height and height to live crown. The study contained two areas, the Ostmarka
Nature Reserve and a forest near the municipality of Valer, both of which were in southeast
Norway and dominated by Norway spru€ecea abies When compared to field measurements,
lidar-derived estimates for tree heights were positively correl&ed 0.75). lidar-derived
estimates for height to live crown were less strongly correl&ed Q.53)(Naesset & Bjerknes,
2001) Additionally, manned arial lidar has the advantage of being able to cavarge area

from 5,000 hgEdson & Wing, 2011)o over 12,000 héHummel et al., 2011fpr a single
acquisition. Howevertican be very costly ($78,900 for ~12,000 ha acquis{ttarmmel et al.,
2011) making it inaccessible for some land managers.

Recent miniaturization of sensors have allowed them to beydzbtmn small unmanned
aerial vehiclegUAVs). Remote sensing with UAVs offers an efficient method for gathering
information about forest characteristi&milar to aerial and satellitdbased gectralremote
sensinglUJAVs equipped with spectral sensore able to produceatda that can be used to
classify vegetation types and estimate canopy o@enford et al., 2009; Makynen et al., 2011;
Saari et al., 2011; Getzin et al., 2012; Sankey et al., 2GbR)pared tdhe resolution oéerial
images (1 m resolutionpr satellite daté2 - 30 mresolutior), imagery acquired from UAVs
tends to have very high spatial resolut{@d cm)due to a lower altitude of acquisition and less
atmospheric interferenc&he higher spatiatesolutionallows users$o detect finer scale

variability within images(Woodcock & Strahler, 1987and may be more representative of the
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actual targetAdditionally, UAVs offer the ability to control the imageequisition process
timing, and obtain overlappingimageso t he user sod speci f-overlag,i ons.
these images can be useith Structurefrom-Motion (SfM) algorithms to produce 3D point

cloud datasimilar to aerial lidar.

SfM is a hotogrammetric method that allows users to create 3D models of a feature of
interest (buildings, vegetatiaic.) by using overlapping 2D images taken from a wide range of
angles angberspectives. The concept behind SfM is similar to stereoscopic photogtam
where users rely on the parallax between images to measure 3D structure. However, SfM can
recreate feature geometry, camera position, and orientation through the use of computer
algorithms and is not reliant on ground targets. SfM algorithms detgchimg features in
multiple, overlapping images and estimates the camera positions and feature gédiestiopy
et al., 2012)With this information, SfM can then generate a polaud of te feature, similar to
those generated witldar. For some applications, SfM can provide an economical alternative to
lidar (Morgenroth & Gomez, 2014%fM produces the most accurate modehen using images
with high overlap and taken from many positions around the feature of interest. These images are
best acquired from a moving platform that is able to take many images as it travels around the
feature(Westoby et al., 2012When conducted over foresimages taken from a UAV can be
processed using SfM software to produce point clouds that represent both the ground surface and
vegetation in 30{Westoby et al., 2012; Dandois & Ellis, 2018king this method .emote

sensing with UAVs offers an efficient method for gathering forest structure information.

A study was congkcted in temperate deciduous forests across three sites in Maryland that
produced higkdensity (14+ points/f), 3D point cloud data to derive forest canopy height

estimations and compare them to field measurements. The first site was located on thé&ynivers
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of Maryland Baltimore County campus and contained a magxlof deciduous tree species
including American beectragus grandifolid, oak Quercusspp.), hickory Caryaspp.), white

ash Fraxinus americang and tulippoplar Liriodenron tulipiferg. The second site contained
similar forest composition as the first, however it included a riparian area that consisted of black
locust Robinia pseudoacacjahoney locustGleditsia triacanthoy and green aslir(axinus
pennsylvanica The third site was lcated at the Smithsonian Environmental Research Center
(Maryland) and contained mostly tuoplar, American beech, and oak species. Aside from
species composition, other forest metrics information was not given for this studyderéd
canopy height as strongly correlated to field measuremeRfs<0.86 RMSE = 3.6 M

(Dandois & Ellis, 2013; Dandois et al., 201B8)study in Tasmania, Austialcompared UAV

derived canopy height and canopy cover to those estimated from aerial lidar and field
measurements. This study was conducted in a dry sclerophyll eucalypt forest that was dominated
by white peppermint§ucalyptus pulchella The entire stuglarea was a 30 x 50 m rectangular

plot and contained a range of tree density and canopy.d¢ae&t measured canopy cavwas

59%, UAV canopy covewas estimated to be 5Q%nd lidar canopy cover was estimated to be
63%.Field measured tree density wd}/9rees per hectare (tph), and was estimated to be 747
tph with UAV data, and 813 tph from lidar dataicating82% and90% detectionUAV -

derived tree height was positively correlated with field measurenfeitsq.68, RMSE = 1.3

m), although lidar tre height estimates were more highly correlated to field measurerRénts (
0.84, RMSE = 0.92 iWallace et al., 2016)n southeast Norway, another study used UAV
imagery to estimatfrestinventory metrics includingree heights, basal area, and stem

volumes. The study areaas across a 195 ha boreal forest that was mainly composed of Norway

spruce and Scots pinBifus syvestris and also included a small component of downy birch
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(Betulapubescens Although specific forest metrics for canopy cover and density are not given,

a qualitative assessment of the sample UAV imagery of the study site shows conditions that
appear relatively denser and more continuous canopy coveththstady aeain the present

study The study estimated forest inventory metrics using UAV imagery, however ground points
from aerial lidar were used to establish a digital elevation n{@d&\1) across the study area.

When compared to field estimates, the UA¥fivedestimatesfoL or ey 6 s mean hei ght
dominant height, stem numbers, basal area, and stem volume were measured with ré8pective
values of 0.71, 0.97, 0.60, 0.60, and 0.85 with RMSE values of 1.4 m, 0.7 m, 538.2 ha, 4.5
m?/ha, and 38.3 Atha(Puliti et al., 2015)In a study conducted in the Northern Territory,

Australia, the authors used UAV imagery to delineate individual trees and estimate aboveground
biomass. The study area was mainly compaddabrwin woollybutt Eucalyptus miniataand

Darwin stringybark Eucalyptus tetrodonjaand exhibited >30% canopy covévhen compared
against aerial lidaderived data, UAWerived estimates were able to detect 70% of dominant or
co-dominant trees, angb% of suppressed trees. However, when compared tedieeided

estimates, aboveground biomass estimates were relatively poor using UARdat 15)

(Goldbergs et al., 20184 study was conducted near Flagstaff, AZ that used UAV imagery to
estimate individual tree heights, crown diameters, canopy cover, and tree density. The primary
overstory tree species in this study was ponderosa pine which varied in tree density and canopy
cover across the study areéhe study area contained both an ecotone area and forest area. The
ecotone area was describedlastransition zone of shrublasgdassland meadow and ponderosa
pine forestThe forest area contained primarily a ponderosa pieestyy and contained an
untreated control site, and three treatment sites including edoiynthin-only, and a thirand

burn. According to field measurememmshe forest areghe control site had the highest mean
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canopy cover (50%) and tree dengBy5 trees/100 A). In descending order this was followed

by the burronly site with 43% canopy cover and 2.7 trees/19)@he thironly site with 33.8%
canopy cover and 1.3 trees/100m@nd the thirandburn site with 21.8% canopy cover and 1
tree/100M. Across the study areBlAV -derived canopy cover estimates were highly correlated
to field measurement&{= 0.74, RMSE = 8.5%). Tree height estimates haB?af 0.93

(RMSE = 1.5 m) in the lestensescotone argandR? of 0.64 (RVBE = 2.9 m) in more ase
forestareas. Crown diameter estimakesl anR? of 0.66 (RMSE = 0.72) in the ecotone area, and
R? of 0.70 (RMSE = 1.9 m) in the forest area. However, the individual tree delineation showed a
weaker correlation in both the ecotone and forest aR¢as §.36, RMSE = 0.83 trees/10 m
andR? = 0.53, RMSE = 2.2 trees/100’ nespectively (Sankey et al., 2017The forested area
found in the study conducted by Sankey et al (2017) refdexbéme most comparable site
characteristics to those found in our study area. Therefore, we expect similar results for our
estimations of canopy cover, tree heights, and individual tree delineatitre time of this

study, no previous literature hasedsUAV-SfM methods to estimate canopy base height or

canopy bulk density.

With modern advances in UAV platforms, sensor capabilities, and SfM computer vision
algorithms, UAV SfM is becoming a potential economical alternative to aerial lidar for some
appliations(Dandois & Ellis, 2013; Morgenroth & Gomez, 2014; Dandois et al., 2015; Puliti et
al., 2015; Jensen & Mathews, 2016; Wallace et al., 2@@yently, UAV SfM has a smaller
footprint than aerial lidautit is often higher in resolution (10+ point/iDandois et al.,

2015) due tothe interpolated nature of the poingglditionally, the lower cost alloswa higher
frequency of surveys and givdgetuser the option to survey a small areal(20 hectares)

without paying for an aerial lidar acquisition that is often not economically justifiable to obtain at
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this scale. Relative to the cost of aerial lidar acquisitions, the cost of UAV SfM equipment
(roughly around $3000for UAV and sensor) makes it possible for landowners to purchase their
ownand conduct surveys as needéthen compared to field surveys, UAVs can offer more
comprehensive coverage and a less humased assessment of forest stoetcharacteristics.
The average cost to conduct fixeatlius forest inventory is $1a80/plot(Hummel et al., 2011)
andfield-based surveis often implemented @ sampling frequency ohe plot for every-3
ha. UAV surveys can potentially be cheaper, thus being an easier method for land managers to
conduct more frequentliPuliti et al., 2015)eading to adaptive managemenpogunities and
more informed decisiemaking.
Objectives
The overall objective of this project is to use UAV imagery and SfM methestitmate forest
canopy fuels and estimate crown fire behav8precific objectives includie following
1. Testand quanfy UAV SfM capalilities in measuring foredtructure in the FWPP area
a. Estimate canopy covén 10 m cells using orthomosaic images from the UAV
b. Delineatendividual trees bysegmerihg the UAV SfM-derivedpoint cloudto
estimate tree densityg 10 m cels andestimatefor eachindividual tree total tree
height, canopy base height, and canopy bulk density.

2. When the above variables are reasonably accurately derstedate the following variables

in 10 m cells using th6AV data: elevation (m), slope édrees), aspect (azimuthjtal

canopy cover (% )neancanopy height (myneancanopy base height (m), anteancanopy

bulk density (kg/m) for use in FlamMap software for fire behavior modeling.
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3. Conduct sensitivity analysis in FlamMap using each Udevived rasterariable
individually to determine the effectd these variablesn modeled potential crown fire
behavior.

Hypotheses

1. UAV imagescan be used taccuratelyestimate canopy cover 10 m cells

2. Detection of individual trees from UAV SfM witlecease withincreasingree density

3. UAV-derived estimates abtal tree height$or individual treewill be accurate when
compared to field measurements

4. UAV -derivedindividual treecanopy base height will havelatively lower accuracies, since
below-caropy variables are challenging to detect with Sfbtived 3D data.

5. If canopy base height cannot be reliabsfimatedcanopy bulk density estimates will not be
accuratesince it is directly related tcanopy base heiglestimates

6. Due to the finer spatl resolutionUAV -derived crown fire behavior models will show more
spatialvariation than LANDFIREderivedmodelsleading to varying estimates of forest fire
behavior.

Implications of Research

UAV -derived imagery can produce higpatialresolution datéhat can be used to more

accurately and cogfficiently represent forest fuel§hesedata could offer a fuels measurement

method that is more efficient than field survaysl potentially more accurate with less bias

introduced by the observer. By suppkarting, or replacing, LANDFIRE da{80 m spatial

resolution 2-5 year temporal resolutiomrest fuels can be assessed at a timenid-scale

giving land managers the ability to conduct more precise and targeted treatments and monitoring.

UAVsalso haethe added benefit of being relatively less costly mioge repeatable than other
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methods. Thus, UA¥can also provide land managers with a means to perform rapid
assessments of fuels treatments. This would make it possible for manggeystine

treatments calibrate ongoing treatmenend conduct responsive adaptive manageniéret

results of ouproject carbe used to assist forest land managers with integrating UAV technology
in their future landnanagement activities, potentially increasing efficiy of fuels reduction

treatments.

Chapter 2 Methods

Study Area Description

This study focused om12.14 haarealocated about 3 km northeast of downtown Flagstaff, AZ

and about 0.5 km north of Buffalo Park, a park owned and managed by the City of Flagstaff
(Figure 1). Thestudy area is under Coconino National Forest land ownership and is within the
wildland-urban interface of Flagstaff, AZt is within200 m from the nearest residential

structureDue to the close proximity to residential structures, the Ciglagstaff has identified

this area as a high priorifgr treatment and has planned it to be mechanically thinned as part of
Phase 1 FWPP in 201Phase 2 is located north of Phase 1 on Coconino National Forest
ownership and includes operationally compieixining areas mostly due to steep slopes. Phase 2

is planned to include helicopter and skyline cable harvesting techniques and planned to be treated
in future years. The final treatment area, Phase 3, is located about 25 km southeast of Flagstaff in

the Mormon Mountain area.

The elevation of thetudy area ranges from,258 to 2188 meters above sea level with a
southwest aspect of 10 degrees slope. The Flagstaff Pulliam Airport weather station is about 20
km south of thestudy area and provides the masipresentative climate data. Annoatords

from this station between 1981 and 2010 include a mean annual precipitation of 55.5 cm, which
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predominantly occurs during summer monsoon events and winter snawttdl mean annual
temperature of 7.9° C, with mean low temperature of 0.1° C, and a mean high temperature of
16.0° C. On average the coolest month is December with an average temperdtae@f
whereas July is the warmest month with an average temperature of 8l8tfiéhal Oceanic

and Atmospheric Administration, n.d.)

The dominant overstory vegetation type is ponderosa pineg ponderosaforest with
a small Gambel oalQuercus gatpelii) component. Native understory vegetation is primarily
comprised of Arizona fescu€é€stuca arizonicp bottlebrush squirreltaiflymus elymoidés
mountain muhlyMuhlenbergiamontaja and Fend| @eandthusferigrin ot hus (
Common invasivepecies in this area include Dalmatian toadflaxdria dalmaticg, common

mullein (Verbascum thapsysand cheatgras8fomus tectorum

The climate, vegetation, and soils of g#hedy area are similar to those found in most of
the forested areas that saund the City of Flagstaff. Forests with similar characteristics are also
commonly found across northern Arizona among ponderosa pine forests of comparable elevation
rangesAccording to the Natural Resources Conservation Service (NRCS) Web Soil Swivey to
thestudy area contains Baldy stony loam soikhich have a rhyolite parent material, are well

drained, and have a medium runoff poter(iNdtural Resources Consation Service, 2017)

The area surrounding tlsgudy area is a popular location for recreationists, specifically
hikers and mountain bikers. Although the area only contains one sanctioned trail, the Pipeline
Trail No 42(Coconino National Forest.da.), there are numerous unsanctioned social trails that
have been developed over time, most likely due to the close proximity to residentiaVamsas.
recent managemeactivity in thestudy area occurred in 2016 when a noxious weed treatment

was implemented on approximately 0.73 ha. $tibhdy area has not seen any timber harvesting
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between 1970 and preseHbwever there is evidence of historical logging activity hetform

of historical cut stumps. In 1998, there was one wildfire withirstixdy area that was

documented to be human caused and less than 4 ha in size in the southernmost shaipf the
area. The southwest perimeter of the Radio Fire of 1977 (1800dze) is about 1.5 km due

east, andhe southern boundary of the Schultz Fire of 2010 (6000 ha in size) is about 4.2 km due

north of thestudy area(Coconino National Forest,.db).

Data Collection

Site Selection

The FWPP Phase 1 area was examined usingl#&pcl0.4 softwaréESRI, 2015)0 locate areas
for potential UAV surveys. Adequate také and landing space to shfemplement UAV

flights proved to be the most limiting factor in site selection. Sbey area was chosen due to
its operational feasibility for UAV use. After identifying an appropreitely area, two UAV
surveys were planneélight 1andFlight 2. Although the flights are in close proximity to one

another, the areat not overlandareabout 60 m apart

UAV Platform and Sensor

This study utilized a SenseFly eBee fix@ohg UAV platform (Figure6). The eBeaircraft

weighs approximately 537 g with no payload, has a maximum takeoff weight of 750 g, and a
wingspan of 96 cnfPuliti et al.,2015; Sankey et al., 2017)he eBee has a cruising speed of 40
90 km/h, maximum flight duration of 50 minutes, and maximum flight coverage of 1 riaer
optimal conditiongSensely, n.da.). The eBee is launched by hand and lands by reducing speed
and altitude USabkeyletal., 2014TeeBek gperdtes with eMotion 2, a

custom fight planning software packag®enseFlyn.db). In this study, this software was used

to develop the flighmissionplan andcarry out the missian A Mi cr osoft Sur facel
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used to rurtheeMotion 2 softwarend the ground statiomheeBee performed an autonomous
flight on the planned flightpath, collected images at preset intervals, and returned to the landing

area.

The eBee UAV was equipped with an Airinov Multispec 4Ctrapéctral sensor. The
sensor collected images in four differepectral bandsia four separateensegFigure6). These
wavelengths are centered at green (550 nm), red (660 nm), red edge (735 nm),-arfchreshr

(790 nm).

| ‘

~—B1: Green
B2 Red
| ) ——B3 Red Edge
ol ] 1 ——B1 NIR
00 230 600 650 0D 30 S0 8%0

Wavelength (nm) (Airinov, 2016

Figure 6: TheeBee fixedwing UAV with the Microsoft Surface tablet used for flight planning

and operatiorfPanel A) andhe spectral bands of the Airinov Multispec 4C sensor used aboard
the UAV (Panel B) Bands tthrough 4 respectively are the green, red, red edge, and near

infrared wavelengths. They have corresponding mean wavelengths of 550 nm, 660 nm, 735 nm,
and 790 nm

UAV Image Acquisition

Flight 1 wascompletedon August 21, 2016 and Flightoh November 222016. Both surveys
were conducted with 830%latitudinal and longitudinabverlap respectivelyata maximum
flight altitude of 120 mThis flight altitude resulted in pixel resolution of 15 cm. Both flights

were performedlose to solar noon to minize shadowingklight 1 lasted for 15 minutes
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resulting in 960 individual images taken (240 images x 4 baRdsgpendicular flight lines were
planned for both flights tmmaximize the number afmagescollectedandto achieve higher image
overlap. Howeverflight 1 only obtained perpendicular flight lines for approximately half of its
survey area before landing due to impending weather. Flight 2 was successful at acquiring
perpendicular flight lines for its entire survey arlight 2 took 22 minutes to cqutete and

acquired a total of 1,828 individual images (457 images x 4 bands).
Field Validation Data Collection

Field measurementseredesigned to provide a validation dataeetthe forest characteristics
andindividual tree measuremerdsrived from tle UAV data. Two specific forest stathebvel
variables that required validation data were: tree canopy cover and tree density. In this study,
both of these variables were estimated in 10 x 10 m cells (}0@duitionally, within each plot
individual treesvere measured to provide a validation dataset for td&xived individual tree

measurements.

Using ArdMap 10.4 softwar¢ESRI, 2015)glong with polygons of the study areas
imaged with the UAVfield plot locations were chosen by first overlaying a 10 m grid across
both flight polygons to produdbe 10x10 m grid cells. Within this grid, 100 naajacent cells
with a minimum distance of 10 m (one cell) between sedise randomly chosen. An initiake
density (trees/cell) for each random cell wessially estimated by examining the higésolution
(~15 cm) orthomosaic image from the UAV surveys. Field sampling was then stratified by tree
density with a goal of sampling 10 cells with a density of, B, 2nd 4 trees/cellhestudy area
contained only a few areas of higher tree denbitythe desiredgoalof this studywas to
measureand evaluate tree canopy cover and tree density estimates across the entire possible

range of tree densities. |, tleéore, actively sought and located at Iéastlls with 5, 6, and 7
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trees/cell respectively(Table 3. The sampling goal was achieved at all density levels with a

total 57 plots distributed across the study area

Table 3: Distribution of the field samples. Field sampling was stratified by tree density to collect
individual tree measurements in areas of varying density. The sampling goal was to measure 10
cells with a density of 1, 2, 3, and 4 trees/cell, and 5 cells with a defh&itys, and 7 trees/cell.

The sampling goal was met at all densities.

Tree Density Sampling Goal Actual Measured
(trees/cell) (cells) (cells)

1 10 12
2 10 10
3 10 10
4 10 10
5
6
7

Total 55 57

Once the final plot locations were idd@d, an iPad tablet was connected to a Bad EIf
GPS PRO and used to navigate to each plot locagidmough the tablet was equipped wéh
GPS, the tree location was based on the k#evivedgeoreferenced orthomosamage(see
AUAV | mé&g e ckrsehichhnwgoused as a basemap in Avenza Maps softivare
navigated to the four corners of each plot to match the locations of the field plots with the 10 m
cells derived in ArcMap 10.4. Plot boundaries were then delineated and trees were determined to
be ather in or out of the plabased on their canopy position on the orthomosaic Atagach
plot, the GPS location of each tree was digitized on the orthomosaidroiafhe purpose of this
study, the recorded tree locations were relative to the orthommuagiand not true locations on

the ground. However, this procedure ensured that the exact matching area and individual trees
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were examined in both the field plots and UAV images, and also eliminated the need-for high

precision GPS and correcting for GP#oes.

2 Kilometess

Legend

- Flight 1 Area
- Flight 2 Area

¢  Field Measured Trees

10 m Grid Cells

Figure 7: Map of study area with field sampling poin®&eneral vicinity of thestudy area with
the two flight areas and their proximity to the City of Flags@éinel A) Flight 2 Area with a 10
m grid and locations ofdld measured treéPanel B) Flight 1 Area with a 10 m grid and
locations of field measured tre@%anel C)

The following measurements were then recorded for each tree: species, DBH, canopy
diameter in the Nort#$outh axis, canopy diameter in the BA#&ist axis, tree height, and canopy
base height. The DBH was measured using a diameter tape at a height of 1.37 m on the upslope

side of the tree. Canopy diameter was measured using a Leica DISTO E7500i laser rangefinder
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in both the NorthSouth and EastVestaxes, which were determined using a Suunto MC2

compass with 10° E magnetic declination adjustment. Canopy height and canopy base height
were measured by using the laser rangefinder to determine horizontal distance to the tree, and a
Suunto PM5 clinometerto measure the angles to tree base, canopy top, and canopy base.
Canopy base was the lowest point of continuous cafidgydistance and angle measurements
were then used to calculate tree height and canopy base I@agbpy bulk density was

calculated  first estimating canopy mass using DBH and allometric equations (eq. 1, 2, 3) by
Kaye et al. (2005). The canopy volume was then calculated using the average canopy radius,
overall tree height, and canopy base height, and assuming a cylindrical can@byeqod).

Crown mass was divided by crownlume to estimate erownbulk density for each tree (eq. 5).

D @iéi0060 oesE ¢ O OOI VQ pdrt Qud 8 eq. 1
D @iéiMQ @@ £d QO @WQ pd o Q¢® 8  eq.2
O Qi &l e a QBXNQ pdr ¢ ¢ 8 eg. 3

6 DE £ 6 A Q GLEAGE EINGENQO T 01 WD OO & EMEITR TN

eq. 4

8 i EME0QE | Qo6 eq. 5

The individual tree measurememiereappendeds attributeso the GPS coordinates

corresponding to each trexcation The resulting spatial data represents the location of each tree
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with the associatedttributesand was used as a validation datasetfelJAV -derived

individual tree measurements.

UAV Image Pre-Processing

Following the UAV survey flights, the acquired images and flight logs were retrieved from the
UAV. These files were then processed ustingiD (Pix4D, Switzerlandjo createa single
orthomosaiémageand3D pointcloud ofeach ofthe surveyed areashe MultiSpec 4C sensor
captures images in four bands through four separate carmbed?ix4D softwareeffectively
coregisters and mergdsese images together to create an orthomosaic for each band. These four
orthomosaics werthen spectrallgtacked with ENVI 5.3Harris Geospatial Solutiohto

produce one fouband orthomosaic for each flight area. The edges of the resulting orthomosaic
imageswvere heavily distorted due to lack of image overlap. Therefore, the original flight
polygons were used to spatially subset the orthomasaigesand remove the distorted areas.

The resulting orthomosaimagesfor both flight areas were 15 cm in sphresolution and

contained four separate bands (green, red, red edge, and NIR).

Similar to the orthomosaimagesthe Pix4D softwarecreatedidar-like, 3D point cloud
datafor eachspectrabandvia the photogrammetric method known as Structfroen-Motion
(SfM). These pointlouds were merged using CloudCompare to creaiaglepoint cloudfile
with a high point densitfor each flight area. The pointouddatawere then spatially subset to
the same area as the orthomosgaiages The point cloudor Flight 2 contained a few areas with
spurious points that were well below the ground. The Statistical Outlier Removal tool in
CloudCompare was used to remove outliers that were outside one standard deviation from any

group of six points. This procesdeagdtively removed extraneous points below the ground
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without removing desirable pointhe average point densities for the paloiuds were 32

points/nt and 56 points/mfor Flights 1 and 2respectively.

Deriving Forest Measurements

Canopy Cover from UAV imagery

UAV canopy cover was primarily derived using the orthoaioisnagesand a normalized
difference vegetation index (ND\VYHased segmentation method. The orthomdezagefor
each flight weraisedin ENVI 5.3 softwarewhere the Band Math tool wased to create an

NDVI raster with the following equatiofeq. 6)
00w Oo—m (eq. 9

Preliminary testing showed that using the NIR & Red Edge band combination generated
a better NDVI raster than the NIR & Red band combination. Additionally, all values were
convertedo a floaing pointdata type for the band mabiperation After the NDVI raster was
generated, the Segmentation Image tool was used to classify canopy pixels by setting a minimum
and maximunNDVI valuethreshold anda population minimumTheseparameterslefine the
criteria for thecanopyclassification Table 4. A pixel that meets the minimum and maximum
thresholds, and has enough qualifying pixels surrounding it to meet the population minimum

were classified as areas of wim
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Table 4: Parameters used in the ENVI Image Segmentation tool for UAV and NAIP canopy
cover estimates. The minimum population used for NAIP data was significantly less than UAV
due to the large (1 m) resolution relative to the UAV data (15 cm).

Parameter mae UAV Flight 1 UAV Flight 2 NAIP

Minimum

Threshold: 0.1 0.1 0.15
Maximum

Threshold: 1 1 1
Population 100 100 4
Minimum:

Neighbor Rule: 8 8 8

The resulting raster classified areasreecanopy and assigned them with unique object
ID numbersA bandmath equation was then applied to create a binary canopyirasteich all
trees were assigned a value of 1, whereas all other pixels had a valdéisfraster was then
exported from ENVI asa .tif file and imported in R software. The binary canogster was
overlaid on a canopy height model raster to remove all canopy pixels with a tree canopy height
of less than 1.37 m. Within R (R Development Core Team 2008), and usiragtiigackage,
the point cloud for each flight was imported and canopgtttenodels were produced. This
canopy height model (CHM) was then used to create a raster to identify all values less than 1.37
m. This process effectively removed areas of high NDVI and low canopy heghtdgrbaceous
vegetation to produce a canopyster more representative of only tree canopy. This raster was
then resampled to 20 cm resolution, for an even fit into a 10 m cell, and imported to ArcMap
10.4where it was converted from a binary canopy raster into a 10 m percent canopy cover

feature Figure8).

32



Input: Canopy Snap to e Run Zonal i Convert to i Convert to
Raster 10m gnd Statistics Percent Polygon

.l Output: 10m
‘ Canopy Cover

Figure 8: Canopy cover processing workfloRrocessised to convert the binary canopy raster
to summarize canopy percent cover in a 10 m cell.

To summarizehe binary canopy coveaster taree canopy percent cover estimate$0n
m cells, the input raster was first snapped to match the desired 10 nTlgeidonal statistics tool
wasthenrun to sumtmarizethe numberof canopy pixels within every 10 m grid cell. This sum
was therconverted to a percent by dividing by the total number of input raste{Nel&500)in
the 10 mgrid. The resulting raster was converted to a polygon for comparison with the other data
types.The same process for both the UAV and National Agricultusgkmy Program (NAIP)
data was used to convert the canopy raster into a 10 m canopy cover feature. However, the total
number of raster cells in a 10 m grid cell was 100 to reflect the resolution of the NAIP imagery

(2 m).
Canopy Cover Estimate Validation

The UAV imagederived canopy cover estimates were validated using two different independent
image sourceand fieldbased canopy cover estimatidfirst, the National Agriculture Imagery
Program (NAIP)Jmage was used for validating the UAMrived canopy car estimates in 10

m cells. NAIP is a program through the United States Department of Agriculture (USDA) Farm
Service Agency that acquires aerial imagery evesyy@ars. NAIP imagery has a spatial

resolution of 1 m and four spectral bands (R, G, B, NHRj.this study, NAIP imagery a6

acquired by accessing the NAIP server throughviae 10.4 Tiles overlapping the study area

wereselected and then spatially subset to the general study area vicinity.
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A similar workflow to the UAV processing was used ttraate canopy cover from
NAIP imagery. An NDVibased segmentation image was created in ENVI 5.3 with the
parameters ifable 4and used create a binary canopy raster. The binary raster was then
summarized into tree canopy percent cover estimates in 1@isn frpixetwise regression
analysis was used to compare the tree canopy cover estimates from the UAV image classification

and NAIP data.

In 2014, the USDA Farm Service Agency acquired imagery similar to NAIP anesn
that included oustudy area. Thisnagery was acquired using higher specificatitas
traditional NAIP imageryhat resulted in 0.3 m spatial resolution imagenyh four spectral
bands (R, G, B, NIRjacross a 495,698 area othe Coconino lad Kabab National Forests in
northern Ariona Zachmann and Dickson (2017) used this imagery to classify tree canopy at a
0.3 m spatial resolution. During their model evaluation using 621 test samples, the canopy
classification had (Zach®ahde OQocksond 20E7for thissstudycheur ac y
Zachmann and Dicksqj2017)canopy data provided a relatively high resolution canopy cover
raster for comparison and was used as a second validation sourdachieann and Dickson
(2017)canopy raster was first resampled to 25 cm, using nearest neighbor resampling, to ensure
a fAper f ectonfgridceélls. A pixeloisetedressioh analysis was conducted between
the 10 m canopy cover from the UAV image classificationZaxhmann and Dickson (2017)

data sources.

Field measurements for canopy diameter were used to calculate an average canopy
radius. This canopy radius was then used to create a buffer around each field measured tree
location. All field-based tree canopies wa@mbined in ArcMap to estimate canopy cover

within each field plot and compared to UAviagederived estimates.
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The primary statistics from the canopy cover regression analyses that were used to assess
the correlation between datasets was the adjiRétedrrelation coefficient and the root mean
squared error (RMSE). In order to compare datasets of varying scales, a normalization procedure
can be applied to the RMSE by utilizing differences in overall dataset ranges, interquartile
ranges, or the coefficienf variation within datasets. However, since all canopy cover data were
resampled to percent canopy cover within a 10 x 10 mthelldatasets shared a common spatial

scaleandthis procedure was not required to make a valid statistical comparison.
UAV imagederived Tree Density Estimates

Tree density estimate was derived by summarizing the number of trees mapped within each field
plot. Due to the stratification scheme in field sampling, tree density ranged from 1 to 7 trees per
100 n? plot (Table 3. Toestimate tree density in the UAV image, the Ua¥frived canopy

cover estimates for each plot were first used to examine the relationship between canopy and tree
density and determine whether tree canopy cover can be used as a predictor variable for tree
density estimates. This relationship was analyzed using an ANOVA test with multiple pairwise
comparisons, in which the plots were binned into tree density classes along with their
corresponding canopy cover values. Statistically significant differencesapygaover values

among the density classes, if observed, might be used as indicators of tree density classes.

Landscape metrics from UAV Canopy Cover

The binary canopy and naranopy raster (20 cm resolution) from the UAV data was first edited

to changelte value of all noitanopy pixels from 0 to NA. This effectively gives the canopy
raster a single class of AcandBAGSDATH#Hhi s rast e
software (McGarigal, 2012) to calculate the following landscape metrics: numbecloépat

largest patch index, mean area of a patch, and standard deviation of patch area. All metrics were
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calculated using an 8 neighbor rule. The number of patches is simply the number of individual
patches that were identified using the 8 neighbor rulegdst patch index is percentage of the

total landscape that is occupied by the largest identified patch. Mean area of a patch is the
average area of all patches (reported in square meters). Standard deviation of patch area is the

standard deviation betweall patch areas (reported in square meters).
Individual Tree Segmentation

Point cloud processing and individual tree segmentation was performed using the lidR package
in R statistical analysis software, which contains functions that implement variotiglpaih
processing methods for forestry applications. A progressive morphological filter (Zhang et al
2003) was first used to classify ground points in the point clouds. A digital terrain model (DTM)
was then created using the points classified as grdimedDTM values were then subtracted

from the point cloud Z values to crea normalized point cloud theffectively converts Z

values from meters abovesskevel to meters above ground. This point cloud normalizatian is
common preprocessing procedufer individual tree segmentatiomith point cloud datgw. Li

et al., 2012; Wallace, Musk et al., 2014; Wallace, Lucieer et al., 2014; Puliti et al., 2015; lizuka
etal., 2018 The UAVSIMder i ved point <c¢clouds contained an
points that were a few meters above the ground surface, but represented neither ground nor
vegetation. To remove these points and avoid falsely classified points as trees, two novel
methods were used. First, by applying a second progressive morphological greundtfil a

higher maximum threshold heigf® m), a larger number of these points were classified as
ground points and therefore excluded during tree segmentation. Second, the point clouds were
colorized using the NDVI raster generated from the orthomasaiges. This allowed all points

with a NDVI value less than 0 to be filtered and ignored during tree segmentation. Applying
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these steps generated a point cloud that best represented only tree points which were then used in

the tree segmentation algoriti{ffigure9).

A.

Figure 9: Point cloud preparation for tree segmentati®ide profile views of the same point

cloud subset at different stages of procesgtogt cloud with initial ground lassification

(Panel A) The ground points are displayed in red and were used to create a digital terrain model
(DTM). Point cloudthat has been normalized and ground points rem(®awalel B) However,

some nortree points still remairRointcloud after he second ground filtering and NDVI
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threshold have been appli@@anel C). The final point cloud wdsemed the most representative
of treeonly points and was then used in the tree segmentation algorithm

The lidR package in R contains several tree segatien algorithms, most of which are
based on canopy height models (CHM). Three of these algorithms were used during preliminary
testing: watershed method (Oles et al., 2018), Dalponte method (Dalponte and Coomes, 2016),
and Li method (Li et al., 2012). Bothe watershed and Dalponte methods are €idskd,
where the user generates a CHM and the tree segmentation is implemented on the CHM raster.
The resulting output is used to overlay on the point cloud and assign unique tree identifications
to each segmeed tree. The watershed method inverts the CHM surface and performs a
watershed analysis to determine catchment areas that are then segmented as individual trees
(Oles et al., 2018). The Dalponte method uses the CHM and utilizes a decision tree method to
grow trees around local maxima in the point cloud (Dalponte and Coomes, 2016). The Li method
is the only poirbased method implemented by lidR. This method segments trees by analyzing
points from tree top to bottom and using the horizontal distance bepsedsa to determine if
they are part of the tree (Li et al., 2012). During preliminary testing of these three methods, the
Li method was chosen as the most effective method for detecting individual trees witheut over

segmentation.

The Li segmentation usel this study relies on four parameters that are user defined.
First, the minimum height of a tree (measured
crown radius (also measured in meters) is def
inmeers) thresholds are set as fidtlo and fAdt 2. 0
horizontal distance threshold between points for all points above 15 m in height, and below 15 m

in height, respectively.
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For this study, a minimum tree height of 2amnd a maximum canopy diameter of 7 m,
were deemed appropriate by examining the fillded tree measurements. There were no trees
below 2 m in height and no canopies greater than 7 m in diameter in the field data. Although
both dtl and dt2 are used in thealgorithm, in order to isolate the effects of dtl and dt2
differences, and limit the possible combinations and iterations in this study, these parameters
were run with equal values during each iteration. Both dtl and dt2 are, hereafter, referred to as
ADTO. Il n gener al , a -degmentaboh with many additioraldrees t s i n
identified in the point cloud, whereas a high DT value causes+sedenentation, where many
tree canopies are merged together into single large canopies. The D5 wileespecific and
should be defined by the user to best suit their area (Li et al., 2012). In this study, 16 different

iterations of the Li segmentation were run with varying DT values.
Tree Detection and Density Estimate Validation

Following the treesegmentation, a shapefile was created that contained the locations of the
center of each individual tree. The UAV SfM point clederived trees were first overlaid with
the 10x10 m grid to count all trees detected within each cell and then comparefidiothe
mapped trees to validate and assess the accuracy of the tree segmentation and rates of tree
detection. The UAWerived trees were first spatially joined to the figldpped tree points.
Joining rules were then used to ensure onlytormne joins. Jming rules were as follows: 1) a
join can only occur if the UAMerived tree is within the crown radius of the field tree; and 2) if
there is more than one UAWerived tree within the crown radius of the figlchpped tree, the
closer point maintains theip. This tree detection scheme was used to quantify true positive

detection and false negatives (omissions). False positives (commissions) were calculated by
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summing the number of UAV point clowderived trees within the 10x10m plots that were not

matchedand joined to a fieldnapped tree.

Tree segmentation using the Li method with constant parameters across the entire study
area yields different results in areas of higher tree density versus areas of lower tree density.
Assuming a linear relationshipee en t ree density and canopy co0\
the Li segmentation was developed by using tree points from different segmentation iterations
based on the above described estimates of canopy cover distribution across my study area. Using
thetree canopy cover estimates, | classified my study area into sections of high canopy cover and
low canopy cover. In areas of >50% canopy cover, the tree points from a lower DT value
iteration were used, and in areas of < 50% canopy cover the tree painta higher DT value

iteration were used.

The combination of true positive, false negatives, and false positives were used to assess
each tree segmentation iteration. Validation metrics included recall (r), precision (p}seokF
(F) which were calcutad using the following equations (eq. 5, 6, and 7) (Goutte and Gaussier,

2005,Li et al., 2012):

i (eq. 5)

n (eq. 6)

O ¢ — (eq.7)

The iteration yielding the highest scores represents the bestdgAved estimate of tree density

in this study and was, therefore, used as the final model. This anahscompleted on the
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entire study area, and also by grouping plots by their density classes, to determine the effect of

tree density on tree detection.

Additionally, ANOVA analysis with multiple comparisons was conducted to compare the
UAV point cloudderived trees with the fielthapped trees to determine if a statistically
significant different number of trees were detected between the UAV point cloud data and field

based measurements within each density class.
Individual Tree Metrics

The individual tre measurements derived from the UAV data included the following metrics
derived from the point cloud data: total points, tree top coordinates, canopy diametetomnorth
south), canopy diameter (east to west), height max, height min, height mean, height med
height mode, height variance, height standard deviation, height coefficient of variation, height
kurtosis, height skewness, and percentile heights (ranging from 5 to 99 in 5 meter increments).
Some of these metrics were then used to estimate thedéinaf individual tree measurements:
location, canopy height, canopy baseght, and canopy bulk densifjhese tree metrics were
compared to the corresponding figtthpped tree and its associated field measurements for
validation: tree height, base hketgand canopy bulk density. To estimate canopy base height and
canopy bulk density, | explored several possible Uderived predictor variables. For canopy

base height, these predictor variables included the height percentiles of each segmented tree, as
well as the height to crown diameter ratio. Estimates for canopy bulk density involved first
establishing a tree height tcadieter at breast height (DBH) relationship. This relationship was
used to predict tree DBH with the UAdkrived tree height. The mheted DBHs were then used

in northern Arizonaspecific allometric equations (eq. 1, 2, 3) for ponderosa pine (Kaye et al.,

2005) to estimate the canopy mass of each tree. Thed#Ved overall tree height, average
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canopy radius, and canopy base heighterthen used to estimate canopy volume assuming a
cylindrical canopy model. Canopy mass was then divided by canopy volume to estimate the
canopy bulk density. This process for estimating canopy bulk density directly mirrors the steps
used with the field masurements to estimate bulk denditgear regression models then were
used to examine the relationships between the dAkvved and fielemeasured variables. A
bootstrap resampling analysis (subsample= 100; iterations= 100,000) was conducted with the
UAYV tree height measurement errors to determine the mean error with a 90% confidence

interval.

Fire Behavior Modeling

The Landscape Fire and Resource Management Planning Tools @REDis a multiagency
programwith the goalo provide seamless geospatiata products across the entire United

States. LANDFIRE provides 27 different data products across 7 categories which include:
reference, disturbance, vegetation, fuel, fire regime, topographic, and seasonal. The purpose of
these products are to suppotteiragency planning, management, and operations (LANDFIRE

n.d.). For this study, only the fuel and topography data were used.

The LANDFIRE spatial fuels data products include total percent canopy cover in 30 m
cells, the mean canopy height, the mean cabagg height, total canopy bulk density, mean
topographic elevation, mean topographic slope and aspect, and total fuel model. These products
are derived using three categories of spatial data: satellite imagery, biophysical gradients, and
vegetation structe and composition. Within these categories, 40 different predictor variables
are used to derive spatial fuels data in 30 m spatial resolution (Appendix A). These predictor
variables include biophysical gradient data such as annual precipitation, temgeratu

evaporation, evapotranspiration, and others. Vegetation type data are also used in LANDFIRE as
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predictor variables for fuels products. Other predictor variables used by LANDFIRE include

multispectral imagery from Landsat ETM.

Land managers typicallyse spatial fuels data from LANDFIRE with FlamMap 5
software (Finney2006) to model potential fire behavior in an area of interest. In this study, |
used the UAV data to generate inputs to FlamMap and model crown fire behavior to determine if
a different mage source and resulting input rasters produbstantiallydifferent fire behavior
models. If the resulting fire behavior model is substantially different than the LANDFIRE
derived model and if many of the input raster layers can be more accuratebtgef®om UAV

sensors, land managers might consider UAV platforms as a viable alternative image source.

The UAV data also included the Sftierived 3D data, whereas the LANDFIRE models
currently do not include a 3D predictor variable. The UBased canoplgeight raster was
generated by creating a 0.25 m canopy height model across the study area that was then
resampled to 10 m resolution by calculating the mean height value and classified into 10 m
height classes, similar to LANDFIRE. A canopy base heiggter was created by using the
percentile height of points within each 10 m tledit was the best indicator of fieldeasured
canopy base heightand reclassified to units used in LANDFIRE (base height in meters R 10).
10 m resolution UAVbased canopgover raster was already created during earlier canopy cover
processing (see fnADeriiCainmyp yFCroeetr WMe asnu UANe n tma
as an input to FlamMap. The elevation, slope, and aspect rasters were created by first generating
a DEM IinENVI LIDAR 5.3. The DEM was generated at a 1 m resolytrdnch was used to
create the slope and aspect rasters in ArcMap 10.4. It is important to note that the accuracy of
topographic data layers were not assessed during this study. However, a ptedpassessed

the accuracies from the same UAV platform and sensor in a similar area (Sanke30af7al.
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and reported that UAV SfM derived DEMs were well correlated to those derived from both
terrestrial and UAVbased laser scanning(= 0.71 and 0.7RMSE = 0.17 m and 0.5m
respectively). After creating a DEM for the study area, all three topographic raster layers were
resampled to 10 m resolution to match all other raster layers. Canopy bulk density was estimated
with UAV data, however these estimsitghowed poor relationships to field estimates from field

data thus the bulk density raster was used directly from the LANDFIRE database for crown fire
modeling. Additionally, the fuel model raster was not measured using UAV data and was also

used directlyfrom the LANDFIRE database.

Crown fire behavior models were then performed using various combinations of
LANDFIRE (2012version) and UAV data Table 5. Additional parameters in FlamMap for
modeling crown fire behavior include a fuel moisture file, wipdesd, and wind direction. These
additional parameters remained constant across all itergliabk §. A sensitivity analysis was
conducted by substituting one LANDFIRE raster input at a time with a single-déived
raster for each iteration to determaithe effects of using UAderived layers for each inpull
FlamMap iterations were conducted using 10 m resolution input raster layers. Since LANDFIRE

data is in 30 m resolution, they were resampled to 10 m to be compatible with the UAV data.
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Table 5: Inputs used in FlamMap to model crown fire behavior. The outputs from these
iterations were then compared to assess the differences in fire behavior models with the UAV
derived inputgUAV) versus LANDFIREderived inputgLF). All LANDFIRE dataused were

from the 2012 versiarAll raster input files were either resampled from LANDFIRE 30 m, or
resampled from original UAV data resolution, to a matching resolution of 10 m. Iteration O
modeled crown fire behavior using 30 m LANDFIRE&ta, Iteration 1 used LANDFIRE data
resampld to 10 m. Iterations 2 to 5 tested UAJérived rasters for topography, canopy cover,
canopy height, and canopy base height. Iteration 6 used all availabledleéd rasters.

Data Source for Eadkeration

Input Raster  |teration Iteration Iteration Iteration Iteration Iteration Iteration

1 2 3 4 5 6 7
Elevation LF LF UAV LF LF LF UAV
Slope LF LF UAV LF LF LF UAV
Aspect LF LF UAV LF LF LF UAV
Canopy Cover LF LF LF UAV LF LF UAV
Canopy
Height LF LF LF LF UAV LF UAV
Canopy Base
Height LF LF LF LF LF UAV UAV
Canopy Bulk
Density LF LF LF LF LF LF LF
Fuel Model LF LF LF LF LF LF LF

45



Table 6: FlamMap parameters that remained constant through all crown fire behavior iterations.
Constats used were those observed during the Schultz Fire of 2010. Fuel moisture refers to the
percent of dry weight of the fuel type. 1 hour fuels are dead fuels 0.66 to 2.5 cm in diameter, 10
hour fuels are 2.5 to 7.6 cm in diameter, and 100 hour fuels@te Z0.3 cm in diametethe

crown fire calculation method refers to the particular method used to calculate the potential for
surface, passive, or active crown fire.

. . Canopy
Fuel Moisture Winds Characteristics Crown Fire
1 10 100 Live Live Eoliar Moisture Calculation
hour hour hour Herbac Azimuth Speed Method
Woody Content
fuel fuel fuel eous
o5 Scott/
206 2% 6% 65%  65% . °r°  MPH 100% Reinhardt
degrees @ 20 (2001)
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Chapter 3 Results

UAV images and Field Data

The fixedwing UAV image orthomosaic from Flight 1 caeel 6.7 ha area, when all 960 images
were maacked together and subset to the area of interest. Flight 2 also covered 6.7 ha area in
the final orthomosaic image subset. Both Flight 1 and Flight 2 also had corresponding 3D point
cloud data with an averagé 32 and 56 points/frespectively. The final field dataset collected

for validation purposes included 192 individual trees that were mapped and measured in a total

of 57 plots distributed across the study area with the two flights.

Canopy Cover Estimates

An equal number of UAVand NAIRderived percent canopy cover pixdis=(,371) were

analyzed using a pixaVise regression covering the entire areas imaged by the two UAYV flights.
The regression model resulted in adjudkédf 0.72. As indicatedby theregression coefficients,
the NAIP-derived canopy cover estimates higherthan UAV-derived estimates, especially in

areas of high canopy covgtigure10).
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Figure 10: Pixelwise regressn between UAY and NAIRderived canopy cover estimates in
10 m resolution. The dashed line represents the 1:1 line, and the solid line is the fitted linear
regression line.

The UAV imagederived canopy cover estimates were also compared with the Zathman
and Dickson (2017) canopy cover data summarized in 10 m cells vianpsestegression
analysis using all pixel$\(= 1,371). The regression model indicated a strong agreement between
the two estimates with an adjust&tlof 0.82 and RMSE of 8% canopycover. The regression
model also indicated that the UAV data slightly underestimated canopy cover in greater canopy

cover areas compared to the Zachmann aokisbn estimated{gure11).
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Figure 11: Pixelwise regression between the UAV imadgrived canopy cover estimates and
Zachmann and Dickson (2017) canopy cover estimates summarized in 10 m cells. The dashed
line represents the 1:1 line and the solid line is the fitted linear remrds®e from the data.

UAV imagederived canopy cover estimates were also compared tebizsled estimates
using a pixelwise regression analysis. This analysis was conducted using field\plets7)
and showed a positive correlatid® € 0.67, RMSE= 11.87% Canopy Cover). When compared
to field-based estimates, the UAV imaderived estimates tend to underestimate canopy cover,

especially in areas of high canopy coveig(ire12).
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Figure 12: Pixelwise regression between UAX¥hage derived canopy cover estimates and
Field-based canopy cover estimates. Canopy cover estimates are summarized in 10 m cells for all
field plot locations {=57). The solid line represents the fitted regressite and the dashed line

is a 1:1 line for reference.

Relationship between UAVderived Canopy Cover and Tree Density

Since tree density data were only available for the field plot areas, the analysis between UAV

derived canopy cover and tree density antfuded those areas in 10 m cells (N = 57). Tree

density classes ranged from 1 to 7 trees per 10 m plot. Mean canopy cover between the density

classes increases steadily from class 1 to class 4. The increase in canopy cover becomes less

apparent betweerlas®s4to 7 Figureld) . An ANOVA test

W i

t h

Tukeyod

comparisons indicated that the mean canopy cover for a density class of 1 (1 tree per 10 m plot)

was not significantly different than the nme@anopy cover for a density class of 2 (2 trees per 10

m plot). However, the mean canopy cover for a 1 tree plot was significantly different from the
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mean canopy cover of all other density classes above 2. The mean canopy cover for a density
class of 2 wa significantly different than density classes 4, 6, and 7. Canopy cover for density
classes 3 through 7 were not significantly different. Across all density classes, no two adjacent
classes contained significantly different mean canopy cérguie13). Canopy cover for

density classes 1 through 3 could potentially be used as indicators for density. However, density
classes 4 through 7 are likely to have similar canopy cover estimates and thus difficult to detect

tree density differences betweé to 7 trees per 10x10 m cell.
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Density Class (trees per 10x10 m plot)

Figure 13: Mean canopy cover (%) for each density class (trees per 10 m plot). The compact
letter display for significant differencesing the multiple compariso®gNOVA testis shown
above each boxplot. Density class 1 is significantly different than class 3 through 7. Density
class 2 is significantly different from class 4, 6, and 7. Density classes 4 through 7 are not
significantly different. No two adjacent detysclasses are significantly different. Canopy can
potentially be used as an indicator for density in 1, 2, and 3 tree classes. Density classes 4
through 7 will likely show similar values for canopy cover.
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Landscape Metrics from UAV Canopy Cover

A total d 1,865 individual patches were identified throughout the study area. Of these,
approximatelyl55 and 167 patches appear to be a single tree canopies in Flight 1 and Flight 2
respectively. The largest patch index was 3.85%, indicating that the largésinpidie study

area occupies 3.85% of the total anghich is approximately 1,698%mThe mean area of a

patch was 24 R with a standard deviation of 7% indicating a large variability in the size of

patches in the study area. Patch identificationbeawmisualized irfFigure14.
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Figure 14: Patch metrics computed BYRAGSTATSwith UAV-derived canopy cover
classification Patchesvere identified using an-8eighbor rule andolored by tleir unique patch
ID. A total of 1,865 individual patches were identifi@cross both Flight 1 area (Panel A) and
Flight 2 (Panel B).
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Individual Tree Segmentation

Results from 17 different iterations of the tree segmentation by the Li (2012) algorithm
implemented by the lidR package within R were analyzed. In these iterations, the DT parameter
ranged from 1.0 to 2.5 meters. Il n additi on,
two different DT iterations based on percent canopy cover across\a@fii. Detection was

assessed for each iteration using positively detected trees, omission trees, and commission trees
(Table 7. The iteration using the smallest DT value had the highest detection of 88%. A total of
159 of the 192 fieldnapped trees wegecurately detected and segmented. This also produced

the highest commission error with 132 additional trees. The iteration using the largest DT value

had the lowest detection (109 of 192 trees), but also the lowest commission error (8 trees).

Results fom the recall (r), precision (p), anesEore (F) indicated that the lowest DT
value iteration had the lowest recall and the highest precision, whereas the highest DT value
iteration resulted in highest recall and lowest precisi@ble j. The Fscore isa composite
measure of both recall and precision. The highestdfes occurred in the iterations that used a
mid-to-high range of DT values. Iterations with a DT value of 1.4 m and 1.7 m had the highest F

score (0.78). Additionally, the optimized itemtialso contained a highdeore of 0.78.

Detection, omission, and commission error rates were also analyzed for each density
class, and for each tree segmentation iteration. Tree detection was maximized across all densities
by using a low DT value in thia (2012) segmentation algorithm. However, a low DT value also
maximized mean commission error, especially in plots with lower tree densities. The iteration
using the lowest DT value (1.0 m) resulted in a mean detection of over 80% in all plots except
dengty classes 6 and 7. The low DT value (1.0 m) iteration had a commission error of over

100% (twice as many trees) in both the 1 and 2 density classes. Although the commission error
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decreased with an increase in tree density, this error remained over 2&8l¥gémsity classes

except class 7. On the contrary, a high DT value resulted in less detected trees, particularly in the
higher density plots. A high DT value also minimized the amount of commission error across all
plots. The iteration using the high€3T value (2.5 m) resulted in an average detection of 75%

for 1 and 2 tree plots. In general, the detection rate decreased as the plot density increased with
lowest detection rates of less than 50°%density classes 5, 6, andWhen using the optimized

DT values of 1.41.7 that were based on canopy cover, a balance of omission error and
commission error was achieved for lower density classes and higher density classes. The
optimized DT iteration achieved this balance across all density classes bet@nyrather

iteration using a single DT valu&dble 7.
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Table 7: Individual tree detection results for each iteration. A total of 192 trees were detected.

The DT value was changed by 0.1 m for each iteration to determine tbis efféhe parameter.

The optimized iteration contains two DT values: 1.4 m for areas with >50% canopy cover, and
1.7 m for areas of O50% c an o fsgore (Fpaveestandardizedc a | |
measures of detection, omission, and comiomssespectively (eq. 2, 3, 4)

DT value Detected Omitted Commission 0 =
Trees (%) Trees (%) Error (%)
1 83 17 69 0.83 0.55 0.66
1.1 79 21 38 0.79 0.68 0.73
1.2 77 23 32 0.77 0.71 0.74
1.3 76 24 21 0.76 0.78 0.77
14 73 27 15 0.73 0.83 0.78
15 71 29 14 0.71 0.84 0.77
1.6 69 31 11 0.69 0.86 0.77
1.7 68 32 7 0.68 0.9 0.78
1.8 66 34 7 0.66 0.91 0.77
1.9 66 34 7 0.66 0.91 0.76
2 61 39 6 0.61 0.91 0.73
2.1 59 41 5 0.59 0.93 0.72
2.2 61 39 3 0.61 0.96 0.75
2.3 56 44 5 0.56 0.92 0.7
2.4 57 43 5 0.57 0.92 0.71
2.5 57 43 4 0.57 0.93 0.71
CD(EFLTli_Z%d 74 26 16 0.74 0.83 0.78

In addition to analyzing the study area as a whole, separate analyses were also conducted
by grouping the plots into density classes. First, the mean nwhbegmented trees were
compaed between each density class with each iteraigufel5). The mean number of
segmented trees for plots with 1, 2, and 3 trees closely matched the number of trees mapped in

the field plots. However, plots with 5, 6, and 7 trees also show aegreiance around their
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means making the density classification challenging based on the tree segmentationfutput.

ANOVA test with multiple pairwise comparisons was also conductedtddesignificant

differences among the mean segmented trees between all density classes. Using an alpha of 0.05,
confidence level of 95%, andalyal ues adj usted using Tukeyds a
there was no significant difference in the meamber of segmented trees between any adjacent
density classes. However, density class 1 contained a significantly different mean number of
segmented trees than density class 3, 4, 5, 6, and 7. Density class 2 had significantly different

mean number of segented trees compared to density class 6 and 7. Mean segmented trees are

not significantly different between density classes 2, 3, 4, and 5. Additionally, density classes 3

to 7 are not significantly differenEigurel16).

o Trees Detected por Pl
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Figure 15: Tree detection andommission error by density clagsach line represents a separate
tree segmentation iteration and is colored according to the DT value used (see Mgand).
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percentage of trees detectitreases with increasing density and higher DT value (Panel A)
Mean percent of false positives (commisseoror) also decreases with increasing density and
higher DT value (Panel B).

a ab be be be ¢ ¢
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Density Class (trees per 10x10m plot)

Saemented Troes

Figure 16: Mean number of segmented trees @ach density class. Density class represents the
number of trees within each 10 x 10 m plot. Error bars represent the standard error of the means
for each classThe compact letter display for significant differences using the multiple

comparisons ANOVAest is shown above each bar. The mean number of segmented trees in
density class 1 is not significantly different than density class 2, however it is significantly
different than density class 3, 4, 5, 6, and 7. Density class 2 contains a signifidéertindi

mean number of segmented trees than density class 6 and 7. Density classes 3, 4, 5, 6, and 7 do
not contain a significantly different mean number of segmented trees.

Individual Tree Metrics

A comparison of UAVderived and fielebased individual tre metrics was conducted to evaluate
the accuracy of the UAV measurements. This analysis was only completed using the trees that

were positively detected with the optimized DT iteratibin=(142) since this validation required
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field measurements for everyAY -derived tree, and only the detected trees had both

measurements to compare.

A regression model of UAMerived tree height and fielieasured tree heights indicated

a positive correlation with an adjustBéof 0.71 (RMSE = 1.83 m)Fjgure17).
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Figure 17: Linear regression model between UAlNrived tree heights and field measurements
The solid line represents the fitted regression line and the dashed line is a 1:1 line for reference.

A bootstrap resampling analysis was then conducted to determine the mean error between
UAV -derived tree height and field measurements. A subsample of 100 error rates was taken to
calculate a mean height error. This occurred over 10,000 iterations to ideter80%
confidence interval of mean error rates. The mean error rate of theddAved tree height was

5.29% of the field measured heights. The lower end of the 90% confidence interval was 2.79%,

whereas the upper end was 8.32%.
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To determine a prediatdor canopy base height, a regression analysis was conducted
using the field measured base heights compared to-t&Wed predictor variables. These
included all height percentile estimates and the height to canopy diameter ratio from the UAV
derived cravn metrics for each tree. All height percentiles had a positive correlation to canopy
base height with adjustd®f values ranging from 0.25 to 0.40, and RMSE ranging from 1.67 to
2.88 m. In comparison, LANDFIRE base height estimates have an aRénagiee of 0.09
(Reeves et al., 2009 owever, no single height percentile was a clear best predictor of base
height. Height to canopy diameter ratio did not have any statistically significarntatiorrevith

field-measured canopy base heightalfle 3.
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Table 8: Results from regression analyses using each {daktved height percentile and height
to canopy diameter compared to figlbasured base heights.

UAV-d.erived Correlatiqn to RMSE Intercept

predidor Base Height Slope p-value

variable (adjR?) (m) (m)
5th 0.34 2.52 4.70 0.62 2.63E14
10th 0.35 2.55 5.36 0.65 4.03E15
15th 0.38 2.50 5.81 0.69 1.16E16
20th 0.38 2.49 6.51 0.68 1.39E16
25th 0.39 2.52 6.99 0.69 9.73E17
30th 0.39 2.53 7.44 0.70 8.61E17
35th 0.39 2.52 7.84 0.70 8.52E17
40th 0.39 2.52 8.27 0.69 1.04E16
45th 0.39 2.48 8.66 0.69 3.61E17
50th 0.40 2.47 9.00 0.69 3.07E17
55th 0.39 2.48 9.38 0.69 5.56E17
60th 0.37 2.50 9.85 0.67 3.49E16
65th 0.36 2.53 10.35 0.65 3.00E15
70th 0.34 2.57 10.81 0.64 2.27E14
75th 0.32 2.61 11.22 0.62 1.17E13
80th 0.28 2.73 12.20 0.59 7.51E12
90th 0.26 2.79 12.67 0.58 3.65E11
95th 0.25 2.84 13.13 0.58 8.95E11
99th 0.25 2.88 13.78 0.57 2.03E10

Height to

Canopy 0.00 1.67 3.22 0.04 3.57E01

Diameter ratio

Since many of the UAMlerived height percentiles were correlated to canopy base height,

and no

singl e

var.i

abl

e

wa s

t

he

cl

ear

fibest o

determine which predictaariable had the closest to a 1:1 relationship with canopy base height.
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The analysis completed was a qualitative assessment of the predictor variable and a 1:1
relationship with field measured canopy base heigigiufe18). Using this assessment, it was
determined that thé™height percentile had the closest to a 1:1 relationship with field measured
canopy base height compared to all other predictor variables. Also, as the height percentile
increased, the relatiship between predictor variable and field measured canopy base height
migrated further from the 1:1 line. The height to canopy diameter ratio did not show a 1:1

relationship with field measured canopy base height.

HOSTH HIOTH HISTH H20TH H25TH
- - - - -
2‘ f‘ I’ ” f’ ﬂ’
20 o’ -’ 0. w %o’ 2. » %" S b %
151 e ” Y Podea” Sodmet s’ .!ﬁ;tf-'
10 X XY » L o ry 4-’ . b -‘v .
S.ﬂl o I‘ I’, I’,
g HMNTH HISTH H40TH H45TH H50TH
- - - - -
= -, - -
2 z‘ . . " 3 . - " g " ey - ML T - * e 0 . -
= 20 vty b v, ey’ 3 .. .t .o :
= 1s - !4 - ’.¢ - "f - )’.’ ,’o’
= - * .
= 1014 g . nfd 0“ ') '} > ke
: ‘;14?' /!’ I’ l"' "'
g HSSTH H60TH H6STH H7OTH H7STH
z < ’/ ’I ’r ’I ’I
=28 “ v " e * s s o L7 e o o0 * 090 v 7 8N e g0 ,*
: 20 . < 3 () B - 9
s 15 [ - i el . 2l
=10 “. - ." 254 s’ P “ P ol 9 e
%‘ 5 :’a :’» ?’a ?’4 "a
: 0 - - - - -
HSOTH HOOTH HOSTH HO9TH bt_to_can_dia
- - - ° - -
25 0‘0‘ . . - - o" . as " * . ae - - . e /’ /’
20 w 52 e &Q #* R -
-~ ’ . . . . . - -
1510 - . - . - R - . -
10 ," 't' '-‘ g : ',’ 0(‘
. . -
5{° - - -7 = o A =+
0 ~— e -
0 S$ 10152025 0 § 101520258 0 5 10152025 0 5 10152025 0 § 10 15 20 25
Field Measured Base Height (m)

Figure 18: UAV -derived predictor variables and the field measured canopy base heights of all
detected trees. The dashed line represents a 1:1 line relationship.

Using the UAV imagederived ' percentile height as a predictor for canopy base height,
a bootstrap resampp analysis was conducted to determine the mean error of the UAV estimate
compared to the field measurement. A subsample of 100 error rates was taken to calculate a

mean base height error. This occurred over 10,000 iterations to determine a 90% confidence
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interval of mean error rates. On average, the error between thedgdxéd estimates were
32.29% of the field measured base height. At the 90% confidewele the mean canopy base

height error rate was 22.03% to 45.54%.

Canopy bulk density was estimedtby first estimating the canopy mass and volume of
each detected tree. Canopy mass was estimated using a tree height to DBH relationship that was
established using the field data and used to predict the DBH of individual trees given their UAV
derived tre height. The UAWderived DBH predictions ranged from 12.34 to 51.15 cm, with a
mean of 38.22 cm. UAMerived DBH had an adjust&d of 0.38 with an RMSE of 4.82 cm
when compared to field measurements. The tbfevived DBH predictions were then used to
estimate the canopy mass of each tree using allometric equations from Kaye et al (2005). These
UAV -derived estimates of canopy mass ranged from 7.6 to 283.1 kg, with a mean of 138.8 kg,
and were then compared to estimates using field measurements which graaaciuste®? of
0.39 with an RMSE of 39.25 kg. To estimate the canopy volume of each tree, threddu@&t
canopy measurements were used: tree height, canopy base height, and average canopy radius.
Comparisons between UAderived and field measurecke heights and canopy base heights
wereconducted in previous analys&sAV -derived average canopy radius ranged from 0.49 to
5.42 m, with a mean radius of 2.97 m. When compared to field measured canopy radius, the
UAV -derived radius had an adjust@tiof 0.26 and an RMSE of 0.88 m. The resulting UAV
derived canopy volume estimates ranged from 4.08 to 1652 htima mean volume of 323.15
m®. UAV-derived canopy volume had an adjusRaf 0.33 and an RMSE of 246.1FnThe
UAV -derived mass and volumetiesates were then combined to estimate canopy bulk density.
The relationship between UAV and field estimates for canopy bulk density was not correlated

(adj. R? = 0.0005, RMSE = 0.30 kg/n
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Fire Behavior Modeling

A baseline model was first establishedusyng only LANDFIRE data layers in 30 m resolution

to model crown fire behavior for the study area. After establishing the baseline, the LANDFIRE
raster layers were resampled to 10 m resolution for comparison with thedexed raster

layers. To analyzthe effects of resolution on crown fire behavior, the 10 m LANDFIRE data
were used to model crown fire and compare to the 30 m LANDFIRE output. Crown fire behavior
outputs for both the 30 m and 10 m LANDFIRE datasets were equal with 0% surface fire, 14%
passive crown fire, and 86% active crown fire predicted for the study aadde(9 Iterationl,

Iteration2).

A reliable estimate of canopy bulk density could not be produced from the UAV images
given the relatively low correlation coefficientdowever,UAV -derivedestimategor the
critical variables had similar accuracies to the LANDH&REived variables. Therefore, UAV
derived estimatefor elevation, slope, aspect, canopy cover, and canopy base height were
produced in 10 m resolution for use in Flaag These data represented the mean of each
variable for the 10 m grid cell. These variables were then used to supplement LANDFIRE data

and model crown fire behavior for the study area.

A sensitivity analysis was completed by substituting each tdiakivedlayer
individually, except topographic variables which were used as a group, and comparing the
resulting outputs from each iteration for crown fire behavior across the study area. First, the
UAV -derived topographic variables (elevation, slope, and aspeot) substituted to model
crown fire (Table 9 Iteraion 3). This resulted in a reduction of active crown fire with an

increase of passive crown fire. Crown fire behavior across the study area with theddié&t
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topographic variables resulted in 0% swed fire, a larger passive crown fire of 23%, and a lower

active crown fire of 77% compared to the LANDFIRE outputs.

The next iteration substituted LANDFIR&erived canopy cover with the UANerived
canopy cover estimatesdble 9 Iteration4). This reslied in a slight reduction in active crown
fire and passive crown fire. These reductions resulted in a slight increase in the surface fire
category. Crown fire behavior with the UAderived canopy cover layer resulted in 3% surface
fire, 13% passive crowfire, and 84% active crown fire across the study area. {ddaived
canopy height was then substituted into the crown fire behavior itatge 9: Iteration 5)The
UAV -derived canopy height layer had a larger effect than either topography or canopy cover.
Active crown fire was reduced from 86% in the LANDFHREly models to 44% with the UAV
imagederived canopy height. Additionally, surface fire increased from 0 to 49% and passive

crown fire decreased from 14 to 7%.

Canopy base height was the next vagahht was substituted for the sensitivity analysis
(Table 9 Iteration6). The inclusion of the UAMerived canopy base height layer caused an
extreme reduction of active crown fire and a drastic increase of surface fire. Active crown fire
was reduced t8%, passive crown fire to 0%, and surface fire increased to 98%. Lastly, crown
fire was modeled using all the available UANérived variables including topography, canopy
cover, canopy height, and canopy base heifgible 9 lteration7). Crown fire behawer was

modeled as 100% surface fire, 0% passive crown fire, and 0% active crown fire.

Overall, when modeling crown fire behavior with only LANDFIRE data, the 30 m
resolution and resampled 10 m resolution produced the same results. Substituthtptiid
canopy cover showed a slight reduction in active crown fire and an increase in surface fire. In

increasing order, UAMlerived topography, canopy height, and base height had substantial
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impacts on the crown fire behavior model by reducing the percentagéwd crown fire and
increasing surface fire. The UANerived crown base height layer almost eliminated crown fire
initiation completely with only 2% active crown fire and 98% surface fire. When all-lUAV
derived variables were used, crown fire initiatwoas completely reduced to 0% active crown

fire and 0% passive crown fire with 100% of the study area being modeled as surface fire.
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Table 9: Crown fire behavior model outputs for each iteration. Inputs for Iteration 1 included the
original data layers from the LANDFIRE database in 30 m resolution. Iteration 2 utilized the
resampled LANDFIRE data in 10 m resolution. Iteration 3 used {d&kved elevation, slope,

and aspect rasters with LANDFIRE data as other inputs. Iteration dtstdssUAV-derived

canopy cover with LANDFIRE data for all other inputs. Iteration 5 included the-dénted

canopy height estimate with LANDFIRE data for other inputs. Iteration 6 used thedgAxed
canopy base height estimate along with all other DANRE data inputs. Iteration 7 included

UAV -derived topography, canopy cover, canopy height, and canopy base height.

Percent of Fire Type (%)
lteration 1 & 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7

Fire Type LANDFIRE UAVTopo UAVCC UAVCH UAVCBH UAVall
Surface 0 0 3 49 98 100
Passive Crown 14 23 13 7 0 0
Active Crown 86 77 84 44 2 0
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Chapter 4 Discussion

Canopy Cover and Data Sources

The UAV-derived canopy cover estimates were very high in spatial resolution originating from
15 cm reslution data. The accuracy of the UAJérived canopy cover estimateas relatively

high, when compared with twdifferent data sourcassedto estimate canopy cover: NAIP
imagery and a canopy cover classificatitataset from Zachmann and Dickson (20WHhich

was derived from aerial imagery. The original resolution feamh of these data sources Was

m for NAIP imagery and 30 cm for the Zachmann and Dickson (2017) canopy classification.
Each data source was then resampled to a 10 m canopy cover pestarto directly compare

among the three image sources (N=1,371).

The UAV-derived canopy cover estimate was positively correlated with the NAIP
derived canopy cover estimaf?£0.72, RMSE= 109% canopy cover In this comparison,
there were several aaaences of th&lAlP-derived estimate both oveand undesestimating
canopy cover compared to tb&V -derivedestimateHowever, in general the NAiBerived
estimate tends to overestimate canopy cover across the study area,lgspecezds of high
caropy cover.Thiswasevident when examining the intercept and slope of the fittegssmpn
line (intercept= 0.18% canopyer, slope= 0.79)Canopy cover estimates from NAIP data
become increasingly greater than UAV estimates as canopy cover inclidasabtference can
be largely explained by the difference in spatial resolution between the origirsdtd@anopy
cover for the UAV imagerwasbeing derived from an original image resolution of 15 cm,
whereas the NAIP imageryasin 1 m resolutionFiner resolution imagery is able to detect
variation in the data that would otherwise be undetected using coarser resolution imagery

(Woodcock & Strahler, 1987Yherefore,ie UAV imagerymay be able to detect areas of no
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canopy or sparse canopwithin a 1 m area that the NAIP imagery cannot leading to an
overestimation of canopy cover with the NAdBtimate. Another possible source of this
discrepancy could be from the date of UAV imageuisition in the Flight 2 area. This flight
was conducted during the month of November duringdéfaeason. Since canopy cover was
derived using an NDVbased procedure, canopies without leasash as oaksyould not have
been detected. Althoughdre are few deciduous tree species in the Flight 2 Area, this could

have also lead to an underestimation of canopy cover with the UAV imagery.

A comparison between UAMerived canopy cover and the Zachmann and Dickson
(2017) canopy classification was coleted to compare these estimates with more similar spatial
resolution. Original resolution of UAV imagery was 15 cm, and the Zachmann and Dickson
classification was 30 cm, which were botisampledo 10 m percent canopy cover estimates for
comparison. Theixel-wise regression between the UAMrived and Zachmann and Dickson
estimates showed a positive correlation stronger than the UAV vs NAIP comparisd®f. The
value between UAV and Zachmann and Dickson percent canopy cover was 0.82, with an RMSE
of 8.77%canopy cover. Additionally, the fitted linear regression equation between the UAV and
Zachmann and Dickson canopy cover estimates had an intercept oféhapycover, and a
slope of 0.88, indicating a relationship closer to 1:1, when compated tiAV vs NAIP
relationship Overall, the UAV and Zachmann and Dickson comparison showed a stronger
relationship than UAV versus NAIP. One possitdasoris that the spatial resolution of the
Zachmann and Dickson classification (30 emasmuch closer to the U imagery (15 cm)

than the NAIP imagery (1 m).

In addition to comparing UAMerived canopy cover with remotely sensed data sources,

we also compared these estimates to {iielded estimates. In this comparison, Udéfived
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canopy cover estimates were pivgily correlated to fielebased estimate&f = 0.67, RMSE =
11.87% canopy coverpankey et al. (2017) found a simjlémough slightly stronger,
relationship between UAMerived canopy cover and fielhsed estimate®{ = 0.74, RMSE =
8.5% canopy covéin a comparable study site. When comparing our tifevived canopy

cover estimates to fieldased estimates, we found that UAV methods tend to underestimate,
especially in areas of high canopy cover. An underestimation of canopy cover using UAV
imagery wa also found in a study conducted by Wallace et al (2016).-dé&\ed canopy
cover estimates are capable of fully representing theaunm@gs ofree cowns whereas the
field-based estimaseused in oustudy rely on averagerown radii that are used &ssume an
even, circular, crown around each tree. Additionally, Udéfived canopy cover estimates are
able to represent small gaps within a single crown, whereasbBsleld estimates assume
continuous, gapless, crowns. These assumptions could accoth@ g@neral underestimation of
canopy cover when comparing UAderived estimates to those calculated from field

measurements.

The positive correlation between UAdérived canopy cover to both NAIP and
Zachmann and Dickson estimates shows that)thé canopy cover estimatdsave similar uses
and implications to both NAIP and Zachmann and Dickson. Additionally, UAV data has the
added benefit of temporal resolution that can, to a certain extent, be defined by the user. This
characteristic make UAV surveysrpaularly useful for applications requiring fine temporal

resolution that can be difficult and costly to acquire with aerial imagery.
Canopy Cover and Tree Density Relationship

The relationship between canopy cover and tree density was explored usi#vtkaerived 10

m percent canopy cover estimate and the field measurements from varying tree densities. Tree
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density was defined in 7 classes that represent the number of trees within a 10 x 10 m plot. These
density classes ranged from 1 to 7 trees per plean canopy cover varied statistically

significantly and had a steady increase between 1 to 4 tree density classes. However, when
examining the mean canopy cover between 4 to 7 trees per plot, this difference becomes less
pronounced. An ANOVA test with uaftiple pairwise comparisons indicated that the 1 tree

density class was significantly different than all classes from 3 to 7 trees. Additionally, the 2 tree
density class was significantly different than the 4, 6, and 7 tree density classes. Ovesall, no t
adjacent density classes showed significantly different mean canopy cover. Therefore, canopy
cover cannot be used to predict tree density of 1 versus 2. However, it may be used to separate

areas of very low density from areas of high density.

The findings from the canopy cover and tree density analysis could be explained by the
varying widths of tree canopies across the study area. Argipam single tree may occupy the
same amount of horizontal space as a few trees growing close together. Thecdifferteveen
single, large and several small canopies could not be detected with thel&/&&d canopy
cover alone. Additionally, this analysis also only included 10 m plots, which can inherently reach
a point of canopy closure regardless of how many iddal trees are present (eg. 4, 5, 6, or 7
trees can fill a 10 x 10 m space with canopy). Interestingly, mean canopy cover across all field
plots seems to reach a maximum around@% suggesting it becomes less common for tree
canopiestoreachclosurespend t hat amount in the study area
consider the sampling method was random and stratified by density, and therefore not an even

representation of the entire study area.
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Landscape Metrics with Canopy Cover

FRAGSTATSsoftwarecompute landscape metrics using an input raster that has been classified

by the user. This study used the 15 cm canopy cover classification raster derived from the UAV
data.The software can handle images that contain several classifications. Howeatalsed

in this study only containea binaryclassificationof treecanopyand netree canopyAn 8

neighbor rule was used in this study to aggregate adjacent canopy pixels into patches. The 8
neighbor rul e aggr egat ereadmacent sidesor adjacerd comersilp at c h
general, an 8 neighbor rule allows more aggregation of pixels into a single patch thus creating

larger, but fewer, total patcheshen using coarse spatial resolution d&tace the UAV images

had 15 cm resolutignthe FRAGSTAT Sapplication did not encounter this limitation and

identified many small patches.

A total of 1,865 patches were identified across the study area. The largest patch index
was 3.85%, meaning the largest patch occupied 3.85% of the totstdqed(1,698 A
Additionally, the mean area of a patch was Z4with a standard deviation of 7¥nThe large
standard deviation relative to the mean suggests that patch sizes are highly variable across the
study areaHowever, further interpretatiorisom these metrics alone are limited. The utility of
such metrics becomes greater with more datasets. A UAV survey of the study area after
restoration treatment could be used to answer questions about the change of these metrics such
as: Has the landscapecome more fragmented? How has the average patch size changed? How
has the variability in patch sizes changed? Additionally, similar procedures could be used to

answer these questions when comparing multiple landscapes in different areas.
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Future Considerations for Canopy Cover

The UAV imagery used in this study to derive canopy cover data was relatively high in spatial
resolution (15 cm). A comparable high resolution dataset, that has been independently validated,
was not available for comparison. Insteagdomparison of NAIP imagery and a thpdrty

canopy cover classification (Zachmann and Dickson, 2017) was conducted to assess the accuracy
of UAV-derived canopy coveResults from these comparisons supported the hypothesis that

UAV -derived estimatesf canopy covecan be accurat&uture research might consider more
high-resolutionvalidation dataset® estimate UAV canopy cover accuracy. Seasonality of the

data acquisitions being used should also be considered. Factors suclaaglswand leabn vs

leaf-off conditions can potentially effect canopy cover estimates that are derived from NDVI.

A problem that was encountered when processing UAV imagery to produce a canopy
cover estimate was that the UAV imagery often contained areas of high NDVI heteee
canopies. Aside from true areas of high NDVI (low vegetation: grass, forbs, shhalos)were
also areas of image distortion likely from misalignment during the orthomosaic building process.
However, the UAV data estimates have the benefit ofidioy a 3D SfM point cloud which can
be used to provide height attributes to the UAV imagery. A novel method was used to leverage
this height information to create a height mask and apply it to the canopy cover classification and
eliminate areas classifiet canopy that were below a certain height (1.37 m). This produced a
canopy cover estimate that was more representative of only tree canopy. This method could be

explored more irdepth with not only UAV data, but also using aerial imagery and lidar.

Potential applications of UAWderived canopy cover estimation include conducting
change detections to estimate mortality and regeneration. A process similar to the one used in

this study could be conducted at several timesteps to conduct a canopy covedetectge.
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Tree mortality could be estimated by examining areas of canopy that decrease over time.
Additionally, the same process could be used to estimatelfgdsgtbance regeneration by
examining the areas of increasing canopy cover. Albeit each ef #psications would require
customization of the parameters used to addresss#afic changes. Additionally, this study

did not attempt to conduct a spectral classification of different cover types or species, since the
study are was dominated by giemosa pine. By including such classification, information
regarding the composition and configuration of various cover types, or species, could be

conducted.

Additionally, information such as canopy cover that can be derived from UAV imagery
can have fareaching implications in forest ecology. Forest canopy cover has been shown to be
directly related to wildfire behavior and fuel loadifiyle et al., 2004; Lydersen et al., 2013)
Increased canopy cover causes higher susceptibility to insect outbreak and forest pathogens
(Covington & Moore, 1994a; Covington et al., 1997; Feeney et al., 1D@&rsity in forest
canopy cover can provide habitat and forage areas for Mexican spottestioxvbcidentalis
(Ganey et al., 1999; Prather et al., 20@)anges in canopy cover due to restoration treatments
have been shown to have implications towards water yield and nutrieloio(Kiaye et al.,

2002; Simonin et al., 200.7Ynderstory species that provide species biodiversity and forage for
wildlife have an inverse relatnship with forest canopy covgéfameon, 1967; Covington et al.,
1997; Laughlin et al., 2006; Moore et al., 20087V surveys offer scientists and land managers
a way to further examine these ecosystem responses by providing spatial canopy cover

information across usetefined areas anddquency.
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Individual Tree Segmentation and Subsequent Density Estimates

This study implemented tree segmentation algorithms, originally intended for use with lidar
point cloud data, to identify individual trees from a S@idrived point cloud. Depending time
parameters used in the algorithm, varying levels of detection, and omission and commission rates
were achieved. When maximizing thes€ore of tree detection, the tree segmentation algorithms
detected 74% of trees with arsEore of 0.78. This detectioatewasconsistent with a study

that used SfM point clouds to segment individual trees in Australian sav@wldbergs et al.,
2018) which had a detection rate of 70% and asuwdte of 0.71. However, this study achieved a
lower rate than the 85% detection rate documented in open canopy mixed conifédMohest

et al., 2017)Similar to findings by Goldbergs et §2018), the detection rates in this study
declired with increasing tree density. This finding supported the hypothesis that detection of

individual trees using the UAV SfM method would decrease with increasing tree density.

The parametersusedinagitem ee segmentation algorithm mt
specific site and userds needs. The parameter
location without verification and fintuning. This study utilized a pouitased algorithngW. Li
et al., 2012)o segment individual trees from the point cloud. The main parameter that affected
the segmentation was the DT parametadistance threshold between points that determined
whether goint was, or was not, part of a particular tree. Within the Li (2012) segmentation
algorithm, there are two different DT values. DT 1 is the distance threshold above 15 m, and DT
2 is the distance threshold below 15 m. For this study, both of thesedldies/ere set equal. In
future studies, these values can be set differently to potentially achieve better segmentation

results.
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This study explored an optimization of SfM tree segmentation by taking advantage of the
multispectral orthomosaic image frometUAV in addition to the point cloud. The availability of
both orthomosaic image and SfM point cloud offered the opportunity to leverage the 2D canopy
cover information with 3point clouddata. After running the segmentation using various DT
parametergyrid cells of higher canopy cover (> 50%) used trees that were segmented with
parameters designed to detect more tmuses, whe
trees that were segmented with parameters that minimized commission error andgsurees.
This optimization proved to be successful at detecting marginally more trees with less

commission error.

The results from the optimized tree segmentation were then used to explore a relationship
between the mean number of trees detected peaptoss each density class (trees per 10 x 10
m plot). In this analysis, a perfect segmentation would result in the number of trees segmented
being equal to the density class of the particular plot. Mean numbers of segmented trees follow
this trend within the 1, 2, 3, and 4 tree density classes. However, the 5, 6, and 7 tree density
classes no longer show this trend. The tree segmentation used in this study rarely detects more
than 5 trees in any of the study plots. An ANOVA test indicated that the gariamhe number
of trees segmented for each density class was relatively high creating no significant difference in
mean values between any adjacent density class. However, the 1 tree class was significantly
different than classes 3 through 7, and thee@ tlass was significantly different than class 6 and

7.

Other studies using UANSM for individual tree segnmgation have had varying results
In a spruce forest in southeast Norway, Puliti et al (2015) estimated stem numbers of trees with

anR? of 0.6Q Although specific values for tree density and canopy cover are not given, the
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example imagery appears to show a much denser feta8ve toour ponderosa pine study area.
This study utilized similar UAVSfM methods as our study, however they suppleetetheir

data with aerial lidar data for ground points, which may have increased their accuracies
compared to using only UAMerived data. In the Northern Territory of Australia, similar UAV
SfM methods were usday Goldbergs et al (2018) segment treas a eucalyptus forest that
had >30% canopy cover. In this study, UANérived estimates detected 70% of dominant and
co-dominant trees, and 35% of suppressed ttaes ponderosa pine forest in northern Arizona
that had an average canopy cover of 3%#key et al (20173egmented individual trees with
UAV-SfM methods and had a positive, albeit weaker, correlation to field tree cBARt6.63).

In comparison to these studies, our study area had an average canopy cover of 36% (SD =
20.8%) as measuredthithe UAV imagery. Therefore, the most comparable study sites would
be the eucalyptus forest in Austral@oldbergs et al., 2018and the ponderosa pine forest in
northern ArizongSankey et al., 2017)n our study, wdad marginally higher detection rates

with a positive detection af4% of our fieldmeasured trees with a 16% commission error.

In this study, chaging the DT value resulted in changes in tree detection rates, as well as
commission error. When the parameter was set to detect more trees, the commission error
increased. Although the-$§core is a composite score between true detections and commission
er or, this score does not necessarily indicate
segmentation and detection rates should be conducted by the user for a gistveobjer
example, some situationsight prefer oveissegmentation of trees, whievould allow
overestimates of tree density that can then be filtered with another variable. The objective of the

survey, or study, should be the primary driver behind choosing tree segmentation parameters.
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Individual Tree Metrics

After individual trees wee segmented from the point cloud, crown metrics were calculated for
each tree. These metrics included tree center coordinates, canopy diameter, canopy height, and
percentile heights that represent the meters above ground for different percentilessof point
These metrics were then used to estimate the height, canopy base height, and canopy bulk

density for each tree. These measurements were compared to field data for vahlatizt2).

Using the segmented point cloud, the highest point for a givewageonsidered the
overall tree height. A positive correlation was found when comparing these values to field
measurements for tree heigRE € 0.71, RMSE = 1.83 m), which supported the hypothesis that

UAYV estimates for tree height would be accurate wtwnpared to field measurements.

Several other studies have estimated tree heights with-tlkied data. The results
from these studies generally show a strong relationship betweendgA¥ed tree height
estimates and fieldased measurements. Dandaial§2015) found a strong correlation between
UAV -derived and fielebased tree height estimat& € 0.86, RMSE = 3.6 m) in a mixed age
deciduous forest in Maryland. Wallace et al (2016) showed a weaker correRitio0.68,
RMSE 1.3 m) in a dry sclephyll eucalypt forest in Australid&uliti et al (2015) had a strong
correlation when comparing the Loreyds mean
field measurement$f = 0.71, RMSE = 1.4 inin a spruce forest in southeast Norway, however
theysupplemented the UAV data with aerial lidar data which likely increased the accuracy of
their estimatesSankey et al (2017) showed a positive correlatir=(0.64, RMSE = 2.9 m)
when comparing UAV and fieldased tree height estimates in a ponderosafpnest. Although

these studies were conducted across a wide range of vegetation types, the tree height estimate
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accuracies found in our studg’(= 0.71, RMSE = 1.83 m) are generally consistent with previous

studies.

Whenexamining UA\tderived tree heige compared to field measurements, some
outliers were apparent. During field data col
overl appi ngahe comments field fordrees that appeared to have overlapping
canopiesThis attribute wasusedtie si gnate trees as fAcl umpedo wh
38 treedrom the datasefhe tree height regression whenre-performedwithout the clumped
trees to determine if the relationship changed. This analysis showed that removing clumped trees
strergthens the relationship between UANrived tree heights and field measured heidgRis (

0.82, RMSE = 1.6 m) suggesting that the overlapping canopies may contribute more error in
UAV tree height measurement&idgure19). Similar results were found by Goldbergs et al

(2017) where tree detections were much higher for dominant addnsmant trees (70%), than

they were for suppressed trees (35%) that may have been crowded by other trees leading to
suppressed growtin addition to overlapping canopiesjrthg preliminary data analysis,

Gambel oakQuercus gambelioften posed problems for UAV height estimates due to

relatively low height and clumpy nature. However, only five Gambel oak trees were within field
plots &ross the entire study area and only 1 was positively detected during tree segmentation. In
the height regression omitting clumped trees, the detected Gambel oak tree was removed due to

its clumped designation.
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Figure 19: Regresion relationshipbetween UAVderived tree heights and field measurements,
with clumped and norlumped treesThe fitted regression line for all trees is shown in red, the

fitted regression line for only neclumped trees is shown in blue, and the In& Is shown as a
black dotted line. By removing the clumped trees, the tree heights regriesgioned from an
R?0f 0.71 (RMSE = 1.83 m) to & of 0.82 (RMSE = 1.6 m) and showadelationship that

was generallgloser to 1:1 than the relationship betm all trees.

Canopy base height was estimated with UAV data by examining the relationship between

field measured canopy base heights and the height percentiles of points within the point cloud for

each tree. It was believed that the height percentilels potentially provide a good predictor

for canopy base height. When tested, several height percentiles showed a positive correlation

with field measured canopy

Several height percentileadh a correlation coefficienkf) ranging from 0.38 to 0.40. When
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deciding on a height percentile to use as a predictor of canopy base height, rather than choosing
the variable with the strongest correlation coefficiantadditionahnalysis was conduateo

decide which variable resulted in a regression line closest to the 1:1 line with field measured base
height. The & height percentile had a regression line closest to the 1:1 line wRhafr0.34

and RMSE of 2.52 m. In addition, the tree heightanopy diameter relationship was also tested
assuming that a tall tree with small canopy diameter would have a high base height. However,
this relationship did not hold true when compared against field measurements. This discrepancy
was mostly caused bige inaccurate measurement of canopy diameter with-0&3&d

methods.

Although the relationship between fialdeasured canopy base height and Uderived
5™ percentile height was somewhat low, the current standard of remotely sensed canopy base
height da& for use in modeling crown fire potentiabased orthe LANDFIRE database.
Canopy base height data from LANDFIRE has been shown to have poor, and highly variable
relationships with actual field observations. Correlation coefficients between LANDFIRE bas
height and field measurements were highly variable betwe® @0 to 0.93, with a mean of
0.09 across 12 sitéReeves et al., 2009or this reason, thé"Percentile estimate derivébm
the UAV data was believed to be sufficient as a predictor for base height in this study and,

therefore, used a input layer in FlamMap to model potential crown fire behavior.

At the time of this study, no other studies were found that attempe=dinoate canopy
base height using similar UAWerived methods. However, canopy base height has been
accurately measured using aerial lidar. In a western Washington ddudpasst, Andersen et
al (2005) found aerial lidar estimates for canopy basenh#igt were positively correlated to

field measurement$f = 0.77). Additionally, a separate study in a ponderosa pine dominated
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forest in eastern Washington also showed a positive correlation between aer@giided and

field-based measurements t@mopy base height®{= 0.78)(Erdody & Moskal, 2010Q)

Canopy bulk density relies on estimates of both canopy mass and canopy volume. Using
field measurements, canopy mass was estimatad tle tree DBH and allometric equations for
local ponderosa pingkaye et al., 2005)Canopy volume was estimated by determining the
canopy height and average canopy radius to estimate thdragdilvolume of the canopy. Mass
was divided by volume to estimate the overall canopy bulk density ir’kgattempted to
mirror this process with UAV data, however there was no reliable estimate of DBH to use to
estimate canopy mass. To overcome thestablished a tree height to DBH relationship which
was used to predict the DBH of a tree given the overall height. This provided DBH estimates for
each tree that was based on the Udéfived tree height, and subsequently canopy mass was
estimated for ezh tree. UAV(derived canopy volume was predicted similarly to field data. First,
the canopy base height estimate was subtracted from the overall tree height to estimate the
overall height of the canopy. Then, canopy diameters were used to calculatedige aa@opy
diameters. The canopy height and diameter were then used to estimate canopy volume assuming
a cylindrical canopy model. UAMerived canopy mass and volume were then used to estimate

the canopy bulk density of each tree.

The UAV-derived estimats of canopy bulk density showed a weak relationshiptivith
field-basedoulk density estimates. Differences between Udérived and fielederived
estimates of canopy bulk density may have been caused by several factors. Rather than directly
measuring DBHlirectly with UAV data the UAV-derived estimates of canopy mass were based
on DBH predicted from the tree height to DBH relationsingated with field dataA

logarithmic relationship was established between tree heights and DBH viRtrof0.48 and p
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value of 3.11e5. TheUAV -derived tree height was used as an input to this model to predict a
UAV -derived DBH. The UAVderived DBHin this studywaspositively correlated with field
measured DBHbut the relationship was fairly we@R?= 0.38, RMSE= 4.82m). The DBH
predictions were then used to estimate the canopy mass of each tree. When comparing canopy
mass derived frorthe UAV data, and the canopy mass derived from field data, the relationship

was also poofR>= 0.39, RMSE= 39.25 kgJF{gure20).
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Figure 20: Regression relationships of data used to predict canopy huagsithmic
relationship between tree height and DBH that was used to predict DBH from UA{Pdatz
A). The relgionship of the UAV predicted DBH and field measured D@tdnel B) Final
canopy mass derived from UAV estimates and field measureifiariel C) Solid lines
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represent fitted regression lines for all graphs. Dashed line represents the 1:1 fittedihearfor
regressions.

Additional error in canopy bulk density estimates also came from-déved volume
estimates. In order to estimate volume, three tevived metrics were used: tree height, base
height, and average canopy radius. Overall, Udevivedtree heights were found to be
reasonably accurat®= 0.71, RMSE= 1.83 m). UAMerived canopy base height was
positively correlated to field measurements, but the relationship was relativelfRfeak 34,
p-value = 2.63€14, RMSE= 2.52 m\When UAV-derived canopy radius was compared to field
measurements, the relationship was fairly p&3«(0.26, RMSE= 0.88 m). A comparison of the
UAV -derived canopy volume to the canopy volume estimated from field measurements showed
that the overall volume estimatesling each method was highly variable and contained a poor

relationship R%= 0.33, pvalue= 3.46€14, RMSE= 246.13 ) (Figure21).
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Figure 21: Regression relationships of data usedreat canopy volumeComparison between
UAV -derived and fielemeasured canopy radfPanel A) Relationship of ihal canopy volume
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The compounding error in both the mass and volume estimates can explain the poor
relationship found when comparing canopy bulk density estimates fromd&NVed and field
based measurements. The UAgrivedcanopy bulk density and the canopy bulk density
estimated from field measurements were not statistically correRted (00, pvalue= 0.34,

RMSE= 0.3 kg/rf).

When attempting to derive canopy bulk density estimates from UAV data, some

limitations in thedata were highlighted. Due to the fact that slight changes in volume and/or
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mass could lead to large changes in canopy bulk density, the method used to estimate canopy
bulk density from UAV data was unsuccessful at producing meaningful results. Thiveould
attributed to the nature of UAV data and the impact of visual occlusion on measurements that
may be below the canopy. For example, it proved to be difficult toureeasth canopy base
height,canopy diameteiand canopy bulk densipossibly due to th UAV imagery not having a
visual lineof-sight of the bottoms and edgafstree canopiesvhich may oftentimes be
overlapping. In general, this is a potential limitation for UAV imagery being used in areas of
high canopy cover and attempting to make mesmants of objects that may be obstructed by

tree canopyDandois & Ellis, 2013; Wallacet al., 2016; Goldbergs et al., 2018)

Although, difficult to do with the UAV imagéasednethods used our studyanopy
bulk density has been accurately estimated using aerial lidar. Both Andersen et al (2005) and
Erdody and Moskal (2010) estimated canbpik density specifically as a canopy fuel metric.
Both of these studies were conducted in Washington State, however Andersen et al (2005)
estimated canopy fuels in a Dougfasdominated forest, and the study by Erdody and Moskal
(2010) was conducted ponderosa pine forest. High correlations between-tigaived canopy
bulk density estimates to those based on field measurements were found by both Anderson et al

(2005) and Erdody and Moskal (2016% € 0.86,R? = 0.83 respectively).
Future Considerations for Tree Segmentation

Due to the stratified sampling design that was specifically aimed at collecting data from areas of
varying density, plot data could not be used to interpret overall tree density across the area. In
future studies, tree density armation could help target the segmentation algorithm to have the

best detection rates in areas that are most representative of the survey location as a whole. For
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example, if 70% of the study area has densityxcis the segmentation model cocdinpenste

accordingly.

In this study, individual tree segmentation algorithms performed differently in areas of
low or high tree density. This characteristic of segmenting individual trees from point cloud data
makes it difficult to balance undeand oversegmetation in areas of variable tree density. To
help overcome this, assuming that canopy covermstree densityestimatesthis study
utilized an optimized tree segmentation that adapted the segmentation according to areas of
different canopy cover. Twdasses, high (>50%)andw ( O 50%), of canopy
to select either of two different tree segmentation parameters. It is important to note that both
tree segmentation algorithms were used across the entire study area, and the canopy cover
classes were only used to stlthe segmentation outputs accordingly. This study only utilized
two canopy cover classes, but more classes could have been used. Overall, the ability to adapt
the parameters being used in a tree segmentation algorithm based on other available information
(canopy cover, spectral data, etc) could help address the issue-dmaye@ndeisegmentation
of trees in areas of variable tree density. This concept should be explored more to produce

accurate tree segmentations.

Prior to the implementation of theex segmentation algorithms on the UAV point cloud
data, a NDVI raster created from the orthomos
which added a NDVI value to each point. An NDVI threshold was then used to remove all points
that did not resebie vegetation. This process was effective at creating a subset point cloud that
represented only tree points which was then used in the tree segmentation algorithm. The Li
(2012) algorithm used in this study then analyzes each point of the point claggrégate and

identify individual trees. However, this procegasstrictly based on the coordinate location (X,
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Y, Z) of each point. Future research may consider incorporating spectral data, such as NDVI,
RGB, or others, within the actual decisiorakingprocess of the tree segmentation algorithm.
Although preliminary analysis of threlifferenttree segmentatioalgorithms(W. Li et al., 2012;
Dalponte et al., 2016; Oles et al., 208&#)s conducted as part of this study, other tree
segmentatioalgorithms(Silva et al., 2016; Ayrey et al., 201y yield different results and

should be tested.

This study performed individual tree segmentation and subsequent measurement of tree
attributes using SfMlerived point cloud data and multispectraagery. This method offers a
lower-cost alternative to aerial lidar surveys, but also has associated tradeoffs. Although UAV
imagery can be less expensive to acquire than aerial lidar surveys, aerial lidar can cover a
considerably larger area than a $&n@r even several, UAV surveys. Since lidar is an active
remote sensing method, lighting conditions and shadows are less of a concern. Additionally,
options such as multiple return and full waveform lidar can penetrate tree canopies and perhaps
be less #iected by visual occlusion and provide better measurements of canopy base height than
UAV imagery. There are also some operational restrictions such as takeoff/landing areas that,
depending on the area, may be less of a concern with aerial lidar. Gheh&and, the lower
cost of UAV imaging equipment compared to aerial lidar makes it easier for landowners, or
agencies, to purchase equipment and conduct survéymige. This option allows a much more
flexible temporal frequency of UAV image acquisitsoio be defined by the user. Depending on

the userdés need and objectives, both aeri al
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Fire Behavior Modeling

Using UAV data for Modeling Fire Behavior

The LANDFIRE database has traditionally been the major safrdata used to model potential
crown fire behaviorln this study, UAV data were used as inputs to FlamMap for modeling
potential crown fire behavior. The overall effects of using Udg¥afrom the study area was a
drastic reduction in the amount of athat was modeled as active and passive crown fire. In the
sensitivity analysis conducted in this study, the Ud&fived canopy base height was the single
largest influence of this reduction in crown fire ail€anopy base height is the primary factor

tha determines the transition from surface fire to crown fire. A low canopy base height makes
this transition more likely to occur, whereas a high canopy base height reduces the likelihood of
crown fire initiation(Cruz et al., 2002; Scott, 2008Yhen comparing the canopy base height
estimates, the UAV estimate showed an average canopy base height bebvaewHereas
LANDFIRE data had a mean agpy base height of less than 1 m. Field data were distributed by
stratified random sampling, thus not entirely representative of the study area. However, the mean
canopy base height from field data was 7.7 m, which may potentially indicate a substantial
underestimation from the LANDFIRE data. This difference could explain the discrepancy in the
amount of crown fire modeled using each data solitve primary hypothesis regarding UAV
derived crown fire behavior models was that these models would show miatewuahan
LANDFIRE-derived modelsThe hypothesis was supported by an increased variation in the

UAV -derived models, however the dramatic decrease of potential crown fire actigégperal

was unexpected.

LANDFIRE data used to model crown fire behavis only available in 30 m resolution,

whereas UAVderived data were estimated from subter data and resampled to 10 m
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resolution. This difference in spatial resolution may also be responsible for the differences in
data values and the subsequent crvenmodels. In general, the UAV data accurately depicted
areas of less canopy cover and decreased canopy height. The fine resolution of UAV data
relative to LANDFIRE data may be more effective at detecting these areas that were often less
than the sizefaa single LANDFIRE data pixel (30 m). The effects of data resolution may have
also lead to the differences in crown fire models from UAV and LANDFIRE &ataexample,

there were areas where minimal tree cover was present due to small roads, trgdpsand
between trees. Within the UAV imagery, these areas caused decreased estimates for canopy
cover and canopy height due to the absence of trees. However, these gaps were often not

represented in the LANDFIRE dadae to the coarse spatial resolut(igure22?).
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Figure 22: Canopy cover estimates of the same 30 x 30 m area fromdétived and

LANDFIRE data. Due to the high resolution of UAV data, the UAV canopy cover estimates are
ableto represent variability from roads and gaps that are not shown in the LANDFIRE data.
When modeling crown fire potential with UAV data, these areas tended to model less crown fire
causing less crown fire potential across the entire study area in getetigerto LANDFIRE

based models.

A limitation of this study was the coarse estimation of base height, and the inability to
estimate canopy bulk density. Both of these measurements rely on accurate depictions of canopy
edges and bottoms, both of which wdiicult to estimate with the UAV data used in this
study. However, in future studies, the integration of ldltamay produce better estimates of
both of these variables. Additionally, the fire behavior fuel models used by FlamMap to model

fire behavor were not estimated in this study. Future advances in remote sensing capabilities and
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modeling may provide a means to estimate fire behavior fuel models with reliable accuracy, thus

leading to more effective modeling of potential wildfire behavior.
Futur e Consideration for Modeling Fire Behavior with UAV data

LANDFIRE fuels data is known thave spatially variables accuracies, in which some are very
low (Reeves et al., 2009An analysis of the LANDFIRE spatial fuels variables was conducted

by Reeves etla(2009) by performing an accuracy assessment of the LANDFIRE fuels products
by comparing them to Forest Inventory and Analysis (FIA) plot level data. Overall, canopy cover
was found to be overestimated. In their study area, the LANDFIRE canopy coved gntp

85%, whereas most fieldbserved stands in the area showed canopy cover ranging from 25 to
55%. Estimates of canopy base height in LANDFIRE were shown to have relatively poor
relationships with fielemeasured base heights with an avegealueof 0.09 that was highly
variable with ranges between 0 and 0.93 across 12 sites. Canopy bulk density had a better
relationship to field estimates with an aver&&alue of 0.58 which ranged from 0.45 to 0.85

across 12 sites.

An accuracy assessment oéfimodels was not conducted due to no existing independent
data source. Reeves et al. (2009) additionally state that fuel models are difficult to assess due to
the lack of instruments and inventory techniques for measuring fuel model, which makes this
measirement highly subjectivédditionally, when comparing predicted fire behavior models to
those observed after an actual wildfire event, the addition of local data adjustments has shown to
more accuratelgimulate model outcomékrasnow et al., 2009)0ther studies have showmat
LANDFIRE data accuracies should be verified and data adjusted accordingly by the user
(Reeves et al., 2006; Rollins, 20@®fore attempting to use for making management decisions

The sensitivity analysis conducted in this study showed that the input layers in FlamMap had a
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great impact on the poteaticrown fire modeled across the study até&V surveys offer a
potential method of providing correction and/or replacing portions of LANDFIRE fuels data with

information that can be more representative of local conditions.

The ability for land managers use UAV data to supplement LANDFIRE data for
modeling potential crown fire behavior has applications for both planning and monitoring of
forest fuels reduction treatments. For planning purposes, UAV data may provide managers with
a tool for treatment poritization, which may be particularly useful in situations of limited
resource availability for fuels reduction treatments. Additionally, the high spatial and temporal
resolutions of UAV data could potentially be very useful for monitoring fuels reduction
treatments. Rapid feedback from UAV surveys could allow opportunities for adaptive
management and treatment calibration that may otherwise be difficult. The precise planning and
monitoring made possible with UAV data may be especially beneficial in isensiatnagement

areas suchs the wildland urban interface and wildlife habitat.
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Chapter 5 Conclusion

This study tested the feasibility of using a fix@ohg UAV with multispectral sensor for

estimating forest canopy fuels and structure in a soutbwgsinderosaine forest. The results
indicate thatJAV surveys can be used to prodwmurateestimates for forest characteristics

that can be visualized from above the canopy such as: canopy cover, canopy height, and tree
density. Canopy cover and canopy height ptbto be the most reliable estimates. Tree density
estimates are directly related to the accuracy of individual tree segmentationtemiisiio
underperform in areas of increased tree density. However, tree segmentation can be improved by
utilizing adapive algorithm parameters that adjust according to canopy cover. Accuracy of
canopy base height estimates was low, however reasonably comparable to LANDFIRE
estimates. Canopy bulk density proved to be the most difficult metric to estimate using the UAV
methods inour study, and showed no correlation to estimates using field measureAseptst

of this study, érest canopy fuels estimates fr&fAV data wereused to supplement LANDFIRE
data and model crown fire behavior acrossstinely area. Crown fire betar outputs using

UAV data yielded a drastic reduction in the total amount of potential crown fire. It is important
to note that although the crown fire behavior outputs were very different between LANDFIRE
and UAYV data, this study did not seek to estanahich models were most accurate to-tidal

crown fire behaviorHowever, the sensitivity analysis showed that the input data in FlamMap
can have a drastic effect on the crown fire potential modeled in an area. Managers should
consider the source andcacacies of the input data when modeling fire behavior and making
management decisior@verall, results from this study show that UAV surveys could be used to
estimate forest canopy fuels and structure with reasoaabigacy These estimates doluthen

be used to adjust, aised in conjactionwith, other data such as LANDFIRfEaking it a
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potentially useful tool for forest manageirs general, UAV surveys offer more control of

temporal resolution in data collection making it a useful tool for rapicsassnts and adaptive
management. Although typically more costly and less flexible than UAV suraewa] lidar

surveys may provide better estimates for the metrics that were difficult to measure using UAV
imagery. Future studies should explore the udmti technologies in combination to measure
forest canopy fuels and structure. Aerial lidar surveys may be used to develop baseline data for
planning, and UAV surveys could be used as aeffgttive intermittent data collection for
monitoring purposedVith the increasing need for the management of forest fuels, the
combination of these technologies may provide land managers with an effective way of planning

and monitoring fuels treatments.
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